
A Channel Variation-aware Algorithm for Enhanced

Video Streaming Quality

Mary Riad
1
 Hatem Abu-Zeid

1
 Hossam S. Hassanein

1
 Mazhar Tayel

2
 Ashraf A.Taha

3

1
School of Computing, Queen’s University, Kingston, ON, Canada

2
Faculty of Engineering, Alexandria University, Alexandria, Egypt

3
City of Scientific Research and Technology Applications, New Borg El-Arab City, Egypt

riad@cs.queensu.ca, 8ha13@queensu.ca, hossam@cs.queensu.ca, profbasyouni@gmail.com, ashraf_taha_2000@yahoo.com

Abstract— The demand for video streaming has been soaring

in recent years. However, there is a gap between traffic

demand and link capacity due to time-varying throughput

fluctuation. This fluctuation results in poor quality video

streaming services. The most well-known technique to improve

the quality of video streaming is: adaptive video streaming.

This technique adjusts the video bit-rate to the time-varying

link capacity available to each user, based on the user’s

feedback about the link quality. Unfortunately, current quality

adaptation algorithms do not incorporate channel time

variation. This paper proposes a quality adaptation algorithm

that adjusts video streaming quality levels for each user by

measuring the channel variation experienced by that user. The

algorithm periodically measures the channel throughput and

calculates throughput variance between pairs of successive

measurements. A quality selection decision is then made by

comparing the channel variance to a threshold. This

determines whether the quality switching will be aggressive or

conservative. Through extensive testing using real datasets,

representing multiple video sessions, we show that our

proposed algorithm reduces the number of quality switching

decisions made while maintaining a high average bitrate,

compared to other adaptation schemes.

Keywords—adaptive streaming, bitrate adaptation,

bandwidth fluctuation, quality scheduling.

I. INTRODUCTION

It is estimated that by 2017, mobile video will generate

over 66% of overall mobile traffic [1]. As video continues to

dominate the overall traffic, it will become a major

contributor to network congestion. The main challenge

facing video streaming is playback interruptions due to high

network bandwidth fluctuations, which results in

discontinuous playback in media streaming. Such bandwidth

fluctuations affect user perceived Quality of Service (QoS),

where the media is delivered to the client at the same rate of

quality level, irrespective of the fluctuating capacity of the

link. This results in video stalling when high quality

fragments are transmitted during poor channel conditions as

in progressive streaming.

Consequently, it is imperative that novel paradigms for

video delivery maintain levels of acceptable Quality of

Experience (QoE). Multi-quality Adaptive Video Streaming

(AVS) has emerged as a promising paradigm. The purpose of

AVS is to seamlessly adapt streaming quality to the current

channel data rate. In HTTP-based adaptive streaming [2], the

video content is divided into a sequence of small file

segments, each containing a short interval of playback time.

Each segment is made available at multiple bitrates, and

depending on the channel capacity, the suitable segment

quality is selected for transmission. Adaptive video

streaming promises to improve user’s end-to-end experience

by performing the segment quality scheduling at the client

side. Typically, in AVS, each client tries to estimate the

available bandwidth and then chooses the video rate

accordingly. However, making accurate estimations of the

available bandwidth is challenging during congestion,

resulting in poor user experience [3].

A quality scheduler in a media player, is able to select a

suitable quality level that matches the network bandwidth

capacity. In essence, it utilizes as much of the maximum

available bandwidth as possible to provide the user with a

high average quality video; and avoid rapid oscillations in

quality. When network conditions vary greatly, configuration

of the quality scheduler is challenging as there is a trade-off

between maximizing the quality and reducing the number of

quality switches.

To overcome these challenges this paper proposes a

quality adaptation scheme that selects the most suitable

quality level during video playback, by monitoring not just

the channel bandwidth but the channel variations as well.

We measure the Transmission Control Protocol (TCP)

throughput of the media segments requested by the video

media player, and estimate the variance of the bandwidth as

well. This information is used by our algorithm to

intelligently adapt between conservative and aggressive

quality switching. This helps users sustain a stable quality of

experience by preventing video adaptation clients from

switching to the highest quality levels once they experience a

high channel bandwidth. The approach depends on the

40th Annual IEEE Conference on Local Computer Networks LCN 2015, Clearwater Beach, Florida, USA

978-1-4673-6773-8/15/$31.00 ©2015 IEEE 893Authorized licensed use limited to: IEEE Xplore. Downloaded on December 13,2021 at 15:46:40 UTC from IEEE Xplore. Restrictions apply.

variation of channel bandwidth to make a quality switching

decision. If the user experiences a high variance; the quality

adaptation algorithm selects the bitrate conservatively and

when channel variation is low, the selection is done

aggressively. This is made possible through a sensitivity

factor that sets the range of aggressiveness and

conservativeness in switching.

We conduct performance comparisons with existing

quality adaptation algorithms in terms of stability in quality

and bandwidth utilization. Our experimental results, on real

datasets, demonstrate that our proposed scheme enables

achieving more stable quality switching by decreasing the

number of quality oscillations while maintaining a high

average quality. The results also show the applicability of

our proposed scheme in mobile scenarios where users suffer

from time-varying link conditions.

The remainder of this paper is organized as follows.

Section II describes existing quality adaptation algorithms. In

Section III, the proposed quality adaptation scheme is

introduced and its functionality is explained. Section IV

describes the datasets used and details the experimental setup

and reports the experimental results. Section V concludes the

paper with a final review and presents future work.

II. RELATED WORKS

This section covers previous work on quality adaptation

algorithm in HTTP streaming. In [4] the authors conducted

an experimental evaluation of commercial players focusing

on how each player reacts to available bandwidth. They

conclude that some players are rather conservative in their

bitrate switching decisions, which results in low average

bitrates. Other players fail to converge to stable bitrates even

after the available bandwidth has stabilized. Liu et al. [5]

proposed an algorithm which compares the segment fetch

time with the media duration contained in the segment to

detect congestion, and probe the spare network capacity.

The authors of [6] evaluate Microsoft Smooth Streaming [7],

Adobe HTTP Dynamic Streaming [8], Apple HTTP Live

Streaming [9] and Dynamic Adaptive Streaming over HTTP

(DASH) [10] using real bandwidth traces. The schemes are

compared in terms of how they react to high bandwidth

fluctuations, and if they utilize the maximum available

bandwidth with a minimum number of quality switches

under vehicular mobility. They concluded that none of the

four systems achieved the maximum available bandwidth

with the minimum number of quality switches. In [11] the

authors designed a DASH system which takes into account

the effects of the transition of quality levels on the Quality of

Experience.

Other research efforts relate quality metrics with user

engagement. Reference [12] establishes a correlation

between streaming quality metrics and user engagement. The

analysis shows that there is a negative correlation between

buffering and play time, and a positive correlation between

video rate and play time. In [13] the authors summarize

three confounding factors to unify the impact of quality

metrics on user engagement: type of video: live vs. on

demand, type of device: desktop or mobile, and user’s

connectivity: wired vs. wireless. Through their proposed

QoE model, they guide the choice of which Content Delivery

Network (CDN) to stream content from and the selection of

video bitrate; this improves user engagement by 20%. The

work in [14], describes GTube, a video streaming system for

a receiver equipped with GPS, to predict the near-future

bandwidth availability and plan quality adaptation

accordingly. The authors use two algorithms that depend on

the amount of available predicted bandwidth values to

perform quality prediction. The scheme uses a window of N

values of predicted bandwidth to accomplish quality

adaptation.

III. VARIANCE-BASED QUALITY ADAPTATION ALGORITHM

The proposed quality adaptation algorithm receives

bandwidth values that are measured and logged at the client’s

end. Upon receiving the measured bandwidth values, the

quality adaptation algorithm determines the quality bitrate of

the next media segment to be fetched each time after

receiving the previous segment. The algorithm starts with a

preconfigured video rate which is the lowest available

bitrate. The algorithm is illustrated in Algorithm 1, and the

notation used is presented in Table I.

Suppose we have a stream to be transmitted and it is

encoded into 𝐶 quality levels. We denote the quality levels as

0, 1, … . , 𝐶 − 1 (0 is index of lowest level). 𝑟 denotes the

encoding bitrate for the current quality level used. 𝑟−/𝑟+

indicate lower or higher bitrate values for the next quality

level with respect to 𝑟. 𝑟0 𝑎𝑛𝑑 𝑟𝑐−1 represent the lowest and

highest bitrates. 𝑟′ is the proposed quality level selected by

our algorithm. 𝜌 is the estimated bandwidth measured as the

ratio of downloaded segment’s data size and the delivery

duration of that segment. The algorithm computes the

variance 𝜎2 between the previous and current bandwidth

values for all pairs of successive bandwidth measurements.

The algorithm then constructs a vector of variances which is

used to detect the variation between bandwidth values. To

detect variation, the algorithm finds the variance range

bounded by the minimum and maximum variance values in

the vector, and chooses a suitable cutoff point within this

range (line 2).

The quality switching decision will be made for each

segment as follows: If 𝜎2 is larger than the cutoff point then

the algorithm switches conservatively; else switch

aggressively. In the conservative switching (lines5-11) the

algorithms starts by multiplying the measured bandwidth

value 𝜌 by a conservative factor 𝑓 which may be tuned as

desired. This results in a new value 𝜌′ , which the algorithm

will use next as the new measured bandwidth. The algorithm

starts with current quality level 𝑟 as the initial value, and

compares 𝜌 and 𝑟. If 𝜌 is larger than 𝑟 this means that the

available bandwidth can support a higher video quality level,

so keep increasing the quality till the first bitrate for which

𝑟 ′is less than 𝜌. If 𝜌 smaller than 𝑟 this implies the

available bandwidth is not enough to transmit video segment

at the current quality level, so decrease and switch to the first

894Authorized licensed use limited to: IEEE Xplore. Downloaded on December 13,2021 at 15:46:40 UTC from IEEE Xplore. Restrictions apply.

bitrate for which 𝑟−
is larger. For the aggressive switching

(lines 12-19), the algorithm starts with the measured

throughput and performs the same steps as in the

conservative switching but without applying the conservative

factor. We will elaborate on the details of how we set the

values of our algorithm parameters in the next section.

IV. PERFORMANCE EVALUATION

In this section, we introduce our system framework, and

give an overview of our experimental setup and describe the

metrics we focus on. The two algorithms we use for

comparison are also presented.

A. System Description

 The experimental evaluation of our proposed scheme has

been carried out by employing the testbed shown in Figure 1.

It comprises a Netflix server where all video contents are

placed, a bandwidth rate limiter, a data capturing tool and a

client. In our experiments we use the real backend servers of

Netflix, which are real video streams. We employ the video

sequences “House, M.D.”, “House of Cards”, and “House of

Lies”. The receiving host is an Ubuntu Linux machine

running 3.13.0-32 kernel and internet protocol firewall ipfw

tool which is a stateful firewall written for FreeBSD

supporting both IPv4 and IPv6. This allows us to control the

downstream available bandwidth that our host can receive.

All of the video streams must pass through a rate limiter

between the CDN and the client. We limit the bandwidth to

3Mb/s; this refers to the available bandwidth (avail_bw) and

will be used throughout the paper to refer to the bitrate of the

bottleneck at the host. The receiving host is connected to the

Internet through Queen’s University Fast Ethernet interface

connection. All traffic from and to the HTTP server are

captured and analyzed offline using Wireshark [15] and

dumped on the receiving host. The dump files have been

post-processed and parsed using a Python script.

We work on streaming video from the Netflix streaming

service platform [16]. It is clear that Netflix makes use of

multiple CDNs, where video content is streamed over HTTP

from third-party CDN providers. Netflix players stay

attached to a fixed CDN for video content delivery. To

observe the basic service behavior, we created an account,

and played a movie from the Netflix webiste. When a client

requests a video, the service provider authenticates the user

account and directs the client to a CDN hosting the video.

The video service provider informs the client which video

streaming rates are available and issues a token for each rate,

through a debug window provided to monitor the current

video playback rates [17]. We use Wireshark to capture the

video traces and log it in a file to be analyzed offline. The

format of Netflix fragment requests is in the form of:

“timestamp /GET /filename/byte_range?token”. The video

contents are encoded into eight video bitrates starting from

0.235 standard definition, 0.375, 0.56, 0.75, 1.05, 1.75, 2.35

and 3.0Mbps high definition.

We stream three videos of different durations: stream 1 is

approximately 300 sec, stream 2, 250 seconds, and stream 3,

200 seconds. We save the captured traces in a log file, and

analyze them using Wireshark. Each line uses this format:

“timestamp/GET /filename/byte_range?token” and it

corresponds to a 4 second chunk of video, and the request is

done segment-by-segment. Next, we measure the bandwidth

of each segment comparing the size of that segment from the

byte_range in the request, and divide it by the timestamp

field value that indicates the time it was captured. This is

done for each segment, and we generate our dataset traces.

We set the available bandwidth to 3Mbps which is the upper

limit on the received instantaneous throughput to guarantee

that our measured bandwidth, at any point in time, cannot

exceed this value. We start our algorithm with a

preconfigured quality (bitrate) which is denoted by 𝑟 in our

algorithm to 0.235Mbps that corresponds to lowest quality

level. We set 𝑟0 and 𝑟𝑐−1 to 0.235, 3.0 Mbps that correspond

to lowest and highest quality levels (bitrates) provided by

Netflix.

The conservative parameter denoted by 𝑓 in our

algorithm enhances the selection of quality level by our

Table I: Algorithm Notations
Algorithm Notations

𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑔

𝜌

𝑣𝑎𝑟_𝑎𝑟𝑟𝑎𝑦:

𝜏:

𝑟:
𝑟0:
𝑟𝑐−1:
𝑓 :
𝑟−:

𝑟+:

Array of variance values based on computation on
successive time windows [𝑡𝑖−1, 𝑡𝑖] over video
stream
segment size (length)
Time of downloading the last segment
throughput is computed as 𝜏/ 𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑔

Current bitrate used by the algorithm
lowest bitrate
Highest bitrate
conservative factor
lower bitrate value for the next quality level with
respect to 𝑟
higher bitrate value for the next quality level with
respect to 𝑟

Algorithm 1 Variance Quality Adaptation Algorithm
Input
𝑣𝑎𝑟_𝑎𝑟𝑟𝑎𝑦, 𝑓,𝑟, 𝜏,𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑔, 𝜌,𝑟0,𝑟𝑐−1, 𝑟−,𝑟+

Output: Selected bitrate 𝑟′
Begin
1. 𝑟′ = 𝑟

2. 𝑐𝑢𝑡𝑜𝑓𝑓_𝑎𝑟𝑟𝑎𝑦=SelectCutoffPoints(𝑣𝑎𝑟_𝑎𝑟𝑟𝑎𝑦)

3. 𝜌′ = 𝜌 × 𝑓

4. if 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 > 𝑐𝑢𝑡𝑜𝑓𝑓 then

5. if 𝜌′ > 𝑟 then

6. while 𝑟+ < 𝜌′ and 𝑟 < 𝑟𝐶−1 do

7. switch up one-level : 𝑟′= 𝑟+
8. else

9. while 𝑟− > 𝜌′ and 𝑟 > 0 do

10. switch down one level: 𝑟 ′= 𝑟−

11. end if

12. else

13. if 𝜌 > 𝑟 then

14. while 𝑟+ < 𝜌 and 𝑟 < 𝑟𝑐−1 do

15. switch up one level: 𝑟′= 𝑟+

16. else

17. while 𝑟− > 𝜌 and 𝑟> 0 do

18. switch down one level: 𝑟′= 𝑟−

19. end if
20. end if

21. return 𝑟′

895Authorized licensed use limited to: IEEE Xplore. Downloaded on December 13,2021 at 15:46:40 UTC from IEEE Xplore. Restrictions apply.

algorithm by making it less sensitive to the available network

bandwidth, resulting in a more conservative selection of

quality level. This conservative parameter takes values

between 0 and 1, a conservative factor of 1 will produce the

same behavior as in the aggressive switching, while a value

close to 0 results in a very conservative selection of quality

bitrates. This leads to an underestimation of the available

network bandwidth which then leads to a bitrate selection

that is far below the optimal, which would affect bandwidth

utilization. Consequently, a conservative factor of 0.7 was

chosen. We perform our experimental evaluation under the

same set of avail_bw conditions and parameters, when

compared to other adaptation algorithms.

B. Evaluation Metrics

We study two metrics: average used bitrate, and number

of quality switches. The average bitrate is measured as the

sum of the average data rates selected by the user during the

whole streaming session, and is computed as follows [6]:

 𝜇𝑏𝑖𝑡𝑟𝑎𝑡𝑒 =
∑ 𝑓(𝑠𝑖)∗𝑡𝑖

𝑁
𝑖=0

𝑡𝑛
 (1)

Figure 1: Experimental setup

where 𝑖 ∈ [0, 𝑁] is the segment index, 𝑡𝑛 is the length of

streaming session, 𝑡𝑖 denotes the length of segment 𝑖, 𝑓(𝑠𝑖)

is a function that returns the bitrate of segment 𝑖, and 𝑠𝑖

denotes segment 𝑖.
The number of quality switches is a metric that describes the

variance of the session. High values indicate very frequent

switching which can lead to a decreased QoE [6] [18]. This

is calculated as follows:

 𝑔(𝑠𝑖) = {
1 𝑖𝑓 𝑖 = 0

1 𝑖𝑓 𝑓(𝑠𝑖−1) ≠ 𝑓(𝑠𝑖)

0 𝑒𝑙𝑠𝑒

 (2)

We compare our algorithm with two well-known

adaptation algorithms, namely Liu [5], and Adobe which is

presented in Algorithm 2. In the algorithm proposed by Liu

et al., the authors use 𝜇 = 𝑀𝑆𝐷/𝑆𝐹𝑇 as the transmission metric

to decide whether to switch up or down (MSD is the media

segment duration and SFT is the segment fetch time). If

𝜇 > 1 + ε. , where ε = 𝒎𝒂𝒙 {
𝒃𝒓𝒊+𝟏−

𝒃𝒓𝒊

𝒃𝒓𝒊

 , ∀ 𝒊 = [𝟎, 𝟏, … 𝑵 − 𝟏], and ε

denotes the switch up factor, then the chosen video rate will

be switched to the next higher level. Herein, 𝒃𝒓𝒊
 denotes the

encoded media bitrate of representation 𝑖, and N denotes the

highest representation level. If 𝜇 < ɤd, where ɤd denotes the

switch down threshold, the chosen bitrate reduces to a level

to meet 𝒃𝒓𝒊
< 𝜇bc, where bc is the bitrate of the current

representation. We implemented the quality adaptation used

by Adobe’s Open Source Media Framework (OSFM) [8] as

the second algorithm. The algorithm compares two ratios: 1)

the download ratio, which is equal to the time of last segment

downloaded divided by the amount of time it took to

download the segment, and 2) the switch ratio: which is the

quality rate selected by the algorithm divided by the rate of

current quality. The quality switch decision is then made

according to the procedure in Algorithm 2.

C. Simulation Results

We ran the quality adaptation algorithms on the three

streams captured by the testbed and compared the results. It

was observed that Liu’s algorithm increases the quality in a

stepwise manner up. The advantage of this stepwise

approach is that the video quality will be increased much

more smoothly, while the average bitrate is very low. So it

cannot fully utilize the available bandwidth. The results of

quality selection by Adobe showed that it seems to be

unpredictable in switching. It does not take into account

stability, and switches to the highest possible representation

in an aggressive way. In addition it does not put a safety

margin on the bitrate selection, this causes a high number of

quality switches.

On the other hand, the proposed algorithm produces a

stream pattern that is the comparable to the measured

bandwidth, providing the user with a high average video

quality by making good utilization of the available

bandwidth. Additionally, rapid oscillations in quality are

controlled because our algorithm depends on variation

between bandwidth values to make the switching decision.

This is due to the conservative factor which maintains a

safety margin for switching so our algorithm does not react

to bandwidth fluctuations on short notice. The conservative

Algorithm 2 Quality Adaptation Algorithm in OSFM

Input
€: segment duration
𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑔: Time of downloading the last segment

 𝑟 : Current bitrate used
 𝑟 ’: Proposed bitrate
𝑟0 : lowest bitrate
𝑟𝑐−1: Highest bitrate
𝛽: is computed as €/𝑡𝑙𝑎𝑠𝑡𝑠𝑒𝑔

Output : selected bitrate 𝑟′
Begin
1. if 𝛽 < 1 then
2. if 𝑟> 𝑟 0 then
3. if 𝛽< 𝑟− / 𝑟 then
4. 𝑟′ = 𝑟0
5. else
6. 𝑟 ′ = 𝑟−
7. end if
8. end if
9. else
10. if 𝑟 < 𝑟𝑐−1 then
11. while 𝑟 ′ < 𝑟𝑐−1 do
12. 𝑟 ’ = 𝑟+
13. if 𝛽 < 𝑟 ′/𝑟 then
14. break
15. endif
16. end while
17. end if
18. end if
19. return 𝒓 ′

896Authorized licensed use limited to: IEEE Xplore. Downloaded on December 13,2021 at 15:46:40 UTC from IEEE Xplore. Restrictions apply.

0

0.5

1

1.5

2

2.5

stream 1 stream 2 stream 3

av
_b

it
ra

te

Liu

Variance_based

Adobe

0

0.5

1

1.5

2

2.5

10

15

20

25

30

0.007 0.04 0.3 0.75
cutoff

M
b

p
s

n
u

m
b

er
 o

f
sw

it
ch

es

 number of switches av_bitrate

factor is not applied when the bandwidth variations are low,

which improves bandwidth utilization. By periodically

measuring the variation between successive pairs of

bandwidth values, if the value is greater than the cutoff, the

switch decision is conservative and is done as explained

previously in Algorithm 1. If the value is less than the

cutoff, the switching is done aggressively.

A summary of the aforementioned results is illustrated in

Figure 2(a) which shows that our algorithm has a lower

number of quality switches compared to Adobe. For the first

stream, the number of switches for Adobe was 34 switches

while for the variance-based algorithm is just 25 and the

number of switches for Liu’s is equal to 23. For the second

stream, the number of switches for Adobe was 33 switches

and for the variance-based it is 18 switches, which is

considerably less than Adobe. Finally for the third stream,

the switches was 11 for variance-based, 5 for Liu’s and 14

switches for Adobe. We study the effect of our algorithm on

the average bitrate compared to the other algorithms in

Figure 2(b). For the first stream the average bitrate of our

variance-based algorithm was 1.96 Mbps compared to Adobe

average bitrate which is 2.03 Mbps, and for the second

stream the average bitrate of our variance algorithm was 1.3

Mbps compared to Adobe 1.6 Mbps, and for the third stream

it is 1.025 Mbps vs Adobe 1.47 Mbps. The average bitrate

for Liu’s was considerably less for all streams.

Overall the proposed algorithm achieves a good trade-off

point between the number of quality switches and the

average bitrate. This was achieved at a cutoff point equal to

0.3. We also investigated the effect of the cutoff on the

average bitrate and quality of switches. The results are

illustrated in Figure 3, which shows that for stream 3, at

cutoff =0.007, 0.04,0.3, 0.75 the number of quality switches

increases and the average bitrate increases. The reason for

this is at low cutoff we are being too conservative and all

measured throughput values will be greater than at this

cutoff, which results in fewer switches. This in, turn affects

the selected average bitrate. On the other hand increasing the

cutoff, makes the algorithm more aggressive and the average

bitrate increases and the number of switches also increases.

V. CONCLUSION

In this paper we proposed a new quality adaptation

scheme. This scheme measures the variation among the

captured bandwidth values, and then makes a quality

selection decision. We have shown that we obtained a

tradeoff between the number of quality switches and the

average bitrate at certain cutoff points. We evaluated our

scheme via experiments on real datasets, and compared it

with two other algorithms, namely Liu’s and Adobe. Our

experiments show that the proposed algorithm was

successful in minimizing the number of quality switching

decisions made while maintaining a high average bitrate. In

our future work we will explore ways to make the trade-offs

between the average video bitrate and quality switches more

seamless. This can be achieved by making the algorithm

tunable, allowing individual users to adjust the parameters

according to their preferences.

REFERENCES

[1] "CISCO, Cisco visual networking index: Global mobile

data traffic forecast update, 2014–2019.," CISCO,

 (a) Number of quality switches

(b) Average bitrate

Figure 2: Number of quality switches and average bitrate for the three algorithms.

 Figure 3: The effect of cutoff on average bitrate and quality switches for stream 3.

0

5

10

15

20

25

30

35

40

stream 1 stream 2 stream 3

n
m

b
er

 o
f

sw
it

ch
es

Liu

Variance_based

Adobe

897Authorized licensed use limited to: IEEE Xplore. Downloaded on December 13,2021 at 15:46:40 UTC from IEEE Xplore. Restrictions apply.

[Online]. Available:

http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/index.html.

[Accessed 26th May 2015].

[2] T. Stockhammer, "Dynamic Adaptive Streaming over

HTTP --: Standards and Design Principles," in

Proceedings of the Second Annual ACM Conference on

Multimedia Systems, San Jose, CA, USA, 2011.

[3] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown and R.

Johari, "Confused, Timid, and Unstable: Picking a Video

Streaming Rate is Hard," in Proceedings of the 2012 ACM

Conference on Internet Measurement Conference, Boston,

Massachusetts, USA, 2012.

[4] S. Akhshabi, A. Begen and C. Dovrolis, "An Experimental

Evaluation of Rate-adaptation Algorithms in Adaptive

Streaming over HTTP," in MMSys 11, San Jose, CA,

USA, 2011.

[5] C. Liu, I. Bouaziz and M. Gabbouj, "Rate Adaptation for

Adaptive HTTP Streaming," in Proceedings of the Second

Annual ACM Conference on Multimedia Systems, San

Jose, CA, USA, 2011.

[6] C. Muller, S. Lederer and C. Timmerer, "An Evaluation of

Dynamic Adaptive Streaming over HTTP in Vehicular

Environments," in Proceedings of the 4th Workshop on

Mobile Video, Chapel Hill, North Carolina, 2012.

[7] "Microsoft Smooth Streaming," [Online]. Available:

http://www.iis.net/download/ smoothstreaming. [Accessed

Dec 2011].

[8] G. Hamer, "Open Source Media Framework: Introduction

and overview," [Online]. Available:

http://www.adobe.com/devnet/video/articles/osmf_overvie

w.html. [Accessed 26th May 2015].

[9] "HTTP live streaming," [Online]. Available:

https://developer.apple.com/streaming/. [Accessed 13th

Apr 2015].

[10] Stockhammer and Thomas, "Dynamic Adaptive Streaming

over HTTP --: Standards and Design Principles," in

Proceedings of the Second Annual ACM Conference on

Multimedia Systems, San Jose, CA, USA, 2011.

[11] Mok, R. K. P, Luo, Xiapu, Chan, W. W. Edmond, Chang

and C. Rocky K, "QDASH: A QoE-aware DASH

System," in Proceedings of the 3rd Multimedia Systems

Conference, Chapel Hill, North Carolina, 2012.

[12] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica

and H. Zhang, "Developing a Predictive Model of Quality

of Experience for Internet Video," in SIGCOMM Comput.

Commun. Rev, New York, NY, USA, 2013.

[13] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A.

Ganjam, J. Zhan and H. Zhang, "Understanding the

Impact of Video Quality on User Engagement,"

SIGCOMM Computer Communications Reviews, vol. 41,

pp. 362-373, 2011.

[14] J. Hao, R. Zimmermann and H. Ma, "GTube: Geo-

Predictive Video Streaming over HTTP in mobile

environments," in Proceedings of the 5th ACM

Multimedia Systems Conference, 2014.

[15] Wireshark, 2015, Available:

https://www.wireshark.org/download.html.

[16] K. A. Vijay, G. Yang, V. Matteo, H. Volker, S. Moritz and

L. Z. Zhi, "Unreeling netflix: Understanding and

improving multi-CDN movie delivery," in Proceedings of

the IEEE INFOCOM, Orlando, FL, USA, 2012.

[17] T.-Y. Huang, A BUFFER-BASED APPROACH TO

VIDEO RATE ADAPTATION, CA United States, 2014.

[18] L. N. Simula Res. Lab., "Spatial flicker effect in video

scaling," in (QoMEX), 2011 Third International Workshop

on quality of multimedia experience, 2011.

[19] "HTTP Dynamic Streaming / Features," [Online].

Available: http://www.adobe.com/products/hds-dynamic-

streaming/features.html. [Accessed 20th Apr 2015].

[20] D. Cicco, S. Mascolo and V. Palmisano, "Feedback

Control for Adaptive Live Video Streaming," in

Proceedings of the Second Annual ACM Conference on

Multimedia Systems, MMSys '11, San Jose, CA, USA,

2011.

898Authorized licensed use limited to: IEEE Xplore. Downloaded on December 13,2021 at 15:46:40 UTC from IEEE Xplore. Restrictions apply.

