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Abstract—Driver profiling is an emerging scheme that has
a wide range of applications in the field of Intelligent Trans-
portation Systems (ITS). Driver profiling is the real-time pro-
cess of detecting driving behaviors and computing a driver’s
competence level based on detected behaviors. In this paper, a
novel driver profiling framework is presented. A risk prediction
model is hosted in the cloud to determine the risk associated
with detected behaviors in specific driving environments. Risk
values along with a driver’s compliance to warnings are both
utilized to compute a driver’s risk profile. Using SHRP2 large-
scale Naturalistic Driving (ND) dataset, the development of the
risk prediction model is presented herein with the underlying
sub-processes of data preprocessing, error analysis, and model
selection. Validation results show that a developed randomized
trees supervised learning model is proven to have a good trade-
off between bias and variance with evidently high performance
results.

Index Terms—Driver profiling, Intelligent Transportation Sys-
tems (ITS), driving behavior classification, supervised learning,
random forests, telematics

I. INTRODUCTION

The recent advancements in vehicular sensing, cellular
communications, as well as cloud computing have enabled
the deployment of various Intelligent Transportation Systems’
(ITS) applications. Given the high vehcile crash rates [1], these
applications have the potential to considerably lower these
rates.

An emerging safety-based ITS application is driver behavior
profiling [2]. Driver profiling is the process of acquiring real-
time vehicular data using CAN-bus through OBD II units or
mobile-sensed data using inertial smartphone sensors to detect
behaviors and warn drivers if risky behaviors are detected.
Driver profiling has been widely deployed in different safety
based applications. Pay-How-You-Drive (PHYD) is an exam-
ple of car telematics insurance scheme in which an insurance
premium is rated according to a driver’s per-trip driving score
[3]. Other emerging driver profiling applications include fleet
telematics profiling systems [4], safety-based route planning,
and driver self-coaching systems [5].

Most literature work in the context of driver profiling has
been focusing on the detection of certain behaviors, which
are considered risky. Detected behaviors are then inputted
to scoring functions that assign different weights to detected
behaviors based on the expected risk of each [6]. Not only
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are such scoring functions subjective due to the absence of a
valid risk measure (i.e., a risk measure quantified in terms of
the actual risky events such as crash and near crash events),
but also they ignored the environmental effect on risk given
the detected behaviors. Naturalistic driving studies (NDSs)
have provided large scale data about behavioral causes of
risky events (i.e., crashes and near crashes), as well as the
environmental context of such behaviors (e.g., weather and
road conditions, traffic density level, etc.). In addition, NDSs
provide the behavioral and environmental information during
normal driving episodes, which enables the development of
environmental-aware risk prediction models [7].

Recently, the Virginia Tech Transportation Institute (VTTI)
conducted the largest NDS to date named SHRP2 NDS [7].
This dataset contains the behavioral and environmental con-
textual information of nearly 9,000 crash and near crash events
and more than 20,000 events captured during normal driving
episodes. The research question this paper is addressing is:

Are driving behavioral habits together with their environ-
mental context good predictors for measuring risk probability?

To answer this question, the behavioral and environmental
details of driving events presented in SHRP2 NDS are utilized
to build a risk prediction model that can be incorporated in
a complete cloud-based driver profiling framework as well be
detailed in section III. The research contributions of this paper
are summarized as follows:

1) An envisioned novel Cloud-based Environment-aware
Driver Profiling (CEDP) system is presented and thor-
oughly discussed. The system provides a view on a “next
generation” driver profiling system in which drivers
are mainly profiled based on the statistical correlation
between their behaviors and the actual risk probability
given the environmental context in which these behav-
iors occurred. The terms detection of risky behaviors,
driving risk probability, driver scoring, and driver pro-
filing, that are used interchangeably in literature, are
clearly distinguished and mathematically defined.

2) An ensemble supervised machine learning algorithm
based on randomized trees is selected and customized
to reflect the predicted driving risk probability. Driving
behaviors and environmental contextual data are both
utilized as inputs to the selected model. The model is
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proven to provide an acceptable compromise between
bias and variance as shown in the results section.

3) Risk prediction model is trained and tested using an
unprecedented amount of real driving data using SHRP2
NDS. This enhances reliability and practicability of
proposed system.

The paper is structured as follows. In section II, we provide
a background information on the driving dataset used in
this work. Similar driver profiling frameworks presented in
literature are also discussed. Section III provides a detailed
description of the envisioned CEDP system with a focus
on risk prediction module. In section IV, the adopted pre-
processing, error analysis and model selection processes for
risk prediction problem are described. In section V, results
are presented and discussed. Conclusions and future work are
presented in section VI.

II. BACKGROUND AND RELATED WORK
A. Driving Behavior Profiling

In literature, the term driver behavior profiling has been used
to describe different behavioral characterization processes,
which may cause confusion. Some of the literature work have
used the driver profiling term interchangeably with behavior
classification or detection. For instance, authors in [8] utilized
variations of Recurrent Neural Network (RNN) models to
detect seven distinct types of behaviors using smartphone
sensors. In similar work, authors in [9] used static supervised
machine learning techniques such as Support Vector Machines
(SVMs) and Artificial Neural Networks (ANNs) to detect
certain driving maneuvers. Likewise, in [10], authors pro-
posed a sequence modelling HMM-based classifier to classify
aggressive and normal driving maneuvers in both forward
and lateral directions. Classification was based on smartphone
sensory data with a classification accuracy of 95 %. Similar
work is presented in [11]. Although all of the aforementioned
work appeared in the context of driver profiling, rather to
be more precise it should be under the driving behavior
classification/detection umbrella.

Driver profiling is the process of augmenting different driv-
ing behaviors, over several driving trips, into a scoring func-
tion to measure a driver’s overall competence level. Notable
research in this context is the work presented in [2]. Authors
in this paper have made a clear distinction between behavior
detection and driver profiling. Using a fuzzy logic algorithm
hosted by a smartphone application, four unique driving events
i.e., harsh braking, aggressive acceleration, speeding, and
aggressive steering were accurately detected by acquiring a
smartphone’s accelerometer, gravity, magnetic, and GPS data.
A scoring function was then introduced to reflect the overall
driving trip score given the detected behaviors. Despite the
proposals and findings of the paper, the scoring function was
very primitive, since it did not reflect the statistical correlation
between actual risk and detected behaviors. Moreover, it did
not show how to find an overall driving profile as a function
of many trips. In other words, it did not elaborate how the

individual trips’ scores will be used towards building a driver’s
profile.

Recently, a more rigorous work has been presented in [12].
Authors in this paper have presented a data-driven scoring sys-
tem using SHRP2 NDS. The behavioral information of a very
large number of driving events, as well as total driving time
were used to predict driving risk using supervised machine
learning algorithms. A driving score was then formulated as
an additive inverse of the predicted driving risk probability.
Despite the promising performance results in [12], the joint
effect of driving behaviors and the environment in which such
behaviors occured was ignored.

To the best of our knowledge, no work in the literature
has considered a complete driver behavior profiling system
that considers the sub-processes of behavior detection, risk
prediction, driver’s behavior scoring and profiling, and with
the consideration of driving environment. In this paper, an
envisioned data-driven profiling system is introduced and
discussed. Specifically we targeted the problem of driving risk
prediction utilizing behavioral and environmental data of a
large scale NDS. The development of the risk prediction model
is based on an error analysis of different supervised machine
learning models to achieve the best bias-variance trade-off.

B. Dataset

We utilized the SHRP2 NDS dataset [13], which is the
largest NDS to date. Row data contains the detailed informa-
tion of more than 29,000 driving events. Detailed information
includes behaviors that are apparent within seconds before
risky events or during captured normal driving episodes.
Behaviors in the context of this work are different than the in-
vehicle distractions. They are vehicle-kinematic observations
that can be noticed from outside the vehicle such as: aggressive
driving, speeding, etc. In addition to driving behaviors, SHRP2
NDS has the environmental contextual information at which
these behaviors happened. Environmental information can be
categorized into three types: static (e.g., road curvature), quasi-
static (e.g., road lighting), and dynamic (e.g., traffic density).

A driving event in SHRP?2 is one of the following types [7]:
a crash, a near-crash, a non-subject conflict, and a balanced
basline.

In this work, behaviors and the three aforementioned envi-
ronmental categories are used as predictors to risk, quantified
herein in terms of crash and near crash events.

III. PROPOSED DRIVER PROFILING FRAMEWORK

In this section, the proposed cloud-based environment-aware
driver profiling framework is discussed. The discussion will
cover the details of the complete driver profiling system, from
the in-vehicle data acquisition to the cloud-based profiling.
Unlike other profiling systems, the proposed system’s risk
prediction is motivated by statistically significant results as
will be shown in section V. Figure 1 depicts the framework
block diagram. The proposed framework consists of two main
modules, in-vehicle and cloud.
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Fig. 1: Proposed Cloud-Based Environment-Aware Driver Profiling Framework.

A. In-Vehicle Module

The in-vehicle module contains data collection, pre-
processing and modeling processes that occur inside the ve-
hicle. In this module, collected data can be divided into two
types:

1) Type I: Data that reflects the longitudinal and lateral

behavior of the vehicle. This data is collected through
the vehicle’s Controller Area Network (CAN) bus by
utilizing an On-Board Diagnostics II (OBDII) unit or
through smartphone sensors.
Type 2: Data that reflects the relative position of the
subject vehicle to the surrounding vehicles and provides
driving context awareness. This is gathered using short
range radar (SRR) sensors.

2)

Once data is collected, it is sent from OBDII and radar
interfaces to the subject driver’s smartphone through a blue-
tooth link. In the smartphone, a hosted application acquires
these time-series data every 7 seconds and applies sequence
modeling for behavior detection (e.g., HMM-based Modeling).
The application outputs a detected behavior (3) and sends it to
the cloud, along with the subject vehicle’s GPS co-ordinates.

B. Cloud Module

Inside the cloud, the vehicle’s GPS co-ordinates are inputted
to a real-time environment aware module to find the envi-
ronmental attributes which the vehicle is subjected to. This

module returns the corresponding attributes: weather condition
(W), traffic density level (T'D), road lighting conditions (L),
traffic control (T'C'), road flow (RF’), and road alignment (A).
The returned environmental attributes vector env, along with
the driver’s detected behavior 3 form the initial feature vector
F:

F = [B, env] (D

Based on a pre-trained risk prediction model, some of
the irrelevant initial environmental attributes are discarded to
enhance the prediction model’s performance (e.g., reduce over-
fitting). The selected attributes form the feature vector F'S,
where F'S C F' and is expressed as:

FS = [8,ent' )

The pre-trianed risk prediction model uses F'S to predict the
driving risk probability P(Risk|F'S)y, where the subscript k
is an integer that represents an event index. The driving risk
probability is expressed mathematically as:

3)

where P(C|FS), and P(NC|FS)) are, respectively, the
conditional probabilities of crash and near-crash events given
the feature vector F'S at event k. Once the risk probability
is calculated, a warning is issued to the subject driver if

P(Risk|FS), = P(C|FS), + P(NC|FS);
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TABLE I: Summary of Notations

Notation Description
F Initial feature vector
FS Selected features vector

P(Risk|FS),  Risk probability of event k given F'S
B A detected behavior

env A vector with initial environmental attributes
env’ A vector with selected environmental attributes
Ng env Number of captured events containing 3 in env’,
after the first warning about 3
N B,env’ Total number of captured events in env’, after
the first warning about 8
cg’“’/ Compliance with a warning about 3 captured in env’
Ctrip Driver’s overall compliance per in trip
Niot Total number of captured risky events per trip,
after the first warning of each
Nenw Total number of driving environments in a certain trip
Ng Number of different types of detected risky
behaviors in a selected environment env’.
Pirip Average risk probability in trip
Scirip Driver’s score in trip
Pririp Driver’s risk profile after trip.
N Total number of captured events in a trip
13 Weight of EMWA filter

P(Risk|FS)y > peh. The driver’s compliance to the warnings
along with a weighted sum of the aggregated risk probabilities
over a certain trip are both used to compute the final trip score
S Ctrip-

A driver’s compliance to a warning about behavior 3 in env’
is measured as a function of the number of risky events in
env’ (i.e., P(Risk|FS), > py,) that involve (3 after receiving
the first warning about it. Let cf{“’/ represents the driver’s
compliance to the warning about the risky behavior 8 in
driving environment env’. cg’”’, may be computed using the
following utility function:

’ Nﬁ env’
env' _ 1 _ [ IBenv’ 4
° <Nb’,env’> @

where Ng cpn, and Ng,em]/ are, respectively, the number of
events that contain the behavior 8 in environment env’, and
the total number of events captured in env’, after the first
warning about f3.

The driver’s overall compliance per trip Cy, can be
measured as the average compliance ratio for various [ in
different env’. This can be mathematically expressed as:

1 Nenv Np
Cri = — ). env’ 5
O Crvea) ED VD ST

where Ny is the total number of risky behaviors after the
first warning of each of them, N.,, is the total number of
driving environments in a certain trip, and Ng is the total
number of detected risky behaviors in a certain environment
env’. Cyip € [0,1], where a zero value indicates that the

driver was non compliant with the issued warnings, while a
value of one reflects a compliance with all warnings.

The trip score is then computed as a function of the trip
weighted sum of the aggregated risk probabilities Py, and
the driver’s compliance value per trip Cipip:

SCtM’p = -F(Ctripv Ptrip) (6)

Py,ip can be simply calculated as the trip average risk proba-
bility, which is denoted by the following formula:

N
1 .
_ampzjVE:f%mean (7)
k=1
where N is the total number of captured events in a trip.
Considering a normalized Sc¢y,.p, € [0, 1]:

Sctrip = V-Ctm'p + a'(l - PtTip) 3

where
yta=1 9

The values of v and « determine how much weight is given
to Cirip and Pyp. For instance, if o = 1, the overall trip
score will be determined solely based on the value of P
(i.e., vy =0).

Finally, a subject driver’s profile after a certain trip (Prysp)
can be computed using an exponentially moving weighted
average (EMWA) filter applied on various trip scores to
assign exponentially increasing weights for recent trips. This
is expressed as:

SCl,
g'Sctrip + (1 - 5)-Prtripfl7

if trip=1

10
if trip >1 (19)

Prtrip =

where the value of ¢ determines the number of trips which the
filter will use to calculate Pryp.

An important feature of the presented framework is the
prediction of driving risk probabilities given the behavioral
and environmental attributes. Non-accurate values of these
probabilities can result in missed or false warnings as well
as unreliable driving scores. The rest of the paper contains
the necessary steps for the development of the driving risk
prediction model and its performance assessment.

IV. DATA PRE-PROCESSING AND MODEL SELECTION
A. Data Pre-processing

Row data contains the information of ~ 29,000 driving
events, each with a certain severity level. In the original
dataset, event severity levels are exclusively contained in the
following set: Severity = {Crash, Near-Crash, Crash-Relevant,
Non-Subject Conflict, Balanced Baseline}. Each event is repre-
sented by a vector that contains the captured driving behavior
of the subject driver prior to a risky event (or during a normal
driving event), and the environmental context in which these
behaviors happened.
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TABLE II: Summary of Environmental Conditions

Traffic Flow Traffic Density Traffic Control Weather Conditions Lighting Conditions Road Alignment
Divided Stable Yes No Adverse Conditions Dark Straight
Not Divided  Stable With Flow Restrictions No Foggy Lighted Curved
No Lanes Unstable - Rainy - -
- - - Snowy - -

1) Data Merging: In this work, Crash and Near-Crash
severity levels are put under the common severity level of
Risky, whereas Non-Subject Conflict and Balanced Baseline
events are used to represent the Normal level. Under each
environmental category, similar features are merged to increase
their importance in order to enhance the prediction model
performance (e.g., under road alignment category, curved to
the right and curved to the left features are considered the
same). Similarly, 12 main behaviors are identified from the
original behaviors as it has been discussed in [12]. Identified
environmental features are shown in table II.

2) Data Encoding: After data merging, the behavioral and
environmental categorical variables are encoded to integers.
To calculate risk probability, events with same behavioral and
environmental features are combined and the corresponding
risk probability for each is calculated. To represent data in a
meaningful way for machine learning algorithmS, the one-hot
encoding technique is utilized.

B. Model Selection

After data is encoded, it is divided to training and develop-
ment sets according to the ratio 75% and 25%, respectively.
Using accuracy as a performance metric, an error analysis for
a simple multiple linear classification model indicated a high
bias (i.e., low training set accuracy). More complex structured
SVM-based models, on the other hand, were able to model
training data accurately, but were not capable of generalizing
on the development set (i.e., high variance). To achieve a good
bias-variance trade-off, a customized random forest model was
selected. In random forests, multiple decision trees are built,
each from a sample of the training set. The best split in each
tree is based on a random subset of the input features rather
than the whole feature set. The average performance of the
various trees is then used to reflect the forest performance.
Although this approach theoretically causes a slight degrada-
tion in the training set performance, it reduces over-fitting due
to the averaging process. In this work, a customized random
forest model resulted in the best bias-variance performance in
both classification and regression contexts.

The adopted hyper-parameters of the selected model are
shown in table III, where M represents the number of all
behavioral and environmental features, and MSE is the mean
square error.

V. RESULTS AND DISCUSSION

This section presents the performance results of the Random
Forests risk prediction model presented in section IV. The
model was implemented in Spyder (Python 3.6) integrated

TABLE II: Hyper-parameters of RF Model

Hyper-parameter Classification ~ Regression
Number of Trees 100 100
Split Criterion Entropy MSE
Max No. of Features per Tree VM M

development environment (IDE) using the Scikit-Learn Li-
brary for Machine Learning and Data Mining. Results in both
classification and regression contexts are discussed. Reported
results are those obtained from the customized RF model after
trying different random seeds. They represent the best obtained
results.

A. Classification

The driving risk prediction problem is formulated as a
binary classification problem where:

1, if P(Risk|FS), > 0.5
0,

Risk = (11)

otherwise

Five performance measures, accuracy, precision, recall, speci-
ficity, and the area under the ROC curve (AUC), are utilized
to reflect the model performance. Figure 2 depicts the AUC
performance of the RF vs. SVM classifiers. The figure shows
that the proposed RF classifier possesses a high True Positive
Rate (TPR) of ~ 93 % given an insignificant False Positive
Rate (FPR) of ~ 5 %, with an average AUC value of 0.98. The
obtained TPR and FPR ratios should ensure that the number
of inaccurate warnings to a subject driver during a certain trip
are minimized.

1.00
— RF (AUC = 0.98)
== SVM (AUC = 0.96)

0.95 1

% 0.90 1

Q

2

G 0.85

o

o

3

= 0.80

0.75 1

0.70 T T T
0.0 0.2 0.4 0.6
False positive rate

0.8 1.0

Fig. 2: Receiver Operating Characteristic (ROC) curve for selected RF
classifier.
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Table IV summarizes the other results. It can be seen from
the training set performance that the model has a zero bias,
indicating that all the training samples are correctly classi-
fied. Nevertheless, the development set performance shows an
average of 6.4 % degradation, which indicates a slight over-
fitting. Although this bias-variance combination was the best
achieved, a thorough troubleshooting of the over-fitting causes
is still needed.

TABLE IV: Classification Performance Results
Training Set (%)

Performance Measure Development Set (%)

Accuracy 100.0 93.2
Precision 100.0 95.08

Recall 100.0 93.5
specificity 100.0 92.7

B. Regression

While the classification performance results are pivotal to
avoid false or missed warnings, the prediction of the soft risk
probabilities (i.e., regression results) is crucial in calculating
the overall driving risk score. In this work, Mean Square Error
(M SE), Mean Absolute Error (M AFE), and the coefficient of
determination (R?) are used to reflect the model performance
from a regression perspective. M SE training results indicate
that the model is unbiased, with MSE < 1%. However, the
difference between the M SE of the training and development
sets as well as the discrepancies between their MAE values
show that the model is slightly over-fitted.

TABLE V: Regression Performance Results
Performance Measure

Training Set  Development Set

MSE (%) 0.654 2.6
MAE (%) 5.7 12.1
Adjusted R> 0.948 0.776

Nevertheless, from a practical standpoint, M AFE results of
the development set show that the average absolute deviation
from the true risk probabilities is 12.1%, which is still an
acceptable performance and would not affect the overall profile
score. Another adopted statistical measure to check the model
robustness is the adjusted R? criterion. It reflects how well the
model interprets the changes of data around its average value.
Although there is a noticeable difference between training
and development sets’ R? performances, both R? values are
vigorous, since they possess values greater than 0.5 in both
cases.

VI. CONCLUSION

In this paper, an envisioned novel driver profiling framework
was thoroughly presented and discussed. The framework con-
tains data processing on both vehicle and cloud levels. The
paper specifically addressed the risk prediction problem by
utilizing the behavioral and environmental contextual infor-
mation of 29,000 driving events, using the SHRP2 NDS.
By analyzing the error of different models, a customized
randomized trees model appears to give the best bias-variance

trade-off in classification and regression contexts. Results
confirm that behavioral and environmental data are together
good predictors to driving risk, which is measured in this
paper in terms of crash, near-crash and crash-relevant events.
In future work, a thorough analysis of development set error
sources is warranted. Moreover, testing the developed model
on a new dataset would ensure the robustness of the model.
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