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Abstract— Predictive resource allocations (PRAs) have recently
gained attention in wireless network literature due to their
significant energy-savings and quality of service (QoS) gains.
This enhanced performance was primarily demonstrated while
assuming the perfect prediction of both mobility traces and
anticipated channel rates. While the results are very promising,
several technical challenges need to be overcome before PRAs
can be practically adopted. Techniques that model the prediction
uncertainty and provide probabilistic quality of service (QoS)
guarantees are among such challenges. This differs from the
traditional robust optimization of wireless resources, as PRAs
use a time horizon with predicted demands and anticipated
data rates. In this paper, we tackle this problem and present
an energy-efficient stochastic PRAs framework that is robust to
prediction uncertainty under generic error probability density
functions. The framework is applied for video delivery, where
the desired video demands are modeled as probabilistic chance
constraints over the prediction time horizon, and a deterministic
closed form is then derived based on the Bernstein approx-
imation (BA). In addition to handling prediction uncertainty,
mechanisms that track the variance of the channel in real-
time are practically needed. Towards this end, we demonstrate
how a particle filter (PF) can be adopted to effectively achieve
this functionality. A low complexity guided heuristic algorithm
is also integrated with the BA-based allocations, and particle
filter (PF), to provide a real-time solution. Extensive numerical
simulations using a standard compliant long term evolution
system are then presented to examine the developed solutions
under various operating conditions. Results indicate the ability
of our framework to significantly reduce base station energy con-
sumption while satisfying users’ QoS under practical prediction
uncertainty.

Index Terms— Channel state prediction, energy efficiency, par-
ticle filter, radio access networks, resource allocation, robustness,
video streaming.

I. INTRODUCTION

MOBILE data traffic is anticipated to reach more than 24
exabytes per month by 2019, corresponding to a com-

pound annual growth rate (CAGR) of 57% [5]. Around 70%
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of such growth is expected to be mobile video content that has
to be delivered over the existing spectrum and infrastructure
in order to maximize the operator’s revenue. In addition to
QoS satisfaction, mobile operators are currently concerned
with energy-related operational and capital expenditures for
both current and future radio networks [6]–[8]. Since Radio
Access Networks (RANs) account for more than 50% of
the network energy consumption, designing energy-efficient
Resource Allocation (RA) strategies for video traffic are of
paramount importance [7]. Opportunistic RA [9], [10] that
relies on current or previous channel measurements are bound
to fail in exploiting the available resources for delivering video
content efficiently [1], [3]. This is because such traditional RA
is not able to leverage the long-term channel characteristics,
and typically minimizes only the short-term energy consump-
tion by reducing the transmission power [7], [9], [10].

Recent studies on human mobility show that peo-
ple tend to follow repetitive movement patterns [11],
which make the channel capacities of mobile users highly
predictable [12]–[14]. Consequently, Predictive Resource
Allocation (PRA) that exploits future channel conditions over
a time horizon, has recently been proposed to improve video
streaming quality [1], and reduce transmission energy [2], [3].
PRA can prioritize users moving towards poor radio con-
ditions, or delay transmission until a user reaches his peak
radio conditions. However, the potential gains of PRAs [1]–[4]
have been demonstrated under ideal predictions of future data
rate and deterministic QoS constraints without considering
uncertainties.

With the conventional approaches of PRA, evaluating sys-
tem performance under real world uncertainty is challenging,
and QoS guarantees are not possible. For instance, if the
actual rates are less than what was predicted, user QoS
may deteriorate significantly, thereby defeating the purpose
of implementing PRA strategies. Robust PRA frameworks
are therefore paramount to unleash the gains of predictions
under real-life constraints. This involves 1) modeling the rate
uncertainty, 2) developing models to provide probabilistic QoS
guarantees, and 3) efficiently tracking the prediction uncer-
tainty in real-time. Integrating these functionalities should
enable PRAs to strike a balance between providing energy
savings when predictions are accurate, and minimizing the
risks associated with erroneous predictions during periods of
uncertainty. In this paper, we investigate how such robustness
can be practically incorporated into a PRA framework, and
make the following contributions:

1) We present for the first time in literature a stochastic
PRA framework that is robust to prediction uncertainty

1536-1276 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:08:17 UTC from IEEE Xplore.  Restrictions apply. 



2328 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 4, APRIL 2017

under generic error probability models. Herein, the
objective is to minimize the Base Station (BS) energy
for mobile video delivery while guaranteeing user QoS
satisfaction.

2) We first show how the desired video QoS satisfaction
levels can be modeled as probabilistic chance constraints
in which the predicted rates are random variables, rather
than the expected values used in PRA literature. Further-
more, in order to provide a solution that is not dependent
on a particular error Probability Density Function (PDF),
we adopt the Bernstein Approximation (BA) for the QoS
constraint. The BA requires only the rate bounds and the
average values in order to obtain a convex closed form
representation for the probabilistic constraint.

3) Although the BA bounds can be calculated off-line,
radio measurement studies reveal that the predictability
of signal strength varies significantly with geographical
location and time of day [13]. Therefore, a mechanism to
track the variability in channel is needed for a practical
solution. In this work, we also demonstrate how a
particle filter (PF) can be adopted to effectively achieve
this channel tracking functionality, and adapt the BA rate
bounds accordingly.

4) Finally, we present a guided heuristic to provide a real-
time solution for the BA formulation. This is important
as, although the formulation is convex, the solution
complexity is proportional to both the number of users
and the length of the prediction window. The energy
savings and QoS satisfaction levels are then compared
to benchmark optimal solutions. We believe this work
provides a practical direction towards the development
of deployable PRAs in future generation networks.

In the following section, we review the related literature
on the existing non-robust PRA and provide a background
on robust resource allocation. Section III presents the system
model and provides an overview for the introduced robust
PRA framework. Section IV introduces the BA based formu-
lation for robust energy-minimization. The guided heuristic
for real-time optimization and the PF for channel tracking
are then presented in Section V and Section VI, respectively.
Simulation results are discussed in Section VII and finally, we
conclude the paper in Section VIII.

II. RELATED WORK

A. Existing Predictive Resource Allocation

With perfect knowledge of the future channel rates, the PRA
techniques in [1]–[3] demonstrated how the total BS energy
can be significantly reduced without any buffer under-runs at
the user device. This was primarily achieved by leveraging
knowledge of the future rate values of all the users. For
instance, the BS may wait until the user reaches his peak radio
conditions, and then pushes large portions of the video to avoid
future allocation during the lower data rates. The BS can then
go into sleep mode while the user plays back the prebuffered
content. On the contrary, during poor radio conditions, no
prebuffering is done and only minimal content is transmitted
to sustain smooth playback. This strategy allows the PRA to
transmit the video content with fewer resources compared to

the traditional RA technique. The latter overlooks the future
radio conditions and thus neither delays prebuffering, for cell
edge user, nor prioritizes users at the cell center.

In practice, channel predictions are typically associated
with uncertainties due to the low-power filters used in the
mobile devices [15] and the random behaviour of the received
signal level. Existing PRA techniques [1]–[4] represented
such imperfections by the expected rate values, resulting in
a deterministic formulation. The resultant decisions do not
guarantee QoS satisfaction when predicted future rates fall
below the expected values. In this case, the minimal airtime
fraction allocated to the cell edge users will not be sufficient
to meet their demand and buffer under-run (video stalls)
occurs. In addition, when peak rates exhibit lower values
than expected, energy savings will be suboptimal. The large
amount of allocated airtime within these slots are not optimally
utilized. We hence introduce a robust energy-efficient PRA that
handles the deviations in predicted rates and thus avoids QoS
violations and energy consumption under practical imperfect
predictions.

B. Robust Optimization

Robust non-predictive RA techniques have been discussed
in the literature in the context of handling uncertainties or
delays in the user reported measurements [16]–[18]. Two
fundamental optimization techniques namely Fuzzy and Sto-
chastic are used to provide a robust formulation of the RA
problem. In the former, the varying signal information is
represented as fuzzy numbers associated by a membership
function [19]. On the other hand, Stochastic optimization
represents the uncertain values as random variables charac-
terized by their probability density functions [20]. Although
the Fuzzy approach does not change the order of complexity
of the original non-robust formulation [19], an unsustainable
conservatism is attained, resulting in suboptimal RA deci-
sions [20]. Stochastic optimization, which is less conservative,
was extensively adopted in non-predictive RA schemes. The
main challenge remains to be the complexity.

Stochastic optimization utilizes two main techniques:
Chance Constrained Programming (CCP) and Recourse
Programming (RP) to handle the uncertainty in constraints
and objective functions coefficients, respectively [20]. For the
problem at hand, we focus on CCP to guarantee the QoS
constraint satisfaction with random rates. CCP [21] represents
constraints in a probabilistic form with a maximum violation
degree denoted as ε ∈ [0, 1]. A deterministic equivalent form
is then derived to obtain a closed form RA formulation.
Such deterministic form should handle three main challenges:
conservatism, safety and complexity. The first ensures that the
constraints should not be over satisfied to avoid suboptimal
network gains. The second challenge, safety, refers to the
ability of capping the maximum violation probability by a
certain degree denoted by ε. With regards to complexity,
the robustness typically converts the linear RA formulation
to a non-linear form. Hence, only convex and continuous
formulations should be considered to obtain optimal robust
solutions.

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:08:17 UTC from IEEE Xplore.  Restrictions apply. 



ATAWIA et al.: ROBUST CONTENT DELIVERY AND UNCERTAINTY TRACKING 2329

Gaussian Approximation (GA) obtains a deterministic CCP
form using the inverse CDF of the random coefficients
(channel rates in our case) [17], [22], [23]. However, the
robustness is not guaranteed in long-term predictive RA due to
the interdependence between the QoS constraints over the time
horizon [24]. GA is applied only when the CDF is known and
invertible, which might not be the case when multiple sources
of prediction errors are present [25]. On the other hand, the
Bernstein Approximation (BA), adopted in this paper, can
be applied for generic CDFs of prediction errors [26], [27].
In essence, BA does not use the exact mathematical expression
of the error’s CDF. Instead, only the bounds (i.e. minimum and
maximum values) of the error are adopted. The BA typically
results in conservative solutions which have suboptimal energy
savings due to the fact that the QoS constraints are over
satisfied by a degree more than 1 − ε [24].

In this paper, we integrate the BA with a particle filter which
tracks the channel variance based on the users’ measurements.
This integration balances the conservatism of the BA by allo-
cating fewer resources to the users experiencing stable radio
conditions. Using BA and PF for CCP and variation tracking,
respectively, will make the framework applicable to prediction
uncertainties with generic or complex error distributions. This
is unlike our Robust Predictive Resource Allocation (R-PRA)
works in [28] and [29] which used fuzzy and GA, respectively
while assuming normally distributed and invertible prediction
errors.

In general, the BA deterministic form will have a higher
complexity order than the non-Robust form [24]. For instance,
the BA will transform a linear CCP into a Second order
Cone Programming (SoCP) which increases the computational
burden [26]; due to the typically used convex optimization
techniques such as Interior Point Method (IPM) [30], [31].
The robust non-predictive RA in [18] adopted the Markov
inequality to approximate the CCP using a linear formulation.
However, the optimal coefficients for such approximation
are not easily attainable, and the degree of satisfaction ε
will no longer model the trade-off between optimality and
conservatism. Previous approaches in [16] and [17] tackled
the complexity of the BA’s SoCP by adopting either the first
or the infinite order norms to obtain linear low-complexity
deterministic forms for uplink non-predictive RA. However,
both norms resulted in conservative solutions that are accept-
able only for single time slot allocations (i.e. non predictive
RA) to maximize the bandwidth efficiency. Moreover, the
results in [24] demonstrated the high conservatism of BA
when used in long-term PRA which will not allow any sort
of linearization as done in [16] and [17]. The introduced
framework in this paper will adopt the BA in its original SoCP
form to optimize the energy savings. A real-time heuristic
algorithm is thus developed to obtain near-optimal and feasible
solutions by exploiting the structure of the problem at hand.

III. SYSTEM MODEL AND FRAMEWORK OVERVIEW

In this section, we introduce the system model and the main
blocks of the proposed robust adaptive PRA framework.

A. Preliminaries

We use the following notational conventions throughout the
paper: X denotes a set and its cardinality is denoted by X .
Matrices are denoted with subscripts, e.g. x = (xa,b : a ∈
Z+, b ∈ Z+). r̃ represents a random variable (r.v.) and its
expectation is denoted by E[·]. The log(·) denotes the natural
logarithmic function and 1y is an indicator function which
equals 1 if y is satisfied and 0 otherwise.

B. System Model

Each BS serves an active user set M where the user index
is denoted by i ∈ M. Each mobile user requests video with a
fixed streaming rate. While current streaming standards are
user driven, the network can access the files between the
user and streaming server to determine the video specific
information. Machine learning and data mining techniques
are then exploited to predict the future bit rates that will be
requested by the user. In-network caching is then adopted to
request the video content ahead and store it in edge nodes
near the user (e.g. at a BS) [32]. Thus, the main bottleneck
is the wireless channel, and the main focus is to handle
rate uncertainties, which were overlooked in existing PRA
work [1], [2]. We assume that user’s mobility trace is known
for the next T seconds, called the prediction window T , and
at a per second granularity where T = {1, 2, · · · , T }. Future
rate prediction is obtained by mapping the user’s trace to
the Radio Environment Map (REM) at the service provider.
The REM contains the average rate for user i at time slot
t and denoted as r̄i,t [33]. While the average values are
retrieved from the REM, their theoretical deviations, due to
imperfect predictions or large scale fading, are calculated using
Monte-Carlo simulation framework in [24]. Accordingly, the
predicted uncertain rate is modelled as a random variable
r̃i,t ∈ [r l

i,t , ru
i,t ], where r l

i,t and ru
i,t are the lower and upper rate

bounds, respectively, and the average value is r̄i,t = E[r̃i,t ].
The active users can share the BS resources (airtime fractions)
at each time slot t . The resource allocation matrix x = (xi,t ∈
[0, 1] : i ∈ M, t ∈ T ) gives the fraction of time slot t during
which BS’s bandwidth is assigned to user i .

The problem addressed in this paper aims to find the optimal
airtime fractions x based on the predicted rates such that the
total BS transmission energy is minimized and video stalls are
avoided.

C. System Overview

The proposed Robust Predictive Resource Allocation (R-
PRA) framework aims to provide a real-time adaptive robust
predictive allocation, and consists of three main blocks (see
Fig. 1):

• Robust Bernstein Formulation: This considers satis-
fying the QoS constraints under uncertainties in the
predicted rates. It firstly represents the constraints in
a probabilistic form with a maximum violation level,
denoted by ε, and then obtains the deterministic equiva-
lent form. This inequality represents the relation between
the unknown airtime fraction x , the average predicted
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Fig. 1. Block diagram of the proposed robust energy-efficient PRA.

rate r̄ , maximum rate deviations r̂ , and the streaming
demand V . In addition, this block continuously receives
feedback from the users on their buffer status in order
to either compensate for previous under-runs or avoid
transmissions to full buffers. 1

• Real-time Optimizer: Although the deterministic
Bernstein form is convex, optimal gradient search
methods cannot be adopted due to their high complexity.
This module implements a low complexity local search
guided algorithm that starts by satisfying the constraints
and then moves on for optimizing the objective. The
outcome is a real-time solution provided to schedulers
and channel assignment modules.

• Channel Variation Tracking: The optimality of the
robust form depends to a great extent on accurately
modelling the rate deviations r̂ which differ with time and
location [13]. This module uses particle filter (PF) to track
the degree of uncertainty α and adapts the rate deviations
r̂ based on the reported user measurements ¯̂r without
prior knowledge of the channel statistics. In addition, it
also allows cooperative tracking between users and thus
provide real-time updates for new arriving users to the
network.

In the following sections we explain the design details and
challenges of each module.

IV. BERNSTEIN FORMULATION FOR ROBUST

ENERGY-EFFICIENT PRA

In this section, we show the implementation the robust
Bernstein formulation block. The robust energy-efficient
PRA problem is firstly formulated and then Bernstein
Approximation (BA) is used to obtain a deterministic equiva-
lent form.

The uncertain predicted rate is represented as a random
variable r̃i,t and thus the QoS constraint is probabilistic as

1The robust Bernstein approximation in Section IV was first introduced in
our prior work in [24].

shown in Eq. 1 below

minimize
x

T∑

t=1

M∑

i=1

xi,t

subject to: C1: Pr

⎧
⎨

⎩

t ′∑

t=0

r̃i,t xi,t ≥ Di,t ′

⎫
⎬

⎭ ≥ 1 − ε,

∀ i ∈ M, t ′ ∈ T ,

C2:
M∑

i=1

xi,t ≤ 1, ∀t ∈ T ,

C3: xi,t ≥ 0 ∀i ∈ M, t ∈ T . (1)

where ε ∈ [0, 1] is the maximum probability that video stops
occur, and takes values less than 0.5 for reliable performance.

The objective function reflects the linear BS energy model
in [3] and [34] which is calculated in terms of the total airtime
fractions xi,t granted for all users. The BS is assumed to follow
the Discontinuous Transmission (DTX) light sleeping mode
in which some power consuming devices are turned off when
no resources are allocated to the users [35]. Due to the lack
of power-control in the current LTE 3GPP standard [36], the
downlink power is constant and thus the energy consumption
will depend fundamentally on the airtime.

The above formulation considers a fixed video quality, as
in [37], where the media content is transmitted to each user
at a constant streaming quality measured in Peak Signal-to-
Noise Ratio (PSNR)2. Video freezing occurs when the total
allocated airtime up to slot t results in delivering a total amount
of video less than the corresponding cumulative streaming
demand denoted as Di,t = Vi × t , where Vi is the fixed
streaming demand of user i corresponding to the requested
video quality. Accordingly, the QoS is said to be satisfied when
the cumulative transmitted content is greater than the total
demand Di,t ′ and thus no video stops occur. This is handled
by constraint C1 which ensures smooth video playback with
probability 1 − ε.

2Such quality level can be guaranteed due to the availability of Channel
Quality Indicator (CQI) from the users every TTI which enables the BS to
select the appropriate Modulation and Coding Scheme (MCS).
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The second constraint models the limited resources at each
BS by ensuring that the sum of the allocated airtime is less
than 1 second which is the duration of the allocation slot.
Finally, C3 ensures the non-negativity of the assigned airtime
fractions.

To obtain a robust deterministic form that is equiva-
lent to Eq. 1, irrespective of the r̃i,t distribution, Bernstein
Approximation (BA) is used. In essence, BA utilizes the
marginal distribution and the moment generating function
of the random variable. Generally, the chance constraint is
represented as a linear summation of random variables as
follows

Pr

(
f0(x) +

t ′∑

t=1

ηt ft (x) ≤ 0

)
≥ 1 − ε, ∀t ′ ∈ T . (2)

Here ηt is a random variable with marginal distribution Pt ,
and ft (x) is a convex function containing the decision vector
x. Assuming that all the random variables ηt are independent,
Pt has a bounded support on the interval [−1, 1] ∀t and the
function ft (x) is affine in the decision vector x , a convex
deterministic equivalent for Eq. 2 can be obtained as follows

inf
λ>0

[
f0(x) +

t∑

t=1

λ�t (λ
−1 ft (x)) + λ log

1

ε

]
≤ 0, ∀t ∈ T .

(3)

Herein, �t (z) is the logarithm of the moment generating
function Mt (z) for r.v. z as depicted in Eq. 4

�t (z) = logMt (z) (4)

Mt (z) = E
[
ekz] =

∫
ekzdPt (k)

Instead of computing the exact value of the logarithm moment
generating function in Eq. 4, in addition to solving for the
auxiliary variable λ, a conservative approximation using the
upper bound can be adopted as in [38, eq. (5)].

�t (z) ≤ max
{
μ+

t z, μ−
t z

} + σ 2
t

2
z2, ∀t ∈ T

−1 ≤ μ−
t ≤ μ+

t ≤ 1 (5)

The variables μ+
t , μ−

t and σt are used to approximate the
bounded support [38]. Therefore, a conservative deterministic
equivalent for Eq. 3 is attained using Eq. 5 and the arithmetic
inequality as follows

f0(x) +
t ′∑

t=1

max
{
μ+

t ft (x), μ−
t ft (x)

}

+
√√√√2log(

1

ε
)

( t ′∑

t=1

σ 2
t ft (x)2

)
≤ 0, ∀t ′ ∈ T . (6)

Finally, the robust PRA chance constraint C1 in Eq. 1 is
replaced by Eq. 6 as depicted in Eq. 7

t∑

t=1

r̄i,t xi,t +
t ′∑

t=1

μ−
i,t r̂i,t xi,t

−
√√√√2log(

1

ε
)

( t ′∑

t=1

(σi,t r̂i,t xi,t )2

)
≥ Di,t ′ , ∀t ′ ∈ T , (7)

where the random predicted rate r̃i,t is assumed bounded in
[r l

i,t , ru
i,t ]. To satisfy the assumptions for Eq. 3, this rate is

normalized in [−1, 1] by using the maximum deviation and
the average values denoted by r̂i,t and r̄i,t , respectively per

r̂i,t = ru
i,t − r l

i,t

2
, ru

i,t > r l
i,t

r̄i,t = ru
i,t + r l

i,t

2
(8)

The constraint in Eq. 7 is a SoCP model which is convex for
ε < 0.5 and xi,t ∈ [0, 1] [39].

V. REAL-TIME OPTIMIZER

This section discusses the implementation of the second
block in Fig. 1. We firstly explore the limitations of existing
optimal solvers, and then provide the details of the proposed
real-time heuristic algorithm. Finally, computational complex-
ity of both optimal and heuristic techniques is analyzed.

A. Optimal Solution

The formulation in Eq. 7 is a SoCP for ε < 0.5 thus convex
and continuous [39]. Its optimal solution can be obtained
using Interior Point Method (IPM) [30] which is efficiently
implemented in many commercial solvers such as Gurobi [40].
In particular, IPM searches within the set of feasible solutions
for the optimal value where the latter is recognized due to
its zero (or very small) duality gap. Although the IPM was
proved to reach the optimality conditions in fixed number
of iterations [31], the complexity per iteration hinders real-
time solutions and still depends on the number of constraints.
As seen from Eq. 1, the dimension of constraints increases
with both the number of users M and the length of the time
horizon T. In addition, the resource limitation constraint (C3)
might cause the dissatisfaction of the QoS constraint (C2)
especially at small values of ε. In this case, the QoS constraint
has to be relaxed which requires extra computations. Our
framework hence relies on a suboptimal heuristic algorithm
to provide a real-time solution, while optimal techniques
(e.g. IPM) are used for benchmarking only.

B. Guided Local Search Heuristic

The guided search algorithm proceeds by allocating the
airtime that ensures exact satisfaction of QoS constraint
(i.e., solves C1 in Eq. 7 as equality) to minimize the
airtime. The radio capacity constraint is then checked
(i.e., C2 in Eq. 1) and reallocation is done in case of violating
the maximum time slot duration. Finally, the algorithm pushes
all the remaining video content when the user reaches his peak
radio conditions (i.e. maximum r̄ ) to avoid allocation in future
time slots with lower rates. The second and third steps are
very challenging in multi-user scenarios where different users
might experience their peak radio conditions simultaneously.
The heuristic is summarized in Algorithm 1 and detailed as
follows
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Algorithm 1 Local-Search Guided Heuristic for Robust
Allocation
Input : Users: M, Time Horizon: T , Average

Predicted Rates: R̄, Rate Bounds: R̂,
Maximum Violation: ε and Streaming
Demand: D;

Output : X ;
Initialization: X = ∅, Nt = 0 ∀t ∈ T

1 for i ∈ M do
2 t̂i = argmax

t∈T
{

R̄i
}
,∀i ∈ M;

3 t = 0;
4 while t < t̂i do
5 Transform Eq. 7 to equality and solve for xi,t ;
6 Nt = Nt + xi,t ;
7 end
8 end
9 for t ∈ T do

10 if Nt > 1 then

11 j = argmax
i∈M

{
r̄i,t

max
∀t ′

{
R̄i

}
t ′<t

}
;

12 �x j,t = Nt − 1;
13 k = t − 1;
14 while k > 0 do
15 �x j,k = �x j,t × r̄ j,t

r̄ j,k
if Nk + �x j,k ≤ 1 then

16 x j,k = x j,k + �x j,k;
17 Nk = Nk + �x j,k ;
18 Nt = 1;
19 k = 0;
20 else
21 k = k − 1;
22 end
23 end
24 end
25 end
26 for t ∈ T do
27 L = {

M|t̂i = t ∀i ∈ M
}

;
28 δ F̂ = 0;
29 î = 0;
30 for i ∈ L do

31 yi,t = min

{
1 − Nt ,

Di,T −Di,t

max
{

R̄i
}
}

;

32 t ′ = argmax
T \t

{
R̄i

}
,∀i ∈ M;

33 yi,t ′ = min

{
1 − N ′

t ,
Di,T −Di,t

max
T \t

{
R̄i

}

}
;

34 δF = yi,t − yi,t ′ ;
35 if δF > δ F̂ then
36 δ F̂ = δF ;
37 î = i ;
38 end
39 end
40 end
41 return X

1) QoS Satisfaction: To minimize the energy consumption
while guaranteeing QoS satisfaction, C1 in Eq. 7 is turned
to equality so that the airtime exactly satisfies the demand

without violating the maximum degree ε. This step is calcu-
lated for every time slot for each user until the peak radio
conditions are reached (lines 1-8).

2) Resource Limitation Satisfaction: After calculating the
airtime fractions for all users in each time slot, the resource
constraint, C2 in Eq. 1, is checked. In case of violation, the
excess airtime is prebuffered in a preceding time slot with
vacant resources. To ensure airtime minimization, the user with
the highest average predicted rate in a previous vacant time
slot is chosen (lines 9-25).

3) Peak Local Search Allocation: The above allocation
strategy guarantees the satisfaction of both QoS and resource
constraints. Thus, minimal allocation is used until the peak
data rate time slot is reached. The challenging part in this
stage occurs when more than one user competes on the same
time slot. Accordingly, local search is applied to select the
user who will result in the highest power consumption if he is
not granted this time slot. As such, the local search calculates
the difference in airtime between the two scenarios: If he is
allocated to this peak time slot or if the second maximum
peak is selected (lines 31-34). The user with less airtime in
the first scenario is selected to be served in the current slot. The
algorithm terminates when all the users’ cumulative demands
are satisfied.

C. Optimizer Complexity Analysis

We analyze the computational complexity of the introduced
local-search heuristic and compare it against the optimal.
For SoCP formulations, the optimal interior point method
(IPM) requires a maximum of O(

√
K ) iterations, where K

is the number of constraints. Each iteration has a complexity
of O(m2 ∑K

i=1 ni ) [31], where m denotes the total number
of decision variables and ni is the dimension of the i th

constraint. Accordingly, the complexity measure of the IPM
as a function of the number of users, M , and time slots,
T , is O(

√
2T M + T (MT )2(MT (T + 1)/2 + M + 1)) ≈

O(
√

MT (M3T 4)). For the heuristic in Algorithm 1, the QoS
satisfaction step has a complexity of O(MT ). The peak allo-
cations and solution repairing have complexities of O(MT )
and O(T 2), respectively. Thus, the total complexity of the
heuristic is O(MT + T 2).

VI. PARTICLE FILTER FOR TUNING RATE DEVIATION

We extend the robustness to scenarios in which the channel
variance changes over the time and location [13]. A particle
filter (PF) is used to tune the rate deviations (initially obtained
off-line or theoretically) in order to reflect the channel variance
based on the users’ measurements. This is done on two steps:
Rate deviation update and PF estimation. In particular, the
PF estimates the error between the measured variance and its
assumed value. This error is then used to update the theoretical
variance for the future allocations.

A. Rate Deviation Update

We denote the off-line calculated deviations (e.g., using
Monte-Carlo [24]) as r̂ (M)

i,t , while the final tuned deviations
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using PF are denoted by r̂ (P)
i,t and calculated as follows

r̂ (P)
i,t = αi,t × r̂ (M)

i,t , (9)

where αi,t ≥ 0 is the proportionality factor between the off-
line and measured rate deviations. As the channel variance
changes over time and location, the value of α has to be
adapted accordingly using the particle filter as shown in the
next subsection.

In multi-user scenarios, cooperative tuning can also be per-
formed where existing users in the network can propagate their
estimated value of αi,t to the recent users admitted to the same
BS. Such cooperation is done using the channel correlation
coefficients between the users based on their distances per
Eq. 10

αi,t = αi,t−1 + max
j∈M, j 
=i

{
ρi, j,t

} (
α j,t−1 − αi,t−1

)
,

ρi, j,t = e− di, j,t
dcor , (10)

where di, j,t and ρi, j,t are the distance and distance-dependent
channel correlation coefficient between user i and j at time
slot t , while dcor is the correlation distance. The above formula
is adopted from the 3GPP channel fading model [41].

B. PF Estimation

The PF initially generates a set of values (i.e., particles) fol-
lowing a proposed distribution and assigns them equal weights.
These weights are then tuned based on the reported user
measurements according to a predefined likelihood function.
A final estimate of the PF state (i.e., α) is a weighted sum of
the particles’ values. The measurements represent the reported
deviation between the predicted and the measured channel
rates.

The PF unknown posterior distribution of the state vari-
able y given a set of previous measurements/observations
Z at time t is denoted by p(yt+1|Zt ). This probability dis-
tribution is calculated based on a Bayesian method called
Chapman-Kolmogorov defined as [42]

p(yt+1|Zt) =
∫

p(yt+1|yt )p(yt |Zt )dyt (11)

where p(yt+1|yt) is used to calculate the evolution of state y
over the time horizon, while p(yt |Zt) is an initial estimate of
the posteriori probability at the current time slot and calculated
as follows using Bayes rule

p(yt |Zt ) = p(Zt |yt)p(yt |Zt−1)∫
p(Zt+1|yt+1)p(yt+1|Zt)dyt

(12)

where p(Zt |yt ) represents the likelihood probability of receiv-
ing measurements as Zt while assuming state yt . The denom-
inator in Eq. 12 ensures that the estimated posteriori PDF will
sum up to 1 over the time horizon.

The best estimate of the state yt in the mean square error
sense is denoted by ȳt and calculated as

ȳt =
∫

yt p(yt |Zt )dyt (13)

In order to provide a tractable solution for the above equa-
tions, we apply the Sequential Importance Sampling (SIS)

technique [43]. SIS approximates the unknown posteriori dis-
tribution by a group of generated particles where each particle
is weighted by its conformity to the measurements. Such
particles are drawn from a proposed distribution, based on
the problem structure, that approximates the original unknown
distribution using large number of particles. The particle filter
methodology based on SIS is summarized as follows

1 Initialization
i Define the proposed distribution p(Q).

ii Generate a set of N particles denoted by Qt=0 using
the distribution p(Qt=0).

iii Initialize equal weights (ωi
t=0) for all particles.

ωi
t=0 = 1/N, ∀i = 1, . . . , N , (14)

iv Define the likelihood function F(Q, Z).

2 Measurement Phase
i Update the weights of each particle using the mea-

surement Zt and the likelihood function F(Q, Z):

ω
j
t = ω

j
t−1 F(Q, Z), ∀ j ∈ 1, . . . , N , (15)

ii Normalize the weights:

ω̄
j
t = ω

j
t∑N

j=1 ω
j
t

, (16)

iii Calculate the best estimate:

ȳt =
N∑

j=1

zt ω̄
j
t , (17)

3 Prediction Phase
i Calculate the gradient:

δyt = ∂zt

∂ t
, (18)

ii Predict the future state:

yt+1 = Aȳt + Bδytδt : (19)

4 Importance Sampling
i Calculate effective samples:

Ne f f = 1
∑N

j=1(ω
j
t )2

, (20)

ii Check degeneracy then resample: If Ne f f <

N̂ then, resample particles and set ω
j
t = 1/N ∀ j ∈

1, . . . , N ,

In essence, the calculated weights ω
j
t in Eq. 15 approx-

imate the posteriori PDF in Eq. 12, while the priori PDF
in Eq. 11 is evaluated using the likelihood F(Q, Z) in the
initialization phase. In addition, Eq. 17 in the measurement
phase implements the best estimate of the state (Eq. 13). In
the prediction phase, the future state yt+1 in Eq. 19 is a linear
weighted combination of both the best estimated state ȳt and
the integral of its rate of change δytδt from the available
measurements zt . In Eq. 19, A and B are the weights of
both the best estimate and integral of the rate of change,
respectively.
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As the PF updates the weights ω
j
t in Eq. 15 every time

slot, their values may converge and few number of particles
will have non-zero weights. Such situation is called degen-
eracy, which has to be avoided as it deviates the weight’s
distribution from the actual posteriori probability. Thus, the
number of effective particles Ne f f is calculated to check for
the degeneracy and in case of dropping below the maximum
threshold N̂ , resampling is done. Each particle contributes,
based on its weight, in generating a new particle [43]. The
newly generated set of particles will not contain the ones with
very low wights. The new weights are equally redistributed
similar to the initialization phase.

In our rate deviation tracking, the PF state yt is the propor-
tionality factor αt while the measurement zt is the reported
proportionality factor ᾱt calculated as

ᾱt = |r̄i,t − E[ri,t ]|
r̂ (M)

i,t

(21)

where E[ri,t ] is the measured channel rate by user i in the
duration from slot t − 1 to slot t .

VII. PERFORMANCE EVALUATION

A. Simulation Set-Up

We simulate the proposed robust PRA using the LTE
module in Network Simulator 3 (ns-3) [44] integrated with
Gurobi solver [45]. Gurobi uses an efficiently implemented
IPM with Barrier function for solving SoCP, and its terminat-
ing condition was set to a duality gap value of 0.01%. The
3GPP correlated slow fading model and its parameters [41]
are added to the received UE power in order to simulate
uncertainties in predicted rates. Simulation results are averaged
over 50 runs, and all the output values are 1% apart from the
displayed mean. Such confidence interval is not reported in the
figures for legibility and thus only the average is displayed.
The simulation considered an urban area where users follow
different predefined paths within the cell at varying velocities
from 25 to 40 Km/h and request a video stream at a fixed
quality. The user follows a path that either starts near a cell
edge and moves to the center, or starts from the cell center
and moves towards the edge. All the simulation parameters
and their values are presented in Table I.

B. Comparative Schemes and Evaluation Metrics

In this evaluation study, we compare the proposed robust
predictive scheme against the existing non-robust PRA and
non-predictive RA schemes denoted as follows

• N-PRA (MT): refers to a type of non-predictive RA
called maximum throughput (MT) [46]. In essence, MT
allocates the whole resources to the user with the cur-
rent maximum channel rate regardless his future channel
conditions.

• NR-PRA: refers to the existing non-robust PRA in [3]
which only uses the average value of the predicted
rate resulting in a deterministic linear formulation. The
optimal solution is obtained using the simplex method
implemented in Gurobi [40].

TABLE I

SUMMARY OF MODEL PARAMETERS

• OR-PRA (l2): refers to the introduced BA based robust
PRA in this work and formulated in Eq. 1 and Eq. 7. The
solution is obtained optimally using the IPM in Gurobi
optimizer [40].

• HR-PRA (l2): the same as OR-PRA (l2), but its solution
is obtained using the guided local search heuristic in
Section V.

• R-PRA (l1): refers to the introduced BA robust PRA in
this work but linearized similar to [17] and the solution is
obtained optimally using the simplex method in Gurobi
optimizer [40].

All the above schemes are assessed using two main metrics:
percentage of video stops and average airtime to measure
the QoS satisfaction and the energy consumption, respec-
tively. Existing predictive RA approaches revealed that play-
back interruptions, due to buffer under-run, are among the
primary sources of user dissatisfaction with video delivery
services [2], [47]. Thus video stops metric perfectly models
the ability of RA to optimize the trade-off between energy-
minimization and QoS satisfaction. The percentage of video
stops, denoted as VD, is used to quantify the QoS degradation
and calculated as the percentage of time slots in which the
cumulative transmitted content (Ri,t ) is less than the demand
(Di,t ) per Eq. 22

V D =

M∑
i=1

T∑
t=0

1Ri,t <Di,t

M × T
× 100, (22)

where Ri,t = ∑t
t ′=0 ri,t ′ xi,t ′ is the cumulative video content

received by user i till time slot t while ri,t is the experienced
channel rate by user i at timeslot t . The maximum allowed
value of VD is set to the predefined constraint violation
level (ε) × 100%.

The second metric is the average BS airtime which is used
to measure the energy consumption in the network. During
resource allocation, both the BS and UE consume energy in
data transmission and reception. Therefore, minimizing the
airtime reduces the energy consumption proportionally [34].
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Fig. 2. Performance evaluation for different channel variances at QoS levels (1 − ε) = 0.9 and 8 users requesting high quality video.

Fig. 3. Performance evaluation for different number of users requesting HQ at QoS levels (1 − ε) = 0.95 and experiencing σ = 4.

The objective function in Eq. 1 is used to quantitatively
measure this metric.

C. Simulation Results

1) Comparison With Other Resource Allocators: We
assume that the rate deviation r̂ is accurately known and
the focus is to show the importance of robust PRA and the
heuristic solution. The first scenario considered a high quality
video (i.e. Vi = 1Mbps) which is a high load scenario relative
to the available average channel rate. The non-predictive MT
continues to satisfy the QoS level independent on the channel
variance as shown in Fig. 2(a). This is because the MT
schedules the users based on their current reported channel
rate irrespective of the variance and the future rates. The non-
robust predictive technique [3] fails to satisfy the maximum
VD set to 0.1 (i.e. ε = 0.1). This QoS performance degrades
with the channel variance since the measured rate deviates
from the average value. The allocated minimal airtime will
not be sufficient to satisfy the demand. Such deterioration is

avoided by all the robust forms as the percentage of stops did
not pass ε × 100% for the considered variances.

Although the non-predictive MT prioritizes users with
maximum rates, its energy consumption is higher than the
predictive strategies as depicted in Fig. 2(b). The MT buffers
the video content for the cell peak users, which saves energy,
but then turns to push the video for other users located near
the cell edge rather than applying minimal allocation. On the
other hand, the predictive strategy is able to minimize the
energy even in the robust forms. The results also demonstrate
the conservatism of the linearized BA used in [17], which
decreases the energy saving gain especially at very high
channel variances. The energy consumption thus increases and
becomes comparable to that of the non-predictive strategy.

Both the load per user and the moving speed are then
decreased to medium quality videos (i.e. Vi = 0.5Mbps)
and 25 Km/h, respectively, to allow more users and higher
QoS levels in the simulation scenario. The conservatism of
the linearized BA becomes more significant as it consumes
more energy than the non-predictive MT at high QoS level
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Fig. 4. Performance evaluation for different channel variances at high QoS levels and 12 users requesting MQ video.

Fig. 5. Performance evaluation for different channel variances and number of users at QoS levels (1 − ε) = 0.95 requesting high quality video.

(i.e. low ε) and high channel variances as in Fig. 3(b) and
Fig. 4(b). The BA in its original SoCP form, however, is able
to preserve the prediction gain at these high load conditions.
While the energy savings gap between, the predictive and non-
predictive schemes decrease for this scenario, the latter fails to
meet the QoS level as shown in Fig. 3(a) and Fig. 4(a). This
is because such non-predictive strategy greedily allocated the
resources to the cell peak users and ignored serving the cell
edge users in order to maximize the total system throughput.

Similar observations are noted for the conservative lin-
earized BA, NR-PRA and MT when the number of users
and the QoS level are increased as shown in Fig. 4(b).
The distributions of QoS satisfaction and degradation are
reported in Fig. 5(a) and Fig. 5(b), respectively. The percentage
of users with violated QoS levels mainly depends on their
mobility traces and experienced channel rates. In Fig. 5(a), the
percentage of users with violated QoS levels was around 50%
in case of the non-robust PRA. This was found to be the same
percentage of users who started the video streaming at the cell

edge, and thus were subjected to minimal allocation strategy
resulting in buffer underrun. In Fig. 5(b), the distribution
of video degradation, and its maximum value, illustrate the
QoS violation of non-robust PRA. Note that the robust PRA
schemes experienced stable QoS performance over the system
load and variance. The scenarios above demonstrate that the
adopted BA SoCP based PRA formulation: 1) satisfies all QoS
levels for different system loads (Fig. 3(a)) and 2) preserves the
energy-saving gains of the prediction (Fig. 3(b)). In addition,
the introduced heuristic shows stable performance with a very
low optimality gap (<0.1 %) with respect to the optimal
solution’s airtime and QoS levels in all considered cases.

2) Performance of Particle Filter: In this scenario, we
assess the ability of the PF to track the rate deviations while
adopting the SoCP BA formulation. We compare the PF based
variance is compared with both the maximum and optimal the-
oretical variances denoted by Max. Dev. and Opt., respectively.
The Max. Dev. corresponds to the maximum variance [41] that
guarantees the QoS satisfaction under the highest prediction
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Fig. 6. Performance evaluation for the robust framework with channel tracking for different number of users experiencing σ = 2 and requesting MQ video
with high QoS level (1 − ε) = 0.95.

Fig. 7. Performance evaluation for the robust framework with channel tracking for different number of users experiencing σ = 2 and requesting LQ video
with high QoS level.

errors. The Opt. adopts the exact rate deviation corresponding
to the current channel variance. This optimal value satisfies the
QoS level without compromising the energy savings. On the
other hand, the PF initially assumes the highest variance as
the Max. Dev., but continuously monitors the channel variance
and adapts the rate deviation accordingly.

With regards to QoS satisfaction, the Max. Dev. provides
a very conservative allocation that greedily satisfies the QoS
at the expense of the energy saving as depicted in Fig. 6(a)
and Fig. 6(b), respectively. This is not the case for PF which
has met the constraint at nearly the exact level as the Opt.,
resulting in high energy savings. The PF, in essence, decreases
the initial maximum rate deviation to reach the lower optimal
value and sometimes below. Although going below the optimal
rate deviation value increases the risk of constraint viola-
tion, the conservative BA based allocation in early timeslots
avoids such QoS degradation case. The energy gain of the
PF-based channel tracking relative to the maximum deviation

has increased in the high load scenarios (i.e. more number
of users) at high QoS levels and reached up to 15 % as
shown in Fig. 7(b). This adaptation mechanism results in
nearly the same energy savings as the optimal deviation case
and with better QoS satisfaction as less video stops have
been experienced in the early slots as shown in Fig. 7(a) and
Fig. 7(b).

3) Runtime Complexity: We also report the execution time
of all the examined RA schemes in Table II, and mea-
sured within the simulation environment on a Quad Core
i7-Processor, 3.2 GHz machine. These results highlight the
efficiency of the guided heuristic solution methods for provid-
ing real-time implementation under different load scenarios.
The complexity of the optimal solver increases with both
the number of users (i.e. the problem dimensions) and the
streaming rate (V) since more iterations are required to reach a
feasible solution. As opposed to the solver, the guided heuristic
resulted in a stable scalable performance regardless the value
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TABLE II

EXECUTION TIME OF THE SIMULATED SCHEMES

of the aforementioned two parameters and with a delay less
than the duration of Time Transmission Interval (TTI).

VIII. CONCLUSION

In this paper, we developed a robust PRA framework
that provides probabilistic QoS guarantees under generic
error probability density functions. The solution integrates
Bernstein Approximation (BA) for chance-constraint QoS
modeling, a particle filter (PF) for prediction uncertainty
tracking, and a guided heuristic that enables real-time
implementation.

The proposed framework was applied for energy-efficient
video delivery, and the results indicate it’s resilience in
meeting QoS constraints, while significantly reducing BS
energy under practical prediction uncertainty. In particular,
the BA formulation successfully satisfied the QoS level in all
scenarios, unlike the existing non-robust PRA that rely only
on average future rates. The results further demonstrated that
non-predictive RA either consumes excess energy or violates
the QoS level under low or high load scenarios, respectively.
Handling the BA complexity through traditional linearization
techniques was also investigated, but appeared to be very
conservative for such long-term predictive allocations, espe-
cially under high load scenarios or tight QoS levels. However,
using a guided heuristic enabled the adoption of the BA in
its original less conservative SoCP form for different load
and QoS levels. In addition to developing the stochastic PRA
model, we demonstrated how a PF can be adopted to track the
rate deviations in real-time. Such tracking enables the operator
to be aggressive during periods of accurate predictions, and
thereby maximize energy savings without compromising QoS.

Our future work considers the following enhancements to
the robust PRA framework: 1) modeling other objectives such
as maximizing the quality for adaptive video streaming during
high network load, and 2) considering the uncertainties in the
user’s requested streaming rate (i.e. demand uncertainty).
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