
Rate-Selective Caching for Adaptive Streaming
Over Information-Centric Networks

Wenjie Li, Student Member, IEEE, Sharief M.A. Oteafy,Member, IEEE,

and Hossam S. Hassanein, Fellow, IEEE

Abstract—The growing demand for video content is reshaping our view of the current Internet, and mandating a fundamental change

for future Internet paradigms. A current focus on Information-Centric Networks (ICN) promises a novel approach to intrinsically

handling large content dissemination, caching and retrieval. While ubiquitous in-network caching in ICNs can expedite video delivery, a

pressing challenge lies in provisioning scalable video streaming over adaptive requests for different bit rates. In this paper, we propose

novel video caching schemes in ICN, to address variable bit rates and content sizes for best cache utilization. Our objective is to

maximize overall throughput to improve the Quality of Service (QoS). In order to achieve this goal, we model the dynamic

characteristics of rate adaptation, deriving caps on average delay, and propose DaCPlace which optimizes cache placement decisions.

Building on DaCPlace, we further present a heuristic scheme, StreamCache, for low-overhead adaptive video caching. We conduct

comprehensive simulations on NS-3 (specifically under the ndnSIM module). Results demonstrate how DaCPlace enables users to

achieve the least delay per bit and StreamCache outperforms existing schemes, achieving near-optimal performance to DaCPlace.

Index Terms—Information-centric networks, dynamic adaptive streaming, throughput optimization, queueing analysis, off-path caching

Ç

1 INTRODUCTION

THE growing demand for video content is reshaping our
view of the current Internet. According to Cisco’s Visual

Networking Index (VNI), by 2019, it is projected that
global Internet traffic would surpass 162 exabytes per
month, where video traffic would amount to a dominating
80% in conservative estimates [1].

This dramatic growth in video demand has motivated
service providers (e.g., Netflix and YouTube) to adopt
HTTP-based dynamic adaptive streaming (DASH) [2]. This
dynamic approach provides a time-shift control on media
requests in reaction to varying bandwidth conditions expe-
rienced by each user, and automatically adapts between
versions of each video to download the one with the best
possible quality. That is, as the adaptation decision reacts
to real-time bandwidth measurements, users would be
served with the most suitable bit rate to reduce stalls in
the playback.

DASH has played a major role in improving video deliv-
ery services. However, DASH relies on HTTP connection
protocol which is implemented over the current host-centric
network. Ultimately, service degradation will dominate
unless networking primitives are built on content rather
than connections. A recent shift towards Information-
Centric Networks (ICN) [3] promises to intrinsically handle

large-scale content dissemination, caching and retrieval.
Since video delivery services are projected to be even more
influential as we steer to ICNs, we argue that dynamic
adaptive streaming must be addressed as an essential
component in this future Internet paradigm [4].

While Content Distribution Networks (CDN) [5] and
Peer-to-Peer (P2P) Networks [6] adopted overlay architec-
tures over the Internet to enhance content delivery, ICN
exploits caching as a networking primitive by equipping
each router with caching capacity, instead of pre-designated,
sparse and static surrogate servers. This feature of ubiqui-
tous in-network caching is recognized as an efficient way to
reduce access delay. In the context of video streaming, the
impact of in-network caching is evenmore important since it
provides an opportunity to serve users with bit rates higher
than the actual link bandwidth between the producer and
consumer [7]. This means that high resolutions of video
content, which may be impossible to deliver without
caching, will effectively become accessible by users.

ICN’s inherent capacity to dynamically cache content
enables novel models for provisioning different services,
content and interest groups. Many research efforts have thus
investigated ICN caching [8]. Typical ICN cache schemes
(e.g., [9], [10], [11], [12]), whichminimize hop counts or cache-
miss rates, are not particularly designed for video streaming
applications. These generic schemes overlook the features of
variable content sizes and adaptive video request pattern,
which impede the system performance.

As dynamic adaptive streaming is pivotal to handling
video traffic in ICN [4], we therefore argue the challenge of
catering to video content necessitates applying a caching
scheme which is aware of adaptive requests. The ultimate
goal of this scheme is improving Quality of Service (QoS) in

� The authors are with Queen’s University, Kingston, ON K7L 3N6,
Canada. E-mail: {liwenjie, oteafy, hossam}@cs.queensu.ca.

Manuscript received 24 Aug. 2016; revised 16 Feb. 2017; accepted 13 Mar.
2017. Date of publication 26 Mar. 2017; date of current version 15 Aug. 2017.
Recommended for acceptance by N. Kato.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2017.2687920

IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 9, SEPTEMBER 2017 1613

0018-9340� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

terms of the average throughput. To the best of our
knowledge, the problem of caching variable video chunks
of different bit rates, without incurring intensive data
processing, stands unsolved.

We address the core video caching problem by presenting
a novel cache placement scheme, DaCPlace, which handles
variable bit rates and content sizes and is generalized to
scenarios where users demand adaptive bit rates, and caters
to the heterogeneity of user devices and link conditions. The
objective of DaCPlace is to minimize access delay per bit of
requested video, which influences QoS in terms of through-
put. In order to achieve this goal, we model the dynamic
characteristics of rate adaptation—deriving caps on average
delay—and propose an iterative algorithm to cache content
of different sizes and popularity in order to optimally utilize
caching capacity. Based on DaCPlace, we design a heuristic
scheme, StreamCache, where each router makes caching deci-
sions using local statistics exchange to achieve low-overhead
cache placement. StreamCache also targets improving video
throughput, however, with much lower computational cost
compared to the optimal DaCPlace. We conduct comprehen-
sive simulations and demonstrate how, under various net-
work settings (e.g., available cache storage and popularity
distribution), DaCPlace enables users to achieve the least
access delay per bit compared with other popular caching
schemes and StreamCache achieves near-optimal perfor-
mance in contrast toDaCPlace.

Our contributions in this paper are threefold: 1)we develop
DaCPlace as a benchmark caching scheme, specifically opti-
mized for adaptive video streaming applications; 2) we pres-
ent a rigorous analytical model for adapting to heterogeneous
requests in future Internet applications, and map them on
ICN architecture to facilitate in-depth analysis of caching
performance influenced by adaptive bit-rate selection, and
3) we present our heuristic scheme, StreamCache, which
effectively decreases the caching overhead, as a close second
to optimal performance, and is designed to scale with large-
scale scenarios.

The remainder of this paper is organized as follows. In
Section 2, we overview related work including recent
research on adaptive video caching in ICN. Section 3
describes the system upon which our designed caching algo-
rithm is applied. Section 4 presents the formulation of our
adaptive video caching problem.We elaborate on our deriva-
tions for modeling the caching process, with specific empha-
sis on the queueing analysis, in Section 5. Section 6 describes
the design of our cache placement schemes, namely the opti-
mal DaCPlace and heuristic StreamCache schemes. Section 7
then presents our experiment setup and performance evalua-
tion results. We conclude in Section 8 with our final remarks
on future work directions.

2 RELATED WORK

In the realm of ICNs, several ongoing projects are pursuing
the ICN vision (e.g., DONA [13], PSIRP [14] and CCN [15]).
Chief among these architectures are Content-Centric Net-
works (CCN), which witnessed significant uptake by the
research community due to rapid benchmarking tools and
insightful performance analyses. In this paper, we capitalize
on CCNs’ prevalence and build our dynamic adaptive
streaming system over it.

Content in CCN is identified with unique Names. More-
over, Interest and Data are two specific types of packets in
CCN, where Interest is dispatched by consumers (users) for
information and Data contains requested video chunk,
which could be cached anywhere in the network. At the
heart of CCN/ICN, a core challenge is caching such Data to
expedite response time to Interest requests.

In-network caching schemes in CCN have been heavily
investigated [10], [11], [12], [16]. These schemes are gener-
ally categorized into on-path and off-path caching. On-path
caching [12], [16] only utilizes caches located on the con-
tent’s routing path (towards the content provider) and off-
path caching [10], [11] uses nodes’ neighborhood caches,
which requires additional collaboration with Interest for-
warding to reach cached Data. Some caching policies
require coordination among routers for cache placement.
For example, Li et al. in [16] aimed at saving as much data-
traffic as possible, based on the popularity of content. Their
approach required collecting statistics on content request
frequencies and caching decisions exchanged among
routers. However, other approaches make the caching
placement/replacement decision of each router dependent
on its own information. For example, Psaras et al. presented
ProbCache [12] where the caching probability changes over
routers according to their locations on the routing path.

In addition to cache placement schemes, recent efforts in
the literature argue against ubiquitous caching in ICN. For
example, Fayazbakhsh et al. [17] claimed that caching at
the edge of the network (closer to users) yielded almost
the same performance gain as ubiquitous caching. This
observation was also demonstrated via a model proposed
by Dabirmoghaddam et al. in [18]. However, these contri-
butions overlook an important issue of content redundancy
due to edge caching, especially with limited cache budgets
and high number of edge routers. Their performance was
measured under simplistic LRU schemes, which dimin-
ishes the effect of popularity-based caching, as later dem-
onstrated in Section 7.

To handle dynamic streaming applications, the problem
of caching for variable bit rates or service prioritization of
video content has also been studied. In the domain of CDN,
Lee et al. [19] investigated the interaction between a user
and a cache. They proposed a rate adaptation algorithm,
which is aware of the impact made by cached content, to
achieve smooth switching between bit rates and fairness
among users. However, their contributions lie in the control
on the client side, which fails to leverage the caching capa-
bilities to improve QoS.

The effect of ubiquitous in-network caching in ICN on
adaptive video delivery has recently attracted more atten-
tion. Jia et al. [20] designed a control layer for optimal
Interest forwarding and adaptive video caching based on
the virtual queue of each bit rate. Lee et al. [21] extended
the principal of value-based caching schemes and applied
it over different layers of bit rates to increase cache reuse
ratio. Kreuzberge et al. [22] solved the challenge of unfair
bandwidth sharing and proposed a cache-aware traffic
shaping policy for adaptive streaming. Liu et al. [7] studied
caching behavior over CCN and demonstrated that clients
could be served with bit rates even higher than their actual
bandwidth, emphasizing the potential of ICN caching and

1614 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 9, SEPTEMBER 2017

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

the importance of designing caching schemes for adaptive
video content.

Grandl et al. [23] pointed out a core challenge in ICN
video caching, whereby the same content encoded in differ-
ent bit rates compete for limited caching storage. Conse-
quently, they proposed DASH-INC, which only caches the
highest bit rate of video to avoid content redundancy, and
the requests for lower bit rates would be serviced via trans-
coding at each router. DASH-INC argues that it would
improve cache utilization, since only the highest bit rate
needs to be cached, without storing different bit rates of the
same content. Jin et al. [24] proposed a partial transcoding
scheme, where each node caches all the (bit-rate) versions
for popular video content, but only caches the highest bit
rate for unpopular data. The objective is to find the optimal
configuration between caching, transmission and transcod-
ing. However, as transcoding has to be done on a per-
request basis, one cannot simply assume that with the
increasing demand for video content, in-node processing
would be scalable for real-time requests. Our work tackles
this problem in a radically different way by caching video
content with selective bit rates on routers in an optimized
manner, by pursuing bit-rate-specific popularity. We con-
duct simulations to demonstrate the advantage of bit-rate-
selective caching over in-node transcoding.

In our earlier work [25], we addressed a video caching
scheme in ICN, and proposed an optimal on-path caching
scheme DASCache in a constrained system. This work is
built to tackle a more general system, where both on-path
and off-path caching are incorporated. Moreover, compared
to [25], we present a model which further considers the
effect of Interest Aggregation on filtering video traffic.

3 SYSTEM DESCRIPTION

In this section, we elaborate on the system design as a build-
ing block for the optimal cache placement scheme. We focus
on describing the network architecture and default patterns
when users make video requests.

3.1 Network Architecture

Our system primarily targets video delivery in CCN. As
video traffic dominates the Internet [1], we assume all
requests in our system are made for adaptive video content.
In building this system, we assume that requested videos by
all users are kept in one video producer without considering
any replica. This assumption is derived from the current set-
tings of the CCN architecture, since each producer would
add a unique postfix to the names of content, which thus dis-
tinguishes each content from all replicas. The system con-
tains two different types of routers: edge and intermediate
routers. All clients are served exclusively by edge routers.

Caching is not a standalone component of CCN, but
highly coupledwith other features, such as routing and Inter-
est forwarding. It is hence essential for caching to work with
routing and forwarding in a cooperative way. The routing
schemewe adopt in the system is based on the Open Shortest
Path First routing scheme for Named-data (OSPFN) [26],
which is the most of both popular and commonly used
approach in ICN. OSPFN discovers the shortest routing path
from each router to the video producer, as depicted in Fig. 1,

along which video requests can be satisfied by the cache of
each node. However, we argue that the system would not
reach the optimal performance when only this on-path cach-
ing is utilized. For example, in Fig. 1, if there is a request sent
from users connecting to router 9 and the video content is
not cached along the routing path to the producer but instead
cached on router 8. On-path caching would not utilize the
video content on router 8 which could respond to the request
faster than the video producer. Thus, in order to benefit from
off-path caching, in addition to the path to the video producer
discovered by OSPFN, routing choices to off-path caches are
also available at each router. This means that each router will
be notified of caching decisions made on its downstream
nodes. For example, the caching decision at router 9 should
be relayed to routers 4 and 2.

According to our choice on routing scheme for optimal
performance, each router may have more than one interface
to forward a certain request. Rossini et al. [27] showed that
the single-path forwarding which relay requests through
only one interface, still achieves the lowest network load
and smallest request hop counts, compared with existing
multi-path forwarding schemes which send requests
through multiple interfaces simultaneously. Therefore, in
this system, we adhere to CCN’s single-path forwarding.
Each router is assumed to apply the best route forwarding
strategy, which chooses an interface with the minimal
delay, to retrieve the corresponding Data.

3.2 Video Request Patterns

Video request patterns can be described on two levels: file
and chunk level. Requests made on the file level represent
the popularity of the video content. Once users decide to
watch a video file, the actual Interests are tallied with the
pattern on chunk level. These requests are generated
sequentially, following the exact video playback.

Based on this pattern, gauging the video file request is an
umbrella concept, which consists of a group of consecutive
Interests for content belonging to the same video file. Typi-
cally, there is no correlation between two video file requests.
However, since video chunk requests are generated sequen-
tially, two consecutive Interests from the same user yield

Fig. 1. Network topology. The bold lines indicate routing paths discov-
ered by the OSPFN [26].

LI ETAL.: RATE-SELECTIVE CACHING FOR ADAPTIVE STREAMING OVER INFORMATION-CENTRIC NETWORKS 1615

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

notable correlation. In our system, each request for a file
contains a batch of requests for chunks, while the number in
each batch is variable. This feature corresponds to the typi-
cal viewing behavior of most people: start playing from the
beginning; keep watching for a period of time; terminate
the media session when bored or out of time.

4 ADAPTIVE VIDEO CACHING FORMULATION

Our DaCPlace system targets optimizing video access delay
per bit. Cached content is updated periodically on each
router, over the period of a pre-determined round. In order
to optimize caching decisions, statistics are collected to cap-
ture request patterns and cater to popular videos. At the
beginning of each round, operational parameters need to be
derived based on the statistics from the last round and are
used as inputs to DaCPlace; the system then updates caches
based on decisions made by DaCPlace and refreshes the sta-
tistics, preparing for the next round.

4.1 Notations

All nodes in the network are modeled as a connected graph
G ¼ ðV;EÞ where nodes in V are composed of a set of edge
nodes N and intermediate nodes I. Node j, where
j ¼ 1; . . . ; jV j is equipped with content storage with capacity
Cj which represents the class-specific capacity dedicated to
video caching. The actual allocation of Cj has been investi-
gated in related literature under the cache space allocation
problem, which is well detailed and addressed by Wang
et al. in [28]. We assume there is a total of F video files. For
simplicity, all video files are assumed to be fragmented into
the same number of chunks, denoted by K. That is, video
chunk k of any file f , where k ¼ 1; . . . ; K contains the same
length of playback time. There are B bit rates available for
request, whereby a vector S1�B denotes the size of any
chunk encoded with different bit rates. For example, SðbÞ
denotes an element in vector S which represents the chunk
size with bit rate b. Hence, each video chunk now is identi-
fied by a three-dimensional index ðf; k; bÞ.

pj denotes the probability distribution of edge router j
receiving video requests differed by bit rates. We use q to
denote video content popularity, where qf represents the
probability of request for video file f .

Let xj denote our DaCPlace cache placement decision,
where j ¼ 1; . . . ; jV j and xjðf; k; bÞ 2 f0; 1g. Thereby a deci-
sion of xjðf; k; bÞ ¼ 1 indicates that video chunk ðf; k; bÞ
should be cached at node j in the next round.

The average request rate on video chunk ðf; k; bÞ received
by router j is presented by �jðf; k; bÞ, where j ¼ 1; . . . ; jV j.
For each edge router j, the sum of requests rates for all
video content, is represented by �0j.

We use Uj to denote the set of possible endpoints of Inter-
est packet forwarding paths starting from edge router j.
Thus, the video producer is always contained in Uj for any
j 2 N . Moreover, based on the network settings described
in Section 3.1, in order to utilize the off-path caching, any
router would coordinate cached content with its upstream
nodes. Therefore, a subset of edge routers may be contained
in Uj. Let us take edge router j ¼ 10 as an example. As
shown in Fig. 2, in addition to the video producer, if the
requested video chunk is also cached on routers 6 and 11,
forwarding options on the corresponding upstream routers
3 and 7 would be added. As a result, there would be a total
of three possible forwarding paths for a request from router
10 and U10 ¼ f1; 6; 11g. However, it is important to note that
other edge routers, such as routers 8, 9 and 5 are not con-
tained in U10 because the Interest packet sent from edge
router 10 would not reach them: the video producer cannot
be an intermediate node in a forwarding path.

We define Lj;UjðmÞ as an array of routers on a possible
Interest forwarding path, where j 2 N , starting from edge
node j to an endpoint m in the set Uj. For simplicity, we use
Lj;m to denote Lj;UjðmÞ. We define the index of Lj;m to start
from 1. Lj;mð1Þ ¼ j and Lj;mðnþ 1Þ denote the next-hop node
to Lj;mðnÞ. For example, following the topology depicted in
Fig. 2 and considering j ¼ 10, i ¼ 6, L10;6 will be ð10; 7; 3; 6Þ.
We use RTohði; jÞ to denote the round trip delay between
routers i and its one-hop neighbor j. It includes the time to
deliver the Interest packet from i to j and the corresponding
Data packet from j to i once the video content reaches router
j. All of our system notations are summarized in Table 1.

4.2 Problem Formulation

In adaptive streaming, the throughput of video requests is
used by the rate adaptation algorithm to estimate the maxi-
mum supported bit rate under the current link condition.
This is typically based on measuring the round trip time
(RTT) delay of the most recently requested video chunk. A
user who wants to switch to a higher bit rate must achieve
high throughput first. Improving the QoS is thus dependent
on accurately predicting what bit rate and which video
chunk would be requested over time, which is seldom pos-
sible. The problem is further compounded as users are
highly sensitive to video delay. Therefore, we argue for
focusing on minimizing the average access time per bit and
optimize the ensuing cache placement.

The effect of cache on a router is not isolated, and must
be evaluated over a forwarding path. Thus, we first define
the caching indicator I as:

Definition 4.1. Iðf; k; b; j;m; nÞ is a binary indicator for whether
the requested video content indexed by ðf; k; bÞ is cached along
the forwarding path m starting from edge router j (j 2 N)
and ending at nth router of Lj;m. Thus, Iðf; k; b; j;m; nÞ is
calculated using

Fig. 2. The possible request delivery paths.

1616 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 9, SEPTEMBER 2017

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

Iðf; k; b; j;m; nÞ ¼ 1 if
Pn

i¼1 xLj;mðiÞðf; k; bÞ � 1

0 if
Pn

i¼1 xLj;mðiÞðf; k; bÞ ¼ 0:

�

(1)

To simplify notations, we use Iðj;m; nÞ to denote
Iðf; k; b; j;m; nÞ, where f , k and b are implicit.

It is possible that the Interest packets never reach the
endpoints of forwarding paths because Interests may be
satisfied by a cache in the network. Consider the case
where j ¼ 10, UjðmÞ ¼ 1 in Fig. 2. Delay on link segments
ð7; 3Þ and ð3; 1Þ does not exist on the forwarding path
L10;1 once the video chunk has already been cached on
router 7 or 10. I is determined based on the binary indi-
cators of cache placement decisions (x) and returns 1 if
the requested video chunk has been cached on the for-
warding path. Our scheme evaluates all possible for-
warding routes, where the endpoint m of route is either
the video producer or edge router on the sibling branch.
We define the following variable d to tag a certain route:
if Interests cannot be satisfied by all caches on this route,
this route then would not be considered as an Interest
forwarding path candidate.

Definition 4.2. djðm; f; k; bÞ defines the cost of a possible
Interest forwarding path Lj;m for video content ðf; k; bÞ.
Calculated by

djðm; f; k; bÞ ¼ 0, if UjðmÞ is the producer
1� ð1� Iðj;m; jLj;mjÞÞ, otherwise:

�

(2)

To simplify notations, we similarly use djðmÞ to
denote djðm; f; k; bÞ. We highlight that djðmÞ would
return 0 for a forwarding path candidate, i.e., if a request
for video chunk ðf; k; bÞ reaches the video producer or is

satisfied on a cache along that path. Otherwise, djðmÞ is
assigned 1 which indicates that no cache could satisfy
such requests and Interests shall never be forwarded
along that path.

Definition 4.3. E½RTTm
j ðf; k; bÞ� is defined as the expected delay

for a video request ðf; k; bÞ on a given forwarding pathm, start-
ing from edge router j (j 2 N), represented by

E½RTTm
j ðf; k; bÞ�

¼ djðmÞ þ
XjLj;mj�1

n¼1
E
h
RToh

�
Lj;mðnÞ; Lj;mðnþ 1Þ

�i�
1� Iðj;m; nÞ

�
:

(3)

Equation (3) sums round-trip single-hop delays on seg-
ments over a given forwarding path. Take j ¼ 10 and
UjðmÞ ¼ 1 in Fig. 2 as an example. Assuming that Interests
from router 10 cannot be satisfied by any cache along the
forwarding path, Iðj;m; nÞ would always return 0 for all n
in Lj;m. Thus, the expected RTT should be the sum of
delay on segments between routers ð10; 7Þ, ð7; 3Þ and ð3; 1Þ,
which are represented by E½RTohð10; 7Þ�, E½RTohð7; 3Þ� and
E½RTohð3; 1Þ�, respectively. E½RTohði; jÞ� is a critical param-
eter and the approach to derive this value is detailed in
Section 5.2.

Our system applies the best route forwarding strategy,
whereby each router selects the next hop with the least data
retrieval time. This feature ensures the smallest RTT to
retrieve video content among all forwarding path candi-
dates. It is defined as E½RTTjðf; k; bÞ�, formally:

Definition 4.4. E½RTTjðf; k; bÞ� is the expected delay of a
request for a video chunk made by a user served under edge
router j, computed using

E½RTTjðf; k; bÞ� ¼ min
m¼1;���;jUjj

n
E½RTTm

j ðf; k; bÞ�
o
: (4)

We choose to minimize the average access delay per bit,
which reflects the performance of video downloading and
relates to the throughput experienced by users, as outlined
below

min E½AccessTimePerBit�; (5)

¼
XjNj

j¼1

�0j
PjNj

j¼1 �
0
j

E½ATPj�; (6)

where

E½ATPj� ¼
XB

b¼1

XF

f¼1
qfpjðbÞE½RTTjðf; bÞ�

SðbÞ ; (7)

and

E½RTTjðf; bÞ� ¼
XK

k¼1
ð1� pÞpk�1E½RTTjðf; k; bÞ�; (8)

Subject to

XB

b¼1

XF

f¼1

XK

k¼1
SðbÞxjðf; k; bÞ � Cj; 8j 2 V: (9)

TABLE 1
Summary of Notations Used in the Dynamic

Adaptive Streaming System

Notation Meaning

V Set of routers
E Set of links
N Set of edge routers
I Set of intermediate routers
S Sizes of video chunks differed by bit rates
C Cache capacity
B Number of available bit rates on video producer
F Number of video files provided by producer
K Number of video chunks in a certain file
q Popularity distribution of video files
p The probability of continuing watching the video
p Stationary distribution on bit rate selection
x Cache placement decision
� Average request arrival rate per video chunk
�filt Average request arrival rate after filtering
�0 The sum of request rate at edge router
U Endpoints of Interest forwarding paths
L Array of nodes on a forwarding path
RToh Round trip one-hop delay
RTT Round trip time delay of a request from an edge router
rRTT Residual RTT delay of a request from any router
u Link bandwidth
Q Queueing delay
m Average request miss/data arrival rate
r Traffic load
’ Data Packet service time

LI ETAL.: RATE-SELECTIVE CACHING FOR ADAPTIVE STREAMING OVER INFORMATION-CENTRIC NETWORKS 1617

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

4.2.1 Objective

The access delay per bit of video is defined in Equation (5),
where the AccessTimePerbit (ATP) of a request made by
any user, for a chunk k, in video file f , encoded with bit rate
b, is denoted by

AccessTimePerbitðf; k; bÞ ¼ RTT ðf; k; bÞ
SðbÞ : (10)

Equation (6) distinguishes the performance of users in the
network. E½AccessTimePerbit� is expanded as the weighted
average ofATP experienced byusers grouped by edge router.
Equation (7) then expands the intermediate result E½ATPj�
according to video files and encoded bit rates, where video
file f is requested with probability qf and request for video
content encoded with bit rate b is received on the edge router
j with probability pjðbÞ. E½RTTjðf; bÞ� is further detailed in
Equation (8), considering video requests by chunk sequence.
In Section 3.2, we described the most common pattern when
people watch videos. Under this setting, the probability of
requesting kth chunk follows the Geometric distribution,
P ðX ¼ kÞ ¼ ð1� pÞpk�1; k � 1; k 2 Z, where p represents the
probability for a user to continuewatching the next chunk.

4.2.2 Constraints

It is important to note that bandwidth is not incorporated as
a constraint in our system since dynamic adaptive stream-
ing already takes bandwidth into account. For example, if
an increase in the number of users drives the bandwidth
allocations down, while we hold the selected bit rates for
video content, more and more video packets will get
queued or dropped in the network. That is, dropping will
occur when requests made for a certain video quality cannot
be sustained by the network. Many drops would yield low
or even zero throughput. The rate adaptation algorithm will
then be triggered to adjust and request lower bit rates,
which will reduce the amount of data delivered in the net-
work and effectively relieve the load.

Each router has limited cache capacity dedicated to video
streaming applications. Since video chunks in our system
span equal-lengths of playback time, the size of a chunk is
identified by the encoded bit rate, thus we use SðbÞ instead
of Sðf; k; bÞ to represent chunk size. The constraint on cache
capacity is represented using (9). The total size of cached
content on router j (i.e., when xjðf; k; bÞ returns 1) should
not exceed the available cache capacity Cj.

5 CACHING MODEL

To solve the cache optimization problem, we hereby elabo-
rate on deriving the expected access delay per bit, and ensu-
ing expressions on expected round trip time. Since the
cache capacity of each router j (i.e., Cj) and video chunk
size (SðbÞ) are input constants set by the network operator,
this section details the approach to calculate the core param-
eters (i.e., qf ; �

0
j;pjðbÞ and E½RTohði; jÞ�).

Asmentioned in Section 4, our system collects statistics on
video requests. This information is then used to derive the
popularity distribution (qf) on video file and request arrival
rates (�0j) received by router j. The probability of continuing
to watch the next video chunk (p) is then determined using

maximum likelihood estimation, since video chunk requests
aremodeled to follow the Geometric distribution.

We hence focus on the other two parameters, namely 1)
stationary distribution on bit rate selection pjðbÞ and 2)
expected round trip one-hop delay E½RTohði; jÞ�.

5.1 Users Bitrate Selection

In addition to selecting a certain video file and chunk, a
video request sets which bit rate is preferred based on the
decision made by the rate adaptation algorithm. However,
since link conditions are not always stable, the chosen bit
rate may change for each request depending on the current
link condition. While the most recent bit rate choice reflects
the current link condition, the bit rate choice of the next
request is influenced only by its preceding request. There-
fore, this process inherently satisfies the Markov property.

In order to represent the dynamic characteristics of bit
rate selection, we model the process of adaptive video
requests for different bit rates as a discrete-time Markov
chain. The available bit rates (versions) of videos construct
the state space of this chain. The process of rate adaptation,
which switches from one bit rate to another, is equivalent to
the transition between two states.

A stationary distribution can represent the dynamics of a
Markov chain visiting states in a static way. As to this
Markov chain described by users’ bit rate selection, there
exists a unique stationary distribution due to the following
properties:

� Finite State Space: the number of states equals to the
available bit rates, which is finite.

� Time-homogeneity: the rate adaptation algorithm
would repeat the same decision when it faces the
same network condition.

� Irreducibility: any bit rate could be selected for the
next video request; the entire state space is a single
communicating class.

� Positive Recurrence: the time interval between selec-
tions of the same bit rate is expected to be finite since
the current link condition repeats to appear.

This stationary distribution reveals the probability for
available bit rates to be selected by rate adaptation algo-
rithm during the process of video request. Then, we could
use this distribution to represent pjðbÞ in the optimization
formulation. pjðbÞ demonstrates users’ selection for a period
of time without focusing on the real-time changes on bit
rates made by the adaptation algorithm.

5.2 Expected Delay Derivation

In order to solve the optimal cache placement problem,
delay analysis is essential to evaluate the performance of a
caching scheme on video content delivery. Generally, there
are four types of network delay: processing, propagation,
transmission, queueing. We assume the video server and
users are under the service of the same ISP, as a result, the
propagation delay is relatively small and not considered.
Processing delay is also omitted because of the O(1) hashing
technique of lookup on unsatisfied requests [15]. Thus, to
compute E½RTohði; jÞ� in Definition 4.3, we only consider the
transmission and queueing delays. The size of Interest
packet is small since it mainly contains the name of the

1618 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 9, SEPTEMBER 2017

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

requested content so that the transmission delay of Interest
packet is also omitted. Let uij denote the bandwidth of link
over which the Data packet is delivered from router i to j.
We use E½Qij� to represent the average queueing delay at
router i when the packet is delivered to router j. When
video chunk encoded with bit rate b is transmitting, the
expected round trip delay, E½RTohði; jÞ�, is calculated using

E½RTohði; jÞ� ¼ SðbÞ
uij
þ E½Qij� þ E½Qji�: (11)

We detail the derivation of queueing delay, E½Qij�, in
Section 5.2.2.

5.2.1 Interest Aggregation

Quite often, large numbers of duplicate requests are wit-
nessed in a short time frame for the same video. Under the
current host-centric architecture, independent communica-
tion between a user and a producer must be maintained,
which consumes a lot of resources (e.g., bandwidth) to repeat-
edly deliver the exact same content. CCN remedies this ineffi-
ciency via Interest aggregation, where each router keeps track
of unsatisfied requests and discards duplicate ones to prune
unnecessary traffic. When a new Interest packet arrives at a
certain router, not only would it be forwarded to the next hop
but also the name of the content in that packet would be
recorded. Next time, when an Interest packet for the same
content arrives before the corresponding Data is sent back to
the router, this duplicate request would be discarded.

The video request pattern explained in Section 3.2 could
be generalized as a batch renewal process [29]. We define
rRTTjðf; k; bÞ as the residual round trip time delay of a
router j, which represents the time interval between for-
warding the request and receiving the corresponding data.
Thus, there exists a filtering effect on requests received by
any router, which is shown in Fig. 3.

Our fundamental goal is to determine optimal video
caching by estimating the round trip time delay, not to
model video traffic over CCN. Due to the complexity of ana-
lyzing the superposition of two renewal processes, we argue
that a good approximation is critical to guiding the cache
placement decision.

Carofiglio et al. [30] proposed an approximation, how-
ever, based on a fundamental assumption that once a video
request is filtered, the following requests for the rest of video
chunks in the same file will also be filtered. This assumption
does not apply in the general scenario, since RTT depends

on the cache placement and varies for video chunks of differ-
ent bit rates. Thus, we analyze the Interest aggregation specif-
ically on a chunk level. The process of requests after filtering
is approximated by a Poisson Process.

The action of filtering is captured as thinning in our
model, with probability pfiltj ðf; k; bÞ, calculated by

pfiltj ðf; k; bÞ ¼ P ðinterval time > E½rRTTjðf; k; bÞ�Þ
¼ e��jðf;k;bÞE½rRTTjðf;k;bÞ�:

(12)

This approximation could be understood as: The
requests of the process after filtering are independently
picked from the original process following pfiltj such that,
the interval of two subsequent requests is statistically
guaranteed to be larger than rRTT . Thus, the average rate
after filtering is modified using

�filt
j ðf; k; bÞ ¼ pfiltj ðf; k; bÞ�jðf; k; bÞ: (13)

5.2.2 Queueing Delay Analysis

For each video delivery path through a router, we model the
queueing system to consist of the Receiving Queue and the cor-
responding Sending Queue on that path, as shown in Fig. 4.
Both queues are assumed to be FIFO queues and are dedi-
cated to serve streaming packets for ensuringQoS. TheReceiv-
ing Queue dispatches the Data packet to a corresponding
SendingQueue and that iswhere the queueing delay occurs.

As the process of Interests received by any router for a
certain video chunk is already approximated by indepen-
dent Poisson Process, Data packets are assumed to follow
the same process as the Interest, with the average input
rate equal to the Interest arrival rate. The job service time
of a Data packet is determined by its corresponding size.
In adaptive streaming, each file is chopped into chunks,
where each chunk contains the same length of playback
time. The size of a Data packet, which contains a single
video chunk, thus only varies according to its encoded bit
rate. The number of bit rates a video producer serves is
limited and each bit rate corresponds to one class of Data
packets, sharing the same job service time. Based on the
above characteristics of the adaptive streaming traffic, we
adopt the multi-class M/G/1 model. This model can also
be applied for general streaming traffic, where the size of
packets can only vary within a set of values.

Fig. 3. Filtering effect of interest aggregation. The length of rRTT
changes according to real-time network condition.

Fig. 4. Queueing model for adaptive streaming.

LI ETAL.: RATE-SELECTIVE CACHING FOR ADAPTIVE STREAMING OVER INFORMATION-CENTRIC NETWORKS 1619

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

As explained in Section 4.2.2, the system load rij is
guaranteed to satisfy rij < 1. We make the following prop-
osition to derive E½Qij�.
Proposition 5.1. Following the multi-class M/G/1 model, the

average queueing delay for packets delivered from router i to j,
8j 2 V , is given by

E½Qij� ¼ 1

2

PB
b¼1 mjðbÞSðbÞ2u�2ij

1�PB
b¼1 mjðbÞSðbÞu�1ij

: (14)

Proof. Following the superposition property of an Indepen-
dent Poisson Process [31], the rate of Interest packet for
video chunks encoded with bit rate b missed by caches in
router j, mjðbÞ, is given by,

mjðbÞ ¼
XF

f¼1

XK

k¼1
�filt
j ðf; k; bÞð1� xjðf; k; bÞÞ: (15)

Since we are focusing on the queueing system on
router i where packets are delivered to router j, the miss
rate of Interest packet achieved in Equation (15), mjðbÞ, for
b ¼ 1; . . . ; B, is the input rate of Data packet to the queue-
ing system. If the requested video chunk is cached on
router j (which means xjðf; k; bÞ ¼ 1), the corresponding
request could be immediately satisfied and there will be
no need to forward this request.

The expected job service time of data packets encoded
with bit rate b on router i i.e., E½’ijðbÞ�, is given by

E½’ijðbÞ� ¼ ’ijðbÞ ¼
SðbÞ
uij

; (16)

and then, the system load rij is,

rij ¼
XB

b¼1
rijðbÞ ¼

XB

b¼1
mjðbÞE½’ijðbÞ�: (17)

Since rj < 1, the input rate to the queue is less than the
output rate. Hence, the queueing model is not overloaded,
i.e., the requested resource does not exceed the maximum
that the network can provide for the long term.

We apply Little’s Theorem and Pollaczek-Khinchin (P-K)
formula [31] to calculate queueing delay.E½Qij� is given by,

E½Qij� ¼ E½RSij�
1� rij

; (18)

where RSij denotes the Residual Service time, which is
the remaining time seen by the new packet when it
arrives in the queueing system until the current in-
service packet is complete. We extend the derivation of
average delay of the general M/G/1 model in [31] since
the service time of packets differs by bit rates in our
model. Consider a interval ½0; t�

E½RSij� ¼ 1

t

XB

b¼1

XMbðtÞ

i¼1

1

2
’ijðbÞ2; (19)

where MbðtÞ denotes the number of packets, encoded
with bit rate b, which complete their services during ½0; t�.
As t!1, we have

E½RSij� ¼ 1

2

XB

b¼1
lim
t!1

MbðtÞ
t
� lim
t!1

PMbðtÞ
i¼1 ’ijðbÞ2
MbðtÞ

¼ 1

2

XB

b¼1
mjðbÞE½’ijðbÞ2�:

(20)

This is due to the service time of Data packets, ’ijðbÞ,
shown in Equation (16), is a constant value. Then, we
have E½’ijðbÞ2� ¼ E½’ijðbÞ�2. Therefore, synthesizing
Equations (16-20), the expected queueing delay is

E½Qij� ¼ 1

2

PB
b¼1 mjðbÞSðbÞ2u�2ij

1�PB
b¼1 mjðbÞSðbÞu�1ij

:

tu

6 VIDEO CACHE PLACEMENT SCHEMES

To solve the video cache placement problem we first present
an iterative algorithm, DaCPlace, which solves the optimal
cache placement. However, considering the complexity of
this approach as we scale to larger topologies and settings,
we present a heuristic scheme, StreamCache, which is a real-
time solution. StreamCache operates locally at each router,
generating caching decisions without requiring global
knowledge of the network, thereby serving scalability and
minimal control-overhead goals.

6.1 DaCPlace: Optimal Scheme

A circular dependency exists between E½RToh� and caching
placement decisions (x). In remedy, we devise DaCPlace to
iterate, by updating parameters and caching decisions
reciprocally, solving each iteration with Mixed Integer Lin-
ear Programming (MILP), to reach the optimal solution.

In Section 4, we presented the general procedure of our
caching placement scheme, highlighting that caching deci-
sions are made periodically according to the most recent
bit-rate-specific statistics on video popularity. In order to
differentiate between the iteration for popularity updates
and for solving the optimal cache placement, we refer to the
popularity update in Section 4 as the outer iteration, and the
iteration within DaCPlace as the inner iteration.

We make the equivalent transformations to the original
optimization objective by augmenting artificial variables to
represent the choice for best Interest forwarding, and utiliz-
ing the property of routing topology to replace the nonlin-
ear Definition 4.1. These transformations are detailed in
Appendix A. However, the optimization objective after
transformations is still nonlinear because of the dependency
between cache placement (which decides Iðj;m; nÞ) and the
delay E½RToh�, as shown in Definition 4.3. The cache place-
ment would influence the traffic load on each link which in
result changes the round trip delay. We thus devised the
DaCPlace algorithm which iteratively updates the delay and
corresponding caching decision. Generally, this algorithm
uses the cache placement decision of the last iteration to
adjust the data input rate, which thereby yields an E½RToh�
value, which is then plugged into the current iteration to
update the cache placement decision. Thus, in each itera-
tion, the formulation is in linear form which could be solved
as a MILP. Since minimizing the video access delay is the
optimization objective, the result of MILP ensures the delay

1620 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 9, SEPTEMBER 2017

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

is non-increasing. Our simulations also show the execution
of DaCPlace converge 100%.

Algorithm 1 details the steps to compute the optimal
cache placement. For readability, the index ðf; k; bÞ of varia-
bles are omitted and all steps should be repeated for each
index. This algorithm describes the inner iteration we men-
tioned which updates the cache placement variable x. The
iteration stops once predefined criterion (g) is met, as
shown in line 2, which measures the performance differ-
ence of two consecutive cache placements based on the
optimization objective. These criterion should be set by the
network provider considering the tradeoff between cache
performance and time to achieve it. Each inner iteration is
composed of two parts. Lines 3-23 calculate the expected
delay and lines 24-25 update the cache placement result by
solving a MILP problem.

Algorithm 1. DaCPlace

Input: Request rate (�), Video chunk size (S), Bandwidth of
links (u), Threshold of performance difference (g),
Queueing delay convergence condition (f);

Output: Cache placement x;
1 x 0; E½Q� 0; // Initialization

2 while jOBJðxÞ �OBJðxlastÞj > g do
3 DE½Q� 1;
4 while DE½Q� > f do
5 for 8ði; jÞ 2 E do
6 E½RTohði; jÞ� DelayðS; uij;E½Qij�Þ;
7 end
8 for 8j 2 N do
9 m shortest forwarding path from j;
10 �Lj;mð1Þ �j;
11 for i ¼ 1 . . . jLj;mj do
12 pfiltLj;mðiÞ UpdateFilterð�Lj;mðiÞ;E½RTohði; jÞ�Þ;
13 �filt

Lj;mðiÞ UpdateRateðpfiltLj;mðiÞ; �
filt
Lj;mðiÞÞ;

14 mLj;mðiÞ MissRateð�filt
Lj;mðiÞ; xLj;mðiÞÞ;

15 �Lj;mðiþ1Þ mLj;mðiÞ;
16 end
17 end
18 for 8j 2 V do
19 E½Qij� Queueingðmj; S; uijÞ;
20 Update Difference DE½Qij�;
21 end
22 DE½Q� maxfDE½Qij�g;
23 end

/*MILP(E½RToh�Þ solves the Mixed Integer Pro-

gramming problem*/
24 xlast x;
25 x MILP ðE½RToh�Þ;
26 end

Lines 5-17 update the video request rate received by each
router. Lines 5-7 calculate the round trip delay of each link
based on the Equation (11) which contains the queueing
delay; as to each edge router, line 9 selects the best forward-
ing path with the shortest delay based on the calculation in
line 6; and lines 11-16 then derive the video request rate on
a particular forwarding path. At each hop, lines 12-13 calcu-
late the filtered request rate caused by Interest Aggregation
according to Equations (12) and (13). The request rate at
next hop is then calculated based on the cache placement in

the last iteration as shown in lines 14-15. Lines 18-21 update
the queueing delay at each router, based on Equation (14).

6.2 StreamCache: Heuristic Scheme

The complexity of DaCPlace algorithm arises from the fact
that inner iteration is required to update the cache placement
decision, and in each iteration, a MILP formulated problem
must be solved which is NP-hard.

Thanks to the architecture of CCN, routers in the net-
work can keep track of Interest or Data packets in real time.
Thus, instead of building a queueing model to derive the
expected round trip delay, we utilize the forwarding table
of routers, adding a timestamp to each record (Interest)
and calculate the actual delay when corresponding Data
packet arrives. Moreover, the heuristic design applies
greedy selection, which works distributedly on each
router, avoiding the inner iteration and MILP formulation.
Therefore, based on these two changes, we design
StreamCache,1 which effectively reduces the complexity
and overhead.

StreamCache still needs to update its cache decision peri-
odically based on the bit-rate-specific popularity. Each
router collects statistics and derives parameters (e.g., file
popularity distribution (q), bit rate selection (p) and so on),
which are needed in the Cache Utility (U) function. For video
chunk ðf; k; bÞ, the Cache Utility function is denoted as

Uðf; k; bÞ ¼ qðfÞpk�1pðbÞ � rRTT ðbÞ
SðbÞ : (21)

The cache utility reflects the contribution of each video
chunk towards throughput calculation, and the cache place-
ment decision is made based on this utility value using
greedy selection. This utility value should be calculated for
all video chunks on each router. StreamCache sorts these val-
ues and caches video chunks with high utility.

The greedy selection is based on an important observa-
tion: as to any video file(f) encoded with bit rate (b), if the
ath video chunk is chosen to be cached, any video chunk
k in the same file, where 1 � k < a, must have already
been cached as well. It is because the caching utility for
those video chunks is larger than the ath chunk based on
the Equation (21) and they should have been cached prior
to the ath chunk if there is enough cache capacity. There-
fore, each router simply maintains a record of the maxi-
mum sequence number to indicate those video chunks
which have already been cached however with smaller
sequence numbers.

Let W denote the set of all video chunks, and HjðiÞ
denote the video chunks cached on router i, which is the
child node of router j. Our heuristic runs first on child
nodes, and then delivers the caching result HjðiÞ to parent
router j, following the default forwarding path. In order to
cache those video content which are commonly requested
by users, the available caching space for parent router j is
thus W � S

iHjðiÞ. Thus, video chunks already cached by
sibling nodes are not considered by the parent router again,

1. An earlier embodiment of StreamCache, which only considered on-
path caching, was presented in the IEEE International Conference on
Communications (ICC), 2016 [32].

LI ETAL.: RATE-SELECTIVE CACHING FOR ADAPTIVE STREAMING OVER INFORMATION-CENTRIC NETWORKS 1621

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

and requests for those chunks may be redirected, instead of
being forwarding to the video producer, in order to utilize
off-path caching.

Algorithm 2 details our StreamCache scheme. Lines 2-10
aggregate the caching decisions on router j from its down-
stream nodes by calculating the maximum sequence num-
ber in order to serve the common interests. Suppose the
data structure like hash table is implemented which sup-
ports searching with Oð1Þ cost. The complexity of merging
two decision tables is OðFBÞ as the size of cache decision
table is proportional to the number of bit rates and video
files. Line 11 sorts the caching utility for all video chunks
from the largest to smallest, where the complexity can be
OðFB logðFBÞÞ by applying quick sort. Lines 12-21 utilize
the greedy selection to fill the cache capacity of router j,
which scans the sorted table with complexity OðFBÞ. Thus,
the overall complexity of StreamCache is OðFB logðFBÞÞ.

Algorithm 2. StreamCache

Input: Collected statistics (statj), Video chunk size (S), Cache
capacity (Cj);

Output: The cache decision update, DCDj;
1 Uj CalculateUtility(statj, S);
2 for 8i 2 DownstreamðjÞ do
3 for 8e 2 CDi do
4 if e =2 CDj then
5 Insert e in CDj;
6 else if CDjðeÞ:ChunkSeq < e:ChunkSeq then
7 CDjðeÞ:ChunkSeq ¼ e:ChunkSeq;
8 end
9 end
10 end
11 Uj Sort(Uj);
12 for 8u 2 Uj do
13 if Cj � Sizeðu:bÞ � 0 then
14 if ðu:f; u:bÞ =2 CDj _ u:k > CDjðuÞ:ChunkSeq then
15 DCDj ¼ DCDj [fug;
16 Cj ¼ Cj � Sizeðu:bÞ;
17 end
18 end
19 end

7 PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the DaCPlace
and StreamCache schemes under various experimental set-
tings. We build our simulation environment over the ns-3
based simulator, ndnSIM [33].

7.1 Simulation Setup

To evaluate DaCPlace, the simulation is composed of two
phases. The first phase calculates the optimal cache deci-
sions using the Gurobi [34] to solve the MILP. The sec-
ond phase simulates a CCN via ndnSIM, applying the
caching decisions achieved in the first phase. To evaluate
StreamCache, we implement the distributed algorithm on
each router directly in ndnSIM.

The settings of the experiments mimic the dynamic adap-
tive streaming application where requests are generated for
different bit rates of videos. We consider four common
available bit rates: 250 Kbps, 400 Kbps, 600 Kbps and

900 Kbps. Without loss of generality, these four bit rates are
typical viewing bit rates, which correspond to representa-
tive video quality levels [35]. We compare the performance
of our proposed video caching schemes with three other
cache placement schemes in the literature: Cache Everything
Everywhere (CE2) [15], ProbCache [12] and the on-path opti-
mal video caching scheme, DASCache [25]. We choose CE2
as it is a commonly used baseline (e.g., [9], [36]). ProbCache
is a popular approach in the literature (seen in [9], [11])
because of its effectiveness of reducing server hit ratio.
DASCache is an optimal scheme which only utilizes the
cache on the default forwarding path and we use it to com-
pare with the performance of our proposed schemes in this
more general system where both on-path and off-path cach-
ing are considered.

As explained in Section 6, DaCPlace and StreamCache
require an outer iteration to update bit-rate-specific popu-
larity. Our experiments only simulate one round in
outer iteration since popularity and bit rate distributions
remain as control parameters in the simulations. After
this round the cached video content decided by DaCPlace
or StreamCache would not be replaced, and then we start
collecting statistics for performance evaluation. In order
to make a fair comparison, simulation on CE2 and
ProbCache mimics this procedure and we disable cache
replacement (LRU) before the evaluation.

As our DaCPlace scheme targets optimizing QoS in terms
of throughput, we choose the Access Time Per Bit of all users
in the system as a performance metric. The delay is mea-
sured between the Interest packet sending and correspond-
ing Data packet arriving at the user’s device. Another metric
we choose is Cache Hit. This metric is commonly used to
evaluate the performance of a caching system.

The routing scheme applied in our system is based on
OSPFN. It generates a routing tree topology. At the same
time, a tree is instructive because from the perspective of a
video producer, the distribution topology is effectively a
tree. Thus, in the simulations, we adopt a tree topology
directly, with one layer of edge routers as leaf nodes and at
least one layer of intermediate routers which connect to the
producer (root). More routers between these two layers will
only generate topologies with larger tree heights. We chose
20 nodes in our simulations to contrast performance results,
as similar performance trends were observed for different
network sizes.

7.2 Simulation Parameters

The parameters related to users’ requests in the system are
collected at each router. In the simulations, we use the fol-
lowing rules for choosing these parameters.

1) The average rate of video requests (�) received by
any edge router is chosen randomly, with the only
constraint that the incurred load is less than the link
capacity.

2) Any video request specifies the file index, chunk
index and bit rate. The abstract requests for video
files are determined by content popularity distribu-
tion (q). In the simulations, we use the Zipf-like dis-
tribution [37] where the probability of requesting the
fth file is qf ¼ bf�a, b ¼ ðPF

f¼1 f
aÞ�1. The parameter

1622 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 9, SEPTEMBER 2017

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

a controls the skewness of popularity distribution.
A large a indicates that only few video files are
frequently requested and a small a represents
large number of video files have similar chance to
be requested.

3) The probability of continuing to watch the next
chunk (p) is set manually, where we discuss the
impact of this parameter on the performance in
Section 7.3.3.

4) The stationary distribution of bit rate selection (p)
on each edge router, is generated randomly. Since
video chunks encoded with different bit rates
could incur different loads on the link, this distri-
bution is determined before we choose the video
request rate.

The default parameters used in the simulations are listed in
Table 2. The cache capacity percentage (v) indicates the total
amount of cache for video streaming, which is calculated by
vFK

PB
i¼1 SðiÞ. The cache capacity for each router Cj is

influenced by the Cache allocation ratio (�), where
� ¼ Ci=Cj; i 2 N; j 2 I. All edge or intermediate routers are
allocated with the same cache capacity.

7.3 Performance Evaluation

We study the effect of cache capacity, cache allocation pat-
terns and content popularity on video access time per bit
and cache hits. Simulation results are presented at a 0.9 con-
fidence level.

7.3.1 The Impact of Cache Capacity Percentage

This experiment evaluates cache utilization and efficiency of
caching schemes under uniform (equal allocation) cache
storage settings. Fig. 5 presents the average access delay per
bit for different total cache capacity (budgets). CE2 place-
ment scheme yields relatively longer access delays across
all test cases. The reason is that CE2 with LRU replacement
keeps the most recent Data but cannot distinguish among
video traffic which are mixed with popular and unpopular
content. The performance of ProbeCache outperforms CE2
because ProbCache caters to frequently requested content
which significantly reduces delay. For example, at v ¼ 25%,
ProbCache outperforms CE2 by 11.8%. However, DaCPlace
still achieves lower access delay per bit by 26.7% over
ProbCache. This is because DaCPlace optimizes video deliv-
ery, considering not only the delay but also storage utiliza-
tion. Even though DaCPlace is a popularity-based scheme, it

may not keep the most popular content. Such available
cache storage is used for multiple less popular content with
lower bit rates (smaller size), which thereby achieves higher
throughput.

Fig. 5 also shows that StreamCache achieves close perfor-
mance to DaCPlace (approximate 3% difference across all
cases). This small difference represents our heuristic design
considers important features of adaptive video caching sys-
tem, resulting in a near-optimal performance for different
total cache budgets. DaCPlace outperforms DASCache, espe-
cially for larger total cache capacity. For example, at
v ¼ 5%, the access delay of DaCPlace is 7.5% lower than
DASCache as opposed to 13.3% when v ¼ 25%. As men-
tioned earlier, DASCache scheme would not forward
Interests to routers which are not on the default routing
path. Thus, once a request is missed by a cache, this request
loses the opportunity to be satisfied on sibling branches.
This loss increases with larger vwhich explains the trend.

7.3.2 The Impact of Cache Allocation

We explore the distribution of cache allocation among edge
routers and intermediate routers by using different alloca-
tion ratios, including homogeneous (� ¼ 1) and heteroge-
neous (� ¼ 0:2; 0:5; 2; 5) cases.

Cache storage on edge routers significantly impacts facili-
tating video streaming, since it is closest to users, thus could
satisfy requests with minimal delay. Wang et al. [28] claim
that when the content popularity distribution is highly
skewed (i.e., where only a small portion of videos are fre-
quently requested), edge routers should be allocated larger
capacity. In contrast, when content has similar popularity
score, more cache capacity should be allocated to intermedi-
ate routers to reduce cache redundancy. Figs. 6a and 6b
show the access delay under these two scenarios with vary-
ing Zipf popularity skewness (a ¼ 1:2 and 0.4 respectively).

The performance of all caching schemes has a similar
trend across different allocation ratios in both scenarios.
The access delay when a ¼ 1:2 is lower, compared to the
case when a ¼ 0:4. This is attributed to cached content being
more frequently requested with larger a, which generates
more cache hits and results in less average delay. This is
further analyzed in Section 7.3.3.

It is straightforward that moving more cache storage to
the edge would yield faster system response. However, this

TABLE 2
Default Simulation Parameters

Parameter Value

Number of video files (F) 20
Number of video chunks per file (K) 15
Number of routers (jV j) 20
Number of edge routers (jN j) 12
Video chunk playback duration 2 sec
Bandwidth 5 Mbps
Topology tree height 4
Skewness factor (a) 0.8
Cache capacity percentage (v) 15%
Cache allocation ratio (�) 1
The probability of continuing watching (p) 0.9

Fig. 5. Caching performance under different total cache capacity
settings.

LI ETAL.: RATE-SELECTIVE CACHING FOR ADAPTIVE STREAMING OVER INFORMATION-CENTRIC NETWORKS 1623

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

performance gain is coupled with the expense of less cache
hits caused byworse cache utilization. In fact, this constitutes
a core challenge in the design of any caching scheme,
whereby striking the balance between efficient cache utiliza-
tion and fast system response. For example, as shown in
Fig. 6, with increased �, the performance of DASCache
degrades and CE2 improves. These are two typical cases
where cache redundancy and system response play as the
dominating factor. However, as to DaCPlace, the perfor-
mance difference is statistically insignificant. We then focus
on the scenario (a ¼ 1:2) to present more features of our
scheme. Fig. 7 presents the average delay grouped by bit
rates. DaCPlace results in fastest download speed for video
chunks encoded with 250 Kbps and 400Kbps. For example,
when � ¼ 1, DaCPlace is 92.8% and 45.0% faster than CE2. It
is important to note that the access delay of DaCPlace is lon-
ger than StreamCache for higher bit rates (600 Kbps and
900 Kbps). Nevertheless, the overall access delay per bit
(shown in Fig. 6a) ofDaCPlace is still lower than StreamCache.
This reveals that DaCPlace caters to the requests for low bit
rates, which is significant for adaptive video streaming: users
who request low bit rates should be bound to benefit from
caching themost. This is because the link bandwidth of users
requesting low bit rates is relatively low, hence cached con-
tent would tremendously improve QoS.

As shown in Fig. 6a, the performance of DASCache
degrades as the size of caching storage on edge routers
increases. For example, as � changes from 0.2 to 5, the access
delay per bit of DASCache correspondingly increases by

17.3%. This impact is further investigated over the amount of
cache hits. Fig. 8 shows that cache his of DASCache decrease
by 48.0% as � changes from 0.2 to 5, but cache hits ofDaCPlace
are relatively unchanged across all tested cache allocation
ratios. The superior performance is attributed to DaCPlace
utilizing off-path and on-path caching in an optimized and
cooperative manner. When � ¼ 5, the amount of cache
hits of DaCPlace increases by 55.7% over DASCache,
which demonstrates the significant improvement caused
by off-path caching.

We also evaluated performance over different cache allo-
cation ratios, under balanced and unbalanced topologies,
and found similar performance trends. This result demon-
strates that our caching performance is resilient to topology
variations.

Fig. 6. Video access delay per bit across cache allocation ratios.

Fig. 7. Average video segment delay (a ¼ 1:2).

1624 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 9, SEPTEMBER 2017

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

7.3.3 The Impact of Content Popularity

The popularity of video content is modeled in two levels, as
explained in Section 3.2. We control the skewness parameter
a in the Zipf distribution, and p in our Geometric distribu-
tion model, to vary content popularity on file and chunk
levels; respectively.

Fig. 9a shows the results across different skewness
parameter values. For example, at a ¼ 0:8, DaCPlace
improves by 37.0% and 26.9% over CE2 and ProbCache
respectively. When a changes from 0.4 to 1.2, all tested cach-
ing schemes lead to less average access delay. This is
because users’ requests concentrate on a smaller set of pop-
ular content with larger a, which thereby increases the
chance of cache hits. StreamCache captures popularity vari-
ance with different skewness values, and achieves equiva-
lent performance (around 3.2% difference across all cases)
compared with the optimal DaCPlace.

To capture the impact of the Geometric distribution
modeling of video requests, we present a comparative
experiment in Fig. 9b that depicts the access delay across
different geometric parameter values. As p increases, more
users are likely to finish viewing the entire video, which
results in increased delay per bit for all caching schemes.
The change in p would inherently influence the popularity
per video chunk. Even though a certain video file is popu-
lar, the last few chunks could witness infrequent requests.
Since the first several chunks of a popular video file are
highly likely to be cached, as users continue to watch the
video, chunks at the middle and (more towards) the end of
that file may have to be retrieved directly from the server.

Therefore, the longer the time a user watches a video, the
less likely a cache hit occurs. This explains why as p
increases, the average access delay grows as well. As both
our optimal DaCPlace and heuristic StreamCache schemes
have considered such request patterns, they outperform
other caching schemes in capturing this variance over the
extended duration of the video. Moreover, it is worthwhile
to note that it is possible for users to experience bit rate
switches while watching the video in the middle because
the throughput of video chunks witnessing cache hit or miss
are quite different. Our DaCPlace placement scheme is not

designed for a particular user but the rate adaptation algo-
rithm should be further considered for smooth playback.

7.3.4 The Impact of Transcoding

In addition to cache placement for individual bit rates,
another approach which caters to adaptive streaming is
transcoding. As explained in Section 2, DASH-INC is a typi-
cal framework which caches only the highest bit rate of
video content to avoid redundancy. Although it is question-
able that a single router in ICN has the same processing
capability as a backend server or Media Cloud (as required
in [24]) to handle simultaneous video demand, we assume
an infinite processing speed at ICN routers with no trans-
coding delay, and compare this upper bound performance
of transcoding over DASH-INC, with our proposed cache
placement schemes.

In this scenario, we apply the default parameters as
detailed in Table 2, and evaluate transcoding across differ-
ent cache sizes. We choose ProbCache as the caching scheme
used in DASH-INC since ProbCache is a general method,
without specifying the cached bit rate, and it outperforms
CE2 in previous simulations. We also present the perfor-
mance of ProbCache and our schemes StreamCache, DaCPlace,
without transcoding for comparison.

Fig. 10 shows the video access delay across different
cache capacities. We observe that transcoding can effec-
tively improve the cache utilization and results in less video
delay. For example, at v ¼ 15%, the upper bound perfor-
mance of ProbCache with transcoding is 19.6% better than

Fig. 8. Total cache hits (a ¼ 1:2) across cache allocation ratios.

Fig. 9. Video access delay per bit under popularity settings.

LI ETAL.: RATE-SELECTIVE CACHING FOR ADAPTIVE STREAMING OVER INFORMATION-CENTRIC NETWORKS 1625

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

ProbCache without transcoding. However, as shown in
Fig. 10, there is no significant difference between transcod-
ing upper bound and our schemes StreamCache and
DaCPlace at large cache capacity. This result demonstrates
that cache placement of selective bit rates, which is opti-
mized for adaptive streaming traffic, can outperform trans-
coding in the real life with nonzero transcoding delay.

Although transcoding reduces cache redundancy, this
method has two disadvantages: First, as only the highest bit
rate of video content are candidates of caching, transcoding
disregards the streaming traffic of low bit rates, which skews
the request patterns for popularity-based schemes (such as
ProbCache); Second, in some circumstances (such as poor link
conditions or mobility), users’ requests will typically be at
low bit rates. Even though we may ignore the transcoding
delay (in this simulation), caching only the highest bit rate for
transcoding consumes the cache capacity at a faster pace, hin-
dering the ability of in-network caching to servemore content,
comparedwith the bit-rate-selective caching aswe propose.

8 CONCLUSIONS AND FUTURE WORK

We address the premise of dynamic adaptive streaming of
video content, with the aim of minimizing the average access
time per bit and improving QoS under varying network con-
ditions. The future of video delivery is coupled with adap-
tive streaming, and schemes that address heterogeneous
users cannot ignore tailored video delivery. This factor has
played a major role in improving video delivery services
under the current Internet and is projected to be even more
influential as we steer to ICNswith dominating video traffic.

At the core of this work, we argue for the importance of
1) capturing the characteristics of bit rate selection over
varying user demands, which we modeled using a discrete-
time Markov chain, 2) establishing a solid queueing & ser-
vice delay analysis to project link utilization and network
variability, which we presented over a multi-class M/G/1
Queueing Model, 3) catering for interest aggregation in
video demand, as it significantly reduces network overhead
in handling equivalent content requests, which we analyzed
and presented as thinning in a Poisson process, 4) present-
ing DaCPlace, as a benchmark solution for variable bit rate
caching over ICNs, which incorporates content popularity
as a core factor in optimizing caching performance, 5)
designing a heuristic scheme, StreamCache, which signifi-
cantly decreases the computational complexity and achieves

near-optimal performance to DaCPlace, and 6) enabling
future improvements on our model and potential bench-
marking by developing an NS-3 based ndnSIM simulation
environment for StreamCache and DaCPlace.

We conclude that gauging popularity, on both the chunk
and file levels, is critical to optimal cache placement. As
adaptive video streaming yields requests for different bit
rates, it is crucial to evaluate their respective effects on
throughput to better optimize cache utilization. Moreover,
utilizing ubiquitous in-network caching improves video
delivery delay, under popularity-based schemes, in com-
parison to edge-based caching. StreamCache and DaCPlace
reduce cache redundancy by capitalizing on off-path cach-
ing, further building on ubiquitous in-network caching.
Overall, StreamCache and DaCPlace outperform existing
caching schemes under varying cache sizes and content
popularities, while managing topology variations.

In future work, novel models are needed to capture user
request patterns, ones which are specific to the growing
‘Prosumer’ body of users, not on the current host-centric
Internet architecture that impacts patterns of requests/pop-
ularity/variability across users. This is especially evident in
the lack of solid statistics/traces on ICN-based user behav-
iour. Moreover, now that StreamCache and DaCPlace address
challenges with caching multiple bit-rates, and contrast per-
formance gains against transcoding frameworks, we need
to further investigate the premise of hybrid approaches that
could, for example, transcode less popular bit-rates.

Future research on finding more adaptive popularity
schemes, to augment the currently dominant Zipf distr-
ibution, are much needed. In extending DaCPlace and
StreamCache, our future workwill incorporate rate adaptation,
whereby we consider the impact of rate adaptation on the
user end, and how caching schemes cater to current and
future replacement strategies. Also, although throughput is a
fundamental metric, we will extend our work to improve QoS
under other factors, such as playback freezing, bit rate switch
frequency.

APPENDIX A
FORMULATION TRANSFORMATION

Big-M Transformation. The optimization objective (Equa-
tion (5)) is expanded using Equations (6), (7), and (8), where
we designate E½RTTjðf; k; bÞ� as a continuous variable. Then,
we need extra constraints on this E½RTTjðf; k; bÞ� in order to
make it equal to the minimal round trip delay among avail-
able forwarding paths based on Definition 4.4. However,
Definition 4.4 is not linear. The task in this step is then trans-
forming the min operator, using the ”big-M” method
(where M denotes a large positive constant number). We
also define an artificial binary variable, bm

j ðf; k; bÞ which
indicates whether choosing the forwarding path m would
result in minimal delay or not. For simplicity, we denote
bmj ðf; k; bÞ with bm

j . For each j 2 N where m ¼ 1 � � � jUjj, we
need to add jUjj constraints with differentm

E½RTTjðf; k; bÞ� � E½RTTm
j ðf; k; bÞ� � bmj M; (22)

and one equality constraint

XjUjj

m¼1
bm
j ¼ jUjj � 1; (23)

Fig. 10. Video access delay per bit including the test on transcoding.

1626 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 9, SEPTEMBER 2017

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

where Constraints (22) and (23) ensure that E½RTTjðf; k; bÞ�
would be assigned the round trip time on a forwarding
path with the smallest delay.

Forwarding Path Contraints. The expression of Definition
4.3 is now contained in Constraint (22) by replacing
E½RTTm

j ðf; k; bÞ�, where djðmÞ can be specified based on the
type of end points using the corresponding linear expres-
sion of Definition 4.2 before solving the optimization prob-
lem. However, the value of Iðj;m; nÞ cannot be pre-
determined based on Definition 4.1 since it relies on the var-
iable of cache placement indicator x. Thus, in this step, we
transform Definition 4.1 into a linear expression by desig-
nating Iðj;m; nÞ as a binary variable and adding the follow-
ing Forwarding Path Contraints for each Iðj;m; nÞ

Iðj;m; nÞ � Iðj;m; n� 1Þ; (24)

Iðj;m; nÞ � xLj;mðnÞðf; k; bÞ; (25)

Iðj;m; nÞ � Iðj;m; n� 1Þ þ xLj;mðnÞðf; k; bÞ; (26)

where (24) and (25) give the lower bound of Iðj;m; nÞ,
which denote that the binary indicator Iðj;m; nÞ should be
greater or equal to the value of its previous hop indicator,
Iðj;m; n� 1Þ, and the cache decision x of current router,
xLj;mðnÞðf; k; bÞ. Constraint (26) gives the upper bound. If
both Iðj;m; n� 1Þ and xLj;mðnÞðf; k; bÞ are 0, Iðj;m; nÞ must
be 0. Thus, Constraints (24), (25) and (26) together are equiv-
alent to Definition 4.1 on Iðj;m; nÞ.

ACKNOWLEDGMENTS

This research is supported by grants from the Natural Scien-
ces and Engineering Research Council of Canada (NSERC)
and the Ontario Ministry of Economic Development and
Innovation under the Ontario Research Fund-Research
Excellence (ORF-RE) program.

REFERENCES

[1] Cisco, “Cisco visual networking index: Forecast and methodol-
ogy, 2015–2020,” 2015.

[2] I. Sodagar, “The MPEG-DASH standard for multimedia stream-
ing over the internet,” IEEE MultiMedia, vol. 18, no. 4, pp. 62–67,
Apr. 2011.

[3] G. Xylomenos, et al., “A survey of information-centric networking
research,” IEEE Commun. Surveys Tut., vol. 16, no. 2, pp. 1024–
1049, Apr.–Jun. 2014.

[4] S. Lederer, C. Mueller, C. Timmerer, and H. Hellwagner,
“Adaptive multimedia streaming in information-centric
networks,” IEEE Netw., vol. 28, no. 6, pp. 91–96, Nov./Dec. 2014.

[5] G. Pallis and A. Vakali, “Insight and perspectives for content deliv-
ery networks,”Commun. ACM, vol. 49, no. 1, pp. 101–106, 2006.

[6] A. Passarella, “A survey on content-centric technologies for the
current internet: CDN and P2P solutions,” Comput. Commun.,
vol. 35, no. 1, pp. 1–32, 2012.

[7] Y. Liu, et al., “Dynamic adaptive streaming over CCN: A caching
and overhead analysis,” in Proc. IEEE Int. Conf. Commun., 2013,
pp. 3629–3633.

[8] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mecha-
nisms in information-centric networking,” IEEE Commun. Surveys
Tut., vol. 17, no. 3, pp. 1473–1499, Jul.–Sep. 2015.

[9] Y. Wang, M. Xu, and Z. Feng, “Hop-based probabilistic caching
for information-centric networks,” in Proc. IEEE Global Commun.
Conf., 2013, pp. 2102–2107.

[10] Y. Xu, Y. Li, T. Lin, G. Zhang, Z. Wang, and S. Ci, “A dominating-
set-based collaborative caching with request routing in content
centric networking,” in Proc. IEEE Int. Conf. Commun., 2013,
pp. 3624–3628.

[11] L. Saino, I. Psaras, and G. Pavlou, “Hash-routing schemes for
information centric networking,” in Proc. ACM SIGCOMM Work-
shop Inf.-Centric Netw., 2013, pp. 27–32.

[12] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network
caching for information-centric networks,” in Proc. ACM SIG-
COMMWorkshop Inf.-Centric Netw., 2012, pp. 55–60.

[13] T. Koponen, et al., “A data-oriented (and beyond) network
architecture,” in Proc. ACM SIGCOMM Comput. Commun. Rev.,
2007, pp. 181–192.

[14] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos,
“Developing information networking further: From PSIRP to
PURSUIT,” in Proc. Int. Conf. Broadband Commun. Netw. Syst.,
2010, pp. 1–13.

[15] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking named content,” in Proc.
ACM Int. Conf. Emerging Netw. Experiments Technol., 2009, pp. 1–12.

[16] J. Li, et al., “Popularity-driven coordinated caching in named data
networking,” in Proc. ACM/IEEE Symp. Architectures Netw. Com-
mun. Syst., 2012, pp. 15–26.

[17] S. K. Fayazbakhsh, et al., “Less pain, most of the gain: Incremen-
tally deployable ICN,” in Proc. ACM SIGCOMMComput. Commun.
Rev., 2013, pp. 147–158.

[18] A. Dabirmoghaddam, M. M. Barijough, and J. Garcia-Luna-
Aceves , “Understanding optimal caching and opportunistic cach-
ing at the edge of information-centric networks,” in Proc. 1st ACM
Int. Conf. Inf.-Centric Netw., 2014, pp. 47–56 .

[19] D. Lee, C. Dovrolis, and A. Begen, “Caching in http adaptive
streaming: Friend or foe?” in Proc. ACM Netw. Operating Syst. Sup-
port Digital Audio Video Workshop, 2014, pp. 31–36.

[20] R. Jia, Z. Liu, X. Wang, X. Gan, X. Wang, and J. J. Xu,
“Modeling dynamic adaptive streaming over information-centric
networking,” IEEE Access, vol. 4, pp. 8362–8374, 2016.

[21] J. Lee, K. Lim, and C. Yoo, “Cache replacement strategies for scal-
able video streaming in CCN,” in Proc. IEEE Asia-Pacific Conf.
Commun., 2013, pp. 184–189.

[22] C. Kreuzberger, B. Rainer, and H. Hellwagner, “Modelling the
impact of caching and popularity on concurrent adaptive multi-
media streams in information-centric networks,” in Proc. IEEE Int.
Conf. Multimedia Expo Workshops, 2015, pp. 1–6.

[23] R. Grandl, K. Su, and C. Westphal, “On the interaction of adaptive
video streaming with content-centric networking,” in Proc. IEEE
Packet Video Workshop, 2013, pp. 1–8.

[24] Y. Jin, Y. Wen, and C. Westphal, “Optimal transcoding and cach-
ing for adaptive streaming in media cloud: An analytical
approach,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 12,
pp. 1914–1925, Dec. 2015.

[25] W. Li, S. Oteafy, and H. S. Hassanein, “Dynamic adaptive
streaming over popularity-driven caching in information-centric
networks,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 5747–
5752.

[26] L. Wang, A. Hoque, C. Yi, A. Alyyan, and B. Zhang, “OSPFN: An
OSPF based routing protocol for named data networking,” Univ.
Memphis and Univ. Arizona, Tech. Rep. NDN-2012–13, 2012.

[27] G. Rossini and D. Rossi, “Evaluating ccn multi-path interest for-
warding strategies,” Comput. Commun., vol. 36, no. 7, pp. 771–778,
2013.

[28] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Design and evalu-
ation of the optimal cache allocation for content-centric
networking,” IEEE Trans. Comput., vol. 65, no. 1, pp. 95–107,
Jan. 2016.

[29] D. M. Lucantoni, “New results on the single server queue with a
batch markovian arrival process,” Commun. Statistics Stochastic
Models, vol. 7, no. 1, pp. 1–46, 1991.

[30] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Modeling
data transfer in content-centric networking,” in Proc. 23rd Int. Tele-
traffic Congress, 2011, pp. 111–118.

[31] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks,
vol. 2. Englewood Cliffs, NJ, USA: Prentice-Hall, 1987.

[32] W. Li, S. M. Oteafy, and H. S. Hassanein, “StreamCache: Popular-
ity-based caching for adaptive streaming over information-centric
networks,” in Proc. IEEE Int. Conf. Commun., 2016, pp. 1–6.

[33] A. Afanasyev, et al., “ndnSIM: NDN simulator for ns-3,” Univ.
California, Los Angeles, Tech. Rep. NDN-0005, 2012.

[34] Gurobi, “Gurobi optimizer reference manual.” [Online]. Avial-
able: http://www.gurobi.com/documentation/.

[35] S. Lederer, C. M€uller, and C. Timmerer, “Dynamic adaptive
streaming over http dataset,” in Proc. 3rd Multimedia Syst. Conf.,
2012, pp. 89–94.

LI ETAL.: RATE-SELECTIVE CACHING FOR ADAPTIVE STREAMING OVER INFORMATION-CENTRIC NETWORKS 1627

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

[36] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache less for more
in information-centric networks,” in Proc. Int. Conf. Res. Netw.,
2009.

[37] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web cach-
ing and zipf-like distributions: Evidence and implications,” in
Proc. 18th Annu. Joint Conf. IEEE Comput. Commun. Societies, vol. 1,
1999, pp. 126–134.

Wenjie Li (S’14) received the BEng degree in com-
puter science and engineering fromSoutheast Uni-
versity, Nanjing, Jiangsu, China, in 2013 and the
MSc degree in computer science from Queen’s
University, in 2015. He is working toward the PhD
degree in the School of Computing, Queen’s Uni-
versity, Canada, and a research assistant in the
Queen’s Telecommunications Research Lab. His
research interests include routing and ubiquitous
caching in information-centric networks and effi-
cient content delivery over ICN for dynamic adap-
tive streaming applications. He is a member of
the IEEE.

Sharief M.A. Oteafy (S’08-M’13) received the PhD
degree in 2013, focusing on adaptive resource
management in Next Generation Sensing Net-
works, introducing Organic WSNs that adapt to
their environment and scalewith resource augmen-
tation. He is an adjunct assistant professor in the
School of Computing, Queen’s University. His cur-
rent research focuses on dynamic architectures for
enabling large scale synergy with the Internet of
Things and managing the proliferation of big
sensed data. He is the IEEE AHSN Standards

Liaison and on the ComSoc Tactile Internet standards WG, and has co-
authored a bookonDynamicWireless Sensor Networks, andmore than 40
peer-refereed publications in sensing systems and IoT. He co-chaired a
number of IEEE workshops, in conjunction with IEEE ICC, and IEEE LCN
conferences, and served on the TPC of numerous IEEE and ACM sympo-
sia. He is amember of the IEEE.

Hossam S. Hassanein (S’86-M’90-SM’06-F’17)
received the PhD degree in computing science
from the University of Alberta, Canada, in 1990.
He is a leading authority in the areas of broad-
band, wireless and mobile networks architecture,
protocols, control, and performance evaluation.
His record spans more than 500 publications in
journals, conferences, and book chapters, in
addition to numerous keynotes and plenary talks
at flagship venues. He is also the founder and
director of the Telecommunications Research

Lab, School of Computing, Queen’s University, Kingston, ON, Canada,
with extensive international academic and industrial collaborations. He
is an IEEE Communications Society Distinguished Speaker and a past
chair of the IEEE Communication Society Technical Committee on
AHSN. He is a fellow of the IEEE and has received several recognitions
and best papers awards.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1628 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 9, SEPTEMBER 2017

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:07:29 UTC from IEEE Xplore. Restrictions apply.

