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Abstract— The demand for video streaming has been soaring 

in recent years. However, there is a gap between traffic 

demand and link capacity due to time-varying throughput 

fluctuation. This fluctuation results in poor quality video 

streaming services. The most well-known technique to improve 

the quality of video streaming is: adaptive video streaming. 

This technique adjusts the video bit-rate to the time-varying 

link capacity available to each user, based on the user’s 

feedback about the link quality. Unfortunately, current quality 

adaptation algorithms do not incorporate channel time 

variation. This paper proposes a quality adaptation algorithm 

that adjusts video streaming quality levels for each user by 

measuring the channel variation experienced by that user. The 

algorithm periodically measures the channel throughput and 

calculates throughput variance between pairs of successive 

measurements. A quality selection decision is then made by 

comparing the channel variance to a threshold. This 

determines whether the quality switching will be aggressive or 

conservative. Through extensive testing using real datasets, 

representing multiple video sessions, we show that our 

proposed algorithm reduces the number of quality switching 

decisions made while maintaining a high average bitrate, 

compared to other adaptation schemes. 

Keywords—adaptive streaming, bitrate adaptation, 

bandwidth fluctuation, quality scheduling.  

I. INTRODUCTION 

It is estimated that by 2017, mobile video will generate 

over 66% of overall mobile traffic [1]. As video continues to 

dominate the overall traffic, it will become a major 

contributor to network congestion. The main challenge 

facing video streaming is playback interruptions due to high 

network bandwidth fluctuations, which results in 

discontinuous playback in media streaming. Such bandwidth 

fluctuations affect user perceived Quality of Service (QoS), 

where the media is delivered to the client at the same rate of 

quality level, irrespective of the fluctuating capacity of the 

link. This results in video stalling when high quality 

fragments are transmitted during poor channel conditions as 

in progressive streaming. 

Consequently, it is imperative that novel paradigms for 

video delivery maintain levels of acceptable Quality of 

Experience (QoE). Multi-quality Adaptive Video Streaming 

(AVS) has emerged as a promising paradigm. The purpose of 

AVS is to seamlessly adapt streaming quality to the current 

channel data rate. In HTTP-based adaptive streaming [2], the 

video content is divided into a sequence of small file 

segments, each containing a short interval of playback time. 

Each segment is made available at multiple bitrates, and 

depending on the channel capacity, the suitable segment 

quality is selected for transmission. Adaptive video 

streaming promises to improve user’s end-to-end experience 

by performing the segment quality scheduling at the client 

side. Typically, in AVS, each client tries to estimate the 

available bandwidth and then chooses the video rate 

accordingly. However, making accurate estimations of the 

available bandwidth is challenging during congestion, 

resulting in poor user experience [3].  

A quality scheduler in a media player, is able to select a 

suitable quality level that matches the network bandwidth 

capacity. In essence, it utilizes as much of the maximum 

available bandwidth as possible to provide the user with a 

high average quality video; and avoid rapid oscillations in 

quality. When network conditions vary greatly, configuration 

of the quality scheduler is challenging as there is a trade-off 

between maximizing the quality and reducing the number of 

quality switches. 

To overcome these challenges this paper proposes a 

quality adaptation scheme that selects the most suitable 

quality level during video playback, by monitoring not just 

the channel bandwidth but the channel variations as well. 

We measure the Transmission Control Protocol (TCP) 

throughput of the media segments requested by the video 

media player, and estimate the variance of the bandwidth as 

well. This information is used by our algorithm to 

intelligently adapt between conservative and aggressive 

quality switching. This helps users sustain a stable quality of 

experience by preventing video adaptation clients from 

switching to the highest quality levels once they experience a 

high channel bandwidth. The approach depends on the 
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variation of channel bandwidth to make a quality switching 

decision. If the user experiences a high variance; the quality 

adaptation algorithm selects the bitrate conservatively and 

when channel variation is low, the selection is done 

aggressively. This is made possible through a sensitivity 

factor that sets the range of aggressiveness and 

conservativeness in switching.  

We conduct performance comparisons with existing 

quality adaptation algorithms in terms of stability in quality 

and bandwidth utilization. Our experimental results, on real 

datasets, demonstrate that our proposed scheme enables 

achieving more stable quality switching by decreasing the 

number of quality oscillations while maintaining a high 

average quality. The results also show the applicability of 

our proposed scheme in mobile scenarios where users suffer 

from time-varying link conditions.  

The remainder of this paper is organized as follows. 

Section II describes existing quality adaptation algorithms. In 

Section III, the proposed quality adaptation scheme is 

introduced and its functionality is explained. Section IV 

describes the datasets used and details the experimental setup 

and reports the experimental results. Section V concludes the 

paper with a final review and presents future work. 

II. RELATED WORKS 

This section covers previous work on quality adaptation 

algorithm in HTTP streaming. In [4] the authors conducted 

an experimental evaluation of commercial players focusing 

on how each player reacts to available bandwidth. They 

conclude that some players are rather conservative in their 

bitrate switching decisions, which results in low average 

bitrates. Other players fail to converge to stable bitrates even 

after the available bandwidth has stabilized. Liu et al. [5] 

proposed an algorithm which compares the segment fetch 

time with the media duration contained in the segment to 

detect congestion, and probe the spare network capacity.  

The authors of [6] evaluate Microsoft Smooth Streaming [7], 

Adobe HTTP Dynamic Streaming [8], Apple HTTP Live 

Streaming [9] and Dynamic Adaptive Streaming over HTTP 

(DASH) [10] using real bandwidth traces. The schemes are 

compared in terms of how they react to high bandwidth 

fluctuations, and if they utilize the maximum available 

bandwidth with a minimum number of quality switches 

under vehicular mobility. They concluded that none of the 

four systems achieved the maximum available bandwidth 

with the minimum number of quality switches. In [11] the 

authors designed a DASH system which takes into account 

the effects of the transition of quality levels on the Quality of 

Experience.  

Other research efforts relate quality metrics with user 

engagement. Reference [12] establishes a correlation 

between streaming quality metrics and user engagement. The 

analysis shows that there is a negative correlation between 

buffering and play time, and a positive correlation between 

video rate and play time.  In [13] the authors summarize 

three confounding factors to unify the impact of quality 

metrics on user engagement: type of video: live vs. on 

demand, type of device: desktop or mobile, and user’s 

connectivity: wired vs. wireless. Through their proposed 

QoE model, they guide the choice of which Content Delivery 

Network (CDN) to stream content from and the selection of 

video bitrate; this improves user engagement by 20%. The 

work in [14], describes GTube, a video streaming system for 

a receiver equipped with GPS, to predict the near-future 

bandwidth availability and plan quality adaptation 

accordingly. The authors use two algorithms that depend on 

the amount of available predicted bandwidth values to 

perform quality prediction. The scheme uses a window of N 

values of predicted bandwidth to accomplish quality 

adaptation. 

III. VARIANCE-BASED QUALITY ADAPTATION ALGORITHM 

The proposed quality adaptation algorithm receives 

bandwidth values that are measured and logged at the client’s 

end. Upon receiving the measured bandwidth values, the 

quality adaptation algorithm determines the quality bitrate of 

the next media segment to be fetched each time after 

receiving the previous segment. The algorithm starts with a 

preconfigured video rate which is the lowest available 

bitrate. The algorithm is illustrated in Algorithm 1, and the 

notation used is presented in Table I. 

Suppose we have a stream to be transmitted and it is 

encoded into 𝐶 quality levels. We denote the quality levels as 

0, 1, … . , 𝐶 − 1 (0 is index of lowest level). 𝑟 denotes the 

encoding bitrate for the current quality level used. 𝑟−/𝑟+ 

indicate lower or higher bitrate values for the next quality 

level with respect to 𝑟. 𝑟0 𝑎𝑛𝑑 𝑟𝑐−1 represent the lowest and 

highest bitrates. 𝑟′ is the proposed quality level selected by 

our algorithm. 𝜌 is the estimated bandwidth measured as the 

ratio of downloaded segment’s data size and the delivery 

duration of that segment. The algorithm computes the 

variance 𝜎2 between the previous and current bandwidth 

values for all pairs of successive bandwidth measurements. 

The algorithm then constructs a vector of variances which is 

used to detect the variation between bandwidth values. To 

detect variation, the algorithm finds the variance range 

bounded by the minimum and maximum variance values in 

the vector, and chooses a suitable cutoff point within this 

range (line 2).  

The quality switching decision will be made for each 

segment as follows: If 𝜎2 is larger than the cutoff point then 

the algorithm switches conservatively; else switch 

aggressively. In the conservative switching (lines5-11) the 

algorithms starts by multiplying the measured bandwidth 

value 𝜌 by a conservative factor 𝑓 which may be tuned as 

desired. This results in a new value 𝜌′ , which the algorithm 

will use next as the new measured bandwidth. The algorithm 

starts with current quality level 𝑟 as the initial value, and 

compares 𝜌 and  𝑟. If 𝜌 is larger than  𝑟 this means that the 

available bandwidth can support a higher video quality level, 

so keep increasing the quality till the first bitrate for which 

𝑟 ′is less than 𝜌.   If  𝜌 smaller than 𝑟 this implies the 

available bandwidth is not enough to transmit video segment 

at the current quality level, so decrease and switch to the first 
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bitrate for which 𝑟−  
is larger. For the aggressive switching 

(lines 12-19), the algorithm starts with the measured 

throughput and performs the same steps as in the 

conservative switching but without applying the conservative 

factor. We will elaborate on the details of how we set the 

values of our algorithm parameters in the next section.  

IV. PERFORMANCE EVALUATION 

In this section, we introduce our system framework, and 

give an overview of our experimental setup and describe the 

metrics we focus on. The two algorithms we use for 

comparison are also presented.  

A.  System Description 

 The experimental evaluation of our proposed scheme has 

been carried out by employing the testbed shown in Figure 1. 

It comprises a Netflix server where all video contents are 

placed, a bandwidth rate limiter, a data capturing tool and a 

client.  In our experiments we use the real backend servers of 

Netflix, which are real video streams. We employ the video 

sequences “House, M.D.”, “House of Cards”, and “House of 

Lies”. The receiving host is an Ubuntu Linux machine 

running 3.13.0-32 kernel and internet protocol firewall ipfw 

tool which is a stateful firewall written for FreeBSD 

supporting both IPv4 and IPv6. This allows us to control the 

downstream available bandwidth that our host can receive. 

All of the video streams must pass through a rate limiter 

between the CDN and the client. We limit the bandwidth to 

3Mb/s; this refers to the available bandwidth (avail_bw) and 

will be used throughout the paper to refer to the bitrate of the 

bottleneck at the host. The receiving host is connected to the 

Internet through Queen’s University Fast Ethernet interface 

connection. All traffic from and to the HTTP server are 

captured and analyzed offline using Wireshark [15] and 

dumped on the receiving host. The dump files have been 

post-processed and parsed using a Python script. 

We work on streaming video from the Netflix streaming 

service platform [16]. It is clear that Netflix makes use of 

multiple CDNs, where video content is streamed over HTTP 

from third-party CDN providers.  Netflix players stay 

attached to a fixed CDN for video content delivery. To 

observe the basic service behavior, we created an account, 

and played a movie from the Netflix webiste. When a client 

requests a video, the service provider authenticates the user 

account and directs the client to a CDN hosting the video. 

The video service provider informs the client which video 

streaming rates are available and issues a token for each rate, 

through a debug window provided to monitor the current 

video playback rates [17]. We use Wireshark to capture the 

video traces and log it in a file to be analyzed offline. The 

format of Netflix fragment requests is in the form of: 

“timestamp /GET /filename/byte_range?token”. The video 

contents are encoded into eight video bitrates starting from 

0.235 standard definition, 0.375, 0.56, 0.75, 1.05, 1.75, 2.35 

and 3.0Mbps high definition.  

We stream three videos of different durations: stream 1 is 

approximately 300 sec, stream 2, 250 seconds, and stream 3, 

200 seconds. We save the captured traces in a log file, and 

analyze them using Wireshark. Each line uses this format: 

“timestamp/GET /filename/byte_range?token” and it 

corresponds to a 4 second chunk of video, and the request is 

done segment-by-segment. Next, we measure the bandwidth 

of each segment comparing the size of that segment from the 

byte_range in the request, and divide it by the timestamp 

field value that indicates the time it was captured. This is 

done for each segment, and we generate our dataset traces. 

We set the available bandwidth to 3Mbps which is the upper 

limit on the received instantaneous throughput to guarantee 

that our measured bandwidth, at any point in time, cannot 

exceed this value. We start our algorithm with a 

preconfigured quality (bitrate) which is denoted by 𝑟 in our 

algorithm to 0.235Mbps that corresponds to lowest quality 

level. We set 𝑟0 and 𝑟𝑐−1 to 0.235, 3.0 Mbps that correspond 

to lowest and highest quality levels (bitrates) provided by 

Netflix.  

The conservative parameter denoted by 𝑓 in our 

algorithm enhances the selection of quality level by our 

Table I:  Algorithm Notations 
Algorithm Notations 

𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑔 

𝜌 

𝑣𝑎𝑟_𝑎𝑟𝑟𝑎𝑦:  
 
 

𝜏:  

𝑟:   
𝑟0:  
𝑟𝑐−1:  
𝑓 :  
𝑟−: 
 
𝑟+: 

Array of variance values based on computation on 
successive time windows [𝑡𝑖−1, 𝑡𝑖] over video 
stream  
segment size (length) 
Time of downloading the last segment 
throughput is computed as  𝜏/ 𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑔  

Current bitrate used  by the algorithm 
lowest bitrate 
Highest bitrate 
conservative factor 
lower bitrate value for the next quality level with 
respect to 𝑟 
higher  bitrate value for the next quality level with 
respect to 𝑟 

Algorithm 1 Variance Quality Adaptation Algorithm 
Input 
𝑣𝑎𝑟_𝑎𝑟𝑟𝑎𝑦, 𝑓,𝑟, 𝜏,𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑔, 𝜌,𝑟0,𝑟𝑐−1, 𝑟−,𝑟+ 

Output: Selected bitrate 𝑟′ 
Begin 
1. 𝑟′ = 𝑟 

2. 𝑐𝑢𝑡𝑜𝑓𝑓_𝑎𝑟𝑟𝑎𝑦=SelectCutoffPoints( 𝑣𝑎𝑟_𝑎𝑟𝑟𝑎𝑦) 

3. 𝜌′ = 𝜌 × 𝑓 

4.  if  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 > 𝑐𝑢𝑡𝑜𝑓𝑓  then 

5.  if    𝜌′ >  𝑟  then  

6. while 𝑟+ < 𝜌′ and 𝑟 < 𝑟𝐶−1 do  

7.  switch up one-level :  𝑟′= 𝑟+  
8.  else  

9. while 𝑟− > 𝜌′ and 𝑟 > 0  do 

10.  switch down one level: 𝑟 ′= 𝑟− 

11.  end if 

12.  else  

13.  if 𝜌   > 𝑟 then  

14. while 𝑟+ < 𝜌 and 𝑟 <  𝑟𝑐−1   do 

15. switch up one level:  𝑟′= 𝑟+ 

16.  else  

17. while 𝑟− > 𝜌  and  𝑟> 0  do 

18. switch down one level: 𝑟′= 𝑟− 

19.  end if  
20.  end if 

21. return 𝑟′ 
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algorithm by making it less sensitive to the available network 

bandwidth, resulting in a more conservative selection of 

quality level. This conservative parameter takes values 

between 0 and 1, a conservative factor of 1 will produce the 

same behavior as in the aggressive switching, while a value 

close to 0 results in a very conservative selection of quality 

bitrates. This leads to an underestimation of the available 

network bandwidth which then leads to a bitrate selection 

that is far below the optimal, which would affect bandwidth 

utilization. Consequently, a conservative factor of 0.7 was 

chosen. We perform our experimental evaluation under the 

same set of avail_bw conditions and parameters, when 

compared to other adaptation algorithms. 

B. Evaluation Metrics 

We study two metrics: average used bitrate, and number 

of quality switches. The average bitrate is measured as the 

sum of the average data rates selected by the user during the 

whole streaming session, and is computed as follows [6]: 
  

 𝜇𝑏𝑖𝑡𝑟𝑎𝑡𝑒 =
∑ 𝑓(𝑠𝑖)∗𝑡𝑖

𝑁
𝑖=0

𝑡𝑛
 (1) 

 

 

 

 

 
 

 

Figure 1: Experimental setup 

where 𝑖 ∈ [0, 𝑁] is the segment index, 𝑡𝑛 is the length of 

streaming session, 𝑡𝑖 denotes the length of segment 𝑖, 𝑓(𝑠𝑖  ) 

is a function that returns the bitrate of segment 𝑖, and 𝑠𝑖 

denotes segment 𝑖. 
The number of quality switches is a metric that describes the 

variance of the session. High values indicate very frequent 

switching which can lead to a decreased QoE [6] [18]. This 

is calculated as follows: 

 𝑔(𝑠𝑖) = {
1 𝑖𝑓 𝑖 = 0

1 𝑖𝑓 𝑓(𝑠𝑖−1) ≠ 𝑓(𝑠𝑖)

0 𝑒𝑙𝑠𝑒

  (2) 

We compare our algorithm with two well-known 

adaptation algorithms, namely Liu [5], and Adobe which is 

presented in Algorithm 2. In the algorithm proposed by Liu 

et al., the authors use 𝜇 = 𝑀𝑆𝐷/𝑆𝐹𝑇 as the transmission metric 

to decide whether to switch up or down (MSD is the media 

segment duration and SFT is the segment fetch time). If 

𝜇 > 1 + ε. , where ε = 𝒎𝒂𝒙 {
𝒃𝒓𝒊+𝟏−

𝒃𝒓𝒊

𝒃𝒓𝒊

  , ∀ 𝒊 = [𝟎, 𝟏, … 𝑵 − 𝟏], and ε  

denotes the switch up factor, then the chosen video rate will 

be switched to the next higher level. Herein, 𝒃𝒓𝒊
 denotes the 

encoded media bitrate of representation 𝑖, and N denotes the 

highest representation level. If 𝜇 < ɤd, where ɤd   denotes the 

switch down threshold, the chosen bitrate reduces to a level 

to meet 𝒃𝒓𝒊
< 𝜇bc, where bc is the bitrate of the current 

representation. We implemented the quality adaptation used 

by Adobe’s Open Source Media Framework (OSFM) [8] as 

the second algorithm. The algorithm compares two ratios: 1) 

the download ratio, which is equal to the time of last segment 

downloaded divided by the amount of time it took to 

download the segment, and 2) the switch ratio: which is the 

quality rate selected by the algorithm divided by the rate of 

current quality. The quality switch decision is then made 

according to the procedure in Algorithm 2.  

C. Simulation Results 

We ran the quality adaptation algorithms on the three 

streams captured by the testbed and compared the results. It 

was observed that Liu’s algorithm increases the quality in a 

stepwise manner up. The advantage of this stepwise 

approach is that the video quality will be increased much 

more smoothly, while the average bitrate is very low. So it 

cannot fully utilize the available bandwidth. The results of 

quality selection by Adobe showed that it seems to be 

unpredictable in switching. It does not take into account 

stability, and switches to the highest possible representation 

in an aggressive way. In addition it does not put a safety 

margin on the bitrate selection, this causes a high number of 

quality switches. 

 

On the other hand, the proposed algorithm produces a 

stream pattern that is the comparable to the measured 

bandwidth, providing the user with a high average video 

quality by making good utilization of the available 

bandwidth. Additionally, rapid oscillations in quality are 

controlled because our algorithm depends on variation 

between bandwidth values to make the switching decision. 

This is due to the conservative factor which maintains a 

safety margin for switching so our algorithm does not react 

to bandwidth fluctuations on short notice. The conservative 

Algorithm 2  Quality Adaptation Algorithm  in OSFM 

Input    
€: segment duration 
𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑔: Time of downloading the last segment 

 𝑟 :  Current bitrate used     
 𝑟 ’: Proposed bitrate 
𝑟0 : lowest bitrate 
𝑟𝑐−1: Highest bitrate 
𝛽:  is computed as   €/𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑔 

Output : selected bitrate 𝑟′ 
Begin 
1. if 𝛽  < 1  then  
2.    if  𝑟> 𝑟 0 then 
3.  if 𝛽< 𝑟−  / 𝑟  then 
4.  𝑟′  = 𝑟0 
5. else  
6. 𝑟  ′ =  𝑟−  
7. end if  
8. end if 
9. else 
10. if  𝑟 <  𝑟𝑐−1 then  
11. while 𝑟 ′ <  𝑟𝑐−1   do 
12. 𝑟 ’ =  𝑟+ 
13. if 𝛽 < 𝑟 ′/𝑟 then 
14. break 
15. endif  
16. end while 
17. end if 
18. end if 
19. return 𝒓 ′ 
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factor is not applied when the bandwidth variations are low, 

which improves bandwidth utilization. By periodically 

measuring the variation between successive pairs of 

bandwidth values, if the value is greater than the cutoff, the 

switch decision is conservative and is done as explained 

previously in Algorithm 1.  If the value is less than the 

cutoff, the switching is done aggressively.  

A summary of the aforementioned results is illustrated in 

Figure 2(a) which shows that our algorithm has a lower 

number of quality switches compared to Adobe. For the first 

stream, the number of switches for Adobe was 34 switches 

while for the variance-based algorithm is just 25 and the 

number of switches for Liu’s is equal to 23. For the second 

stream, the number of switches for Adobe was 33 switches 

and for the variance-based it is 18 switches, which is 

considerably less than Adobe. Finally for the third stream, 

the switches was 11 for variance-based, 5 for Liu’s and 14 

switches for Adobe. We study the effect of our algorithm on 

the average bitrate compared to the other algorithms in 

Figure 2(b). For the first stream the average bitrate of our 

variance-based algorithm was 1.96 Mbps compared to Adobe 

average bitrate which is 2.03 Mbps, and for the second 

stream the average bitrate of our variance algorithm was 1.3 

Mbps compared to Adobe 1.6 Mbps, and for the third stream 

it is 1.025 Mbps vs Adobe 1.47 Mbps. The average bitrate 

for Liu’s was considerably less for all streams. 

Overall the proposed algorithm achieves a good trade-off 

point between the number of quality switches and the 

average bitrate. This was achieved at a cutoff point equal to 

0.3.  We also investigated the effect of the cutoff on the 

average bitrate and quality of switches. The results are 

illustrated in Figure 3, which shows that for stream 3, at 

cutoff =0.007, 0.04,0.3, 0.75 the number of quality switches 

increases and the average bitrate increases. The reason for 

this is at low cutoff we are being too conservative and all 

measured throughput values will be greater than at this 

cutoff, which results in fewer switches. This in, turn affects 

the selected average bitrate. On the other hand increasing the 

cutoff, makes the algorithm more aggressive and the average 

bitrate increases and the number of switches also increases. 

V. CONCLUSION  

In this paper we proposed a new quality adaptation 

scheme. This scheme measures the variation among the 

captured bandwidth values, and then makes a quality 

selection decision. We have shown that we obtained a 

tradeoff between the number of quality switches and the 

average bitrate at certain cutoff points. We evaluated our 

scheme via experiments on real datasets, and compared it 

with two other algorithms, namely Liu’s and Adobe. Our 

experiments show that the proposed algorithm was 

successful in minimizing the number of quality switching 

decisions made while maintaining a high average bitrate. In 

our future work we will explore ways to make the trade-offs 

between the average video bitrate and quality switches more 

seamless. This can be achieved by making the algorithm 

tunable, allowing individual users to adjust the parameters 

according to their preferences. 
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