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Abstract— Driver profiling is the real-time process of detecting
driving behaviors and computing a driver’s expected risk based
on detected behaviors. Predicting risk based solely on the
inclusion of detected behaviors may not be accurate because this
method of predicting ignores the environmental (e.g., weather
conditions, traffic density level) context of detected behaviors.
Moreover, coupling detected behaviors with their environmental
context can be leveraged towards creating personalized risk
profiles for drivers in each driving environment. These profiles
can be utilized in various ITS applications including personalized
safety-based route planning. In this paper, a novel driver profiling
environment-aware framework is presented. In the proposed
framework, data processing is distributed over three compu-
tational layers to enhance the overall reliability of the system.
A risk prediction model is hosted on the edge/fog to determine
the driving risk while considering the joint effect of the in-vehicle
detected behaviors and their environmental context. Risk values
along with a driver’s compliance to warnings are both utilized to
compute the risk profile on the cloud. Using SHRP2 Naturalistic
Driving (ND) dataset, the development of a novel risk prediction
model is presented herein with the underlying sub-processes of
data preprocessing, error analysis, and model selection. Then we
analyze both the performance of the developed risk prediction
model and the overall performance of the proposed system.
Validation results for the developed model indicate a good
compromise between bias and variance. Moreover, the results of
the overall risk scoring model reflect its robustness and reliability
in assigning accurate risk scores.

Index Terms— Driver profiling, intelligent transportation sys-
tems (ITS), driving behavior classification, supervised learning,
random forests, telematics.
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I. INTRODUCTION

THE recent advancements in vehicular sensing, cellu-
lar communications, as well as cloud computing have

enabled the deployment of various Intelligent Transportation
System (ITS) applications. Given the high vehicle crash
rates [1], these ITS applications are promising to lower these
rates considerably.

An emerging safety-based ITS application is driver behavior
profiling [2]. Driver profiling is the process of acquiring
real-time vehicular data using CAN-bus through On-Board
Diagnostics II (OBD II) units or mobile-sensed data using
inertial smartphone sensors to detect behaviors and warn
drivers if risky behaviors are detected. Driver profiling has
been widely deployed in different safety-based applications.
Pay-How-You-Drive (PHYD) is an example of car telem-
atics insurance scheme in which an insurance premium is
rated according to a driver’s per-trip driving score [3]. Other
emerging driver profiling applications include fleet telematics
profiling systems [4], safety-based route planning, and driver
self-coaching systems [5].

Most of the literature in the context of driver profiling
research has been focused on the detection of certain behav-
iors which are considered risky. Detected behaviors are then
inputted into scoring functions that assign different weights to
these detected behaviors based on the expected risk of each [6].
Not only are such scoring functions subjective due to the
absence of a valid risk measure (i.e., a risk measure quantified
in terms of the actual risky events such as crash and near-
crash), but also they ignored the environmental (e.g., weather
and road conditions, traffic density level, etc.) effect on risk
given the detected behaviors. For instance, an aggressive lane
change in a highly dense driving environment could impose
more risk than performing the same behavior in less dense
traffic conditions. However, current profiling systems would
equally penalize the subject driver in both scenarios regardless
of where the behavior occurred since these systems only
consider the behavior detection process [2], [7]–[10].

Among the wide range of driving data collection methods,
naturalistic driving studies (NDSs) have lately predominated
in the field of driving behavior analysis [11]–[13]. Unlike
controlled experimental approaches, naturalistic driving stud-
ies (NDSs) have provided large-scale data about behavioral
causes of risky events (i.e., crashes and near-crashes), as well
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as the environmental context of such behaviors (e.g., weather
and road conditions, traffic density level, etc.). In addition,
NDSs provide the same behavioral and environmental infor-
mation during normal driving episodes, which enables the
development of environmental-aware statistically significant
risk prediction models [14]. Recently, the Virginia Tech
Transportation Institute (VTTI) conducted the largest NDS
to date named Strategic Highway Research Program II Nat-
uralistic Driving Studies (SHRP 2 NDS) [14]. This dataset
contains the behavioral and environmental contextual infor-
mation of nearly 9,000 crash and near-crash events and more
than 20,000 baseline events captured during normal driving
episodes.

The research question this paper addresses is:
Are driving behavioral habits together with their environ-

mental context good predictors for measuring risk probability?
To answer this question, the behavioral and environmental

details of driving events presented in SHRP2 NDS are utilized
to build a risk prediction model that can be incorporated in
a complete cloud-based environment-aware driver profiling
framework. The research contributions of this paper are:

1) A novel cloud-based environment-aware driver profil-
ing (CEDP) system is presented and discussed. The
system provides a view on a “next generation” driver
profiling system in which drivers are profiled based
on the expected risk of their environmentally stamped
driving behaviors and their compliance to warnings. The
risk notion is mathematically developed and the terms:
behavior detection, driving risk probability, driver scor-
ing, and driver profiling, that are used interchangeably in
literature, are clearly distinguished and mathematically
defined.

2) An ensemble supervised machine learning algorithm
based on randomized trees is selected and customized
to reflect the predicted driving risk probability while
jointly considering the detected behaviors and their envi-
ronmental context. The model is proven to provide an
acceptable compromise between bias and variance. The
developed risk prediction model is trained and validated
using an unprecedented amount of real driving data
from SHRP2 NDS. This enhances the reliability and the
practicability of the proposed system which is reflected
in the performance results.

3) Given predicted risk probabilities, the performance of
the overall risk scoring system is validated. Validation
results show the robustness of the proposed system as
it consistently provides accurate results over different
training and validation samples.

The remainder of this paper is structured as follows.
In section II, we provide background information on the exist-
ing driver profiling systems and on the driving dataset used
in this work. Section III provides a detailed description of the
envisioned CEDP system covering its in-vehicle, on edge/fog,
and on cloud data processing. In section IV, the adopted pre-
processing, error analysis and model selection processes for
the risk prediction problem are described. In section V, results
are presented and analyzed. An illustrative example of the trip

scoring process using the proposed framework is discussed in
section VI. Our conclusions are presented in section VIII.

II. BACKGROUND AND RELATED WORK

A. Driving Behavior Profiling

In literature, the term “driver behavior profiling” has
been used to describe different behavioral characterization
processes, which may have caused some confusion. We found
that some of the literature has used “driver profiling”
interchangeably with “behavior classification or detection”.
Although behavior classification is the building block in the
driver profiling hierarchy, other processes such as risk scor-
ing and profiling are as important as behavior classification.
A complete profiling system that includes behavior detection,
risk scoring, and profiling is still very primitively presented in
the literature to date.

In the context of behavior detection, authors in [15] utilized
variations of Recurrent Neural Network (RNN) models to
detect seven distinct types of behaviors using smartphone sen-
sors. In [16], authors utilized the CAN Bus data to train a Long
Short Term Memory (LSTM) and a one-dimensional Convo-
lutional Neural Network (CNN) classifiers that are able to
accurately distinguish between normal and aggressive driving
behaviors. In [17], vehicular communication data between con-
nected vehicles was utilized to model the behavior of drivers
using unsupervised clustering techniques. Similarly, authors
in [18] developed a two-step clustering algorithm applied on
a large-scale number of driving events to determine different
driving styles. Four distinct driving styles - normal, aggressive,
calm, and experienced styles - were inferred from the utilized
data. A dynamic Bayesian network was developed in [19]
to classify the acceleration, braking and cornering behaviors
of drivers using only GPS data. In [20], a risk prediction
model was developed using elastic net regularized multinomial
logistic regression along with SHRP2 dataset. It was shown
that the model can be customized for each individual driver
by incorporating driver specific variables. Authors in [10]
used static supervised machine learning techniques such as
Support Vector Machines (SVMs) and Artificial Neural Net-
works (ANNs) to detect certain driving maneuvers. Likewise,
in [21], authors proposed a sequence modelling HMM-based
classifier to classify aggressive and normal driving maneuvers
in both forward and lateral directions based on smartphone
sensory data with a classification accuracy of 95 %. Similar
work is presented in [22] in which five HMM models were
trained to infer the fault contribution of the subject driver in
two types of driving conflicts. A Semi-supervised machine
learning approach was introduced in [23] to detect distraction.
The proposed approach utilized unlabeled training data to
improve detection performance at a little cost. Computer
vision techniques were also explored to detect certain driving
behaviors. For instance, authors in [24] developed a 3D
convolutional neural network to automatically extract driving
behaviors from videos.

Driver profiling is the process of augmenting different
driving behaviors, over several driving trips, into a scor-
ing function to measure a driver’s overall competence level.
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Notable research in this context is the work presented in [2].
Authors in this paper have made a clear distinction between
behavior detection and driver profiling. Using a fuzzy logic
algorithm hosted by a smartphone application, four unique
driving events: harsh braking, aggressive acceleration, speed-
ing, and aggressive steering were accurately detected by
acquiring a smartphone’s accelerometer, gravity, magnetic, and
GPS data. A scoring function was then introduced to reflect the
overall driving trip score given the detected behaviors. Despite
the proposals and findings of the paper, the scoring function
was very primitive, since it did not reflect the statistical corre-
lation between actual risk and detected behaviors. Moreover,
it did not show how to find an overall driving profile as a
function of many trips. In other words, it did not elaborate on
how the individual trip scores will be used towards building a
driver’s profile.

Recently, a more rigorous work has been presented in [25].
Authors in this paper have presented a data-driven scoring sys-
tem using SHRP2 NDS. The behavioral information of a very
large number of driving events, as well as total driving time
were used to predict driving risk using supervised machine
learning algorithms. A driving score was then formulated as
an additive inverse of the predicted driving risk probability.

To the best of our knowledge, no work in the literature
has comprehensively considered a complete and detailed driver
behavior profiling system that considers the sub-processes of
behavior detection, risk prediction, driver’s behavior scoring
and profiling, and with consideration given to the driving
environment. Although the environmental effect on risk has
been comprehensively researched in the literature, the joint
effect of driving behaviors and their environmental context on
driving risk is presented in very few works, and not in the
context of driver profiling [20]. In [26], authors performed
a statistical retrospective cohort study on the effect of traffic
and road conditions on driving risk using the 100-CAR NDS.
Authors in [27] used an NDS containing 1670 near-crash
events to study the factors that are proportional to the increase
in near-crash risk. They found that the road condition is one
of the significant factors that affect driving risk.

In this paper, an envisioned data-driven driver profiling
system is introduced and discussed. We specifically targeted
the problem of driving risk prediction by utilizing behavioral
and environmental data of a large scale NDS (i.e., SHRP2).
The development of the risk prediction model is based on an
error analysis of different supervised machine learning models
to achieve the best bias-variance trade-off. The overall risk
scoring system is then validated.

B. Dataset and Methodology

1) Participants: More than 3,000 drivers were recruited in
six sites across the United States. Drivers were originally cho-
sen equally across different genders (i.e., males and females)
and 16 age groups. Automobiles of recruited drivers were
equipped with inconspicuous data acquisition systems (DASs).
Among many sensors, DAS mainly comprised four video
cameras to capture the road forward and rearward views as
well as the driver’s face view, accelerometers, Geographic

Positioning system (GPS), and an OBD unit to obtain the
vehicle network information. Participants were then asked to
use their vehicles over extended time periods (at least a year)
as they drive in their normal driving routines.

2) Data Source: We utilized the SHRP2 event dataset [28],
which is the largest NDS to date. Raw data contains the
detailed information of more than 29,000 driving events.
Detailed information includes behaviors that are apparent
within seconds before risky events or during captured normal
driving episodes. Behaviors in the context of this work are
different than the in-vehicle distractions. They are vehicle-
kinematic observations that can be noticed from outside the
vehicle such as aggressive driving and speeding. In addition
to driving behaviors, SHRP2 NDS has the environmental
contextual information at which these behaviors happened.
Environmental information can be categorized into three types:

1) Static: This refers to long-term environmental features,
such as road curvature, number of lanes, traffic flow
direction, etc.

2) Quasi-Static: Environmental features that slowly change
over a course of time. Road lighting is an example.

3) Dynamic: This refers to the environmental features that
rapidly change over a course of time. It includes features
such as traffic density.

A driving event in SHRP2 is one of the following types which
are mentioned in [14]:

1) Crash: Any contact that the subject vehicle makes with
an object, a vehicle, a pedestrian, a cyclist, or an
animal either moving or fixed. Also includes inadvertent
departures of the roadway.

2) Near-Crash: Any driving conflict that requires an evasive
action to avoid a crash.

3) Crash-Relevant: Any driving conflict that requires a
non-rapid evasive maneuver.

4) Non-subject Conflict: Any risky event, captured on video
but does not involve the subject vehicle.

5) Balanced Baseline Events: Epochs of data selected to
provide exposure information. They are 21 seconds long
and their frequency is proportional to the total driving
time for each driver.

3) Analysis: In this work, behaviors and the three afore-
mentioned environmental categories are used as predictors
to predict driving risk, quantified herein in terms of the
probability of crash, near-crash, or crash relevant events. The
mathematical definition of the prediction outcome is shown
in section III in equations 7, 8, and 9. Different candidate
ML algorithms were first selected and tested. A customized
random forest algorithm was shown to provide the best
prediction performance. Full analysis details are provided
in section IV.

III. PROPOSED DRIVER PROFILING FRAMEWORK

In this section, the proposed cloud-based environment-aware
driver profiling framework is discussed. We cover the details
of the complete driver profiling system, from the in-vehicle
data acquisition to the cloud-based profiling. In short, acquired
in-vehicle data is utilized to detect different driving behaviors.
Detected behaviors are leveraged along with the environmental
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Fig. 1. Proposed cloud-based environment-aware driver profiling framework.

context in which they occurred to predict driving risk through a
trained risk prediction model. If a predicted risk is higher than
a pre-determined threshold, the subject driver (sd) is notified to
change the driving behavior. Aggregated risk probabilities and
the sd �s compliance to warnings throughout a certain driving
trip are inputted to a scoring function to calculate the sd �s trip
score. The sd �s risk profile is then calculated as a weighted
sum of different trip scores. Unlike other profiling systems,
the proposed system is motivated by statistically significant
results as will be shown in section V. Figure 1 depicts the
framework block diagram.

In the proposed framework, data processing is distributed
over three computational layers based on the computational
requirements of processes, delay, delivery, and accessibility
requirements of processed data, and processed data size. The
details are provided next.

A. Device Level: In-Vehicle Behavior Detection
The in-vehicle module contains data acquisition,

pre-processing and modeling processes that occur inside
the vehicle to detect different driving behaviors. In this
module, collected data can be divided into two types:

1) Type 1: Data that reflects the longitudinal and lat-
eral behavior of the vehicle. This data is collected
through the vehicle’s Controller Area Network (CAN)
bus and by utilizing the vehicle’s On-Board Diagnostic
(OBD/OBDII) port.

2) Type 2: Data that reflects the relative position of the
subject vehicle to the surrounding vehicles and provides
driving context awareness. This is gathered using short
range radar (SRR) sensors.

Let xτ represent the feature vector that contains
the collected vehicular data at time instant τ and
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TABLE I

SUMMARY OF NOTATIONS

expressed as:
xτ = [vτ , ax,τ , ay,τ , RF

x,τ , RF
y,τ , RR

x,τ , RR
y,τ ] (1)

where vτ represents the velocity of the subject vehicle (sv),
ax,τ and ay,τ represent the acceleration in the longitudinal and
lateral directions of the sv, respectively, RF

x,τ and RF
y,τ are,

respectively, the ranges between the sv and the closest forward
object in the longitudinal and lateral directions, RR

x,τ and RR
y,τ

are, respectively, the ranges between the sv and the closest
rearward object in the longitudinal and lateral directions, all
at the time instant t = τ . After τc seconds, collected data can
be expressed in the following matrix notation:

X =

⎡
⎢⎢⎢⎣

x1
x2
...

x(τc×Rs )

⎤
⎥⎥⎥⎦ (2)

or equivalently:

X =
⎡
⎣x(1) x(2) . . . x(Le)

⎤
⎦ (3)

where Rs stands for the data sampling rate and Le is the
length of the feature vector xτ ) (i.e., seven in this case). Data
is collected and sent from OBD and radar interfaces to the sd �s
in-vehicle computing unit (e.g., smartphone) through a Blue-
tooth link. In the in-vehicle computing unit, the time-series
vehicular data (X) is acquired over a pre-determined time
interval τc and sequence modeling for behavior classification

Fig. 2. A single time frame of collecting and offloading data.

(e.g., HMM-based Modeling) is applied. The behavior classi-
fication is defined as the process:

F : {x(1), . . . , x(Le)} → Bi (4)

where Bi , i = 1, . . . , M represents one of M output behaviors
on which the sequence model is trained to detect.

A single time frame in the in-vehicle module is depicted in
Figure 2 and can be expressed mathematically as:

T = τc + τp + τo + τI (5)

where τp is the sequence model’s processing time for behavior
detection, τo is the time required for off-loading a detected
behavior to the edge/fog, and τI is the idle time where no
vehicular data is acquired.

After the behavior Bi is detected, it is sent to the edge/fog,
along with the GPS co-ordinates of the sv for analysis and
processing.

In the proposed framework, behavior detection is performed
inside the vehicle to ensure high detection accuracy and to
minimize the cost of data off-loading. High levels of accu-
racy in behavior detection is essential given its importance
for predicting risk. With the high rate at which vehicular
data are sampled (on the scale of sub-seconds), performing
behavior detection inside the vehicle should diminish data
loss caused by off-loading data, and hence, should ensure
high detection accuracy. Furthermore, transmitting vehicular
data to the fog/cloud may incur a transmission cost to drivers.
To illustrate, the total amount of traffic data in a 1 hour trip
with τc = 10s and τp + τo + τI = 10s, and with a data rate
of 1K B/s will be 1.8M B of transmitted cellular data.

Algorithm 1 shows a summary of the explained behavior
detection process.

B. Edge/Fog Level: Risk Prediction and Recommendation
Modules

At the edge/fog level, driving risk is predicted based on the
detected behavior of the sd along with the environmental con-
text in which the behavior was detected. The sd is warned and
advised to change their driving behavior through a recommen-
dation module if expected risk exceeds a pre-defined threshold.
We pre-assume the existence of a real-time environment aware
mapper to which the sv �s GPS co-ordinates are inputted and
the environmental road segment attributes, which the vehicle
was subjected to during detected behavior, are returned. The
envisioned mapper has access to the static and dynamic road
information databases on the area the designated edge/fog
covers. The mapper is hosted in the edge/fog level rather than
in the cloud level to minimize the time required for pulling out
the environmental information of the desired road segment.
To explain, having a centralized road information database
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Algorithm 1: In-Vehicle Behavior Detection

Input: Vehicular data: {x}τ=τc×Rs
τ=1 , Data Collection Time:

τc, Idle Times: {IF , IT }
Output: Bi

1 repeat
2 for τ ← 1 to τc × Rs do
3 X .append(xτ )

4 for k ← 1 to M do
5 Calculate P(X |λBk )
6 P .append(P(X|λBk ))

7 i = arg max{P}
8 Offload Bi & location co-ordinates
9 if warning = ’FALSE’ then

10 τI = IF

11 else
12 τI = IT

13 until trip = ’FALSE’

in the cloud that contains the information of a large traffic
network would increase the search time needed for extracting
the information of a designated road segment, and hence will
increase the time needed for predicting risk. Likewise, both
risk prediction and recommendation modules are hosted in
the edge/fog level to reduce the time required for calculating
the expected risk of a captured event and to reduce the time
latency between predicting risk and warning a risky driver.

Environmental attributes contain static information about
the road characteristics, and the road real-time information
such as density level, weather condition, traffic flow, and
lighting conditions. In this framework, we utilized the fol-
lowing environmental attributes: weather condition (W ), traffic
density level (T D), road lighting conditions (L), traffic control
(T F), road flow (RF), and road alignment (A). The returned
environmental attributes vector env j , where j ∈ [1, . . . , J ],
along with the sd �s detected behavior Bi form the initial
feature vector Fl , l = 1, . . . , L:

Fl = [Bi , env j ] (6)

Feature extraction and selection is then performed on the
initial feature vector. The engineered feature vector (FSl ) is
then inputted to a trained risk prediction model.

The risk prediction model uses FSl to predict the driving
risk probability P(Risk|FSl )k , where the subscript k is an
integer that represents an event index. The driving risk proba-
bility is expressed herein in terms of the crash and near-crash
rate:

P(Risk|FSl )k = P(C|FSl )k + P(NC|FSl )k (7)

where P(C|FSl )k and P(NC|FSl )k are, respectively, the con-
ditional probabilities of crash and near-crash events (including
crash relevant events) given the feature vector FSl at event k.
The conditional risk probabilities in different driving environ-
ments are calculated as:

P(Risk|Fl ) = RFl

RFl + N RFl

(8)

TABLE II

RISK SEVERITY LEVELS

where RFl and N RFl are, respectively, the number of risky
and non-risky events, given Fl . In SHRP2 data-set, a non-risky
event is either a non-subject conflict, or a balanced baseline
event, as they are previously defined.

Once risk probability is predicted, a warning is issued to the
subject driver. The level of warning severity changes according
to the level of risk the detected behavior imposes. Since the
risk probability is data-set dependent and is characterized
by the sampling rate at which normal driving events are
captured, the thresholds between risk levels can be set using
the following relative driving risk equation:

RR(Fl ) = P(Risk|Fl )

P(Risk|F �l )
(9)

where RR(Fl ) is the relative driving risk of Fl , and F �l is the
complement of Fl (i.e., [Bi , env j ]�).

Based on the relative driving risk values, risk severity
is assigned and warnings are issued accordingly. In this
work, risk severity during a driving event belongs to the set
{Severe, Cri tical, High, Normal, Low} or equivalently to
the integer set {4, 3, 2, 1, 0}, as shown in Table II.

As shown in Table II, risk severity levels are assigned
depending on the relative driving risk of a captured event.
A driving event with a relative driving risk of 1 possesses a
risk probability equivalent to the average risk probability of
events captured in other driving environments. Consequently,
a relative driving risk of 1 was chosen as a threshold between
low-risk events and other events. If a captured event imposes
some risk, the sd will be notified and advised to change
his/her behavior as to reduce risk. The sd receives a complete
compliance score unless he/she does not change behavior to
normal. If the sd is not compliant, the reduction of his/her
compliance score will be directly proportional to the event
risk severity.

The sd �s compliance to warnings along with a weighted
sum of the aggregated risk probabilities over a certain trip are
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both used to compute the final trip score Sctrip as will be
detailed in the next section.

C. Cloud Level: Scoring and Profiling Processes

At the cloud level, time-tolerant computationally intensive
operations are hosted. On the cloud, the overall risk and
compliance of drivers through their driving trips are computed.
Risk and compliance are utilized afterwards to calculate trip
scores or to update personalized competency levels of drivers
in various driving environments. Based on risk and compliance
scores, risk profiles of drivers are continuously updated after
each driving trip and stored in a centralized database. Drivers
are notified about their overall scores and about updates
in their driving profiles following the end of each driving
trip. Processing such large a amount of data requires a high
performance computing (HPC) servers which are available on
the cloud level. To highlight the asymptotic time complexity of
the on-cloud operations, let’s take the computation of driver
compliance as an example. In a time slot t , computing the
compliance to warnings for M drivers in E events will be of
the order of O(M × E). Repeating this process K times will
incur a computational cost of O(M× E×K ). With such high
computational cost, it is reasonable to host such operations in
the cloud. Next, the logical flow of information on the cloud
is detailed.

Following risk prediction of event k, predicted risk is
offloaded to the cloud and inputted to the “Trip Risk Indexing”
module. Based on the predicted risk severity level, the event
k is assigned a risk index RI (k) according to Equation 10:

RI (k) = 0.25 ∗ slk (10)

where slk ∈ {0, 1, 2, 3, 4} is the risk severity of event k and is
one of the risk severity levels shown in Table II. Risk indices
for all captured events during a driving trip are computed
and stored. The overall trip risk index Ptrip can be simply
calculated as the trip average risk, which is denoted by the
following formula:

Ptrip = 1

N

N�
k=1

RI (k) (11)

where N is the total number of captured events in a trip.
The sd compliance to a warning following being involved

in a risky behavior during event k is calculated through the
“Driver Compliance” module during event k+1 (i.e., monitor-
ing the driver behavior after issuing a warning). As shown in
Table II, compliance is computed according to the risk severity
of k. To explain, the sd is given the full compliance score
of 1 if the driver is compliant. If the driver is non-compliant,
a deduction in compliance score is weighted according to risk
severity during the event k. Lets define the binary variable
ck+1 as follows:

ck+1 =
	

1, if RI (k + 1) > 0

0, if RI (k + 1) = 0 or Bi,k is normal
(12)

Then, compliance to a warning following a risky behavior
in event k is expressed as:

C(k) = 1− ck+1 ∗ RI (k) (13)

Similar to the overall trip risk index Ptrip , the overall trip
compliance, Ctrip , is calculated as the average compliance
throughout a driving trip. It is expressed mathematically as:

Ctrip = 1

N − 1

N−1�
k=1

C(k) (14)

The argument above requires repeating the in-vehicle
processes of data collection, behavior detection, and data
offloading, as well as the cloud risk prediction process, each
time after detecting a risky behavior. This repetition verifies
whether the driver was compliant to the warning or not.
A simpler and more practical yet less accurate approach is
to calculate the sd �s compliance based on their compliance
probability distribution for events of different severity levels.

Under the assumptions of:
1) Independent sd compliances in different risky events.
2) Equally probable compliance rates in different driving

environments and for events with the same risk severity
level.

the probability of l compliances in Nsl risky events of
severity level sl would follow a binomial distribution with
parameter psl:

P(Csl = l) =



Nsl

l

�
pl

sl(1− psl)
Nsl−l (15)

The overall compliance per trip Ctrip would be the prob-
ability of being always compliant (i.e., l = Nsl , ∀sl ∈
{0, 1, 2, 3, 4}). Substituting Equation 15 in Equation 13,
Ctrip can be expressed as follows:

Ctrip =
sl=4�
sl=0

(1+ RIsl).P(Csl = Nsl)− RIsl (16)

This simplified formulation will require only calculating the
probability parameters psl , ∀sl ∈ {0, 1, 2, 3, 4} in a primary
training phase, which is more practical in many situations.
These probability parameters can be updated regularly to track
the changes in a driver’s compliance behavior.

The trip score is then computed as a function of the trip
weighted sum of the risk index Ptrip , and the driver’s per trip
compliance value Ctrip :

Sctrip = F(Ctrip, Ptrip) (17)

Given that Ptrip ∈ [0, 1] and Ctrip ∈ [0, 1], a normalized
Sctrip ∈ [0, 1] can be written as:

Sctrip = γ.Ctrip + α.(1− Ptrip) (18)

where

γ + α = 1 (19)

The values of γ and α determine how much weight is given
to Ctrip and Ptrip . For instance, if α = 1, the overall trip
score will be determined solely based on the value of Ptrip

(i.e., γ = 0).
Finally, a subject driver’s profile after a certain trip (Prtrip )

can be computed using an exponentially moving weighted
average (EMWA) filter applied on various trip scores to
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assign exponentially increasing weights for recent trips. This
is expressed as:

Prtrip =
	

Sc1, if tr i p = 1

ξ.Sctrip + (1− ξ).Prtrip−1, if tr i p > 1
(20)

where the value of ξ determines the number of trips which
the filter will use to calculate Prtrip .

Using the same analogy of updating the sd per trip profile,
the sd �s per environment profile is updated. The “Per Envi-
ronment risk indexing” module calculates RIenv j (k) which
is the risk index for event k taken into consideration the
environmental context of the event, calculated for each env j .
RIenv j (k) is utilized to reflect the driving competency level
of the sd in the driving environment env j along with the
compliance Cenv j (k). Consequently, the score of the sd in
env j at event k is:

Scenv j (k) = γ.Cenv j (k)+ α.(1 − RIenv j (k)) (21)

An sd profile in env j (Prenv j ) can then be updated after
each event captured in env j . Similar to the per trip profile,
Prenv j can be computed using an EMWA filter to assign
exponentially increasing weights for recent captured events
in env j .

An important feature of the presented framework is the
prediction of driving risk probabilities given the behavioral
and environmental attributes. Non-accurate values of these
probabilities can result in missed or false warnings as well
as unreliable driving scores. The rest of the paper contains
the necessary steps for the development of the driving risk
prediction model. Moreover, the effect of risk prediction
results on the overall scoring performance is analyzed using
SHRP2 naturalistic driving data.

IV. DATA PRE-PROCESSING AND MODEL SELECTION

Raw data contains the information of ∼ 29,000 driving
events, each with a certain severity level. In the origi-
nal dataset, event severity levels are exclusively contained
in the following set: Severity ∈ {Crash, Near-Crash and
Crash-Relevant, Non-Subject Conflict, Balanced Baseline}.
An event k in the dataset is represented by a vector that
contains the captured driving behavior of the subject driver
prior to a risky event (or during a normal driving event) (Bi ),
the environmental context in which these behaviors happened
(env j ), and the event severity (Severi ty):

k = [[Bi , env j ] yields to−−−−−→ Severi ty] (22)

Since we are concerned with classifying the risk level of
an event given the behavior of the driver and the environ-
mental context, the notion of risk is developed as shown in

Equations 7-9. The initial feature matrix is transformed from
the original event-based matrix to the following matrix (23),
shown at the bottom of the page.

A. Data Pre-Processing

1) Data Merging: Crash, Near-Crash and Crash-Relevant
severity levels are put under the common severity level of
Risky. Non-Subject Conflict and Balanced Baseline events
are used to represent the Normal level. Under each envi-
ronmental category, similar features are merged to increase
their importance in order to enhance the prediction model
performance (e.g., under road alignment category, curved to
the right and curved to the left features are considered the
same). Similarly, we used 13 behaviors that were previously
identified in [29]. For the sake of completion, the set of the
previously identified behaviors are displayed again in table III.
Identified environmental features are shown in Table IV.

2) Data Filtering: Rows in the feature matrix are filtered
out if their relative driving risk values (RR(Fl )) are not
statistically significant. The p − value is utilized to signify
statistical significance. Rows which possess a p−value > 0.1
are filtered out. The filtered feature matrix has L � rows. With
the Contingency table shown in Table V, the p − value is
calculated for each row l using Fisher’s exact ratio as:

pl =
�a+c

a


�b+d
b



� n

a+b


 (24)

where n = a + b + c+ d .
3) Data Encoding: After data merging, the behavioral and

environmental categorical variables are encoded to integers.
To calculate risk probability, events with the same behavioral
and environmental features are combined and the correspond-
ing risk probability for each is calculated. To represent data
in a meaningful way for the machine learning algorithms, the
one-hot encoding technique is utilized.

B. Model Selection

The encoded data is then divided into training and develop-
ment sets according to the ratio of 70% and 30%, respectively.
Using the mean absolute error (M AE) as a performance
metric, an error analysis for a simple multiple linear regression
model indicated a high bias (i.e., low training set perfor-
mance). More complex structured SVM-based models, on the
other hand, were able to model training data accurately, but
were not capable of generalizing on the development set
(i.e., high variance). To achieve a good bias-variance trade-off,
a customized random forest model was selected. In random
forests [30], multiple decision trees are built, each from a

⎡
⎢⎢⎢⎢⎢⎣

Feature Vector (Fl ) Bi env j Outcome (RR(Fl ))
F1 B1 env1 RR(F1)
F2 B1 env2 RR(F2)
...

...
...

...
FL Bμ env J RR(FL )

⎤
⎥⎥⎥⎥⎥⎦ (23)
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TABLE III

SUMMARY OF DRIVING BEHAVIORS [29]

TABLE IV

SUMMARY OF ENVIRONMENTAL CONDITIONS

TABLE V

CONTINGENCY TABLE FOR THE NUMBER OF

RISKY AND NON-RISKY EVENTS

sample of the training set. The best split in each tree is
based on a random subset of the input features rather than
the whole feature set. The average performance of the various
trees is then used to reflect the forest performance. Although
this approach theoretically causes a slight degradation in the
training set performance, it reduces over-fitting due to the
averaging process. Our results indicate that a customized
random forest model resulted in the best bias-variance per-
formance. Figure 3 depicts a comparison between customized
random forests (RF), linear, and SVM regressors. The figure
shows a 5-fold cross-validation for M AE , mean squared
error (M SE), and the coefficient of determination (R2). The
RF regressor outperforms the linear and SVM regressors in
all three evaluation metrics. The RF regressor has a mean
M AE of 0.5 as opposed to 0.61 and 0.79 for linear and
SVM resgressors, respectively. Moreover, It has a high mean
R2 value of 0.65 as opposed to 0.59 and 0.27 for linear
and SVM regressors, respectively. It is also clear that the
RF regressor performance is more consistent when trained over
different training set folds. Such consistency is inferred from
the dispersion profile of the RF regressor box plots.

TABLE VI

HYPER-PARAMETERS OF RF MODEL

The adopted hyper-parameters of the selected model are
shown in Table VI, where Ntot represents the number of all
behavioral and environmental features, and M SE is the mean
square error.

V. PERFORMANCE EVALUATION AND DISCUSSION

We investigate the performance of the Random Forest risk
prediction model presented in section IV. The model was
implemented in Spyder (Python 3.6) integrated development
environment (IDE) using the Scikit-Learn Library for Machine
Learning and Data Mining. Results in the regression context
are discussed along with the relevant risk index RI and the
overall risk scoring results. Reported results are those obtained
from the customized RF model after trying different random
seeds. They represent the best obtained results.

A. Risk Prediction

The developed RF model is trained to predict the relative
driving risk of a specific event given the driver’s behavior
and the environmental context. The model was trained and
validated according to the splitting ratio of 70 % and 30 %,
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Fig. 3. Performance comparison between customized RF, linear, and
SVM regressors for the prediction of relative driving risk.

respectively. The 10 − f old cross validation was performed
to reflect the average performance of the model over different
training samples. The normalized absolute error histograms of
the model for both training and validation sets are depicted in
Figures 4 and 5, respectively.

The normalized absolute error (N AE) percentage of a
feature vector Fl is calculated according to Equation 25:

N AE(Fl )% = |RRact (Fl )− RRpred (Fl)|
max(RRact )−min(RRact )

(25)

where RRact (Fl) and RRpred (Fl) are, respectively, the actual
and predicted relative driving risk values for the feature vector
Fl , and RRact is the vector that contains the actual relative
driving risk values for all the feature vectors in the data-set.
Figure 4 shows that the sample count is exponentially decreas-
ing as the N AE increases, with a maximum N AE of 27%.

Fig. 4. The normalized absolute error histogram for the training set using
the developed RF risk prediction model.

Fig. 5. The normalized absolute error histogram for the validation set using
the developed RF risk prediction model.

Similarly, the validation set N AE performance resembles an
exponential distribution but with a higher normalized mean
absolute error N M AE as shown in Figure 5. The summary
of the model N M AE and R2 results is shown in Table VII.
The validation set results show the high performance standards
the developed model can achieve with an average N M AE
of only 10.7% and with an ability to explain most of the
variability in the data output as shown from the coefficient
of determination value (e.g., 0.66). Moreover, the training
set performance indicates that the developed model has a
very small bias with an N M AE value of 4.25% and R2

value of 0.95. Despite the good performance results for both
training and validation sets, the validation set performance
shows a 6.45% degradation in the N M AE performance when
compared to the training set. Furthermore, a 0.29 difference
in the R2 value is noticed - an indication the developed model
is slightly over-fitted. Although this bias-variance combination
was the best achieved, over-fitting was unavoidable which may
be attributed to the data-set sample size.

Using Equation 10, the actual and predicted risk indices are
respectively computed from the actual and predicted relative
driving risk values. The mean absolute error (M AE) metric
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TABLE VII

SUMMARY OF THE RF MODEL RESULTS

Fig. 6. Whisker plot for the M AE performance of R I using 10 − f old
cross-validation.

is utilized to signify the performance. Figure 6 depicts the
Whisker plot of the M AE for the risk index RI using
10− f old cross validation. The average M AE for the training
and validation sets is, respectively, 2% and 8.7%. Such negligi-
ble average errors highlight the accurate RI results, and hence,
the accurate scoring results as will be shown in section V-B.

B. Driver Scoring

We derive and empirically calculate the expected value of
the deviation in an event score given the SHRP2 event-based
dataset. As shown in section III-C, the performance of a driver
in an event k is calculated based on the risk index RI (k) and
the compliance C(k). The absolute error in the score of a
driver given the feature vector, Fk , is defined as the absolute
difference between the actual and predicted scores of a driver
in an event k. It is denoted by Scerror (k) and can be expressed
mathematically as:
|Scactual(k)− Scpred (k)| = α.|RIact (k)− RIpred (k)|

+γ.|Cact(k)− Cpred (k)| (26)

where Scact (k) and Scpred (k) are, respectively, the actual and
predicted risk scores of a driver in event k. The expected value
of the absolute error Scerror can then be expressed as:
E(Scerror ) = α. E(|RIact − RIpred |)

+γ. E(|Cact − Cpred |) (27)

where E(|RIact − RIpred |) and E(|Cact −Cpred |) are, respec-
tively, the mean absolute errors for the risk index and the
compliance scores. Let Fl and Fj denote the features vectors
at two consecutive events, where Fj is the feature vector of

TABLE VIII

CONFUSION MATRIX FOR TRAINING SET COMPLIANCE CLASSIFICATION

TABLE IX

CONFUSION MATRIX FOR VALIDATION SET

COMPLIANCE CLASSIFICATION

the following event E(Scerror ) can be written as:

E(Scerror ) = α.

L�
l=1

P(Fl ).|RIact (l)− RIpred (l)|

+γ.

L ��
j=1

L�
l=1

P(Fj |Fl).|Cact (l)− Cpred (l)| (28)

where L is the total number of all possible combinations
of behaviors and environments, P(Fl ) and P(Fj |Fl) are
the probability of Fl and the conditional probability of Fj

given Fl , respectively.
The absolute deviation in compliance (|Cact (l)−Cpred (l)|)

is calculated for four cases:
1) The model predicts that the driver is compliant given that

the driver is actually complaint. In this case, |Cact (l)−
Cpred (l)| = 0.

2) The model predicts that the driver is non-compliant
while the driver is actually complaint. In this case,
|Cact (l)− Cpred (l)| = RIpred (l).

3) The model predicts that the driver is compliant while the
driver is actually non-complaint. The absolute deviation
in compliance, in this case, is RIact (l).

4) The model predicts that the driver is non-compliant
while the driver is actually non-complaint. The absolute
deviation in compliance in this case is |Cact (l) −
Cpred (l)| = |RIact (l)− RIpred (l)|.

Under the assumption of independent occurrences of Fl , ∀l ∈
[1, L] and according to the four cases shown above, Scerror

can be written as:

Scerror = α.
1

L

L�
l=1

|RIact (l)− RIpred (l)|

+γ.(P(NonC|C).
1

L

L�
l=1

RIpred (l)

+P(C|NonC).
1

L

L�
l=1

RIact (l)

+P(NonC|NonC).
1

L

L�
l=1

|RIact (l)− RIpred (l)|)

(29)
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TABLE X

AN ILLUSTRATIVE EXAMPLE OF TRIP SCORING FOR AN sd USING PROPOSED RISK SCORING SYSTEM

where P(NonC|C), P(C|NonC), and P(NonC|NonC) are,
respectively, the probability of the driver being classified as
non-compliant given that the driver is actually compliant, the
probability of the driver being classified as compliant given
that the driver is actually non-compliant, and the probability
of the driver being classified as non-compliant given that
the driver is actually non-compliant. The mean of those
probabilities are empirically calculated from the data-set for
the training and validation sets using the confusion matrices
shown in Tables VIII and IX, respectively.

The expected value of the absolute score error is then
computed using Equation 29. Figure 7 depicts the 10− f old
cross-validation Whisker plot for Scerror , where α and γ are
set to 0.5. The Figure shows that the average Scerror for the
validation set is 9.5%, which means that, on average, the risk
score of a driver in a captured event will be deviated from the
true value by 9.5%.

VI. ILLUSTRATIVE EXAMPLE

In this section, an explanation of the trip scoring process
for a subject driver using the proposed risk scoring system is
provided through an explanatory example. Table X displays
the details of an imaginary driving trip composed of nine
captured driving events. The table shows the behavioral and
environmental features (i.e., Fl ) that are used as predictors
to driving risk. For each row, the actual and predicted scores
respectively represent the per-event actual and predicted risk
scores. Actual and predicted scores are computed using a
weighted average of the actual and predicted risk indexes
(equation 10) and compliance to warnings (equation 13).

Fig. 7. Whisker plot for the mean absolute event score error using 10− f old
cross-validation.

For the actual risk score, slk in equation 10 is computed
directly from the data-set, and is predicted using Fl for
the predicted risk score. The overall trip score is calculated
according to equation 18. The two weighing factors α and γ
in equation 18 are both set in this example to 0.5, which means
that for a captured event, the risk score of the sd will be
calculated by equally considering the risk index of the event
and the driver’s compliance to a warning.

For the first event, the driver’s behavior is classified as
“normal” and the driver is consequently assigned the full score
of 1. The driver’s score in the second event is calculated
based on the event’s risk index (i.e., RI (k)) and the driver’s
compliance observed in the third event. The driver receives
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the full compliance score since he/she changed behavior to
“normal”. However, given the high risk imposed by the driver’s
behavior in the second event (i.e., RI (k) = 0.75), the overall
score is calculated as: α.(1 − 0.75) + γ.1 = 0.5 × 0.25 +
0.5 = 0.625. The predicted score in this case coincides with
the actual score with no error. During the fourth event, the
driver was excessively speeding. In this case, there was a
25% deviation from the actual score given that the actual and
predicted risk indices are 0.25 and 0.5, respectively. The driver
was not compliant in this case since he/she did not change
behavior to “normal” nor the risk index was zero during the
following event. Consequently, the score was calculated solely
based on the event risk index. The overall absolute deviation in
the sd �s score during this trip is: |0.79− 0.75|× 100%= 4%.

VII. FUTURE WORK

Some practical considerations need to be addressed for the
proposed driver profiling framework to be implementable.

On the device level, the complexity of the hardware required
to detect driving behaviors presented in table III should be
sufficiently studied. Although the majority of these behaviors
can be directly inferred from low-cost sensor platforms (e.g.,
smartphones), some behaviors might need complex computer
vision techniques (e.g., signal or sign violation) or the use of
radar sensors for accurate detection.

Another important practical consideration is the choice of
the communication protocol between the edge devices and the
fog or the cloud. Messaging has to be reliable and suitable
for such a bandwidth-limited application. Also handling failed
network path scenarios and how scores will be calculated in
such cases need to be appropriately studied.

Finally, it is crucial to ensure that data of drivers is
protected across the three computational levels (i.e., device,
fog/edge, and cloud levels). For instance, tackling security
attacks, in which risk scores and profiles of drivers are altered,
is pivotal to ensure a robust and a trustworthy profiling system.

VIII. CONCLUSION

In this paper, a novel driver risk profiling framework is
presented and discussed. The information flow among three
different computational layers (i.e., the device, edge/fog, and
cloud layers) in the proposed profiling system is investigated.
The risk, scoring, and profiling notions are mathematically
defined and explained. The paper addressed the risk prediction
problem by utilizing the behavioral and environmental contex-
tual information of 29, 000 driving events, using the SHRP2
NDS. Data pre-processing and model selection processes are
performed to achieve the best possible prediction performance.
By analyzing the mean absolute error of different models,
a customized randomized trees model appears to give the best
bias-variance trade-off. Results confirm that behavioral and
environmental data are together good predictors of driving
risk, which is measured in this paper in terms of crash,
near-crash and crash-relevant events. The developed model is
then utilized to calculate the average error between predicted
and actual risk indices and the average overall risk score error.
An explanatory example of the risk scoring process using the

proposed framework is provided. The results clearly show the
robustness and effectiveness of the proposed profiling system
in assigning accurate and representative risk scores for drivers.
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