Cluster Comput
DOI 10.1007/s10586-015-0446-8

Congestion-aware TCP-friendly system for multimedia

transmission based on UDP

Mohammed M. Kadhum!:2 . Hossam S. Hassanein!

Received: 15 August 2013 / Revised: 31 January 2015 / Accepted: 11 March 2015

© Springer Science+Business Media New York 2015

Abstract Although most of the data traffic in Internet
is HTTP-based, multimedia applications will soon domi-
nate a large percentage of the traffic. These applications
require satisfactory level of bandwidth as they normally have
large datasets. Under the limitation of network bandwidth,
multimedia traffic may become a source for congestion; par-
ticularly when UDP is used due to the absence of flow control
or congestion control mechanisms in this protocol. Avoiding
congestion can be done if arrival rate to gateways is main-
tained close to outgoing link capacity while maintain small
queue lengths at the routers. This guarantees the availability
of buffer capacity for successful buffering and consequent
forwarding in case of temporary traffic upsurges which
could otherwise cause buffer overflows and packet loss. This
research work introduces a congestion-aware and friendly
UDP-based multimedia system which can help to lessening
congestion occurrence and improve network performance,
principally in real-time environments. The evaluation results
show that the proposed system helps in controlling con-
gestion, reducing packet loss, increasing throughput, and
providing improved network utilization.

Keywords
DCCP

Congestion control - Multimedia - UDP -

B<X) Mohammed M. Kadhum
kadhum @cs.queensu.ca; kadhum @nav6.usm.my

Hossam S. Hassanein
hossam@cs.queensu.ca

Telecommunications Research Lab (TRL), School of
Computing, Queen’s University, Kingston, ON K7L 3N6,
Canada

2 National Advanced IPv6 Center (NAv6), Universiti Sains
Malaysia (USM), 11800 Gelugor, Pulau Pinang, Malaysia

Published online: 24 March 2015

1 Introduction

As the number of multimedia applications requiring high
quality of service has rapidly increased, the need for opti-
mizing the network has become critical. The diversity of
multimedia applications on the Internet has led to differ-
ent types of multimedia traffic [1,2]. Applications such as
video conferencing, IP telephony, IPTV, and audio and video
streaming are bursty in nature, making multimedia commu-
nication suffers from bandwidth requirement problems [3].
The changes in bandwidth requirements, for these applica-
tions, affect the network performance in terms of efficient
utilization. Therefore, it is important to optimize the net-
work bandwidth utilization; which would allow increasing
the number of users using the multimedia applications with
guaranteed quality of service.

In computer networking, the transport layer is responsible
for providing end-to-end communication services for appli-
cations within a layered architecture of network components
and protocols. The transport layer provides convenient ser-
vices such as connection-oriented data stream support, reli-
ability, flow control, and multiplexing. Transport layers are
contained in both the transmission control protocol/Internet
protocol (TCP/IP) model [4], which is the foundation of
the Internet, and the open systems interconnection (OSI) [5]
model of general networking.

1.1 Transport layer protocols for multimedia

The three well-known protocols in this group are the TCP,
user datagram protocol (UDP), and datagram congestion con-
trol protocol (DCCP).

UDP is a popular transport protocol for the delivery of
multimedia traffic over the Internet [6]. UDP is unfriendly
and cannot share the bandwidth fairly when it coexists with

@ Springer



Cluster Comput

TCP under limited bandwidth because it does not have any
congestion control mechanism. UDP usually utilizes the
entire bandwidth in the same limited bandwidth link and TCP
will be out of bandwidth. As most of Internet traffic is TCP
flows, this may lead to a collapse of the entire network.
TCP can deliver best-effort service for error-intolerant
and delay-tolerant data such as web, email, and file trans-
port. These features of TCP make it suitable for the delivery
of important, mission-critical, and error-free data which
requires a reliable data connection [7]. TCP is not well suited
for streaming media due to its reliable in-order delivery and
congestion control that can cause random long delays.
DCCP is designed for the delivery of multimedia data over
the network [8]. With the capability of having a congestion
control mechanism, DCCP has the high potential to coexist
fairly with TCP. The bandwidth can be shared fairly between
other congestion-controlled transport protocols like TCP.

1.2 Multimedia transmission issues

Multimedia streaming is becoming a popular application
in the Internet today. There are so many applications for
multimedia streaming such as video conferencing, video-on-
demand, voice over IP (VoIP) etc. Most of these applications
are using UDP as their transport protocol due to the fact
that UDP is a lighter protocol without any congestion con-
trol mechanism and is easier to implement. The increase of
these applications resulted in the increase of multimedia data
traffic which affected conventional data traffic that utilized
TCP as their transport protocol, such as world wide web and
email. The worst affected may be the mission-critical data
such as online banking.

Transport layer protocols designed for delivering mul-
timedia data over the Internet efficiently, such as DCCP,
are working well for networks with a short delay link and
minimum error rate. However, the performance of DCCP is
degraded when delivering data over long delay links [9, 10].

When it comes to a network link with long propagation
delay, unlike UDP, the performance of DCCP delivering mul-
timedia data is dropped significantly. This is due to the high
round trip time (RTT) introduced in such link, for exam-
ple, the links for satellite and wireless networks. DCCP
over such links suffers from several problems such as higher
packet drops, longer time to reach the optimum through-
put, higher jitter and fluctuated throughput. This drawback
of using DCCP as a transport protocol over long delay links
drives researchers to improve the multimedia applications at
the application layer over a simple transport protocol such as
UDP. This in turn helps to improve the Internet’s performance
in terms of congestion avoidance and control.

Nowadays, many multimedia applications favor the UDP.
The use of UDP as a transport protocol would endanger the
network because there is no congestion control applied. To

@ Springer

DCCP
» congestion
control for
TCP « connection- ACK UDP
« flow control oriented e unreliable connectionless
« reliable » congestion * ACK message- * no congestion
o retransmission ~ control  Vector  oriented control
 sequence
number

Fig. 1 DCCP protocol

a certain extent, the entire network can collapse if too many
applications deliberately use this protocol. Using conven-
tional UDP as a transport protocol for carrying multimedia
streaming data degrades the performance of other transport
layer protocols in use.

To solve this problem, DCCP was invented with built-in
congestion control schemes. For multimedia traffic, DCCP
has several congestion control mechanisms, such as TCP-
like, TFRC, and TFRC-SP. TCP-like is used for abrupt
changes in data [7] while TFRC is used for more smooth (less
abrupt) data [11] and TFRC-SP is used for small packets data
[9]. DCCP can handle the congestion caused by the transmis-
sion of multimedia traffic even though it suffers from slow
start. The problem is anticipated to occur with the delivery
of multimedia data using DCCP over a long delay link net-
work [11], since DCCP is designed to work best for normal
or short delay links.

DCCP is well suited as a transport protocol for deliver-
ing multimedia traffic over wired or wireless networks [8].
It supports bidirectional unicast connections of congestion-
controlled unreliable datagram. It uses acknowledgment
mechanisms and explicit congestion notification (ECN) [12,
13] to figure out packet loss and congestion. It is also good for
network health due to its built-in congestion control features.

With DCCP as a transport protocol, the multimedia traffic
data carried by DCCP is supposed to share the bandwidth
fairly with TCP data and co-existing in harmony. However,
several studies [14—17] showed that DCCP has a weakness
in competing the bandwidth with existing TCP connections.
In addition, DCCP based VoIP presents poor performance in
the presence of TCP traffics.

DCCP can be described as an intermediate transport pro-
tocol which is an unreliable transmission protocol, as is UDP,
and has congestion control and connection-oriented features
like TCP. Figure 1 loosely illustrates the DCCP.

DCCP provides a framework for congestion-controlled
but unreliable data transmission. Within this framework,
different congestion control identifiers (CCIDs) implement
different TCP-friendly congestion control profiles. CCID-2,
a TCP-like congestion control [16] specifies a profile similar
to TCP’s additive increase/multiplicative decrease (AIMD)
congestion control mechanism. CCID-3, a TFRC mechanism



Cluster Comput

[17] provides rate-controlled congestion control, based on
TCP-friendly rate control (TFRC) that is better suited for
the transmission of data multimedia. Three types of media
applications use DCCP: one-way pre-recorded media, one-
way live media and two-way interactive media. The relevant
difference between one-way and two-way media is delay sen-
sitivity. Delays of tens of seconds or more from transmit time
at the sender to play out time at the receiver are acceptable.
In contrast, for two-way applications, transmission delays as
little as 150-200 ms are often causing problems [5].

1.3 Motivation

One of the target applications of DCCP is Internet telephony
(VoIP), which is an increasingly popular application. Interac-
tive speech codec acts like constant-bit-rate sources, sending
a fixed number of frames per second. Users are extremely
sensitive to delay and quality fluctuation, so retransmissions
are often useless. Retransmission mechanisms, as in other
transport protocols like TCP, generally require more time
and introduce higher delays. At this point, the receiver has to
pass the playback point before the transmitted packet arrives.
Quick adaptation to the available bandwidth is neither nec-
essary nor desirable. The data rate is changed by adjusting
the size of each compressed audio frame, either by adjusting
codec parameters or by switching codec altogether. At the
extreme, some speech codec can compress 20ms of audio
down to 64-bits of payload.

However, the packetrate is harder to adjust because buffer-
ing multiple frames per packet can cause an audible delay.
Such small payloads pressurize the transport layer to reduce
its header overhead, which becomes a significant contributor
to connection bandwidth. A codec may also save bandwidth
by not sending data during silent periods (when no one is
talking), but immediately returns to its full rate as soon as
speech resumes. Many of these issues are common to interac-
tive video conferencing as well, although that involves much
higher bandwidth.

Streaming media introduces a different set of trade-offs.
Unlike interactive media, several seconds of buffer can be
used to mask some rate variations, but since users pre-
fer temporary video artifacts to frequent re-buffering, even
streaming media generally prefers timeliness to absolute reli-
ability. Video encoding standards often lead to application
datagrams of widely varying sizes; for example, MPEG’s key
frames are many times larger than its incremental frames.
An encoder may thus generate packets at a fixed rate, but
with orders-of-magnitude size variation. Interactive games
use unreliable transport to communicate position informa-
tion. Since they can quickly make use of available bandwidth,
games may prefer DCCP CCID-2 congestion response to the
slower response desired by multimedia. One of the problems
that may arise is that slow-start assumes that unacknowl-

edged segments are due to network congestion. While this is
an acceptable assumption, segments may be lost for other rea-
sons, such as poor data link layer transmission quality. Thus,
slow-start executes badly in situations with poor reception,
such as wireless networks. Furthermore, according to Schier
and Welzl [15], “ the lack of transparency in the API with
regard to packet loss, the coarse granularity of the lookup
table used to calculate the TFRC equation, and the lack of
history discounting in CCID-3—and demonstrates that they
can significantly impair the performance of typical DCCP
use cases such as live video streaming.” It was found that
CCID-3 and its variants result in lower voice qualities than
those over UDP [18].

The goal of the research work presented in this paper
is to develop congestion-aware and responsive UDP-based
system for multimedia transmission that can reduce the
occurrence of congestion situations and optimize the utiliza-
tion of network resources that would meet the requirements
of multimedia users and improve the network performance.
The proposed system allows the end users to sense and
respond to network congestion by adjusting transmission
strategy and encoding pairs that are associated with different
transmission rate values.

The remainder of the paper is organized as follows; Sect. 2
presents the proposed UDP-based system. The implemen-
tation of a UDP-based system is described in Sect. 3. The
performance evaluation results are discussed in Sect. 4.
Finally, conclusions and future work are presented in Sect. 5.

2 Congestion-aware UDP-based system

To take advantage of the features provided by UDP, appli-
cations that use UDP should have (i) congestion control at
higher layers and (ii) a modified version of UDP that can
keep the desirable features of UDP. Applications that use the
enhanced version should understand its behavior. As the UDP
agent is used to allocate and send network packets, informa-
tion needed for communication at the application level should
be passed to the UDP agent as a data stream. Nevertheless,
packets that have a header stack only will be allocated by
UDP implementation. Thus, the UDP implementation should
be modified to add a new technique to send the incoming
data from the application. As this application is going to be
used with different gateway queue management mechanisms,
this type of multimedia stream should be differentiated from
other streams. Hence, the UDP agent should be modified to
the right data type in a field of IP header.

2.1 UDP-based system requirements

The proposed congestion-aware UDP-based system would
help in avoiding congestion, sharing the bandwidth with

@ Springer



Cluster Comput

other protocols and utilizing the network efficiently. Thus,
the performance of the network will be improved overall. To
develop such a system, it requires inclusion of UDP-based
multimedia connections which exchange data traffic through
the bottleneck link(s). These connections should be identified
separately. Per-flow state should be maintained to guarantee
good quality of service at the hosts ends that exchange the
multimedia traffic. The visibility of an unencrypted IP and
UDP packet header is required. Hosts should have knowl-
edge about the IP or UDP options. They are capable of
inspecting packets with tunnel encapsulations and suspend
processing of packets with unknown formats. Nodes should
have the ability to de-multiplex connections based on their
IP address/protocol/port number, or an explicit identifier of
a specific connection. Hosts should have the ability to differ-
entiate between multimedia traffic and other traffic types.

This paper presents the development of a congestion-
aware UDP-based multimedia application that runs over a
modified version of UDP implementation in the network
simulator 2 (ns-2). The multimedia application implements
different media transmission rates to cope with different net-
work conditions; and should respond to network congestion
by changing its transmission rate.

2.2 UDP-based system design

In this proposed UDP-based system, the sender and the
receiver should agree on different sets of transmission strate-
gies. During the connection establishment phase, the sender
and the receiver must also agree on sets of encoding strategies
and associate them with different values of scales (transmis-
sion rates). Taking in mind that VoIP prefers constant packet
rate to variable one, it requires application’s cooperation to
change packet size in order to change effective data rate [16].
Therefore, for each of the encoding and transmission strategy
sets, constant transmission rate is determined, and every set
uses same sized packets in spite of the encoding method.
The system is supposed to perform as follows: the mul-
timedia source (sender) starts its transmission rate that is
mapped to scale O (the first transmission rate). When data
packets are first received at the receiver end, it should notify
the sender of the transmission rate that the receiver is expect-
ing to receive the next data packet. As a result, the sender
has to change its transmission rates according to the rate
value announced by the receiver. The receiver monitors the
network and determines the transmission rate value based on
the congestion condition indicated by the queue management
mechanism used at the bottleneck router. In addition to this,
packet loss and marked packet monitoring are used to detect
congestion in the network. Every packet loss for each RTT
is considered network congestion and action should be taken
to lessen this congestion. When the loss or receiving of a
marked packet happens, the receiver decreases the value of

@ Springer

Send(data)

Sendpkt=make_pkt(data,scale)
udtsend(sndpkt)

Wait for
ACK with

scale
value

rcv(revpkt)

scale=rcvscale

Fig. 2 FSM description of multimedia sender

the transmission rate used recently to half. The receiver then
informs the sender of the new value of the transmission rate
it will receive or will expect to receive next. When no con-
gestion is detected, the receiver increments the transmission
rate value by one and informs the sender about the new value

Figure 2 shows the finite state machine (FSM) for the mul-
timedia sender. It starts its transmission rate that is mapped to
first transmission rate (scale 0) over unreliable data transfer
channel. Then the sender has to wait for ACK (that includes
the transmission rate that the receiver is expected to receive
next) and change its transmission rates according to the rate
value announced by the receiver.

Figure 3 shows the FSM for the multimedia receiver.
When data packets are received at the receiver side, it should
notify the sender about the transmission rate that the receiver
is expected to receive next. The receiver monitors the net-
work and determines the transmission rate value based on
the congestion condition. When the receiver receives packet
and no congestion is detected, increments the transmission
rate value by one and informs the sender about the new value.
When the loss is detected, the receiver decreases the value of
the recent transmission rate to half. It then informs the sender
of the new transmission rate value that is expected to receive
next.

3 The implementation of UDP-based system

In this implementation, the UDP agent is used to allocate
and send network packets. As mentioned earlier, information
needed for communication at the application level should be
passed to the UDP agent as a data stream and packets that



Cluster Comput

rcv(rcvpkt) && nocongestion

rcvscale=scale+1

sendpkt=make_pkt(ack,scale)
send(sndpkt)

Wait for

data

rcv(rcvpkt) && congestiondetected

rcvscale=scale/2

sendpkt=make_pkt(ack,scale)
send(sndpkt)

Fig. 3 FSM description of multimedia receiver

have a header stack only will be allocated by UDP implemen-
tations. Hence, the UDP implementation should be modified,
to send the incoming data from the application. For the mul-
timedia application, CBR implementation that is used in the
ns-2 simulator is modified to have the ten level media scal-
ing feature (ten transmission rates for testing experiment).
The C++ class will be called “MApp” and implemented
as a child class of “Application”. The OTcl will be called
“Application/MApp”. The sender and receiver for this appli-
cation are implemented in “MApp”. The UDP agent used
for MApp is called “UdpMAge”. The OTcl for this agent is
called “Agent/UDP/UDPm”. For the application level com-
munication, MApp header is defined in addition to MApp
Sender and Receiver. Set of values for new parameter will be
added to ns2 default file.

3.1 Class and header structure for the multimedia
application

For the communication of multimedia applications, the
header of the structure named in C++ is defined under
“hdr_m”. Once the multimedia application has information
to send, it hands it to “UdpMAgent” in the structure format
of “hdr_m”. Then, “UdpMAgent” allocates packets (based
on the data packet size) and writes the data to the multimedia
header of each packet. By defining the “MultimediaHead-
erClass” that should be derived from “PacketHeaderCalss”
in the header, the header size and the OTcl name for the
header (PacketHeader/Multimedia) are obtained. Note that
the multimedia sender uses a timer for scheduling the next
transmission of the data packet.

The “SendTimer” class that is derived from the “Timer-
Handler” class is defined in addition to its “expire()” member
function. This function should call “send_m_pkt()” member
function of the “MApp” object. At the beginning, “MApp”
calculates the next data transmission time based on the trans-
mission rate associated with the current scale value and the
packet size that is given in the TCL simulation script. The
“MApp” sender adjusts its scale parameter (next transmis-
sion rate) when an ACK application packet arrives from the
receiver side.

3.2 The modified UDP for multimedia transmission

The modified UDP protocol for multimedia transmission,
whichis called UdpMAgent, is modified based on the original
UDP protocol in ns-2 (known as “UdpAgent”). It is modified
to allow for the following technical objectives:

Writing the information received from a MApp object to

the header of sending multimedia packet.

— Reading the information from the header of the received
multimedia packet.

— Handing the header of the received multimedia packet to
the “MApp” object.

— Segmentation and re-assembly.

— Prioritizing multimedia (MApp) packets (if need).

4 Evaluation of UDP-based system

To ensure that the congestion-aware UDP-based system is
working properly and efficiently, a TCL model (presented
in the Appendix) is applied for testing purposes and several
scenarios are conducted to investigate the performance of
a network utilizing the new system. The numerical results
gained from simulations are analyzed statistically to evaluate
the performance of the system.

4.1 Simulation scenarios

The experimental evaluation includes two scenarios. The first
scenario is conducted for evaluating the congestion-aware
UDP-based system, while the second scenario is performed
using standard UDP for comparison purpose. The simula-
tion scenario and architecture for studying the effectiveness
of the proposed UDP-based system is illustrated in Fig. 4,
which corresponds to the parameter settings included in the
TCL model and presented in Table 1. This scenario includes
two routers, two sources (one for the multimedia connec-
tion using the modified UDP and another for file transfer
connection using TCP NewReno) and their corresponding
receivers (Fig. 4). The traffic arriving on the incoming links
at senders’ gateway (R1) is aggregated and multiplexed on

@ Springer



Cluster Comput

Mapp_Sender Mapp_receiver

UDPm UDPm

6Mbps 2ms

2Mbps 10ms

6Mbps 2ms

tep sink
FTP_Sender FTP_Receiver
Sender Receiver
Application layer | FTp, MApp FTP, MApp

Transport layer

TCP |UDPm Router TCP | UDPm
Network layer P P P
Physic, Datalink layer Ethernet Ethernet Ethernet
| | L J

Fig. 4 Sample network scenario for evaluating the proposed system

the outgoing link. The access links provide full-duplex con-
nections at a data rate of 6 Mbps with a propagation delay of
2ms between the sources and their gateway (R1). The bot-
tleneck link between router 1 and router 2 has a data rate
of 2Mbps and a propagation delay of 10ms. The capacity
of access links has been chosen three times larger than the
capacity of the bottleneck link to ensure that the link between
router 1 and router 2 is the only bottle-neck in the network.
The propagation delay of the downlink has been chosen five
times larger than that of the access links to signify the large
propagation delay across a network as opposed to the small
delay experienced in accessing the network.

FTP application traffic generation module is connected
to the TCP NewReno agent to generate data, while the
developed multimedia application agent is connected to the
modified UDP to generate the multimedia traffic. When the
scenarios were run, the behavior of the proposed UDP-based
system is recorded and examined by using performance met-
rics such as outgoing transmission link utilization, packet
loss, queue size and throughput.

For comparison purpose, Fig. 5 demonstrates the second
simulation scenario and architecture of utilizing standard
UDP. Same parameter settings used to evaluate the proposed
system are used in demonstrating the performance of the net-
work when the standard UDP is used. In this scenario, CBR
application traffic generation module is connected to stan-
dard UDP agent to generate data that represents multimedia
traffic. UDP agent and attach it to the node S1, then attach a
CBR traffic generator to the UDP agent. The packet size is
being set to 500 bytes and a packet will be sent every 0.005 s
(i.e. 200 packets per second).

The experimental parameters are summarized in Table 1.

@ Springer

CBR_sender CBR_Receiver

uDP UDP _Sink

6Mbps 2ms

2Mbps 10ms

6Mbps 2ms’

6Mbps 2ms

tep sink

FTP_Sender FTP_Receiver
Sender Receiver
Application layer| TP, CER FTP, CBR
Transportlaver | 1cp | ypp Router cp | upP
Network layer P P P
Physic, Datalink layer Fthernet Fthernet Ethernet

Fig. 5 Sample network scenario when the standard UDP is used

Table 1 Experimental parameters

Parameters value

Parameters value

TCP version
Application traffic type
FTP/MApp packet size
CBR packet size

CBR sending interval
Router buffer size

Bottleneck queue management
mechanism

NewReno

FTP, CBR, MApp
1000 bytes

500 bytes

0.005s

20 packets

Random early detection
(Min_thr= 5, Max_thr=10)

Access links bandwidth 6 Mbps
Bottleneck link bandwidth 2 Mbps
Simulation duration 50s

4.2 Estimation of traffic generation

As the average transferred file over the Internet is about
10Kbytes, the average file has no more than 10 TCP packets
taking the typical packet length to be 1000bytes. A typi-
cal distribution that describes the file length is the Pareto,
with shape parameter of between 1 and 2 (and average
of 10Kbytes). Since the median of the file size is about
2.5Kbytes [19], a Pareto distribution with mean 10 Kbytes
and an average size of 2.5 Kbytes identifies a Pareto distribu-
tion with shape parameter b = 1.16 and with a minimum size
of 1.37Kbytes. The interarrival times of new connections
are distributed exponentially. TCP connections are parame-
terized by the source host parameter and the session number



Cluster Comput

parameter from that host. A new FTP application is defined
for each TCP source agent whenever TCP source has data to
send. The arrival process of the new TCP flows is modeled
according to a Poisson process. Therefore, the beginning of
new TCP connection is generated using exponentially distrib-
uted random variables. In both scenarios, the average time
between arrivals of new TCP sessions at the source is 45 ms.
That is, on the average, 22.22 sessions arrive at the host.
Therefore, the packet arrival rate of sessions is 22.22 ses-
sions per second. Sessions are generated with random size
with an average of 10 Kbytes, with Pareto distribution with
shape 1.5. Therefore, the total bits generation rate is:

22.2 sessions per second x 10 Kbytes per session
x 8 bitsper byte
= 22.2 sessions per second x 10 x 1024 bytes per session
x 8 bitsper byte
= 1818624 bits per second = 1.8 Mbps

Adding 1.8 Mbps generated by TCP source to 1.6 Mbps gen-
erated by UDP source equals 3.4 Mbps. Thus, it is clear that
the rate of bits generation is higher than the bottleneck capac-
ity (which is 2 Mbps). Hence, the congestion phenomenon is
expected to appear.

4.3 Results and discussion

This subsection presents the performance evaluation of the
proposed system based on the numerical results obtained
from simulations. It discusses how multimedia traffic gen-
erated by the proposed UDP-based system is handled by the
network and end hosts and also how more optimally the net-
work resources are used. A comparison of the performance
of the developed multimedia application that uses a mod-
ified UDP to that of the standard multimedia traffic that
utilizes CBR protocol over original UDP protocols is pre-
sented here. This comparison is based on actual and average
queue lengths, packet losses, and link utilization. Through-
put and drop fairness property are also compared in terms of
the number of dropped packets in a connection, considering
the share in the bottleneck link bandwidth.

4.3.1 Actual and average queue size

This section describes the performance of the modified UDP-
based system in terms of the actual and the average queue
sizes. This comparison is done to show the queue occu-
pancy level at the router’s buffer and this is important as
the impact of the multimedia traffic on the buffer utilization
can be understood easily. As known, the key role of the queue
management mechanism employed in the network routers is
to keep the queue length as small as short as possible and to

25000 T T T T T T T

- | i, L\ | .'.‘,'w Wﬁj ||r,\ ‘ |_I,|l||,||,| ! .’,"'H, :“ | Il
0 gl

Tine in seconds

Fig. 6 Actual and average queue sizes in using modified UDP-based
system

25000 : ; ; ; . ; ——

X cur

Tave”
« 20008 _ N N COET PRPAE R G, N Ry N
- H ¢
Q
-
o
m
& 150@0 |
c
L]
@ ‘ : ‘ :
N MK
4 1p000 |
@ i.'. AL AL ll.'J'.'.'l'“ LI il U
1| uuy 1 g U 1|

g [ ' ikt in: |
]
=
& see8 i

a 5 16 15 28 25 38 35 46 45 58

Tine in seconds

Fig. 7 Actual and average queue sizes using CBR and standard UDP

provide space for accommodating a sudden increase in multi-
media traffic in order to avoid packet loss. Figure 6 illustrates
the actual and average queue lengths of the bottleneck router.
Here the multimedia traffic is generated using the multimedia
application of the modified UDP-based system. Note that the
traffic shown in the figure includes the accommodated FTP
of the router’s buffer.

The actual and average queue sizes in the case of using
the CBR application over the standard UDP to generate the
multimedia traffic is shown in Fig. 7.

Figure 6 illustrates the queue management mechanism
used in the router which allows the queue size to grow
(indicated by RED) to a maximum queue size of 20 pack-
ets (20,000bytes). A packet is then dropped in both TCP
and modified UDP connections. This drives the sender to
react to the loss by adjusting their transmission rates, and
hence avoiding and controlling congestion at the gateway. In

@ Springer



Cluster Comput

the case of standard UDP (Fig. 7), it is clear that, initially,
TCP increases its congestion window exponentially. This is
because it is in the slow start phase, till a point when one of
its packets gets dropped, causing the congestion window to
become half of its original value. When transmission using
the standard UDP begins, it occupies some bandwidth, pre-
venting the TCP connection from increasing its congestion
window any further. As a result of this, many more packets
are dropped.

From Fig. 6, the average arrival rate at the gateway router
is manageable due the fact that both resources (TCP and the
modified UDP) are responsive. This can be realized from the
variations observed in the window size. The average queue
length is much lower compared to the value obtained in the
previous case. It is approximately 4 packets, which is much
lower as compared to 9 packets in the standard UDP case.
Thus, the average delay of the connections is also smaller
(shorter). It is,

Dy = (4% 1000  8)/(2 % 10° % 10%) = 16 ms

In the case of standard UDP, shown in Fig. 7, there is a much
faster but smaller variation in window size (due to the fact
that only TCP is responsive). As seen from the figure, the
high oscillations in the queue sizes correspond to those of
the windows of TCP; and the average queue size is around
9 packets. This means that there is an additional average
queuing delay which is calculated as,

Dy = (9% 1000 % 8)/(2 % 10° % 10°) = 36:ms
4.3.2 Packet loss

Packet loss results in noticeable performance issues signif-
icantly affecting many network applications such as VoIP,
online gaming, and video conferencing. The performance
of these applications is degraded when packet loss is high.
Figure 8 shows the total number of packets dropped at the
gateway (350 packets), when the modified UDP-based sys-
tem is used.

Figure 9 below shows the total number of packets dropped
at the gateway when the standard UDP is used. The loss
in this case is 6300 packets, a remarkable difference. The
loss in the standard UDP connection is very high and shows
the aggressiveness of UDP in utilizing the entire bandwidth
leaving no space for TCP which is halted from transmitting
data (see Fig. 10) due to numerous time outs. These time outs
happen because all the links are occupied by UDP traffic.

Figure 11 shows the packet arrival rate at the router buffer
when using the modified UDP-based system. The total num-
ber of packets that arrived successfully at the route is 12,000.
Only 350 packets were dropped (see Fig. 8) (thatis 2.916 % of
total packets), because the system allows (as it is a respon-

@ Springer

480 T T T T T

’%ktdrbp’

350 | : ‘ o
300 |-
258 |-

288 -

Packets

156

100 [ T T

L 4 4 b O F F §
a 5 18 15 20 25 30 35 48 45 58
Tine in seconds

Fig. 8 Total packets drops using modified UDP-based system

7000 T T T T T

’bktdrﬁp’

BBBB [----odooeee st

so00 | ceeek ™ i .
408 [-oo-iooeondinnds e e i s e i

Packets

3068 -

2000 -

1668 -

8 L I 1 1 i 1 i i i
a 5 18 15 28 25 36 35 48 45 il

Tine in seconds

Fig. 9 Total packet drops using standard UDP

Fil:] T T T

I’dr‘l:ip-tcpl’

78 oot

74 - .

Packets

64 1 1 1 1 1
2] 5 16 15 20 25 30

Timne in seconds

Fig. 10 Number packet drops when TCP connection is used



Cluster Comput

14600 T T T T T T

7PktArry’ ——

12008 [--ooocioooeesteeee st

168868 -

Packets

BBBB [l

46088 -

2000 [ : .

B 1 1 1 1 1 1 1 1 €
a 5 18 15 20 25 308 35 48 45 568
Tine in seconds

Fig. 11 Packet arrival rate when the modified UDP-based system is
used

200080
18eee - :
16600 [
14688
12680 [

168688 [

Packets

8088 -
60688 -
4000 -

2000 [T

g I 1 I I ! ! i i
2] 5 18 15 28 25 38 35 48 45 50

Tine in seconds

Fig. 12 Packets arrival rate when the standard UDP is used

sive system) the queue management mechanism to control
the packet arrival rate, thus avoid congestion. In contrast to
the modified UDP, the standard UDP arrival rate cannot be
controlled, as UDP is an unresponsive protocol.

Figure 12 shows the number of the UDP packets arrived
at the router’s buffer is 18400. 6300 packets of them were
dropped (see Fig. 9) (that is 34.239 % of total packets) by the
queue management mechanism at the router.

4.3.3 Throughput comparative drop fairness

Basically, the queue management mechanism employed in
the bottleneck router tries to enforce fairness between the
different connections crossing the router, in terms of the ratio
of packets dropped from a connection with the connection’s
share of the bandwidth utilization on the bottleneck link. The
fairness can be achieved by ensuring that the probability of
a packet getting dropped from a specific connection is pro-

’ihr-tép’

Throughput

] 1 1 1 1 1 1 1 1 1

a 9 L:] 15 20 25 38 35 48 45 56

Tine in seconds

Fig. 13 Throughput gained for TCP and modified UDP

’thr-tép’ —
"thr-udp”

Throughput
=

8,5 [ R ERt SECTEPTTRRITN PPN e -

gt i i i i
8 10 26 30 40 50

Tine in seconds

Fig. 14 Throughput gained for TCP and standard UDP

portional to the connection’s share of the throughput through
the router. Figure 13 illustrates throughput gained for both
TCP and the modified UDP. Figure 13 also shows that the
modified UDP can share the bandwidth with TCP and the
total throughput level is acceptable.

There is a big enhancement in TCP throughput compared
to that of TCP that uses standard UDP depicted in Fig. 14
which confirms that TCP throughput is almost zero the major-
ity of the time, except during the beginning of the TCP
transmission. This low value of throughput is due to the fact
that UDP consumes the entire bandwidth and its throughput
is very high and almost consistent compared to that of the
TCP connection. The Fig. 14 shows the unfairness presented
by throughput values, when UDP co-exists with TCP.

4.3.4 Bandwidth link utilization

Network efficiency, or how network resources are utilized,
can be measured based on link utilization as well. The per-

@ Springer



Cluster Comput

2500 T T T T T

" ’Bandwidth’

20608

1568 [-[|

Packets

LB e 1 e e P e e L e

500 | :

a 9 18 15 28 25 36 35 48 45 58

Timne in seconds

Fig. 15 Bandwidth usage at the bottleneck link using modified UDP-
based system

2580 : . . . . . ——
"Bandwidth”
>
@ 1588 [ I SEEEE STTUTTS COCRCT PEPPRRE SEPRR SOLR
e
17}
-
[X}
m ! :
B 2@BE [--oodeeeenedinnen e
500 | - ; 3 ‘ e
a 1 1 1 1 1 1 l 1 1

a 5 16 15 28 25 30 35 48 45 58

Tine in seconds

Fig. 16 Bandwidth usage at the bottleneck link using standard UDP

centage of time the queue waits before transmitting packets
on the bottleneck link determines the level to which the link
bandwidth is utilized. Link utilization also depends on the
packet arrival rate and speed of the packet arrival at the router
buffer. The link’s utilization depends on how frequently the
link is used. Thus, the utilization depends on whether the
queue contains packets to be transmitted, and not on the
exact number of packets present in the queue. A larger queue
does not improve the link utilization. The utilization will be
improved only when the possibility of the queue being left
empty isreduced. Figures 15 and 16 show the bandwidth used
at the bottleneck link in the case of the modified UDP and
the standard UDP-based systems, respectively. The band-
width link utilizations obtained on the bottleneck link can
be understood from the packet arrival rate and queue size.
Figure 15 confirms that the modified UDP-based system is
a responsive, friendly one that shares the bandwidth fairly

@ Springer

with other protocols like TCP. While Fig. 16 confirms that
the standard UDP is an aggressive unfriendly protocol that
tries to utilize the bandwidth fully leaving no chance for other
protocols to transmit.

5 Conclusion and future work

With the rapid increase in multimedia applications and under
the limitation of the network bandwidth, multimedia traffic
can cause congestion which can degrade the performance
experienced by the network users. Therefore, it is important
to reduce the occurrence of congestion situations in a network
to optimize the utilization of network resources to provide the
network users with suitable performance. Popular transport
protocols for transferring multimedia traffic over the Internet
are TCP, UDP and DCCP all have several performance issues
that affect the quality of service experienced by users.

This paper presents a congestion-aware UDP-based sys-
tem developed for transmitting multimedia traffic that can
help improve network performance. The system consists of
a responsive multimedia application and a modified version
of UDP. It is implemented in network simulator 2 (ns-2)
to evaluate its performance. We found that the developed
UDP-based system can improve the performance of the net-
work and it is friendly in terms of sharing the bandwidth.
The simulation results showed that the responsive multime-
dia application helps in alleviating the congestion, reducing
the packet drops and increasing the throughput at the end
hosts in addition to providing improved network utilization.

For further research, we are going to use the developed
multimedia application with its modified UDP protocol on
different IP router queue management mechanisms. This
requires differentiating this type of multimedia traffic from
other types of traffic. This can be achieved by adding some
information in the IP header fields which, to the best of our
knowledge, is not currently used. The newly arrived packet
should be operated upon by the queue management mecha-
nism used and it is either randomly dropped or inserted into
the buffer. Multimedia packets can be identified (or labeled)
by transport layer (as in ECN-capable packet) when send-
ing. If the packet to be dropped is multimedia packet, it will
be admitted and then might be marked at the head of the
queue, when necessary, to provide fast congestion notifica-
tion. Therefore, the queue management algorithm should be
implemented in the arrival state. The length of the packet
at the front of the queue is obtained, its service time is
computed, and a self-interrupt is scheduled to signal the com-
pletion of the packet’s service in the near future. If more
packets are waiting in the queue to be served, the process
moves from service-complete to service-start state to initiate
the processing of the next packet at the head of the queue.



Cluster Comput

Acknowledgments This research work is funded by Universiti Sains
Malaysia (USM), Short-term Grant No. 304/PNAV6312117.

Appendix

Tool command language (TCL) is utilized to test the per-
formance the responsive UDP-based system in Network
Simulator 2 (ns-2) compared to that of standard UDP. In the
following, the details of TCL codes are provided.

e Start new simulation.
set ns [new Simulator]
e Define different colors for data flows

$ns color 1 Red
$ns color 2 Blue

e Create the trace files to store information about every
event happens.

set NamFile [open out.nam w]
set TraceFile [open out.tr w]
$ns namtrace-all $nf
$ns trace-all $tf

e Define a ’finish’ procedure to close the trace files once
the simulation duration elapses and flash the information
recorded and execute NAM for visualizing the simulation
scenario.

proc finish {} {
global ns nf tf
$ns flush-trace
#Close the trace file
close $nf
close $tf
#Execute nam on the trace file
exec nam out.nam &
exit 0

}

e Create the network nodes (sources, destinations, and
routers nodes).

set node_(s1) [$ns node]
set node_(s2) [$ns node]
set node_(r1) [$ns node]
set node_(r2) [$ns node]
set node_(s3) [$ns node]
set node_(s4) [$ns node]

e Create an access link between the sources and their gate-
way (R1); destinations and their gateway (R2). Create
bidirectional link between bottleneck routers with spe-
cific bandwidth and delay.

$ns duplex-link $node_(s1) $node_(r1) 5Mb 3 ms Drop
Tail
$ns duplex-link $node_(s2) $node_(r1) 5Mb 3 ms Drop
Tail
$ns duplex-link $node_(r1) $node_(r2) 2Mb 10 ms RED
$ns duplex-link $node_(s3) $node_(r2) 5Mb 3 ms Drop
Tail
$ns duplex-link $node_(s4) $node_(r2) 5Mb 3 ms Drop
Tail

e Setup the parameters for the queue management mecha-
nism used in this network scenario. Here Random Early
Detection (RED) mechanism is used.

$ns queue-limit $node_(r1) $node_(12) 20
Queue/RED set thresh_ 5
Queue/RED set maxthresh_ 10
Queue/RED set g_weight_ 0.002
Queue/RED set ave_ 0

e Monitor the queue link between the bottleneck routers.

$ns duplex-link-op $node_(rl) $node_(r2) queuePos 0.5

e Set the position for the network nodes for NAM visual-
ization.

$ns duplex-link-op $node_(s1) $node_(r1) orient right-down
$ns duplex-link-op $node_(s2) $node_(r1) orient right-up
$ns duplex-link-op $node_(r1) $node_(r2) orient right
$ns duplex-link-op $node_(s3) $node_(r2) orient left-
down
$ns duplex-link-op $node_(s4) $node_(r2) orient left-up

e Setup the modified UDP connection for Multimedia traf-
fic between source 1 (s1) and its pair (s3). Define their
packet sizes as well.

set udp_s [new Agent/UDP/UDPm]
set udp_r [new Agent/UDP/UDPm]
$ns attach-agent $node_(s1) $udp_s
$ns attach-agent $node_(s3) $udp_r
$ns connect $udp_s $udp_r
$udp_s set packetSize_ 1000
$udp_r set packetSize_ 1000
$udp_s set fid_ 1
$udp_r set fid_ 1

In the comparison scenario, this part is changed to the fol-

lowing:

@ Springer



Cluster Comput

set udp_s [new Agent/UDP]

set udp_r [new Agent/UDP/UDPm]
$ns attach-agent $node_(s1) $udp_s
$ns attach-agent $node_(s3) $udp_r
$ns connect $udp_s $udp_r

$udp_s set packetSize_ 1000
$udp_r set packetSize_ 1000
$udp_s set fid_ 1

$udp_r set fid_

e Define the multimedia application and attach it to s1 and
s3.

set mapp_s [new Application/MApp]
set mapp_r [new Application/MApp]
$mapp_s attach-agent Sudp_s
$mapp_r attach-agent $udp_r
$mapp_s set pktsize_ 1000
$mapp_s set random_ false
In the comparison scenario, this part is changed to the fol-
lowing:
set udp_s [new Application/Traffic/CBR]
set udp_r [new Application/Traffic/CBR]
$ udp_s attach-agent $Sudp_s
$ udp_r attach-agent $udp_r
$ udp_s set pktsize_ 500
$ udp_s set interval_ 0.005
$ udp_s set random_ false

e Setup the TCP connection, of type Newreno, for File
Transfer traffic between source 2 (s2) and its destination
(s4). Define the TCP source congestion window as well.

set tcp [$ns create-connection TCP/Newreno $node_(s2)
TCPSink $node_(s4) 0]

$tcp set window_ 15

$tep set fid_ 2

e Setup a FTP Application and attach it to TCP connection
for source 2 (s2)

set ftp [$tep attach-source FTP]

e Define the start time for FTP and multimedia applica-
tions. Define the simulation duration as well.

$ns at 0.0 “S$ftp start”
$ns at 1.0 “$mapp_s start”
$ns at 50.0 “finish”

e Call ns to run this scenario.

$ns run

@ Springer

References

1. Thomas, S., Olivier, F., Alessio, B., Alberto, D., Antonio, P., Gior-
gio, V., et al.: Traffic analysis of peer-to-peer IPTV communities.
Comput. Netw. 53(4), 470-484 (2009)

2. Zoran, B., Bojan, B., Miodrag, B: Multimedia traffic in new
generation networks: requirements, control and modeling. Paper
presented at the Proceedings of the 13th WSEAS international con-
ference on communications, 2009

3. Ramaswamy, R: Data confidentiality service on top of transmission
control protocol/internet protocol. Paper presented at the Com-
pEuro *90. Proceedings of the 1990 IEEE international conference
on computer systems and software engineering, 8—10 May 1990

4. Postel, J.: User datagram protocol, RFC 0768, Internet Engineering
Task Force (1980)

5. Floyd, S., Kohler, E.: Profile for datagram congestion control proto-
col (DCCP) congestion control ID 2: TCP-like congestion control,
in RFC 4341 (2006)

6. Shahrudin Awang Nor, S.H., Ghazali, O., Kadhum, M.M.: Per-
formance enhancement of DCCP TCP-like through reduction of
congestion window. In: The 2010 International Conference on
Modeling, Simulation and Control, ICMSC 2010, Egypt, pp. 247—
251 (2010)

7. Yang, H., Zhang, F., Jiao, Q., Tang, X.: Dynamics of TCP-Like
congestion control algorithm. In: The Sixth World Congress on
Intelligent Control and Automation (WCICA), vol. 1, pp. 825-829
(2006)

8. Ishak, M.I., Ghani, M.A.H.A, Lynn, O.B.: Enhancement and
analysis of TFRC performance for real-time data application: a
survey. In: The 2nd International Conference on Computer and
Automation Engineering (ICCAE), vol. 2, pp. 706-709, 26-28 Feb
2010

9. Sathiaseelan, A.; Fairhurst, G.: Use of quickstart for improving the
performance of TFRC-SP over satellite networks. In: International
Workshop on Satellite and Space Communications, vol., pp. 46-50,
14-15 Sept 2006

10. Nor, S.A., Hassan, S., Ghazali, O., Omar, M.H.: Enhancing DCCP
congestion control mechanism for long delay link. In: International
Symposium on Telecommunication Technologies (ISTT), pp. 313—
318, 26-28 Nov 2012

11. Kohler, E., Floyd, S.: Profile for datagram congestion control proto-
col (DCCP) congestion control ID 2: TCP-like congestion control,
RFC 4341, Internet Engineering Task Force (2006)

12. Ramakrishnan, K., Floyd, S., Black, D.: The addition of explicit
congestion notification (ECN) to IP: RFC 3168 (2001)

13. Floyd, S., Kohler, E., Padhye, J.: Profile for datagram congestion
control protocol (DCCP) congestion control ID 3: TCP-friendly
rate control (TFRC), RFC 4342, Internet Engineering Task Force
(2006)

14. Hoshikawa, T., Ishihara, S.: Estimation of sending rate of DCCP
CCID3 flows based on jitter of probe packets on WLANS. In: IEEE
Wireless Communications and Networking Conference (WCNC),
pp- 701-706, 28-31 March 2011

15. Schier, M., Welzl, M.,: Using DCCP: Issues and improvements. In:
20th IEEE international conference on network protocols (ICNP),
pp. 1-9 (2012)

16. Lien, Y.-N., Ding, Y.-C.: Can DCCP replace UDP in changing net-
work conditions?. In: IEEE International Conference on Advanced
Information Networking and Applications (AINA), pp. 716-723,
22-25 March 2011

17. Rahman, J., Saha, S., Hasan, S.F.: A new congestion control algo-
rithm for datagram congestion control protocol (DCCP) based
real-time multimedia applications. In: 7th International Conference
on Electrical & Computer Engineering (ICECE), pp. 533-536, 20—
22 Dec 2012



Cluster Comput

18. Yu, L., Li, X., Zhang, P.,, Li, G., Ma, M.,: An improved trans-
port algorithm over DCCP in wireless ad hoc networks. In: IEEE
International Conference on Communication Systems (ICCS), pp.
569-573, 19-21 Nov 2014

19. Biplab, S., Kalyanaraman, S., Kenneth, S.V.: An integrated model
for the latency and steady-state throughput of TCP connections.
Perform. Eval. 46, 139-154 (2001)

Mohammed M. Kadhum is a
Postdoctoral Fellow and staff
member of the Telecommuni-
cation Research Lab (TRL),
School of Computing, Queen’s
University, Canada. He is cur-
rently a senior lecturer at the
National Advanced IPv6 Cen-
ter (NAv6), Universiti Sains
Malaysia (USM). He had com-
pleted his Ph.D. research in
Computer Networking at Univer-
siti Utara Malaysia (UUM). His
research interest is on the areas
of Computer Networking, Net-
work Quality of Service (QoS), Network Performances, Network Traffic
Engineering, Wireless and Mobile Networking, Local Area Network-
ing, Telecommunications/Network Management, Internet Security. He
has been awarded with several medals for his outstanding research
projects. His professional activity includes being positioned as Tech-
nical Program Chair for NetApps2008, NetApps2010, and Co-General
Chair for NETAPPS2012, a technical committee member for various
well known journal and international conferences, a speaker for confer-
ences, and a member of several science and technology societies.

4

Hossam S. Hassanein is a pro-
fessor in the School of Comput-
ing at Queen’s University. Before
joining Queen’s University in
1999, he worked at the depart-
ment of Mathematics and Com-
puter Science at Kuwait Univer-
sity (1993-1999) and the depart-
ment of Electrical and Computer
Engineering at the University
of Waterloo (1991-1993). He
obtained his Ph.D. in Computing
Science from the University of
Alberta in 1990, and M.A.Sc. in

- Computer Engineering from the
University of Toronto in 1986. My B.Sc. is in Electrical Engineer-
ing from Kuwait University, 1984. He was born in Cairo, Egypt. His
research is in the areas of broadband and wireless networks architec-
tures, protocols, and control and performance evaluation. He is the
founder and director of the Queen’s Telecommunication Research Lab
(Queen’s TRL) in the School of Computing at Queen’s.

@ Springer



	Congestion-aware TCP-friendly system for multimedia transmission based on UDP
	Abstract
	1 Introduction
	1.1 Transport layer protocols for multimedia
	1.2 Multimedia transmission issues
	1.3 Motivation

	2 Congestion-aware UDP-based system
	2.1 UDP-based system requirements
	2.2 UDP-based system design

	3 The implementation of UDP-based system
	3.1 Class and header structure for the multimedia application
	3.2 The modified UDP for multimedia transmission

	4 Evaluation of UDP-based system
	4.1 Simulation scenarios
	4.2 Estimation of traffic generation
	4.3 Results and discussion
	4.3.1 Actual and average queue size
	4.3.2 Packet loss
	4.3.3 Throughput comparative drop fairness
	4.3.4 Bandwidth link utilization


	5 Conclusion and future work
	Acknowledgments
	Appendix
	References


