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a b s t r a c t 

In this paper we study the problem of distributed data storage using Rateless codes for large-scale 

resource-constrained wireless networks. We focus on building a robust storage system using Fountain 

codes from physically decentralized sources. Fountain codes, e.g. LT-codes, can achieve reduced complex- 

ity of both encoding and decoding, which caters well to the nature of such networks. We propose an 

energy-efficient distributed dissemination and coding scheme to build a decentralized LT-codes based 

storage over a network of resource-limited nodes to provide data survivability against possible failures. 

In the proposed scheme, each sensor node is assigned a selection probability derived from a Robust Soli- 

ton Distribution (RSD) in a distributed fashion. Source nodes then disseminate their data over the storage 

network randomly, in accordance with the selection probabilities. The proposed scheme is compared to 

similar schemes in the literature by means of simulations. We evaluate the energy required for building 

the storage as well as the energy needed for data retrieval from the storage system. Results show that 

energy consumption can be substantially reduced while achieving the required storage requirements. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

We are witnessing a new technological era that is enabled by

dvances in ubiquitous sensing, computing and connectivity. New

pplications such as Internet of Things (IoT), Intelligent Trans-

ortation Systems (ITS), smart grid, and smart homes, all benefit

rom the pervasiveness provided by connected smart embedded

evices. Despite this potential, there seems to be a constant

eed for alternative paradigms to cope with the challenges and

equirements that come about with these applications. For in-

tance, while IoT devices generate immense amounts of data, their

nderling system, consisting of tiny devices, is generally unreliable

nd suffers from limitations in energy, storage, and computing

esources [1] . It is therefore crucial to search for unconventional

lternatives to strengthen their ability to cope with failures and

ata losses while respecting their limitations. This is all the more

o when such systems are used for critical applications, or when

etwork connectivity is intermittent such as the case with Delay

olerant Networks (DTNs). 

Recently, a number of proposals have emerged on the use of

istributed Data Storage Systems (DDSSs) to provide data availabil-

ty and increase data survivability against failures [2] . DDSSs can

acilitate such requirements by implementing a distributed storage
∗ Corresponding author. 
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ystem that is resilient to data loss by employing hardware redun-

ancy and data replication to guarantee data survivability when

ailures occur. The use of redundancy enables data to be accessed

rom multiple locations, and therefore increases availability. How-

ver, using DDSS in resource-constrained wireless systems is not

rivial, due to the limitations in storage, computing, and energy. 

This has led to suggesting the use of Fountain codes [3] to con-

truct DDSS from a set of physically decentralized sources in a

istributed and energy efficient fashion [4–6] . DDSSs can benefit

reatly from the versatility of Fountain codes in numerous ways.

onsider, for example, the following application. A Wireless Sensor

etwork (WSN) becomes fragmented and sensor nodes lose con-

ectivity to the sink node. The network runs a self-healing mech-

nism to restore network connectivity. Such a restoration process

ay not be momentary and requires time. To protect data, sensor

odes can resort to Fountain codes, to increase data persistence,

y exchanging their data to build a storage using LT-codes. After

he network connectivity is restored, data can be decoded by sen-

or nodes or a sink node. Since encoding or decoding is performed

y sensor nodes, it is important that they be simple. Fortunately,

ountain codes can be encoded using a simple bitwise xor , while

ecoding is performed using a Belief Propagation (BP) decoder. 

In this paper, we introduce a Decentralized Robust Soliton Stor-

ge (DRSS) which is an LT-codes-based DDSS that uses Robust Soli-

on Distribution (RSD). DRSS disseminates data in a random fash-

on by employing a selection probability policy derived from RSD.

fter storage nodes finish receiving the source data, they encode
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Fig. 1. Distributed data storage model. 
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it and store it locally. The stored data can then be collected from

nodes by data collectors in a random fashion. The proposed sys-

tem enables a distributed implementation of an RSD-based DDSS

over wireless network where nodes are resource-constrained and

source data is decentralized. The goal of the scheme is to achieve

data survivability while attaining simplicity and energy conserva-

tion. The proposed scheme is compared to existing schemes us-

ing simulation. Existing literature only evaluates the performance

of building the data storage, namely dissemination and encoding.

A unique aspect to this study is the inclusion of the cost data re-

trieval as well. The proposed scheme is shown to be superior in

dissemination, encoding, storage, and data retrieval costs 1 . 

Our contributions in this paper include: 

• Introducing a decentralized and energy-efficient data dissemi-

nation and encoding mechanism for building distributed data

storage using LT-codes. 

• Developing a random selection policy derived from RSD that

can be used in building a distributed storage using local infor-

mation only. 

• Providing comparative study of exemplary schemes form the

literature using simulation, and demonstrating how the pro-

posed scheme greatly improves the performance of DDSS com-

pared to other schemes. 

The paper is organized as follows. Section 2 lays out some back-

ground and related work. The proposed scheme is discussed in

Section 3 and evaluation and comparison results are presented in

Section 4 . Finally, Section 5 concludes the paper. A brief introduc-

tion of LT-codes is presented in Appendix A . 

2. Background and related work 

In this section, we presents some definitions and relevant liter-

ature. We discuss concepts related to distributed storage and Foun-

tain codes. We also offer an overview of related work. 

2.1. Distributed data storage 

A distributed data storage system consists of native packets, en-

coded packets, source nodes, storage nodes , and data collectors as de-

picted in Fig. 1 . A source node produces a native packet and dis-

seminates multiple copies to a subset of storage nodes during the

dissemination phase. After receiving the native packets from multi-

ple source nodes, the storage nodes encode multiple received pack-

ets together to make an encoded packet. During data collection,

data collectors contact multiple storage nodes to retrieve encoded

packets and decode them to restore the native packets. 

When a source node generates a data packet, it can either store

it locally, replicate it over multiple storage nodes, or encode it over

multiple storage nodes. Storing the data locally is simple, but it

does not provide any resilience against data loss. In addition, con-

fining data to a single location reduces its availability, and hinders

scalability. Data replication increases data resistance against loss,

and can aid in scalability and availability, but it comes at a high

cost of storage requirements. Data coding can achieve all goals at

a reasonable processing cost when the appropriate codes are used.

In fact, it has been shown that using the same level of redundancy,

coding can achieve an order of magnitude higher reliability than

replication [8] . Unlike encoding-based schemes, replication-based

approaches suffer form complicated data gathering protocols. Fi-

nally, the cost of retrieving data from a replication-based storage

is more than that of a coding-based storage [9] . 
1 A shorter version of this paper studying energy efficiency during storage build- 

ing only was presented previously [7] 

a  

t  

b  

m  
.2. Fountain codes 

The concept of fountain codes was first introduced by Byers

t al. in 1998 [3] . Later, Luby introduced Luby Transform (LT)-codes

10] , the first realization of fountain codes. Other codes have later

een introduced including online codes [11] and raptor codes [12] .

espite the fact that fountain codes were initially introduced for

ulticast applications, they have been applied to an ample range

f scenarios in unicast and storage systems, among others. Foun-

ain codes have also been adopted into standards such as DVB–

PT V for T V over IP service [13] . Fountain codes enjoy a set of

eatures that make them appealing to our settings. Given a set

f k source packets and n encoded packets, the number of pack-

ts required for decoding is (1 + ε) k, where ε > 0 is the de-

oding overhead, using a low complexity BP decoder. Encoding

n the other hand requires a simple bitwise xor circuit. The low

omplexity can be utilized to conserve energy which translates to

onger network lifetime and lower operating costs. Further, sim-

ler algorithms lower the overhead on the system resources al-

owing it to operate more efficiently. The main challenge however

s that Fountain codes were meant for a centralized construction,

nd constructing them in a decentralized manner is not a trivial

ask. We discuss in the next subsection some proposals on how to

chieve this. Further discussion on Fountain codes is presented in

ppendix A . 

.3. Related work 

The topic of implementing distributed data storage has received

 lot of attention due to its wide set of potential applications [2,4–

,14–17] . Proposals can be categorized based on the target codes

sed. The works in [14] and [15] use variants of Random Lin-

ar Codes (RLC). While simple to generate, RLC require substantial

omputational power for both encoding and decoding compared to

ther siblings in the erasure codes family. This is mainly due to the

act that RLC require a gaussian elimination based decoder which

omes with a hefty complexity tag of O(n 3 ) [18] . To tackle en-

oding/decoding complexities, other studies have sought aid using

ountain codes which are known for their low-complexity encoding

nd decoding requirements. Based on the fountain codes of choice,

he works in that area can be further classified into “LT-codes”-

ased or “Raptor-codes”-based. The works in [4,5] try to imple-

ent an LT-codes over a network of wireless devices in a decen-
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erwise. 
ralized manner. In our study, we also use LT-codes to implement a

istributed storage system over a set of resource-constrained wire-

ess devices. In contrast, the works in [14] and [17] implement

 distributed storage using raptor codes. Since the target of this

tudy is the work in [4] and [5] , we explain their work in more

etails below. 

In reference [4] , Dimakis et al. describe Distributed Fountain

DF). DF implements an RSD-based distributed networked storage

sing a combination of a pulling mechanism and random walk

ith traps over a network of k source nodes and n storage nodes.

he authors assume that each node is aware of its location. They

lso assume the existence of a Greedy Perimeter Stateless Routing

GPSR) [19] routing facility for delivering the data from the source

odes to the storage nodes. The scheme starts by each storage

ode sampling a random number d from a degree distribution ρ( i ).

hen, the storage node contacts d randomly chosen nodes with the

ope of reaching d source nodes. If the target node happens to be

 source node, it replies back by sending its data packet to the

torage node who initiated the request. If, on the other hand, the

arget node happens to be another storage node, then the target

ode starts a random walk in search of a nearby source node. The

andom walk terminates at the first source node it visits, and data

rom that source node is sent to the requesting storage node. Using

esults on random walks with traps, the authors show that the ran-

om walk part of the process diminishes asymptotically for large n ,

hich means the algorithm has a complexity of O ( 
√ 

n ) . The main

isadvantage of this scheme is that communication is initiated by

 storage node which can substantially impact the energy require-

ents due to the two-way communications. 

In reference [5] , the authors propose the implementation of

n LT-codes based distributed network storage for the purpose

f data persistence. The proposed schemes employ random walk

o disseminate data from source nodes over a network of stor-

ge nodes. The work includes two algorithms, Exact Decentralized

ountain Codes (EDFC) and Approximate Decentralized Fountain

odes (ADFC). While EDFC strives to achieve the exact distribution

f the original centralized LT-codes, the ADFC achieves a degraded

istribution at a lower cost of implementing the code. Both algo-

ithms are comprised of the following steps: 

1. Each node chooses its degree d from the designated degree

distribution. 

2. Using d and a redundancy coefficient x d , each node calcu-

lates πd , the steady-state distribution. 

3. Using the metropolis algorithm [20] , each node computes its

probabilistic forwarding table. 

4. Each source node computes the number of required random

walks b . 

5. Each source node disseminates b copies of its source data

using the probabilistic forwarding table. 

6. Each node chooses d of the source packets it receives and

combines them using bitwise xor . The source IDs are at-

tached to the encoded packets to identify the sources of the

combined packets. 

In step (3), starting with the steady-state distribution π =
 π1 , π2 , . . . } , the Metropolis algorithm generates the transition ma-

rix P = [ P i j ] as follows: 

 i j = 

{ 

min (1 , 
π j 

πi 
) /D m 

, if i � = j and j ∈ N(i ) 

0 if i � = j and j / ∈ N(i ) 
1 − ∑ 

j � = i P i j if i = j. 

(1) 

here N ( i ) denotes the set of direct neighbors of node i and D m 

is

he maximal node degree in the network (graph). Note that both

lgorithms require synchronization between nodes to know when

he random walks terminate for the encoding to take place. Be-

ides, both algorithms require a neighbour discovery mechanism
o build the forwarding table, which is essential for the algorithms

o work. 

. Decentralized robust soliton storage 

This section presents the proposed decentralized robust soliton

torage (DRSS) 

.1. System model 

The scheme assumes a network N ( k, n ) comprising a set of k

ource nodes , U = { u 1 , u 2 , . . . , u k } . As with similar distributed stor-

ge schemes [5,14,21] , we add a set of n redundant storage nodes

o achieve additional reliability. We denote the set of storage nodes

y V = { v 1 , v 2 , . . . , v n } . Storage nodes are assumed to be able to

tore and relay data. Source nodes can, in addition to storing

nd relying, generate data through sensing. Therefore, we will use

storage nodes” to refer to all the nodes in the network. So, the

ew network size, n , is defined as n = (s + 1) k, for some value s >

. We refer to s as data survivability [21] . 

Storage nodes are assumed to have enough space to store pack-

ts received from source nodes and to perform encoding. How-

ver, after encoding, only encoded packets and encoding vectors

re stored. We do not address communication errors, so all pack-

ts are assumed to be received correctly. 

.2. DRSS operation 

The scheme consists of the following four main steps: 

1. Packet degree assignment ( Q i ): The first step is to assign a

degree d ( i ) to each storage node. d ( i ) indicates the desired

packet degree of the encoded packet that node v i is to store.

This assignment is performed in a decentralized way, since

the mapping between each storage node and its degree can

be computed at each source node independently using only

knowledge of k and RSD. The mapping is represented by

Q = { Q 1 , Q 2 , . . . , Q k } , where Q i refers to the set of nodes that

will be storing packets of degree i . Each storage node, on the

other hand, only calculates its own d ( i ), which is to be used

when encoding source packets that are received. 

2. Selection probability computation ( P ( i )): Each source node

u i calculates the selection probability of each storage node

based on the packet degree assigned to the storage node in

the previous step. We denote by P ( i ) the probability of se-

lecting a node with packet degree i . 

3. Packet forwarding: Source nodes disseminate source data

packets using the selection probability generated in (2). At

each step, the source node: 

• Selects a storage node v j . 

• Forwards data packet to v j . 

• Removes v j from storage nodes selection poll. 

• Modifies P ( i ) accordingly. 

This process is repeated m times, where m is called the

Redundancy Factor (RF), and it is the required number of

copies of a data packets to be forwarded by each source

node. The modification of P ( i ) that takes part at every step

as well as the required RF will both be discussed later. 

4. Encoding: Each storage node v i chooses randomly d ( i ) pack-

ets from the packets it received and encodes them using

bitwise xor . In addition to the encoded packet, each stor-

age node stores a 1-dimensional binary vector of size k with

each i th entry equals to 1 if the packet from u i has been

used to generate the encoded packet at this node, and 0 oth-
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We now present how to determine the mapping Q and conse-

quently the selection probability P ( i ). The case of RSD is discussed

next. The case of Ideal Soliton Distribution (ISD) was omitted due

to impracticality of use. 

3.3. DRSS using Robust Soliton Distribution (RSD) 

Assume storage nodes are numbered from 1 to n . We are inter-

ested in partitioning the storage nodes into groups pertaining to

different packet degrees between 1 and k , where nodes in group

Q i stores packets of degree i . Then, 

Q i = [ v (q (i −1) +1) , . . . , v (q i ) ] 

where 

q i = 

⎧ ⎨ 

⎩ 

0 , for i = 0 

n 

i ∑ 

j=1 

u ( j) for i = 1 , 2 , . . . , n. 
(2)

Now, given an RSD as defined by Eq. A.2 , and substituting the

values of ρ( i ) and τ ( i ) then, 

u (i ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

Z 

[ 
1 

k 
+ 

S 

k 

] 
, for i = 1 

1 

Z 

[ 
1 

i (i − 1) 
+ 

S 

ik 

] 
for 1 < i < 

k 

S 
1 

Z 

[ 
1 

i (i − 1) 
+ 

S 

k 
ln ( 

S 

δ
) 
] 

for i = 

k 

S 
1 

Z 

[ 
1 

i (i − 1) 

] 
for 

k 

S 
< i ≤ n. 

(3)

The Commulative Distribution Function (CDF) of u ( i ) can be ex-

pressed as for i ≥ k 
s 

P (i ) = 

i ∑ 

j=1 

u (i ) = 

1 

Z 

[ 
1 

k 
+ 

S 

k 
+ 

1 

2 

+ 

S 

ik 
+ 

1 

6 

+ 

S 

ik 
+ . . . + 

1 

i (i − 1) 

+ 

S 

k 
ln ( 

S 

δ
) + 

1 

i (i + 1) 
+ 

1 

(i + 2)(i + 1) 
+ . . . 

] 

= 

1 

Z 

[ 

1 

k 
+ 

S 

k 
( ln ( 

S 

δ
) + 

k 
S −1 ∑ 

i =1 

1 

i 
) + 

i 

i + 1 

] 

. 

Therefor, q i can be expressed as 

q i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

n 

Z 

[ 
1 

k 
+ 

S 

k 

] 
for i = 1 

n 

Z 

[ 

1 

k 
+ 

S 

k 

( 

k 
S −1 ∑ 

i =1 

1 

i 

) 

+ 

k 
S 

− 2 

k 
S 

− 1 

] 

for 2 ≤ i ≤ k 
S 

− 1 

n 

Z 

[ 

1 

k 
+ 

S 

k 

( 

ln ( 
S 

σ
) + 

k 
S −1 ∑ 

i =2 

1 

i 

) 

+ 1 

] 

for i = 

k 
S 

n 

Z 

[ 

1 

k 
+ 

S 

k 

( 

ln ( 
S 

σ
) + 

k 
S −1 ∑ 

i =1 

1 

i 

) 

+ 

i 

i + 1 

] 

for k 
S 

+ 1 ≤ i ≤ k. 

In our scheme, RSD is used to determine the degree of each

storage node. The other component we need to determine is the

probability of selection of each node. By weighing nodes differ-

ently, we can achieve the required distribution. The basic idea is

to have each node of degree i with probability p i proportional to

its degree. More formally, let p 1 be the probability of nodes with

degree 1. Then 

p 1 = 

( 

n ∑ 

i =1 

d(i ) 

) −1 

, 
here d ( i ) is the degree of node i . The probabilities of the remain-

ng storage nodes is then determined using the following relation

p i = d(i ) × p 1 . (4)

nother important parameter is the RF which is the number of

ackets sent out by each source node ( m ). Remember that the total

umber of packets required is equal to 
∑ n 

i =1 d(i ) . Accordingly, the

F can be computed as: 

 = 

( 

n ∑ 

i =1 

d(i ) 

) 

/k. 

An important difference between this scheme and other

chemes, is that the selection policy is modified after each node is

elected. Whenever a node is selected, it is removed from the poll

f possible future nodes. The selection probabilities of the remain-

ng nodes are then normalized to reflect this change while main-

aining their relative weight. 

Let v i be the storage node selected at the last step. The selection

robability, at the current source node, of every remaining node v j 
s computed as 

 (v j ) = 

P (v j ) ∑ 

l 

P (l) ∀ l � = i 
. 

The process is repeated until m packets have been dissemi-

ated. After the dissemination process finishes, each storage node

 i chooses randomly d ( i ) packets form its buffer and encodes them

inearly. If the number of packets in the buffer is less than d ( i ), all

he packets are encoded. To recover the source packets from the

torage nodes, we need to contact random storage nodes to collect

ncoded packets while progressively decoding using a BP decoder.

he decoding process continues until all k source packets are re-

overed. Algorithms 1 and 2 summaries the steps at the source and

torage nodes, respectively. 

lgorithm 1 DRSS (source node). 

nput: k, s , and x i ( sensor data ) 

1: n ← k × (s + 1) 

2: Generate node degree mapping Q and d(i ) for all nodes 

3: Build selection probability P (i ) 

4: m ← 

n ∑ 

i =1 

d(i ) 

k 
5: for j = 1 → m do 

6: Selects target storage node v j as in P (i ) 

7: Forward data x i to v j 
8: P (i ) = 

P(v j ) ∑ 

l 

P(l ) ∀ l � = i 
9: end for 

lgorithm 2 DRSS (storage node). 

equire: k and s 

1: n ← k × (s + 1) 

2: Generate node degree mapping Q and d(i ) for this node 

3: Receive data packets (x i ) ’s and store in X j 
4: Select d ( j ) packets uniformly at random 

5: Encode data as e j = x j 1 � x j 2 � . . . x j d ∀ x j i ∈ X j 

. Performance evaluation 

The evaluation of the proposed scheme has been carried out

sing simulations. We have also implemented the three schemes
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Table 1 

A summary of different mathematical symbols used. 

Attribute Meaning 

k Number of source nodes 

n Number of storage nodes 

s Data survivability 

N ( k, n ) Network of k source and n storage nodes 

U Set of source nodes 

u i Source node i 

V Set of storage nodes 

v i Storage node i 

d ( i ) Degree of node i 

Q i Subset of storage nodes with degree i 

P ( i ) Selection probability for nodes with degree i 

m Redundancy factor 

q i Index of storage nodes 

ρ() pdf of soliton distribution 

S Spike value for RSD 

u ( i ) RSD pmf 

δ RSD failure probability 

p i Selection probability for node with degree i 

Z Normalization factor for RSD 

H ( P, Q ) Hellinger distance between P and Q 

ζ s Energy consumed by sensing 

ζ t Energy consumed by transmitting 

ζ r Energy consumed by receiving 

ζ e Energy consumed by encoding 

	 Total energy required 

P s Probability of successful decoding 

β0 Average number of void packets 

β Decoding overhead 

� Divergence-Efficiency-Robustness Indicator 

r Data retrieval ratio 

Table 2 

Hellinger distance ( H ) for DRSS, EDFC, ADFC, and DF 

(95% Std. Err. = ±0 . 001 ). 

k n Hellinger distance 

DRSS EDFC ADFC DF 

50 169 0 .114 0 .251 0 .274 0 .190 

75 256 0 .105 0 .234 0 .277 0 .168 

100 344 0 .102 0 .236 0 .330 0 .171 

125 400 0 .096 0 .239 0 .450 0 .173 

150 484 0 .092 0 .230 0 .433 0 .161 
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roposed in references [4] and [5] for comparison. Other similar

chemes exist in the literature, but they target other distributions

uch as raptor codes, e.g. [17,22–24] . We are mainly interested in

he collective performance of each scheme in three areas: quality,

fficiency, and robustness. 

.1. Quality 

By quality we mean how close the resulting degree distribu-

ion is to the RSD. To measure this quantitatively, we use the

ellinger distance f -divergence measure [25] . There exist other

easures of divergence between probability distributions such as

L-divergence [26] . One limitation of KL-Divergence compared to

ellinger distance is that it requires–by definition –all probabili-

ies associated with all possible outcomes to be > 0. In addition,

hile Hellinger distance is dimensionless, KL-divergence is not.

his makes Hellinger distance easier to interpret and more appli-

able to our problem since zero probability of certain code degrees

s possible. 

The Hellinger distance H ( P, Q ) between two probability distri-

utions P = { p 1 , p 2 , . . . , p k } and Q = { q 1 , q 2 , . . . , q k } quantifies the

imilarity between P and Q . It is defined as 

(P, Q ) = 

1 √ 

2 

k ∑ 

i =1 

( 
√ 

p i −
√ 

q i ) 
2 . (5) 

Basically, H ( P, Q ) returns a value in the interval [0, 1] where 0

ndicates that P and Q are exactly the same, i.e. p i = q i ∀ i, while 1

mplies that p i � = q i ∀ i . In our case, P is the target RSD, while Q is

he degree distribution of the code generated by the scheme under

onsideration. 

.2. Efficiency 

Efficiency refers to the energy efficiency. It is obvious that the

nergy consumed is proportional to the number of hops traveled

y data packets. Therefore, we use the total number of hops as an

ndicator to the energy in our cost equation as we will see shortly.

We assume a network composed of wireless nodes powered

y batteries. The energy consumed by nodes can be due to either

ensing (in the case of source nodes), communications (transmit-

ing/receiving), or encoding. The corresponding energies consumed

re therefore represented by ξ s , ξ t , ξ r , and ξ e , respectively, where

t , ξ r > >ξ e . The energy of the data collector is assumed to be

nfinite. 

.3. Robustness 

Robustness refers to the reliability of the code against failures.

ne indicator of interest is the ratio of the nodes unreachable by

he dissemination protocol and thus has no packets. We refer to

hese as “void packets”. The intuition behind void packets is that

ore packets means more redundancy and hence more robustness.

The simulator operates on a network of n = (s + 1) k nodes,

here only k of them are source nodes. To be consistent with other

chemes, we have chosen a grid topology. The generation of the lo-

ation of nodes on the network is chosen uniformly at random. 

For every iteration in the simulation, the following steps are ex-

cuted: 

1. Generate a network of n = (s + 1) k nodes based on the sup-

plied values of k and s , and initialize them. 

2. Every source node disseminates its data according to the

designated scheme. 

3. Storage nodes encode/relay data packets. 

4. Calculate energy used ( 	), degree distribution, Hellinger dis-

tance ( H ), the number of void packets ( β ). 
0 
5. Calculate probability of successful decoding, and Decoding

Overhead (DO) ( β), for different failure levels. ( P s ) 

These steps are repeated for every scheme of the three and for

ifferent values of k . All schemes use the same instance of RSD

ith parameters of δ = 0 . 05 and c = 0 . 2 . 

First, we evaluate the Hellinger distance ( H ) to compare how

lose the resulting degree distribution to the target RSD. As seen

n Table 2 , DRSS results in a smaller value of H and thus better ap-

roximation of RSD. However, DF outperforms both DRSS and EDFC

n the resulting degree distribution. This is expected since DF al-

ows the storage nodes to construct packets with the exact degree

enerated by RSD. Of course, this comes at a cost of more energy

esulting from the two-way communication needed to acquire data

ackets. 

The second metric of interest is the energy required to imple-

ent the coding schemes. For the purpose of our comparison, we

alculate the energy needed for every scheme based on the CC10 0 0

hip. The power requirements of this chip are 5, 25, and 28.8 m W ,

or processing, sending, and receiving, respectively. Table 3 shows

he number of operation required by each scheme for different

etwork sizes. The operations of interest that contribute to the en-

rgy are the encoding, sending, and reception. Since we are assum-

ng no transmission errors, the number of send and receive oper-

tions are equal for the same scheme. We also define ( 	) to the
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Table 3 

Power required to build RSD storage. 

k n Operation DRSS EDFC ADFC DF 

50 169 COD ( ζ e ) 683 576 614 676 

SND ( ζ t ) 3967 11,021 9746 11,069 

REC ( ζ r ) 3967 11,021 9746 11,069 

Total power ( 	)[ in watts ] 215.65 592.50 524.48 595.57 

95% Std. err. of mean ± 4.063 ± 15.22 ± 7.373 ± 36.01 

75 256 COD ( ζ e ) 1068 897 919 1084 

SND ( ζ t ) 7887 18,074 15,222 20,717 

REC ( ζ r ) 7887 18,074 15,222 20,717 

Total power ( 	)[ in watts ] 427.29 971.44 818.97 1113.78 

95% Std. err. of mean ± 5.163 ± 24.05 ± 9.594 ± 69.71 

100 344 COD ( ζ e ) 1485 1276 1294 1551 

SND ( ζ t ) 11750 24 ,988 18,819 31,449 

REC ( ζ r ) 11750 24 ,988 18,819 31,449 

Total power ( 	)[ in watts ] 636.05 1343.24 1013.29 1690.27 

95% Std. err. of mean ± 7.761 ± 27.75 ± 14.42 ± 96.35 

125 400 COD ( ζ e ) 2089 1739 1793 2105 

SND ( ζ t ) 18,626 33,425 24,879 47,091 

REC ( ζ r ) 18,626 33,425 24,879 47,091 

Total power ( 	)[ in watts ] 1006.94 1796.93 1349.00 2529.89 

95% Std. err. of mean ± 8.063 ± 33.32 ± 20.41 ± 131.8 

150 484 COD ( ζ e ) 2492 2093 2128 2592 

SND ( ζ t ) 24,642 40 ,320 29,881 62,635 

REC ( ζ r ) 24,642 40,320 29,881 62,635 

Total power ( 	)[ in watts ] 1330.81 2167.59 1609.27 3363.93 

95% Std. err. of mean ± 10.15 ± 39.22 ± 22.56 ± 173.5 

Table 4 

Void packets ratio ( β0 ) for DRSS, EDFC, ADFC, and DF. 

k n No. void packets ( β0 ) 

DRSS EDFC ADFC DF 

50 169 0 .5(0) 2 .06(0.041) 4 .46(0.089) 0(0) 

75 256 0 .04(0) 2 .44(0.032) 6 .24(0.083) 0(0) 

100 344 0 .09(0) 2 .24(0.022) 12 .61(0.126) 0(0) 

125 400 0 .01(0) 2 .24(0.018) 18 .07(0.145) 0(0) 

150 484 0 .03(0) 3 .06(0.020) 22 .46 (0.149) 0(0) 

95% Std. Err 0 ± 0 .18 ± 0 .15 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Probability of successful decoding ( P s ): k = 100 , s = 3 , F 2 . 

Fig. 3. Decoding overhead ( β): k = 100 , s = 3 , F 2 . 

Table 5 

DER ( �) for DRSS, EDFC, ADFC, and DF. 

k n DER 

DRSS EDFC ADFC DF 

50 169 348 765 715 708 

75 256 490 1230 1114 1301 

100 344 758 1690 1475 1979 

125 400 1113 2259 2152 2968 

150 484 1492 2709 2546 3906 
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f  
total energy required for code construction including data dissemi-

nation and encoding. 	 will be used later to compare the schemes

under consideration. 

The third metric that must be considered is the ratio of en-

coded packets with degree zero. We denote by β0 the ratio of

void packets to the total number of source nodes. Let x 0 be the

total number of void packets in a code over a network of n storage

nodes. Then β0 can be computed as β0 = x 0 /k . 

β0 helps quantify the fraction of storage nodes that were not

reached by the dissemination mechanism. Table 4 shows β0 for

the three schemes. In the case of DF, β0 = 0 because the algorithm

starts from storage nodes. What is noticeable is that EDFC suffers

from a high average β0 value. This is mainly due to the random

walk mechanism. This could imply that the availability of the data

at different parts of the network is not uniform. 

To see the impact of void packets on the robustness of the code,

let’s consider the probability of successful decoding ( P s ). Fig. 2

shows that as the number nodes failing increases, DRSS maintains

a medium P s indicating that code survivability is between that of

other schemes. The explanation of this observation is different for

EDFC and DF. Fountain codes are not meant to necessarily increase

survivability of the data but to lower decoding complexity. This

is why, the closer the code to the RSD, the lower the decoding

complexity is. This does not necessarily translate to higher surviv-

ability. Moreover, EDFC’s random walk mechanism results in more

localized dissemination of data, i.e. random walk does not dis-

tributed the data over the network uniformly. Hence, when failure
ccurs in certain region of the network, the code may not be de-

odable. Fig. 3 shows the decoding overhead for the four schemes. 

We finally, present the Divergence Efficiency Robustness Indica-

or (DER) ( �) to be a cost function to compare the three schemes

y capturing all the three aspects at once. DER is defined as 

= 	(1 + β0 + H) . (6)

he idea behind the metric is to scale the energy proportionally

o the ratio of void packets, as well as the divergence from the

equired degree distribution. The scaling represents a penalty for

he inferior performance. 

Table 5 shows the different values of the DER indicator. As it

s clear from the table, DRSS achieves a better overall efficiency

or different values of k . The main point to be made, is that the
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Fig. 4. Data collection network model. 
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Fig. 5. Data packets required vs. network size. 

Fig. 6. Total power required for building data storage and retrieval (k = 150, r = 100). 
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aving increases with the network size. This implies that not only

an DRSS save energy, but also that it provides better scalability.

hereas DF requires almost twice the energy than DRSS, EDFC and

DFC still require substantially more, due to the convergence char-

cteristics of the random walk. 

.4. Energy requirements of data retrieval 

Decentralized storage schemes strive to guarantee data surviv-

bility. However, data is usually not meant to stay in the network

orever and would eventually be collected for processing. Data col-

ection involves contacting storage nodes to retrieve encoded pack-

ts. This obviously requires energy and must be considered when

omparing different storage schemes. 

In order to evaluate the energy cost of data collection we use

he network model depicted in Fig. 4 . We assume data collectors

o show up at a random locations and contact their nearest stor-

ge node. When a storage node receives a data collector request,

t replies by sending back its encoded packet. If the data collector

as enough data to decode the original data packets, it signals de-

oding completion. Otherwise, the storage node contacts a random

eighbor which repeats the same operation. Note that the data col-

ection protocol is not meant to be optimal nor is it complete. The

ole purpose of the protocol is to compare the number of packets

equired to retrieve the full set of data packets by the data collec-

or, from storage built using the different four schemes. 

There are two factors that affect the performance of each

cheme during data collection. The first is the degree distribution

xhibited by the encoded data. The closer the degree distribution

f the data storage to RSD, the less the number of packets required

or decoding. The second factor is the geographical distribution of

ata packets over the storage network. It is favorable to have data

ackets uniformly distributed over the network. This results in an

qual likelihood to retrieve each packet from anywhere in the net-

ork. 

We study two metrics to compare the four schemes. The first

etric is the average number of packets required to complete the

ecoding. The second is the total energy spent on data collection. 

Fig. 5 shows the average number of packets required for de-

oding for each scheme. It is apparent that the schemes DRSS and

F require less packets to be collected. than the other two ran-

om walk-based schemes, namely EDFC and ADFC. This can be

xplained by two facts. First, both DRSS and DF achieve better
pproximations to RSD. Consequently, they perform better when

ecoded using BP decoder. The second factors relates to the ge-

graphical distribution of the data. Both EDFC and ADFC are ex-

ected to have a more localized geographical dissemination due to

he nature of random walks. On the other hand, both DRSS and DF

o not consider storage node location during data dissemination

nd thus result in a more uniform geographical distribution. 

Proportional to the number of data packets is the energy

eeded for data collection. We define the retrieval ration ( r ) to be

he number times each source packet is retrieved. The idea behind

he retrieval ratio is to store-once and use-many-times, before the

ata is replaced with new one. Fig. 6 compares the total energy

eeded by each scheme for building the storage and retrieving the

ata from the storage. We assume r = 100 . It is important to note

hat while DF achieves the best results for data collection, it re-

uires the most energy during data dissemination. In addition, the

ifference in the required energy for data collection between DF

nd DRSS is extremely small, especially for networks of less than

0 0 0 nodes. When combined with the observation that DRSS data

issemination requirements are the least, it clear that DRSS out-

erforms all other schemes. 



48 L. Al-Awami, H.S. Hassanein / Computer Networks 128 (2017) 41–50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.7. ρ( i ) and τ ( i ) for k = 10 , 0 0 0 , c = 0 . 2 , and δ = 0 . 05 [27] . 
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5. Conclusion 

Fountain codes are attractive because of their low-complexity

encoding and decoding. However, when the source data is de-

centralized, building fountain codes becomes challenging. We pro-

posed DRSS, a scheme that aims at implementing LT-codes based

distributed storage in an energy efficient manner. We compared

the new scheme to three similar schemes in the literature; DF,

EDFC, and ADFC; and show that DRSS achieves the required degree

distribution with a fraction of the energy required by the other

schemes even in small settings. In addition, retrieval of data from a

storage built with DRSS costs significantly less. We strongly believe

that this can prove the potential and the suitability of LT-codes

to provide data survivability in future applications of large-scale

resource-constrained wireless networks and enable more reliable

operations. 
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Appendix A. LT codes and Robust Soliton Distribution (RSD) 

To provide the reader with a better understanding of our work,

we present a brief description of the operation of LT-codes and it’s

degree distribution, i.e. RSD. Then, we describe an analysis of the

performance of the RSD. This background is essential to the dis-

cussion on the development of the proposed scheme. 

A1. LT codes 

LT-codes were one of the first realization of rateless codes. The

encoder generates packet degrees according to the RSD while the

decoder uses the BP algorithm. In this section we discuss both the

encoder and decoder of LT-codes. 

A1.1. Encoder 

Given a file to transmit, the LT encoder divides the file into

k equal parts, referred to as source packets . The decoder of an

LT-codes then samples the degree distribution ρ( i ) for a value d ,

where 1 ≥ d ≥ k . Next, d packets are selected uniformly at ran-

dom from the k source packets. The chosen packets are then com-

bined through a bitwise xor to generate an encoded packet . Let

X i = { x 1 , x 2 , . . . , x d } be the set of source packets chosen by the en-

coder at step i , then an encoded packet e i can be generated as 

e i = x i 1 � x i 2 � . . . x i d ∀ x i j ∈ X i . 

d is referred to as the packet degree . The sets of source and stor-

age packets can be represented as a bipartite graph, where each

encoded packet is connected to the source packets used to gener-

ate it. In such a representation, the set of source packets that are

connected to the same encoded packet are called neighbours . 

A1.2. Decoder 

The design of LT-codes is geared towards the Belief Propagation

(BP) decoder. The BP decoder works iteratively. At each step, the

decoder searches for encoded packets with degree one. The set of

all degree one packets at the current step is called ripple . Since the

value(s) of the packets in the ripple can be determined (decoded),

the edges connected to such packets can then be removed. Further,
he value(s) of the source packets connected to the decoded pack-

ts at the current step are modified to reflect the change in the

raph. This later step reduces the degree of some encoded pack-

ts from degree two to degree one causing the next iteration to

tart. The process of generating new degree one packets is referred

o as release of packets. The decoder repeats this process until all

ncoded packets are decoded. 

Note that when the decoder arrives at a stage where no degree

ne packets are available, the decoder fails. In such case, the de-

oder either signals a failure, or waits for more packets to arrive in

ope of resuming the decoding process. 

BP decoder is attractive because of it is simple and low com-

lexity decoding. In comparison to the Gaussian Elimination (GE)

ith a complexity tag of n 3 , BP reduces the decoding complexity

o n log ( n ). 

2. Robust Soliton Distribution (RSD) 

As discussed earlier, a key aspect of the design of fountain

odes is the degree distribution ρ( i ). In the case of LT-codes, RSD

s used. The distribution can be described by the first introducing

he probability mass function (pmf) of the ISD: 

(i ) = 

⎧ ⎨ 

⎩ 

1 

k 
, for i = 1 

1 

i (i − 1) 
for i = 2 , 3 , . . . , k. 

(A.1)

The idea behind ISD is to increase the probability of low de-

ree packets to guarantee that the ripple is never empty and there-

ore decoding never stalls. Despite working in theory, ISD performs

oorly in practice. The reason is that any deviation in the expected

ehaviour causes the decoder to stale when no packets of degree

ne exists. 

Therefore, Luby in reference [10] proposed the RSD that is used

s the degree probability distribution. RSD is defined by the fol-

owing pmf 

 (i ) = 

ρ(i ) + τ (i ) 

Z 
, (A.2)

here 

 = 

∑ 

i 

ρ(i ) + τ (i ) (A.3)
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(i ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

S 

i × k 
, for i = 1 , 2 , . . . , 

k 

S 
− 1 

S 

k 
ln ( 

S 

δ
) for i = 

k 

S 

0 for i > 

k 

S 
, 

(A.4) 

here 

 = c ln 

(
k 

δ

)√ 

k . (A.5) 

δ is the probability of failure and c is a constant of order one.

ypically, c = 0 . 2 have been shown to work well. 

Fig. A.7 shows an example of RSD for k = 10 , 0 0 0 . The intuition

ehind RSD is to modify the ISD to also include enough packets of

igher degrees to guarantee covering all the source packets. This is

hown in Fig. A.7 by the spike at k 
S = 41 . 
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