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Accurate and ubiquitous localization is the driving force for location-based services in Vehicular Ad-hoc 
NETworks (VANETs). Most of present vehicle localization systems rely on Global Positioning Sytems (GPS). 
In urban canyons, GPS suffer from prolonged outages. Other vehicle motion sensors (e.g. gyroscopes, 
accelerometers and odometers) suffer from unsustainable error accumulation. This research presents 
a novel Cooperative Localization scheme that utilizes Round Trip Time (RTT) for inter-vehicle distance 
calculation, integrated with Reduced Inertial Sensor System (RISS) measurements to update the position 
of not only the vehicle to be localized, but its neighbors as well. We adopted the Extended Kalman 
Filter (EKF), to limit the effect of errors in both the sensors and the neighbors’ positions, in computing 
the new location. Our scheme is also extended to account for the scenarios where some of the vehicles 
might experience GPS availability for a short duration. The ultimate aim of this work is to efficiently 
manage and coordinate this heterogeneous set of sensors/technologies into a consistent, accurate, and 
robust navigation system. Different scenarios using different velocities and neighbors’ densities were 
implemented. GPS updates with different percentages and error variances were also introduced to test the 
robustness of the proposed scheme. The scheme is implemented and tested using the standard compliant 
network simulator 3 (ns-3), vehicle traces were generated using Simulation of Urban MObility (SUMO) 
and error models were introduced to the sensors, the initial and the updated positions. Results show 
that our RISS-based scheme outperforms the non-cooperative RISS typically used in challenging GPS 
environments. GPS updates with low error variance can enhance the accuracy of the proposed cooperative 
scheme and share this enhancement among the network. Moreover, we compare our proposed scheme 
to a GPS cooperative scheme and demonstrate the reliability of a RISS-based cooperative scheme for 
relatively long time duration.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Location-Based Services (LBS) and applications in vehicular en-
vironments are experiencing rapid development in areas such as 
automatic parking, safety monitoring, traffic and resource man-
agement [1,2]. Moreover, they have been extended to cooperative 
forms such as collision warning, cooperative driving and adaptive 
cruise control [1,3,4]. Since a high degree of positioning accuracy, 
in sub-meters, is a mandate of these applications, utilizing the 
Dedicated Short Range Communication (DSRC) is very promising. 
DSRC is a spectrum of 75 MHz allocated by the U.S. Federal Com-
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munications Commission in the 5.9 GHz band. As such, DSRC [5]
enables vehicle-to-vehicle and vehicle-to-infrastructure communi-
cation in Vehicular Ad-hoc NETworks (VANETs). This communica-
tion is furthermore governed by the physical and Medium Access 
Control (MAC) protocols defined in the Wireless Access in Vehic-
ular Environments (WAVE) in IEEE 802.11p, resulting in efficient 
spectrum utilization.

Such developments in LBS and applications necessitate per-
vasive precise localization of vehicles. Global Navigation Satellite 
Systems (GNSS) such as Global Positioning System (GPS) provide 
location information with accuracy of 5–10 m. However, this level 
is not guaranteed in urban canyons [6] where the satellite signals 
typically experience excessive multipath due to high rise buildings. 
Moreover, this signal requires open sky access, which is unavail-
able in tunnels. As a solution, a plethora of advanced positioning 

techniques was introduced in the literature to handle these out-
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ages. The most widely presented is integrating GNSS with other 
navigation systems such as Radio-Frequency IDentification (RFID) 
[7], Wireless Local Area Network (WLAN) [8] or Inertial Navigation 
Systems (INS), among others. INS uses measurements from the on-
board inertial sensors to apply Dead Reckoning (DR) technique that 
updates the current position of a vehicle based on the last known 
position, the current speed and displacement (obtained from the 
accelerometers), and the heading measurements (obtained from 
the gyroscopes) [9]. However, in GPS-free environments such as 
tunnels and urban canyons, the above conventional integration 
techniques are sub-optimal because of the extra cost required for 
deploying reliable infrastructures such as RFID and WLANs. While 
inertial sensors suffer from inherent errors like bias drifts and scale 
factor instabilities which accumulate over time due to the double 
integration of the acceleration to obtain the displacement in case 
of protracted GPS outages. Accordingly, cooperative localization is 
thoroughly addressed and anticipated to achieve the required ac-
curacy in VANETs [6].

Vehicular cooperative localization exploits the DSRC capability 
and allows vehicles to update their positions using both: positions 
of their surrounding neighboring vehicles and, the measured inter-
vehicle distance through ranging techniques. In particular, some 
neighboring vehicles can obtain position updates only during par-
tial access to GPS or in the existence of nearby landmarks with 
known positions. These vehicles can broadcast their current accu-
rate positions and act as mobile anchors to the other surrounding 
vehicles with unknown or low accurate locations (denoted as ve-
hicles to be localized). Afterwards, a ranging technique can be 
used to estimate the distance between the vehicles to be localized 
and their surrounding neighbors (potential anchors). The typical 
ranging techniques [5] that are widely used are Received Signal 
Strength (RSS), Time of Arrival (ToA), Time Difference of Arrival 
(TDoA) and Round Trip Time (RTT). RTT is then considered to be 
the best compromise among the different ranging techniques in 
terms of accuracy and complexity [10].

To summarize, the accuracy of the first cooperative information 
(i.e. neighbors’ positions) depends on the localization technique 
used to obtain the neighbor’s position. In addition, the second 
cooperative information (i.e. inter-vehicle distance) is subject to 
different sources of errors according to the used ranging technique. 
Therefore, the main challenges for a reliable and accurate cooper-
ative localization are: 1) choosing the localization scheme and the 
ranging technique suitable for the environment, 2) mitigating the 
associated errors in both location and range, and 3) selecting the 
data fusion method for integrating the above-mentioned data.

The aim of this work is to introduce a VANETs distributed co-
operative localization scheme to be used in urban canyons and 
tunnels where there is a complete GPS blockage and infrastructure-
based localization is infeasible. Accordingly, only on-board vehicle 
sensors and inter-vehicle communication are used to update the 
vehicles’ positions throughout their trajectory. Nevertheless, the 
scheme accounts for the scenarios where some vehicles can re-
ceive temporarily GPS updates that are further integrated with the 
on-board sensors for a final position update. The main outline of 
the introduced scheme is:

1. Our scheme applies RTT which does not require synchroniza-
tion since the same vehicle will be calculating the difference 
between the time of transmission and reception. Moreover, 
RTT is proven to be robust to the channel and synchronization 
errors for measuring inter-vehicle distances [10]. The main 
challenges in RTT are the delays generated from the processing 
and the multipath effects at the vehicles and the packet col-
lisions. Such processing time can be minimized by decreasing 
the localization overhead in the network and so, fast process-

ing of data is guaranteed or can be statistically modeled and 
compensated in the calculations [11] resulting in high accu-
rate range estimation [12]. Multipath and fading effects can be 
mitigated as well as in [13]. Packet collisions are typically at-
tributed to the hidden terminal problem. However, the robust-
ness of CSMA protocol adopted by IEEE 802.11p for VANETs 
will limit the occurrence of the hidden terminal problem [14]. 
Thus, the distance estimation using RTT requires a calibration 
phase to compensate for these delays.

2. Unlike previous schemes, ours updates the neighbors’ locations 
through their on-board sensors/INS readings prior to using 
these positions in localization. To ensure the robustness of our 
scheme, both the INS sensors and the initial position errors are 
considered and modeled as normally distributed random vari-
ables. Accordingly, a linearized EKF was used to integrate the 
measured inter-vehicle distances along with the INS readings 
to estimate accurate positions for the vehicle to be localized 
in the presence of the above erroneous data. The performance 
of the proposed scheme is tested for different velocities com-
pared to a non-cooperative scheme and neighbors’ densities.

3. The proposed cooperative localization framework is further ex-
tended by integrating GPS positions received by some of the 
cooperating vehicles with the INS measurements. Such ve-
hicles can have GPS position updates with acceptable error 
variances due to experiencing open sky access momentarily or 
using advanced satellite receivers. GPS based-position updates 
are coupled with INS-based positions through loosely coupled 
Kalman filter. The GPS-based positions are subjected to errors 
that are modeled as normally distributed random variables as 
well. These position updates can be used to improve the accu-
racy of the cooperating vehicles through cooperative localiza-
tion especially those suffering from long GPS outages. Accord-
ingly, heterogeneous localization schemes that integrate these 
GPS measurements with the WAVE protocol, used in coopera-
tive localization, among the vehicular network are promising 
high accuracy compared to both non-cooperative schemes and 
non-heterogeneous cooperative schemes. The effect of having 
partial GPS updates for different number of vehicles on the 
performance of the cooperative scheme is also studied as well 
as GPS updates with different error variances. The position 
accuracy of our proposed scheme is compared to different co-
operative and non-cooperative localization schemes.

4. We assess our introduced scheme using extensive evaluations 
using standard compliant network and legitimate traffic sim-
ulators. Simulation of Urban MObility (SUMO) is adopted to 
generate practical traffic scenarios that model the vehicles’ 
movements. These traces are further imported by the network 
simulator 3 (ns-3) where the cooperative scheme is imple-
mented using WAVE protocol for practical communication be-
tween moving vehicles.1

The paper is organized as follows: Section 2 reviews some of the 
work done in the literature. Section 3 provides an overview for 
the implemented distributed cooperative localization scheme. The 
detailed implementation of the system modules is introduced in 
Section 4. Performance evaluation is then provided in Section 5. 
Finally, Section 6 concludes the paper.

2. Literature review

Our main focus is on cooperative localization for urban canyons 
and tunnels where GPS is completely blocked or available for some 
of the vehicles over a short duration. This is unlike the cooperative 
schemes in [16–24] that rely mainly on GPS to update neighbors’ 
1 Part of this scheme previously appeared in our work in [15].
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positions, or enhance the GPS signals or positions with cooperative 
information.

The techniques from the literature described in [7,25] assume 
that only some of the vehicles are having GPS estimated positions 
(partial GPS availability). In [7], the RFID landmarks are used to 
enhance the localization accuracy of the vehicles equipped with 
GPS and to localize the non-equipped vehicles in range. Then, the 
equipped vehicles are used as a reference for the surrounding 
vehicles (equipped or non-equipped with GPS). While in [25] to 
enhance the location accuracy of each GPS equipped vehicle, the 
velocity measurement from the on-board sensors as well as the 
inter-vehicle distances are used to apply a multilateration tech-
nique where the surrounding GPS equipped vehicles are used as 
anchors. For the localization of the non-equipped vehicles, each 
neighboring vehicle provides a candidate position at different time 
epochs for the vehicle to be localized with assigned weighting 
value to be used in the multilateration. Thus, each vehicle can 
have different position estimates with different likelihood values 
measured independently using the surrounding vehicles. Then, the 
true position is the one with the highest likelihood.

Moving vehicles equipped with GPS receivers may only have 
accurate position estimates before they reach crowded areas with 
high buildings. Thus, to address this situation which usually hap-
pens in downtown canyons, INS with dead reckoning can be used. 
However, the main drawback is the error accumulation over time 
which deteriorates the positioning accuracy during long GPS out-
age. Reduced Inertial Sensor System (RISS) is introduced instead of 
INS since the former uses speedometer to obtain the displacement, 
thus one single integration is required. Although error accumula-
tion becomes less significant, error accumulation still exists and 
high accuracy cannot be maintained for a long time [9]. To avoid 
the drawbacks of standalone RISS, some techniques based on co-
operative localization in GPS denied environments are proposed in 
the literature as reviewed below.

In [26], a Cooperative Inertial Navigation (CIN) technique is in-
troduced to enhance the accuracy of the standalone INS. In CIN, 
the vehicles share their sensor measurements alongside their INS-
based positions with all the vehicles traveling in the opposite di-
rection and then fuse these data with Carrier Frequency Offset 
(CFO) to estimate the position. CFO represents the difference be-
tween the transmitted and the received frequency of the carrier 
signal. The accuracy of the localization is enhanced in case of ve-
hicles moving with high relative velocities.

In [27], an algorithm called VANET LOCation Improve (VLOCI), 
is introduced where every vehicle has the initial position measured 
using GPS and has a set of estimated positions calculated from the 
surrounding neighbors. The GPS estimated position is further en-
hanced using the positions of the neighbors and the inter-vehicle 
distances based on ToA or RSS. The inter-vehicle distance should 
be added to the neighbor’s position or subtracted since all the ve-
hicles are moving in the same lane and direction. The final position 
is calculated using the weighted average function by assigning each 
position a weighting value based on the neighbors’ distances. Then 
in [28], the authors extended their work in VLOCI by adding a 
smart lane algorithm that takes into consideration a multi-laned 
road scenario. In particular, the algorithm avoids positions with 
sudden drifts from the GPS-based positions.

Moreover, the authors in [29] enhanced the work done in [27]
and [28] by updating the scheme to provide good localization ac-
curacy considering multiple lanes. To know the position estimate 
for each vehicle, Angle of Arrival (AoA) is measured in addition to 
the ranging techniques mentioned in the VLOCI algorithm to de-
termine the location. Furthermore, as in the VLOCI technique, the 
final position is calculated using the weighted average function of 
the position estimates but this position is further fused along with 

the GPS position using EKF and/or Particle Filter (PF) for an up-
dated position. AoA technique, however, is highly affected by the 
multipath that results in high localization error and thus expensive 
solutions such as antenna array must be used [6].

A centralized RSS cooperative approach for a cluster of n ve-
hicles was introduced in [30] and [31]. Each vehicle measures 
its distance with the neighboring (n − 1) vehicles based on RSS. 
These neighbors also report their velocities from the on-board sen-
sors. Then, all this information is collected by the n vehicles and 
used to compute their positions based on EKF estimates. Addition-
ally, map matching is used to ensure that the localization is done 
within the permitted boundaries. In particular, the EKF uses the 
total n × (n − 1) measurements within the cluster to 1) predict the 
states with the on-board velocities and 2) correct them using the 
RSS based distances. The main focus was to mitigate the error in 
the RSS-based distances. Nevertheless, the computational complex-
ity cannot be easily handled for real time and safety applications.

Our proposed distributed scheme adopts RTT instead of RSS 
while EKF handles the errors in the sensors and the neighbors’ po-
sitions. In the next section, the overview of the preliminaries of the 
system and of the implemented distributed cooperative scheme is 
introduced.

3. System overview

3.1. Preliminaries

We assume that all vehicles have initial positions obtained ei-
ther from GPS or any other localization system [32]. Then, these 
vehicles travel in urban areas where GPS is unavailable due to ex-
cessive multipath from large buildings or complete blockage as in 
tunnels. At a given moment if there is partial access of open sky, 
some vehicles might receive GPS updates for a short period.

Vehicles are equipped with DSRC transceivers, so each vehi-
cle to be localized can communicate with its neighboring vehicle 
in the communication range via IEEE 802.11p. The neighbors in 
range are the vehicles that receive messages from the vehicle to 
be localized with power greater than certain threshold (referred as 
receiver’s sensitivity).

The vehicles are also equipped with inertial navigation sensors 
to monitor both the land vehicle’s translational and rotational mo-
tion: speedometers/odometers that measure the horizontal speed 
and, the gyroscope that determines the heading of the vehicle. We 
define the following system entities:

• Sender is the vehicle to be localized that sends messages to the 
surrounding vehicles acquiring information for localization.

• Neighbor is the vehicle within the communication range of the 
sender vehicle that receives the messages and then replies to 
the sender with its navigation information.

Fig. 1 shows a scenario on a two-way, two-lane road where the 
sender (the vehicle in the middle) requests information (solid lines) 
from the surrounding neighbors which in turn will reply (dashed 
lines) with the navigation information.

3.2. Scheme overview

The proposed distributed cooperative localization scheme can 
be illustrated in the following main steps:

• The sender vehicle requiring localization broadcasts a Location 
Request Message (LRM) for collecting neighbors’ navigation in-
formation in range (both location and sensor measurements) 
needed in the localization. Packet collisions and processing 

overhead are minimized in our framework by maximizing the 
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Fig. 1. Two-way, two-lane road cooperative scenario.

interval between localization request messages. Vehicles typ-
ically broadcast localization messages every t seconds while 
relying on inertial sensors to compute the location between in-
tervals. Hence, our method does not exacerbate the contention 
between vehicles.

• The received outdated neighbors’ positions are corrected at the 
sender by applying RISS mechanization using their reported 
sensor measurements. The neighbors’ positions are outdated 
from the second-time epoch as there is no GPS updates. These 
outdated positions will decrease the accuracy of the position 
of the sender vehicle if directly used. For this reason, mecha-
nization is done to ensure that the neighbors are having up-
dated positions before applying the cooperative scheme.

• RTT is calculated at the sender and used to measure the ac-
tual distance dm between the sender vehicle and the neighbor 
responded to the broadcasted messages.

• The sender vehicle updates its position using the RISS mech-
anization and the GPS measurements, if available, through 
loosely coupled Kalman filter. If the outdated sender position 
is used when calculating the Euclidean distance between it 
and its neighbor, this distance will be subjected to high er-
ror and will not reflect the actual distance between them.

• The Euclidean distance dest is a function of both the sender’s 
and the neighbors’ positions. However, since these two posi-
tions are calculated based on RISS, they suffer from the inaccu-
racies of the mechanization process and the errors associated 
with both the sensors and the previous positions. Thus, the 
Fig. 2. Overview block diagram of th
to correct the estimated distance and calculate a final accurate 
position of the sender vehicle.

• Linearized EKF uses the error difference between the calcu-
lated distances dest and dm to estimate the error in x and y
positions of the sender vehicle. This reflects the error in dest

while the error in dm is assumed to be negligible as a fact of 
applying RTT.

• The estimated x and y errors are then used to update the 
sender’s position which is the output of the cooperative 
scheme and can be also used by other neighbors.

These steps are summarized in the block diagram in Fig. 2
which consists of the five main stages of the proposed scheme: 
LRM, mechanization, GPS/RISS fusion, Distances’ calculation, KF 
and position update.

4. Cooperative localization scheme

The proposed cooperative localization scheme is illustrated in 
Fig. 3 and its five stages are described next.

4.1. Localization request messages (LRM)

Each sender vehicle to be localized requests neighbors’ naviga-
tion information (positions, heading and speed) through broadcast-
ing messages. The broadcast message contains both the ID of the 
sender vehicle denoted as sender ID and time of transmission T T X .

All messages are broadcasted in the DSRC range every t sec-
onds. The neighboring vehicle in the communication range that 
receives power greater than its sensitivity power level P̂ will add 
its navigation information (latest positions, current heading and 
current odometer reading) to the message and rebroadcasts the 
message. The latest position of the neighbor might be outdated by 
the time it is reported and thus it is accompanied with the above 
inertial sensor readings.

Once the sender receives back the neighbor’s message, it checks 
whether the received message is a reply to its own broadcasted 
LRM or not. This is done by comparing its ID with the sender ID 
appended in the reply message. If the IDs are identical, the mes-
sage is decoded, otherwise it is ignored. The sender measures the 
time of reception of the LRM and denoted by T R X . The LRM mes-
sage contains the following information:

• Neighbor’s position is denoted by coordinates x(n) and y(n)

where n is the neighbor’s index. This position is the last 

measured distance dm using the ranging technique is adopted updated available one at the neighbor which might be out-
e proposed cooperative scheme.



246 M. Elazab et al. / Vehicular Communications 9 (2017) 242–253
Fig. 3. Flow chart of the proposed cooperative scheme.

dated from the current time of the LRM reception. Accordingly, 
neighbor’s velocity and heading are also broadcasted.

• Neighbor’s velocities in both x and y directions, respectively, 
are denoted as v(n)

x and v(n)
y , and obtained from the odometer 

readings. Similarly, the neighbor’s heading is denoted as A(n)

and measured using the gyroscope.
• Time of LRM transmission is T T X and is used to measure the 

actual distance to the neighbor d(n)
m using RTT.

The above neighbor’s information is used to update the received 
neighbor’s position using RISS which will be used afterwards in 
the computation of the Euclidean distance d(n)

est between the sender 
vehicle and its neighbor n.

Both distances d(n)
m and d(n)

est will be described and used after-
wards to update the current sender vehicle’s position.

4.2. 2D RISS based neighbors and sender position update

As mentioned earlier, the neighbor reports in the LRM its last 
updated position which may be outdated at the time of the lo-
calization of the sender vehicle. This is because in our proposed 
cooperative scheme, it was assumed that all vehicles travel in ur-
ban areas where there are no GPS location updates.

We assume that our framework focuses on land vehicles in ur-
ban areas where uphill and downhill is less likely to exist. Thus, 
2D RISS [9] is used to update the neighbors’ positions as well as 
the position of the sender vehicle. This is done at lower cost com-
pared to full inertial navigation systems (INS) as the RISS consists 
of only two sensors: odometer (or speedometer) and gyroscope. 
The information from both sensors are used to compute the ve-
locities in the east V E and north directions V N . Moreover, these 
velocities are directly integrated to calculate the east and north 

displacements which in turn are used to compute the E and N po-
sitions corresponding to x and y positions, respectively. Below are 
the main equations used in the 2D RISS as in [33].

Ȧ = wz (1)(
V E

V N

)
=

(
Vod sin(At)

Vod cos(At)

)
(2)

ṙ =
(

φ̇

λ̇

)
=

(
0 1

RM+h
1

(RN +h) cos φ
0

)(
V E

V N

)
(3)

Where:

• wz is the angular velocity measured by the gyroscope.
• Vod is the vehicle’s horizontal speed measured by the odome-

ter.
• V E and V N are the calculated east and north velocities, re-

spectively.
• φ̇ and λ̇ are the rate of change in latitude and longitude, re-

spectively.
• Ȧ is the rate of change in azimuth (heading angle).
• R M , R N are the meridian and the normal radius of the earth, 

respectively.
• h is the altitude.
• At is the current azimuth (heading angle) of the vehicle.

4.3. GPS updates and fusion

While each vehicle typically updates its position using the RISS, 
temporarily available GPS measurements can be also available. Ac-
cordingly, the output of the sender’s RISS mechanization (from 
the previous step) is integrated with the GPS-based position using 
Kalman filter through a loosely coupled approach [9]. In particular, 
the difference between the position obtained from the RISS mech-
anization and that obtained from the GPS is calculated and then 
used to correct the sensors’ measurements as well as the sender’s 
position. The state and measurement vectors of the loosely cou-
pled Kalman filter are denoted by δX LC

t|t−1 and Z LC
t , respectively 

while the state transition and design matrices are denoted by H LC
t

and F LC
t−1, respectively and represented as follows:

˙δX LC
t|t−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δφ̇

δλ̇

δ V̇ E

δ V̇ N

δ Ȧ

δẇz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

F LC
t−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
RM+h 0 0

0 0 1
(RN +h) cos φ

0 0 0

0 0 0 0 − fn 0

0 0 0 0 fe 0

0 0 − tan φ
RN +h 0 0 R33

0 0 0 0 0 −βwz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

G LC
t−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

σφ

σλ

σV E

σV N

σA√

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)
2βwzσ
2
wz
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Z LC
t =

⎛
⎜⎜⎝

φr − φg

λr − λg

V E,r − V E,g

V N,r − V N,g

⎞
⎟⎟⎠ (7)

H LC
t = (I4×4 04×2) (8)

Where:

• (δX LC
t|t−1)

+ is the state vector.
• t is the measurement time epoch.
• (+) is the superscript sign that defines the predicted value.
• F LC

t−1 is the state transition matrix that models the dynamics 
in the system states at each time epoch.

• fn, fe are the body accelerations transformed into local-level 
frame.

• R33 is the component in row 3 and column 3 of the rotation 
matrix.

• βwz is the reciprocal of the correlation times associated with 
the autocorrelation sequence of δwz .

• σ 2
wz is the variance associated with the gyroscope errors.

• G LC
t−1 is the noise distribution matrix of the loosely coupled KF.

• Z LC
t is the measurement/observation matrix of the loosely cou-

pled KF between the RISS (r) and the GPS (g) measurements.
• H LC

t is the design matrix that expresses the linear relation be-
tween the states and the measurements.

Finally, the output of this Kalman filter (δX LC
t|t−1)+ will be added to 

the RISS measurements (Xr) as follows:(
X LC

t

) = (
δX LC

t|t−1

)+ + (
Xr

t

)
(9)

Where:

Xr
t =

⎛
⎜⎜⎜⎜⎜⎝

φt

λt

V Et

V Nt

At

ωzt

⎞
⎟⎟⎟⎟⎟⎠ (10)

After updating both the sender and the neighbors’ positions, 
inter-vehicle distance is calculated using the ranging technique as 
well as the Euclidean model as described next.

4.4. Inter-vehicle distance calculation (dest and dm)

Based on the LRM collected information, localization techniques 
such as multilateration cannot be applied to obtain an updated po-
sition for the sender vehicle because of the associated errors in 
these measurements. Instead, linearized Kalman filter model such 
as EKF can be used to obtain an accurate position update [9].

The proposed cooperative scheme calculates two values of dis-
tances between the sender vehicle and each neighbor. The first 
distance denoted as d(n)

est and calculated based on the vehicles’ lat-
est positions as depicted in the equation below. It is the Euclidean 
distance between the RISS-based updated position of the sender 
vehicle and its neighbor n as computed from Subsection 4.2. Thus, 
this distance is subjected to errors that are associated with the ve-
hicles’ positions due to the odometer, gyroscope and the vehicles’ 
previous positions errors.

d(n)
est =

√(
x(n) − x

)2 + (
y(n) − y

)2
(11)

Where:

• x(n) and y(n) is the RISS mechanization-based updated position 

of neighbor n.
• x and y is the latest position of the sender vehicle (after RISS 
mechanization).

• The second distance denoted as d(n)
m is calculated using the 

ranging technique RTT as shown below using the difference 
between the transmission and the reception time instants of 
the LRM at the sender and denoted as T T X and T R X , respec-
tively. No error was introduced to the RTT as the delay offset 
that is generated from the processing can be calibrated, mul-
tipath and fading effects can be also mitigated as discussed 
previously. Thus, d(n)

m reflects the actual distance between the 
sender vehicle and the neighbor n.

RT T (n) = T (n)
R X − T T X (12)

d(n)
m = c × RT T (n)

2
(13)

Where:

• RT T (n) is the time duration between transmitting the LRM by 
the sender vehicle and receiving the reply from neighbor n.

• c is the constant speed of light.

The error difference between the above two distances (d(n)
est and 

d(n)
m ) are used by extended Kalman filter, described below, to esti-

mate the errors in the x and y positions of the sender vehicle.

4.5. Extended Kalman filter

As discussed earlier, the calculated distances have many sources 
of errors and noises associated with the measurements. To ob-
tain accurate estimation of the current vehicle’s position in the 
presence of such errors, Kalman Filter (KF) is used to integrate 
the cooperative information with the sender vehicle RISS-based lo-
cation. KF is the best linear estimator when the error follows a 
Gaussian distribution [9] which is the case in the sensor measure-
ments and the vehicles’ positions. Typically, the system dynamics 
and the measurements must be represented using linearized mod-
els which is not the case in distance-based position estimation. 
Thus, KF works with distances and positions errors (rather than 
the distances and positions values) to reserve its linearity. The 
KF relates the error in the unknown position to the error be-
tween the two distances (i.e. RTT-based and Euclidean-based) to 
be compensated for final position update. In our proposed frame-
work, we adopted Extended Kalman Filter (EKF) which utilizes 
a closed-loop scheme where the corrected states at the output 
of the filter are fed back to be used at the next time epoch in 
calculating the navigation states at the output of the inertial sys-
tem. This is unlike KF which utilizes open-loop scheme where the 
corrected states are not fed back. The conventional EKF adopted 
in this paper consists of two stages: Prediction and measure-
ment phases [9]. The measurement vector ZtN×1 and the corre-
sponding design matrix HtN×2 are given in Eq. (14) and Eq. (15). 
Then, the estimated errors vector (errors in x and y positions) is 
used to correct the latest position of the sender vehicle accord-
ing to Eq. (16) and fed back afterwards to the system to improve 
the future estimates of the RISS mechanization as depicted in 
Fig. 2.

ZtN×1 =

⎛
⎜⎜⎝

d(1)
m − d(1)

est
...

⎞
⎟⎟⎠ (14)
d(N)
m − d(N)

est
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HtN×2 =

⎛
⎜⎜⎜⎝

(x−x(1))

d(1)
est

(y−y(1))

d(1)
est

...
...

(x−x(N))

d(N)
est

(y−y(N))

d(N)
est

⎞
⎟⎟⎟⎠ (15)

(
xt

yt

)
=

(
δx+

t
δy+

t

)
+

(
xt−1
yt−1

)
(16)

Where:

• N is the total number of neighboring vehicles.

• (
δxt
δyt

)
is the error state vector which consists of the errors in 

both x and y positions.

5. Performance evaluation

5.1. Simulation settings

The vehicles’ traces are generated using SUMO traffic simulator 
[34]. The road is divided into two lanes where the length of each 
lane is equal to 300 m and the width is 3 m per lane. The inter-
vehicle distance is set to be around 3 m which is adequate for the 
urban scenario in which the vehicles are moving with low speed. 
The total number of vehicles is set to N = 50 and divided equally 
between lanes. During each simulation scenario, the vehicles move 
with constant speed suitable for urban canyon areas. The constant 
speed is changed in each scenario from 3 to 11 m/s.

The proposed cooperative scheme is simulated using the WAVE 
module in the network simulator 3 (ns-3) [35]. All the vehicles 
implement both UDP echo client and UDP echo server applications 
where the first application is used to request location messages 
from the neighbors while the latter responds to the messages re-
quested by the vehicles according to our scheme flow chart in 
Fig. 3. Location update interval is set to 1 second (i.e. packet gen-
eration rate =1 s) for efficient spectrum utilization and avoiding 
network congestion. The values of covariance matrices P , Q and 
R in the loosely coupled KF are chosen so that the GPS positions 
have higher weights than the RISS. The initial parameters of the 
EKF are extensively tuned to minimize the Root Mean Square Er-
ror (RMSE), and reflect the variance in the measured distances and 
the process noise. However, the simulations will consider multiple 
scenarios with different error sources for extensive evaluation and 
thus the EKF parameters are changed as illustrated in Table 1.

5.1.1. Simulating sensor errors
The ideal measurements of the gyroscope and the odometer 

are imported from SUMO. For practical simulation of the mech-
anization process, random Gaussian errors are added to both the 
gyroscope and the odometer values. The odometer’s error follows 
a Gaussian distribution with 0 mean and standard deviation equal 
to 10% of the speed of the vehicle as simulated in [7] and [36]. 
Thus, the odometer’s error increases proportionally to the distance 
traveled by the vehicle [37].

For the simulated gyroscope, the error introduced is Angle Ran-
dom Walk (ARW), which also follows Gaussian distribution with 
0 mean and standard deviation equals to 2◦/

√
hr as the practical 

model in [33].

5.1.2. Simulating GPS errors
In some scenarios, we assume erroneous GPS measurements ei-

ther in the initial positions or the frequent position updates when 
the vehicles have an open sky access. Such measurements are as-
sumed to yield a maximum position error of z meters. This is 
typically modeled by adding a Gaussian distributed random vari-
able ep with 0 mean and σ 2

p variance whose value depends on the 

maximum error z and calculated as follows:
Table 1
EKF simulation parameters.

EKF parameter Value

Ft−1

(
1 0
0 1

)

Gt−1

(
1 0
0 1

)

Ideal initial position: P+
0

(
0.01 0

0 0.01

)

Ideal initial position: Q t−1

(
0.3 0
0 0.001

)

Erroneous initial position: P+
0

(
1 0
0 1

)

Erroneous initial position: Q t−1

(
0.3 0
0 0.5

)
Rt IN×N

Wt−1

(
0
0

)

Table 2
Sensor and GPS error modeling.

Error models Value

Odometer error ≈N(0, (0.1 × speed)2)

Gyroscope ARW error ≈N(0,4)

For zG P S = 5 m ≈ N(0,1.39)

For zG P S = 3 m ≈ N(0,0.5)

For zG P S = 2 m ≈ N(0,0.22)

Table 3
ns-3 Simulation parameters (physical layer).

ns-3 parameters Value

Propagation loss model Log distance
Propagation delay model Constant speed
Minimum received power −105 dBm
Different sensitivity levels −105 dBm, and −75 dBm

Assume that the CDF of the GPS error should have most of the 
points (i.e. 99.7%) below z, accordingly

μ + 3σp = z (17)

For μ = 0:

σp = z

3

To calculate the error variance in x and y positions:

σ 2
p =

(√
σ 2

x + σ 2
y

)
(18)

Assume σx = σy = σxy , then

σ 2
p =

(√
2 × σ 2

xy

)2 =
(

z

3

)2

(19)

σ 2
xy =

(
z

3

)2

× 1

2
(20)

Where σ 2
xy is the variance in each of x and y directions.

The different values of σ 2
xy with the corresponding maximum 

error z and the error modeling of the sensors are shown in Table 2. 
All other physical layer and application parameters are summa-
rized in Table 3.

5.2. Simulation results

To evaluate the performance and the localization accuracy of 

the introduced cooperative scheme, different scenarios of vehicle 
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movements and error models are considered. The objective of this 
scheme is to have a good localization accuracy in urban areas com-
pared to the typical localization techniques used. This technique is 
evaluated compared to the RISS technique in urban canyons with 
total GPS blockage assuming ideal initial position and then ex-
tended to the erroneous case. Additionally, the performance of the 
scheme is studied in case of having GPS updates with distinct vari-
ances and evaluated by comparing various percentage of vehicles 
with GPS updates. Furthermore, diverse densities of neighboring 
vehicles are also taken into consideration. Then our cooperative 
technique is compared to widely used non-cooperative and coop-
erative techniques.

5.2.1. Evaluation metrics
The evaluation metrics used in the simulation are the aver-

age Root Mean Square Error RM S Et and the maximum root mean 
square error ̂RM S Et between the true position (obtained from 
SUMO) and the estimated position from the localization scheme 
calculated as follows:

RM S Et =
∑N

i=1

√
(xi,t − x̂i,t)

2 + (yi,t − ŷi,t)
2

N × S
, ∀t ∈ T (21)

̂RM S Et = max∀i∈{1,..N}
√

(xi,t − x̂i,t)
2 + (yi,t − ŷi,t)

2

S
,

∀t ∈ T (22)

Where:

• xi,t , yi,t is the true position obtained from SUMO.
• x̂i,t , ŷi,t is the estimated position using the localization 

scheme.
• S is the number of simulations.
• N is the total number of vehicles.
• i is the index of each vehicle.
• t is the time epoch.
• N is the total duration of one simulation.

In particular, for a cluster of N vehicles over a period of time T , 
the average RMSE at certain time instant RM S Et , in Eq. (21), is cal-
culated by taking the average of the RMSE of all vehicles’ positions 
as shown in the equation. This metric is used as it gives an average 
overview of the performance of the vehicles in different scenarios 
(e.g. vehicle in the middle of the road surrounded by many neigh-
bors or vehicle at the edge with lower number of neighbors).

The maximum RMSE at a given time ̂RM S Et , in Eq. (22), rep-
resents the worst case scenario of a vehicle which might suffer 
from large sensor errors, a small number of surrounding neighbors 
or low accuracy in the neighbors’ positions. All the simulated sce-
narios consider errors in inertial sensors and/or positions updates, 
and thus all results are averaged over S = 50 runs for statistical 
validation. We computed the confidence intervals for a 95% confi-
dence level. The confidence intervals were found to be small for all 
simulations, and hence were not explicitly depicted in the figures. 
Our introduced Cooperative Localization (CL) scheme is evaluated 
in the coming sections and it is written in short as CL KF-RISS.

5.2.2. Comparison with the non-cooperative RISS
As mentioned earlier, one of the considered scenarios is that all 

the vehicles have initial positions obtained either from GPS or any 
other localization system and then, these vehicles travel in urban 
canyons or tunnels with total absence of GPS. Thus, to evaluate 
the performance of the proposed cooperative localization scheme, 
it is compared with respect to the 2D RISS since the latter is the 
typically used localization technique in urban canyons and tunnels 
with GPS blockage. The effect of the accuracy of the initial position 

on the schemes’ performance is then studied.
Fig. 4. Maximum RMSE comparison between the proposed scheme and 2D RISS 
(Ideal initial positions).

Ideal initial position In this evaluation scenario, the maximum 
RMSE of the proposed cooperative scheme is compared with re-
spect to that of the 2D RISS technique for different velocities 
assuming perfect initial positions as shown in Fig. 4. The non-
cooperative RISS suffers from rapid diversions from the true po-
sitions (RMSE increased dramatically) over time compared to the 
cooperative scheme. The enhancement in our proposed coopera-
tive scheme is attributed to the frequent updates from the ranging 
technique RTT and the RISS-based neighbors’ positions. In partic-
ular, the EKF was able to use the RTT measurements in order to 
correct the RISS-based predicted position’s error and thus limits its 
accumulation over time. Therefore, for a duration of 10 seconds, 
the maximum RMSE of the proposed scheme has all the values 
smaller than 1 m compared to the RMSE of the RISS which has 
values up to 8 m. Such enhancement is also attained at higher ve-
locities where the performance of RISS is highly degraded due to 
the increased error variance in the odometer.

Erroneous initial position Our evaluation scenario is extended by 
introducing an error in the initial position that follows a Gaussian 
distribution with variance equal to 1.39 as mentioned in Table 2. 
This variance is suitable for capping the GPS position error below 
5 m. The EKF parameters require tuning based on the newly added 
source of errors (inaccurate initial positions). In particular, the ini-
tial value of the P matrix in Table 1 was increased to reflect the 
uncertainty in the erroneous initial position. Practically, this value 
can be also obtained from the standalone positioning system used 
in obtaining the initial position of each vehicle. Similarly, the Q
matrix entry that corresponds to the error in the y position is in-
creased to compensate the error in the initial position compared 
to the ideal initial position scenario discussed previously with no 
error in the y position since the vehicle was moving only in a 
straight line in the x direction. Comparing the average RMSE of the 
two schemes as shown in Fig. 5, the proposed cooperative scheme 
continues to outperform the 2D RISS over the trajectory. From the 
figure, the cooperative scheme was able to correct the inaccurate 
initial vehicles’ positions using the ranging technique and the en-
hanced neighbors’ positions. Thus, vehicles with low location error 
can improve the position of other vehicles with higher error us-
ing the measured distance dm . Conversely, this enhancement is not 
achievable in the RISS since each vehicle continues to deviate over 
time from the true position as a result of error accumulation.

5.3. Effect of different neighbor’ densities and sensitivity levels

In the above scenarios, the sensitivity level (i.e. minimum re-

ceived power to decode the received signal) of all the vehicles was 
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Fig. 5. Average RMSE comparison between the proposed scheme and 2D RISS (Erro-
neous initial positions).

fixed at −105 dBm. This small value resulted in large communi-
cation range that allows cooperation between all the considered 
vehicles. In order to evaluate the effect of the neighbors’ den-
sity on the performance of our localization scheme, the above 
sensitivity is increased to −75. Thus, fewer neighbors will re-
ceive and respond to the LRM. Practically, these effects can be 
achieved by decreasing the transmitted power which is desir-
able for many reasons such as minimizing interference, increas-
ing bandwidth efficiency and decreasing the energy consumption 
in the network. The average RMSE for the three different veloc-
ities with the presence of error in the inertial sensors assuming 
ideal initial positions is calculated. Fig. 6 shows the effect of the 
two different sensitivity levels on the localization accuracy over 
the time. As the sensitivity level and/or the velocity of the ve-
hicles increases, the average RMSE becomes higher. In this fig-
ure, the power level is only increased to −75 dBm to guarantee 
that the minimum number of neighbors surrounding each vehi-
cle is greater than 2 to obtain a solution by the EKF. These re-
sults demonstrate the importance of increasing the communication 
range in the case of fast moving vehicles in order to compensate 
the growing error variance of the RISS adopted in the cooperative 
scheme.

5.4. Effect of ideal GPS updates

Another simulated scenario is implemented where it is as-
sumed that at certain time epochs, either all or some of the vehi-
cles have an open sky access and thus receive GPS position updates 
for a short duration. To evaluate the performance of the proposed 
scheme, the following scenarios are considered.

5.4.1. Different percentage of vehicles with updates
At t = 10 and t = 25 seconds, it was assumed that all the 

vehicles can receive clear and ideal signals from the GPS satel-
lites and thus these vehicles can have an updated position with 
approximately no error. After that, these vehicles would expe-
rience GPS blockage again and the cooperative scheme is used. 
Different percentages of vehicles with GPS updates are evalu-
ated compared to the ideal scenario in which all the vehicles 
receive GPS updates to test the effect on the average RMSE as 
shown in Fig. 7. The percentage of vehicles with ideal GPS up-
dates that varies between 25%, 50% and 75% of all the vehi-
cles are implemented and compared to each other and with re-
spect to the aforementioned ideal scenario. In addition to en-
hancing the RMSE of the vehicles with GPS updates, the cooper-
ative scheme was able to broadcast these enhancements to the 

neighboring vehicles with GPS blockage. Such cooperation results 
Fig. 6. Effect of the different sensitivity levels on the average RMSE of the proposed 
cooperative scheme.

Fig. 7. Effect of different percentages of vehicles with ideal GPS updates on the av-
erage RMSE.

in enhancing the neighbors’ positions where the percentage of 
RMSE enhancement is higher than the percentage of GPS up-
dates.

5.4.2. GPS updates different velocities
The above mentioned cooperative gain during GPS updates is 

emphasized when higher velocities are considered as shown in 
Fig. 8. While higher velocities suffer from rapid increase in RMSE, 
the cooperative scheme was able to limit such deterioration with 
partial GPS updates to the network. Moreover, the rate of error 
deviation of the cooperative scheme after the GPS updates has de-
creased. This is due to compensating the sensors’ errors by the 
loosely coupled Kalman filter.

5.5. Effect of erroneous GPS updates

At the selected time slots (t = 10 and t = 25), we assume that 
all the vehicles have erroneous GPS updates. Error variances of val-
ues of 1.39 and 0.5 are implemented to reflect a max error of 5 m 
and 3 m, respectively and compared to GPS updates with zero 
error. Fig. 9 shows the average RMSE over 50 seconds for vehi-
cles moving with velocity equal to 3 m/s. From this figure, the 
erroneous GPS updates affect the performance of the cooperative 
scheme and make the average and the maximum RMSE worse. 
This is because the error introduced in the GPS position is larger 
compared to the errors in the motion sensors (odometer and gyro-
scope). In addition, the proposed scheme compensates the motion 

sensors’ errors using cooperation. Therefore, GPS updates will only 
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Fig. 8. Average RMSE of different percentage of ideal GPS updates on different ve-
locities.

Fig. 9. Effect of erroneous GPS updates on the average RMSE.

enhance the proposed scheme performance only when the error 
variance of the GPS is less than the error variance of the RISS.

5.6. Comparison to mainstream localization schemes

The average of the RMSE and the maximum of the RMSE of 
the proposed cooperative scheme are compared with three other 
existing localization systems. The first is the non-cooperative RISS 
technique discussed before, the second is another non-cooperative 
scheme written in short as Non-CL GPS which is based on only 
having GPS positions with variances 0.22 and 1.39 that correspond 
to a maximum position errors of 2 m and 5 m, respectively. The 
third technique is a cooperative scheme to enhance GPS positions 
widely used in the literature [25] written here in short as CL KF-
GPS. The CL KF-GPS scheme is updated in this work to have a 
similar structure and thus complexity to our introduced cooper-
ative scheme. In essence, CL KF-GPS assumes that all the vehicles 
have open sky access, and thus the sender’s and neighbors’ po-
sitions are updated using GPS measurements instead of the RISS 
with variance 0.22 corresponding to a maximum error of 2 m.

In all the scenarios, the velocity of the vehicles is set to 11 m/s 
and the duration of the simulation to 10 seconds to guarantee 
that all the vehicles are in the communication range of each other 
and the only sources of the error are the sensors or GPS mea-
surements irrespective of the density of neighboring vehicles. We 
recall that the proposed cooperative scheme localizes all vehicles 
using the RISS technique and then enhances these positions by co-

operation with RTT-based range estimation. The sources of errors 
Fig. 10. Average RMSE comparison between the proposed cooperative scheme and 
the other existing localization systems.

Fig. 11. Maximum RMSE comparison between the proposed cooperative scheme and 
the other existing localization systems.

in this scheme are from the errors associated with the motion sen-
sors (odometer and gyroscope) and the mechanization process.

Generally, the non-cooperative RISS scheme outperforms the 
non-cooperative GPS only for a very short term (i.e. 3 seconds in 
Fig. 10) while this is not the case for smaller GPS error variances 
that dominate for the whole duration. In addition, such duration 
becomes smaller with regards to the maximum RMSE as shown in 
Fig. 11. All the above is attributed to the typical accumulation of 
the large errors associated with the odometer in the high veloci-
ties.

Compared to the low noise GPS cooperative scheme, the in-
troduced cooperative scheme based on the RISS only was able to 
extend the above short duration of the non-cooperative RISS be-
yond 10 seconds.

To summarize, the cooperative scheme was able to considerably 
stabilize the performance of the RISS which was found previously 
to deviate with time in the non-cooperative form. Thus, depen-
dency on cooperative RISS for longer time duration can provide 
acceptable localization accuracy during complete GPS outages.

5.7. Cooperative scheme complexity

To assess the practicality of the proposed cooperative scheme, 
we compute its complexity. The first main block, LRM, in Fig. 2
has an O (N2) complexity as the vehicle will check the sender’s 
ID in all the received messages, where N is the number of all the 
vehicles. This scenario corresponds to the worst case in which all 

the vehicles are requesting and responding to the LRM for all the 
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vehicles in the system. As such, each vehicle should filter its own 
LRM responses and then decodes neighbors’ information for the 
next stages.

The two stages of mechanization and distances calculations 
have lower complexity of O (N). The mechanization is a linear op-
eration that is done for all the responded N − 1 neighbors and for 
the sender vehicle. Similarly, the calculation of both distances is 
done for all the N − 1 neighbors. The EKF, in the final stage, com-
prises basic matrix operations such as inverse and multiplication 
with complexity of O (N3).

Both KF and EKF can be implemented by software or on FPGAs 
and then connected to the vehicle’s on-board unit (OBU). Differ-
ent implementations of KF in industrial applications were reviewed 
in [38]. Off-the-shelf smartphones are equipped with KF and can 
be used for data fusion and navigation [39,40]. Thus, a practical 
and cost-efficient EKF implementation in VANETs is attainable. The 
RISS algorithm and the KF-based implementation for the integra-
tion with GPS have been realized by our research group on a Xilinx 
FPGA board and tested on real – time [41].

6. Conclusion

In this paper, a cooperative localization technique is introduced 
to provide vehicles with high position accuracy in GPS-free en-
vironments. The scheme integrates the neighbors’ updated posi-
tions using RISS mechanization with the measured inter-vehicle 
distances using RTT through EKF. This is in addition to adopting 
loosely coupled KF to update the RISS-based position with the 
GPS measurements when the vehicle has an open sky access. Error 
models were introduced to the motion sensors (odometer and gy-
roscope) and the GPS position updates for practical purposes. The 
scheme succeeded to limit the errors of the sensors, the neighbor-
ing vehicles positions and the mechanization process. Traffic traces 
were exported from SUMO and the scheme was implemented and 
tested on ns-3. Different scenarios were simulated to test the ro-
bustness of the proposed scheme for different velocities, vehicle 
densities, GPS availability and error models.

Firstly, the effect of different velocities as well as the accuracy 
of the initial position on the performance of the proposed coop-
erative scheme compared to the non-cooperative RISS technique 
is evaluated. The RMSE is larger for higher velocities because the 
error introduced to the odometer is a percentage of the vehicle’s 
speed. For all values of velocity, the proposed cooperative scheme 
outperforms the RISS over the whole-time horizon due to the abil-
ity of the ranging technique to limit the error accumulation of the 
mechanization process. Secondly, the sensitivity levels for all the 
vehicles are increased to study the effect of the neighbors’ den-
sities on the RMSE. The results demonstrated the importance of 
extending the communication range of fast moving vehicles to co-
operate with as many neighbors as possible and thus limit and 
compensate the large error of the mechanization.

Since vehicles can acquire GPS positions at certain time epochs, 
the performance of the cooperative scheme is only enhanced when 
the GPS error variance is less than the errors associated in the RISS 
within the proposed technique. Moreover, vehicles with GPS up-
dated positions were able to share such enhancement among the 
network. Thus, decreased the RMSE of the surrounding neighbors 
with blocked GPS compared to the scenario of non-GPS updates in 
the network.

Furthermore, the proposed cooperative scheme, utilizing RISS 
under complete GPS outage, was compared to both the non-
cooperative RISS and GPS as well as cooperative GPS-based scheme 
with different accuracies. Results demonstrated the ability of the 
proposed cooperative scheme to extend the reliability of RISS for 
a longer duration compared to the non-cooperative case. In par-

ticular, the cooperative scheme can outperform the low noise GPS 
cooperative scheme over a longer time duration compared to the 
non-cooperative forms of both techniques.
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