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Abstract

Social media traffic constitutes the highest percentage of Internet traffic. This social

media traffic is largely facilitated by mobile devices, which imposes a huge traffic

load on backhaul links in 5G networks, and can in turn affect the quality of service.

This traffic load can be alleviated by using vehicular networks as a traffic offloading

platform. In particular, vehicles can act as a resourceful asset for edge caching, which

enables data acquisition from nearby caching nodes rather than the remote backhaul

servers. However, caching in vehicular networks encounters many challenging issues.

These include the highly dynamic nature of vehicles, which can lead to instability

in caching decisions. Also, despite being equipped with storage resources, relying on

static roadside units for caching might not always be feasible. This is due to the large

investments that their wide deployment requires. Another challenge is prompted by

the high delay and low packet delivery ratio often associated with accessing data from

distant content providers in vehicular networks, which makes it imperative to take

the quality of service into consideration during caching.

In this thesis, we propose a caching framework that aims at maximizing cache hit

ratio, as well as improving the quality of VANET-based Internet services. To do so,

we consider two types of users; users who exhibit a predictable behavior resulting from

their daily routine during driving from one place to another, and those who do not
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have such a routine. We exploit the predictable behavior of the first type of users in

order to pre-cache the data at roadside parked vehicles for requesters to proactively

acquire as they pass by. In order to promote informed proactive cache placement

decisions that consider the spatiotemporal availability of replicas, we propose a travel

time prediction scheme to be incorporated into the caching process.

For the second type of users, we use the static and mobile nature of parked and

moving vehicles, respectively, to leverage the use of cooperative caching within the

context of VANETs. This solution involves a content discovery module and a cache

placement module. The former enables the nodes to dynamically locate replicas

that are close to the requester during the request-forwarding process. The latter

facilitates making informed caching decisions to decide where and what to cache. Our

cooperative caching solution involves extending the search space and the cooperation

range beyond the neighborhood scope in order to increase cache hits. We also cope

with the dynamic nature of vehicles by proposing a vehicles’ trajectory prediction

scheme. Extensive simulations demonstrate the ability of the proposed approaches

to achieve significant improvements in their targeted objectives compared to other

prominent caching and prediction schemes in VANETs.
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Chapter 1

Introduction

1.1 Motivation

The penetration rate of social media has been significantly increasing worldwide. In

2019, 79% of Internet users were social media users [1]. This substantial growth is

expected to escalate even further in the future, with an anticipated augmentation

in the number of social media users reaching 3.1 billion in 2021 [2]. Mobile devices

account for more than 60% of such excessive usage [3]. This causes backhaul links

in Fifth Generation (5G) networks to incur a huge traffic influx [4]. Note that 5G

promises several attractive prospects, including significantly high bandwidth, fast

connectivity, and low latency [4]. However, the limited transmission capacity affiliated

with the wireless backhaul links makes it difficult to cope with the explosively growing

traffic [4]. Thus, it is imperative to reduce the load at backhaul links in order for 5G

to keep its promises, and prevent the deterioration of the Quality of Service (QoS).

One promising solution to alleviate the aforementioned problem is to use Vehicular

Ad Hoc Networks (VANETs) as a traffic offloading platform, where the pervasive

availability, mobility, and abundant storage resources of vehicles can be exploited to
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perform edge caching [4]. In edge caching, content access occurs via intermediate

nodes at the edge of the network rather than the far-away original data provider at

backhaul links (i.e., the data center/server) [4]. Note that caching social media traffic

can be particularly beneficial since there is a high correlation in the data accessed

by many users on social media. This is attributed to the fact that the most followed

accounts on social media platforms (e.g., Instagram) are those of public figures, such

as politicians, actors, musicians, etc. Thus, increasing cache hits of such contents in

VANETs (i.e., data acquisition from caching vehicles) can reduce the backhaul traffic

load and bring the data closer to the requester [4].

VANETs have emerged as a communication paradigm that fosters inter-vehicle

communication on the road. They serve as an enabling technology for an exten-

sive range of applications in Intelligent Transportation Systems (ITS), including In-

ternet access [5]. Internet access in VANETs can take place via Vehicle-to-Vehicle

(V2V) communication, as well as communication between vehicles and roadside ac-

cess points, commonly referred to as Road Side Units (RSUs) [5, 6]. Along with

their communication capabilities, vehicles and RSUs are also equipped with storage

resources, which enable them to be used as caching units [7]. The static nature of

RSUs can help stabilize the caching decisions. However, sheer deployment of RSUs

might not always be plausible, since they usually require large investments [5, 8].

Thus, relying on RSUs for caching or communication might not always be feasible.

As a result of the infeasibility of sheer deployment of RSUs, V2V communication

tends to be the predominant type of communication relied upon by Internet users to

reach the closest RSU [5]. However, V2V communications intended for remote content

providers are often coupled with high delay and low packet delivery ratio [5]. This is
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due to the intermittent connectivity and highly dynamic topology of VANETs [5, 7].

In addition, a request-response data access model is typically adopted in Internet

services in VANETs [7]. In such a model, the user sends a content request to the data

center, accessed via an RSU, and the latter issues a response back to the requester [7].

This could further exacerbate the QoS. Thus, it is imperative to take the QoS into

consideration, by selecting nodes closer to the requester for instance, when making

caching decisions for social media access in VANETs.

Existing caching schemes are classified into two categories; proactive and reactive.

In the former, data is prefetched and stored ahead of time, while in the latter, caching

occurs as the data propagates back to the requester in response to a previous request

[9, 10]. Proactive caching can significantly improve the QoS compared to reactive

caching [10]. However, most existing proactive caching schemes in VANETs either

employ a broadcast-based approach or focus on large-sized content download where

each content is too large to be acquired at once, thus triggering the need for multiple

transmissions [11]. The former are rendered unsuitable for social media access appli-

cations due to the huge amount of overhead incurred [10]. The latter are not suitable

for the targeted social media platforms that do not offer large-sized contents, thus

requiring single transmissions, such as Instagram. In contrast, most reactive caching

schemes in VANETs are suitable for the targeted applications. However, they mostly

adopt a non-cooperative caching approach, where caching decisions are made in an

autonomous manner without any form of coordination between the nodes [6]. Such a

non-cooperative caching approach tends to reduce cache hits compared to cooperative

caching [12].
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Cooperative caching has been recognized as an advantageous technique for en-

hancing the performance of content access in different network paradigms, including

Mobile Ad Hoc Networks (MANETs) [12] and Information-Centric Networks (ICNs)

[13]. In cooperative caching, caching decisions are made in a collaborative manner

between the nodes [12]. Cooperative caching has been shown to bring the data closer

to the requester, create increased data diversity, and achieve efficient utilization of

the nodes’ cache capacity [12, 13], which in turn increases cache hits. However, de-

spite its demonstrated leverage in MANETs and ICNs, cooperative caching within

VANETs has been mostly overlooked [12]. This is due to the highly dynamic nature

of vehicles. This dynamic nature can shorten the lifetime of the exchanged cached

content information and lead to unstable caching decisions. Another challenging issue

in caching, that is typically overlooked in most caching schemes in VANETs, is the

design of a rigorous policy for making efficient cache discovery decisions [12]. A cache

discovery decision involves determining where the requested replica is located, and it

is the first step that should be executed when a requester generates a content request

[12].

The work presented in this thesis proposes a caching framework that addresses the

aforementioned challenges. Note that although we focus on social media access appli-

cations, this work can be applicable to any type of applications involving the delivery

of contents that possess the following characteristics: 1) non-real-time contents, 2)

delay-tolerant contents that do not have a high priority, and 3) highly popular con-

tents that tend to overload the backhaul links in 5G networks, thus caching them

would be beneficial. In the remainder of this chapter, we present the research state-

ment and objectives in Section 1.2, as well as the thesis main contributions in Section
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1.3. Finally, the thesis outline is highlighted in Section 1.4.

1.2 Research Statement

In this thesis, we investigate the use of edge caching in VANETs to curtail the traffic

load at backhaul links in cellular networks. Our main objective is to maximize cache

hits and improve the quality of VANET-based Internet services, particularly in terms

of delay and packet delivery ratio. Towards that end, we address the following research

questions:

1. Can we exploit the static nature of roadside parked vehicles to reinforce the use

of caching within VANETs?

2. Can the fact that some users tend to establish a rather predictable daily driv-

ing routine and social media access behavior be used to pre-cache the data at

roadside parked vehicles for users to proactively procure as they pass by? Can

we achieve a certain QoS demanded by users?

3. How can we predict the spatiotemporal availability of replicas given the various

influential factors affecting the prediction accuracy, such as the weather and

traffic conditions?

4. For users that do not exhibit such a predictable behavior, can cooperative re-

active caching be leveraged within the context of VANETs? Can we devise

an effective cooperative cache placement technique given the extreme dynamic

nature of VANETs?

5. Can we design a cooperative cache discovery technique that helps expand the

search space of the requested replicas within the context of VANETs? Can the
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trajectory of caching vehicles be predicted to increase the search space even

further?

6. How to reduce the overhead associated with cooperative caching due to the

exchange of cached content information?

We believe that predictive proactive caching can serve users who have a rather consistent
and predictable behavior in a way that can significantly increase cache hits and improve
the quality of VANET-based Internet services. We also believe that cooperative reactive
caching can be an extremely promising alternative for users who do not demonstrate
such a predictable behavior. We claim that the use of parked vehicles can positively
contribute to the caching process.

Note that in contrast to RSUs, roadside parked vehicles are natural infrastructures

that exist in substantial number. Hence, they can serve as a source of profuse and cost-

effective caching resources. In fact, it has been substantiated in a study that examined

roadside parking spaces in Ann Arbor city in the US that their occupancy ratio can

mount up to 93% and 80% during on and off-peaks, respectively [7]. Rechargeable

batteries, especially in electric vehicles can highly facilitate the utilization of roadside

parked vehicles for caching. It has been demonstrated that in such vehicles, the

average time beyond which the battery gets drained is 160 hours [7].

Our objectives include the following: (1) designing a prediction module that can

increase the prediction accuracy of the travel time of requesters on each road seg-

ment along their trajectory, in order to make informed proactive caching decisions,

(2) proposing a prediction-based proactive cache placement module that can allocate

replicas to roadside parked vehicles so as to maximize cache hits, while maintain-

ing the QoS demanded by users, (3) introducing a benchmark that can quantify the

potential gains of predictive proactive caching in improving the quality of Internet
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services in vehicular networks, (4) proposing a cooperative cache discovery module

that can expand the search space to detect data holders that are within closer prox-

imity to the requester, (5) presenting a cooperative cache placement module that can

extend the cooperation range among vehicles to cache more diverse data and increase

cache hits, and (6) reducing the overhead incurred due to the exchange of cached

content information in cooperative caching.

1.3 Thesis Contributions

The contributions of this thesis are as follows:

1) Travel Time Prediction Module: This module addresses Objective 1. The data

center has a prediction module that enables it to predict the period of encounter of

the requesting vehicles with each road segment along their trajectory. We mainly

focus on the prediction procedure of this period due to the influential effect of various

factors, including weather and traffic conditions on the prediction accuracy. Thus,

we propose a novel prediction scheme that incorporates the use of a Long Short-Term

Memory (LSTM) network, trained using particle swarm optimization (PSO-LSTM)

to improve the training process. We also take the weather conditions, the time of the

day, and the day of the week into consideration when training the model in order to

increase the prediction accuracy.

2) Predictive Proactive Cache Placement Module: Objectives 2 and 3 are handled

by designing the Vehicular Optimal Proactive Caching (VOPC) benchmark and the

Proactive Caching at Parked Vehicles (PCPV) greedy heuristic scheme. In both

VOPC and PCPV, the data center exploits the daily driving routine and predictable

behavior of users. It does so to pre-cache the data at parked vehicles for the requesters
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to proactively acquire either before the time of their requests or within a specified

time frame. The objective is to maximize cache hits by assigning replicas to caching

spots that yield maximum certainty in their spatiotemporal availability for requesters

within certain time restrictions. This is while sustaining a cache capacity limit. VOPC

formulates the caching problem as an integer linear programming (ILP) optimization

problem and can thus act as an upper bound on reachable potential.

3) Cooperative Cache Discovery Module: In order to address Objective 4, we

propose two tracking-based cooperative cache discovery schemes; the Cooperative

Content Discovery (CCD) scheme, and the Prediction-Assisted Cooperative Content

Discovery (PACD) scheme. Tracking-based schemes involve some form of information

exchange among nodes to track the cached contents, which can thus expand the search

space, and consequently increase cache hits [12]. This is since such cached content

information can be used to navigate request packets towards nearby caching nodes

rather than blindly directing them towards the far-away data center. In CCD, we

expand the search space beyond the typical neighborhood scope by relying on beacon

messages that are exchanged periodically between neighboring vehicles, as well as the

mobile and static nature of moving and parked vehicles, respectively, to diffuse cached

content information within the network. CCD then uses location-based breadcrumbs

to track the next road segments to which caching nodes are planning to traverse, and

dynamically detect closer caching nodes to the requester. In order to further expand

the search space, we propose PACD, where a novel vehicles trajectory prediction

scheme is designed to predict the location of mobile caching nodes. To the best of our

knowledge, CCD is the first tracking-based cache discovery scheme within VANETs

that is extended beyond the neighborhood scope, and PACD is the first one to use
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prediction, thus expanding the search space beyond restrictions.

4) Cooperative Cache Placement Module: In order to achieve objective 5, we

propose the Probabilistic Cooperative Caching at Moving and Parked Vehicles (PC-

CMPV) scheme. To the best of our knowledge, PCCMPV is the first cooperative

cache placement scheme in VANETs that caches the data at both parked and moving

vehicles, and enables the extension of the cooperation range, thus making more in-

formed caching decisions. Such an extension is facilitated by sending cached content

information of different nodes from parked to moving vehicles, and vice versa, via

beacon messages. In PCCMPV, we populate valuable road segments with diverse

cached data to increase cache hits. In addition, we exploit the trajectory of moving

vehicles to also apply an implicit form of off-path caching, thus increasing the range

of potential caching nodes.

5) Information Exchange with Reduced Overhead: In order to address objective

6, we adopt the use of bloom filters. A bloom filter is a simple and spatially-efficient

randomized data structure [14]. It is typically used to parsimoniously represent a

set of elements by catering for membership queries without taking too much space

[14]. We use bloom filters during the cached content information exchange process

associated with cache discovery and placement, which significantly reduces overhead.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents some back-

ground and related work. We provide a review of the existing reactive and proactive

caching schemes. Also, since most reactive caching schemes in VANETs follow a non-

cooperative caching approach, we review the existing cooperative caching techniques
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in other network paradigms, such as MANETs and ICNs. We provide a detailed

discussion of both cooperative cache placement and cache discovery schemes to un-

derstand which characteristics need to be leveraged and which should be overlooked

when designing cooperative caching schemes within the context of VANETs. We

present our predictive proactive caching framework in Chapter 3. In this chapter,

we introduce our proposed prediction module, as well as our proactive cache place-

ment module, including the ILP formulation and greedy heuristic scheme proposed

to solve the proactive cache placement problem. Furthermore, the performance eval-

uation results comparing the optimal and heuristic solutions are provided in this

chapter. In Chapter 4, we discuss the cooperative cache discovery module, including

the two proposed schemes CCD and PACD. The proposed vehicles trajectory predic-

tion mechanism used in PACD is also presented in this chapter. Chapter 5 discusses

the proposed cooperative cache placement module. We also provide a detailed dis-

cussion of the performance evaluation of the proposed cooperative caching solution.

This involves each of the two cache discovery schemes presented in Chapter 4, along

with the cooperative cache placement scheme. Finally, we highlight the conclusions

of our work and outline some potential future directions in Chapter 6.
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Chapter 2

Background and Overview

2.1 VANETs Overview and Characteristics

In VANETs, vehicles can exchange information with each other and/or with roadside

units (RSUs) [15]-[20]. The former is referred to as Vehicle-to-Vehicle communication

(V2V), while the latter is referred to as Vehicle-to-Infrastructure communication (V2I)

[17, 21]. In an attempt to reinforce V2V and V2I communications, standards related

to wireless access technology in vehicular environments have been developed [15, 16].

One of the most important of such wireless access technologies is the Dedicated Short

Range Communications (DSRC) [17, 18]. The DSRC standardization effort has been

amended by the IEEE 802.11 and the IEEE 1609 standard groups, which changed its

name to IEEE 802.11p Wireless Access in Vehicular Environments (WAVE) [17, 18].

Recently, Cellular Vehicle-to-Everything (C-V2X) technology has been standardized

to support V2X services [19]. It is worth mentioning that the work proposed in this

thesis is applicable regardless of the underlying vehicular communication technology.

The notion of supporting wireless communication in smart vehicles has captured

researchers’ attention since the 80’s [15]. Note that smart vehicles are the main
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facilitators of Information Transportation Systems (ITS) [15]-[18]. ITS can streamline

a wide range of applications, including traffic safety (e.g., sending warning messages

from the scene of an accident to other vehicles on the road), traffic management (e.g.,

providing real-time traffic conditions), and infotainment applications (e.g., Internet

access) [17, 19, 20]. In the last decade, research, standardization, and development in

the area of wireless communication in smart vehicles have gained vigorous momentum.

This can be attributed to the extensive endorsement of IEEE 802.11 technologies, as

well as the acknowledgment of various governments, industries, and institutes of the

crucial role that vehicular technology can play in enabling ITS [15]-[18].

VANETs are composed of two intrinsic components, namely on-board units (OBUs)

and RSUs [17, 18, 22]. An OBU is a hardware device that resides on-board smart

vehicles to enable them to communicate with other vehicles [18]. A smart vehicle is

typically equipped with an OBU and a tremendous number of sensors for capturing

and processing information about the surroundings [17, 18]. An OBU can resemble

a personal computer in terms of its storage and computational capabilities [17, 18].

In addition, an OBU consists of a user interface and a communication module [18].

An RSU is a stationary device that is typically located along road sides, near parking

spaces, or at intersections [18]. RSUs are equipped with a communication module for

communicating with vehicles as they pass by. In addition, RSUs can be connected to

the Internet or other servers, thus facilitating Internet access to vehicles. For this pur-

pose, RSUs are also equipped with communication modules based on different radio

technologies to enable communication within the infrastructure network [17, 18].

VANETs are characterized by a number of unique characteristics that distinguish

them from other networks. Such characteristics are summarized as follows [18]:
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• Predictable Mobility: The movement of vehicles is restricted by road topology

and layout, as well as the necessity to abide to road signs, traffic lights, and

traffic rules. Thus, the next position of a vehicle can be more easily predicted

compared to MANETs, where nodes’ movements are arbitrary, making it harder

to predict their future positions.

• Highly Dynamic Topology: The fast and rapidly changing movement of vehicles

makes the network topology more apt to extremely rapid and frequent changes.

• Intermittent Connectivity: In VANETs, network connectivity and link lifetime

between vehicles are highly affected by the dynamic changes in the topology.

In addition, network connectivity can be rigorously affected by the scarce or

low vehicular density. The fast variations in link connectivity can cause many

routes to be disconnected before they can even be used.

• Sufficient Power, Storage, and Computational Resources: Nodes in VANETs

are vehicles rather than handheld devices, which is why power is not a critical

issue, since energy is continuously provided to vehicles via the long life battery.

In addition, vehicles tend to have abundant resources in terms of storage and

computational capacity.

• Bandwidth Limitations: Due to the short range of bandwidth frequency (10-20

MHz) used in vehicular scenarios, data dissemination latency is affected by the

fair use of bandwidth. This is particularly true when the density of vehicles is

high, and thus more nodes contend for the same resources.

Along with the aforementioned characteristics, another important ingredient in

VANETs is the way in which data access occurs. In particular, in social media access
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Figure 2.1: Taxonomy of caching schemes in VANETs.

applications in VANETs, data access is pull-based [17]. That is, a request targeting

the data center is sent to an access point (i.e., RSU), and a response is sent back to

the requester. This process is often associated with high delay and low packet delivery

ratio due to the highly dynamic topology and intermittent connectivity of VANETs

[5, 10]. By the time the data is issued back to the requester, its position might be

significantly changed [5]. Thus, the packet might be dropped if the requester cannot

be tracked [5]. This further affects the QoS. One way that can help improve the QoS

and reduce the load at backhaul links is to incorporate the use of caching. In the

next sections, we provide a review of the existing caching schemes in VANETs. A

taxonomy of such schemes is depicted in Figure 2.1.



2.2. CACHING IN VANETS 15

2.2 Caching in VANETs

Caching schemes in VANETs can be classified into proactive caching schemes and

reactive caching schemes.

2.2.1 Proactive Caching in VANETs

In proactive caching, the data center caches the data at vehicles by prefetching the

requesters contents of interest to be cached ahead of time [23]. This helps reduce

latency and alleviate the traffic load at backhaul links [23]. An example of proactive

caching schemes in VANETs is proposed in [24], where the data provider periodically

broadcasts the data to all the vehicles within its transmission range to be cached.

Each vehicle can then exchange the cached data with other vehicles upon encounter.

Thus, users can acquire the data they are interested in only if they encounter another

vehicle that happens to have it. To increase data availability, the authors in [10]

propose a proactive caching scheme where the data provider periodically broadcasts

the data to all the vehicles in highly dense roads and at intersections.

These proactive caching schemes eliminate the need for an infrastructure, which

makes them cost-effective and suitable for infrastructureless vehicular environments.

However, severe congestions can occur due to excessive transmissions, particularly in

dense networks [10]. In addition, they are often considered unsuitable for user-specific

applications, such as social media access applications. This is since in such applica-

tions, as opposed to safety applications, the requested content varies from one user to

another, so the flooded contents are not of interest to all users [10]. Furthermore, they

trigger broadcast storms and lead to bandwidth inefficiency [25]. The aforementioned

reasons lead to their infeasibility for applications that have huge amounts of content,
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such as social media applications. The scheme in [23] has been used as a baseline

by other broadcast-based proactive caching schemes, such as [25] and [26], with more

emphasis on resolving the issues of broadcast storms and bandwidth inefficiency.

Proactive caching has also been investigated for downloading large contents in

VANETs. Such contents cannot always be obtained all at once because of the short

connectivity period between vehicles and infrastructures [27]. Thus, such schemes

divide the data into smaller chunks and aim at minimizing the download time of

all the chunks constituting the entire content. Note that in large contents, multiple

requests are typically issued by the requesters to fully retrieve the data. In [27],

rather than sending a request for each chunk, a vehicle only sends a request for the

first chunk, associated with information about its location, speed, and frequency of

interests to the data provider. The data provider then uses a mobility prediction

scheme to cache the remaining data chunks at specific RSUs that are expected to be

in close proximity to the requesting vehicle. Thus, the number of data transmissions

is reduced. However, the incorporated mobility prediction scheme in [27] is highly

unreliable as it predicts the future position of vehicles based on their current position

and speed. Thus, it assumes that vehicles are moving in one direction and at a

constant velocity [27]. In addition, RSUs require very large investments, so they

might not be densely deployed [7].

Recently, some schemes, such as [11, 28, 29], have proposed the use of roadside

parked vehicles for downloading large contents. These schemes divide the data into

smaller chunks and use the sequential nature of parked vehicles to store these chunks.

In [11, 28, 29], only an initial interest is issued and the remaining data is prefetched to

reduce the download delay. However, most of the schemes that adopt the use of parked
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vehicles are more concerned with content downloading, rather than caching itself [11].

In [11], a requesting vehicle sends a content download request to the nearest parking

cluster. The parked vehicle located at the entry of the road segment is selected as the

cluster head (CH). The CH communicates with other parking clusters to download

the remaining parts and have them ready for the requester. The authors assume that

parked vehicles are connected to the content provider via the Internet. This incurs

additional costs for parked vehicles. In [28], each moving vehicle sequentially uploads

its content chunks as it passes by parked vehicles that form line clusters. This is

done without considering the possible trajectories or needs of the requesters. Thus,

acquiring the data relies on opportunistic encounter with line clusters that happen to

have the data. In [30] and [31], RSUs have been used for storing content chunks, while

modeling the mobility patterns of vehicles. In [30], such mobility patterns have been

modeled as a single highway, while a Manhattan mobility model following a more

realistic mobility assumption has been adopted in [31]. However, the authors assume

a constant velocity of vehicles and disregard the unstable conditions that could affect

their mobility.

Most existing proactive caching schemes in VANETs adopt a broadcast-based approach,
which renders them unsuitable for social media access applications [5, 10]. Other schemes
are designed to accommodate the download process of large-sized contents that require
multiple transmissions, with the necessity to wait for an initial request to be issued before
an action is taken. In this thesis, we propose a predictive proactive caching module that
takes the trajectory of vehicles, as well as their request patterns into consideration in
order to enable caching to occur ahead of time. The proposed module is suitable for
social media access applications that require single transmissions.
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2.2.2 Reactive Caching in VANETs

In reactive caching, the data is cached as it propagates back to the requester in

response to a previous request. In general, there are two types of reactive caching

techniques, namely cooperative and non-cooperative caching. In non-cooperative

caching, caching decisions are made in an autonomous manner that does not involve

any kind of coordination between the nodes [32]. In cooperative caching, two or more

nodes either form a cooperative caching environment or make caching decisions in a

collaborative manner [32]. This enables the sharing and coordination of cached data

between multiple nodes in order to improve data availability and enhance the overall

caching performance [5, 13, 32].

Most existing reactive caching schemes in VANETs typically employ the use of

non-cooperative caching. In [33], the authors propose a non-cooperative caching

scheme, where all moving vehicles along the data forwarding path cache the data.

This significantly increases wasted cache space and reduces data diversity, which may

lead to reduced cache hit ratio, particularly with sparse cache space and frequent

cache replacements [9]. In [9], the authors strive to improve caching efficiency and

content diversity in the network by proposing the Distributed Probabilistic Caching

(DPC) scheme. In DPC, caching occurs at moving vehicles by considering three

factors; data popularity, the degree and betweenness centrality of the vehicle in the

ego network, as well as the relative direction of movement between the data provider

and consumer. DPC has been shown to improve network performance compared to

the scheme in [33]. However, the highly dynamic nature of vehicles can cause the

calculated centrality to be largely unstable, which can affect the efficiency of caching

decisions. In addition, the lack of any form of cooperation between the nodes can
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lead to inefficient utilization of the nodes cache capacity.

In [34], a caching scheme that relies on global information of the network topology

is proposed. In such a scheme, caching occurs at moving vehicles by applying the use

of the minimum vertex cover set theory. The minimum vertex cover set theory is

used to cover the entire network with the minimum number of caching nodes, such

that each node can acquire the data in one hop. However, this requires acquiring

the topology information of the entire network. Thus, caching decisions based on

minimum coverage set are more suitable for networks with a static topology so as to

avoid frequent updates of the global topology information. In networks with a highly

dynamic topology, such as VANETs, this global cache node selection scheme tends

to trigger significantly high maintenance costs.

In [35], the authors propose the Caching-Assisted Data Delivery (CADD) scheme,

which implicitly inherits some features of cooperative caching. In CADD, caching

occurs only at static nodes, called Road Caching Spots (RCSs), deployed at intersec-

tions. Using an implicit form of collaboration between on-path RCSs, the RCS that

receives the highest number of requests is dynamically selected for caching. Such an

implicit cooperation improves cache hit ratio. However, since caching decisions occur

without any exchange of cached content information between RCSs, the problem of

increased wasted cache capacity still persists, thus cache hit ratio can still be affected.

The lack of an explicit exchange of cached content information in the aforemen-

tioned schemes can lead to increased redundancy (i.e., caching the same content at

nodes that are within close proximity), and inefficient utilization of the available

caching resources, which can reduce cache hits [13]. In [36], an explicit cooperative

caching scheme where cache placement decisions are made at RSUs, is employed.
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However, the cooperation range is restricted to the neighborhood scope only, which

limits the extent of data diversity. In addition, the authors ignore the caching re-

sources of vehicles and rely solely on RSUs, which are not densely deployed.

Most existing reactive caching schemes in VANETs are susceptible to increased data
redundancy and wasted cache space, thus reduced cache hits. This is due to the lack
of explicit cooperation and cached content information exchange between nodes. In
this thesis, we propose to take advantage of the benefits of explicit cooperative caching
within the context of VANETs, with an extended cooperation range that goes beyond the
neighborhood scope. Also, as opposed to most existing caching schemes in VANETs that
exploit the caching resources of either moving vehicles only or RSUs only, we leverage
the caching resources of both parked and moving vehicles.

Cooperative caching has been recognized as an advantageous technique for en-

hancing the performance of content access in different network paradigms, including

MANETs (Appendix A) [12] and ICNs (Appendix B) [13]. However, despite its sub-

stantiated leverage [12, 13], cooperative caching has been rarely investigated within

the context of VANETs. This can be attributed to the extremely dynamic nature

of vehicles, which shortens the lifetime of the exchanged cached content information,

since they tend to rapidly become obsolete as vehicles quickly change their positions.

We believe that it is possible to take advantage of the benefits of cooperative caching

within the context of VANETs. To do so, it is important to study existing cooperative

caching techniques in other network paradigms, such as MANETs and ICNs. This

can help identify the features of cooperative caching that can be leveraged and the

ones that should be completely avoided when applied within the context of VANETs.

The state of the art cooperative caching techniques in literature handle one or both

of two cooperative caching components, namely cache discovery and cache placement

[12, 13]. A taxonomy of such cooperative caching techniques in MANETs and ICNs
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Figure 2.2: Taxonomy of cooperative caching schemes in MANETs and ICNs.

is illustrated in Figure 2.2.

Note that the cache discovery component is concerned with locating the nearest

copy of the cached data. Discovering where the data is cached is the first procedure

that needs to be performed when a node issues a request [12]. In the cache placement

component, decisions pertaining to where to cache the data and which data to cache

are made [12, 13]. In the following sections, we provide a detailed discussion of each

of these components in MANETs and ICNs.
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2.3 Cooperative Cache Discovery

Various cooperative cache discovery schemes have been designed for MANETs and

ICNs in the literature. Such schemes can be classified into broadcast-based, probing-

based, server-based, and tracking-based schemes [12, 13]. In the next sections, we

provide a detailed discussion of some of the existing schemes in each category.

2.3.1 Server-based Cache Discovery

In this type of schemes, requests are directed to the original data provider (i.e., the

server) and the caches of intermediate nodes are consulted for a matching replica. For

example, as depicted in Figure 2.3, node A generates a request for the data item d1.

It first checks its own local cache for a matching replica. Upon local cache miss, A

sends the request to the server. As the request packet propagates along the request

forwarding path, each intermediate node checks whether it has the data in its cache.

If not, it forwards the packet to the next node along the path. This is repeated until

the server or a caching node is reached. When node E receives the request, it checks

its cache, finds a match for d1, and issues a reply back to node A. This approach

does not yield additional overhead as it does not require the transmission of extra

messages [12]. However, it significantly limits the search space since it relies on finding

the cached data at intermediate nodes encountered by the request packet en route to

the server [12]. It offers no guarantee that any of those nodes has the cached data.

Thus, the request could eventually be satisfied by the far-away server, which results

in increased delay [13].

Cache Data [37], which is proposed in MANETs, represents the basic server-based

approach. Requests for contents are directed from the requesting node towards the
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Figure 2.3: Server-based cache discovery.

server. As the data packet propagates back to the requester, intermediate nodes

cache the data that are frequently requested. Subsequent requests for the same data

can then be satisfied by intermediate caching nodes. However, due to the mobility

of nodes, the probability of opportunistic encounter with caching nodes might be

significantly affected, causing requests to be served by the far-away server [37, 38].

Cache Path [37] extends the Cache Data approach in MANETs by enabling data

forwarding nodes to cache the path to caching nodes. When a forwarding node

receives a data packet, if the packet destination is closer to it than the original data

provider (i.e., the server), it caches the path to the destination. Subsequently, if this

forwarding node requests the data itself or receives a request for the data from another

node, it can simply navigate the request along the stored path of caching nodes. This

saves cache capacity compared to the Cache Data approach [37, 39]. However, due to

the dynamic nature of MANETs, the stored paths could frequently become obsolete
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[39].

In Hybrid Cache [37], also proposed for MANETs, intermediate nodes en-route to

the server selectively use Cache Data or Cache Path in order to leverage the benefits

and avoid the weaknesses of each scheme. For a forwarding node to decide which

scheme to apply, it uses the data size, the Time-to-Live (TTL) of the data, and the

potential savings yielded from caching the path. Cache Data is used if the data size

or its TTL is small. If TTL is small, caching the path would not be efficient, since

the data would not remain valid for a long time, thus the path to the data would

soon be invalidated. In contrast, if the data size or its TTL is not small, Cache Path

is used. Also, if a large number of hops is saved by using Cache Path, it might be

better to use it. The problem with these schemes is that the caching information of

a node cannot be explored if it is not on the forwarding route to the server [37]-[41].

The aforementioned basic server-based cache discovery approach is used in many

schemes in ICNs, including [42]-[46]. In ICNs, the server-based approach is referred

to as the opportunistic forwarding mechanism. Such an approach is considered the

default strategy used by most caching schemes in ICNs [13].

The dynamic INterest FORwarding Mechanism (INFORM) [47] is another server-

based cache discovery scheme used in ICNs. INORM applies a dynamic forwarding

mechanism based on the Q-learning algorithm [48]. In INFORM, when a forwarding

node receives a request packet, and if the requested content is locally unavailable,

it forwards the packet over the shortest path towards the original data provider and

the cache of each intermediate node is consulted in a hop-by-hop basis. In addition,

the forwarding node forwards a copy of the request on a randomly selected interface.

This is done during an exploration phase to discover content replicas, as well as the
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Q values of interfaces in order to determine the best interface yielding the minimum

delay. Adding the interest random walk feature to the basic server-based approach

enables the exploration of a wider search space. However, such a random walk may

eventually end without encountering a caching node, particularly since it is limited

by a certain number of hops.

2.3.2 Broadcast-based Cache Discovery

In this type of schemes, requests are flooded to locate the cached data. Once the

recipients of the broadcasted messages receive the request, they check to determine

whether the requested data is stored in their local cache. If it is, the data is sent back

to the requester. If not, the request is re-broadcasted. For example, as depicted in

Figure 2.4, node A is interested in data item d1. It first checks its own local cache for

a matching replica. Upon local cache miss, A broadcasts the request. Since neither

B nor C has d1 in the local cache, they rebroadcast the request. When C does that,

the request reaches all of its neighbors. Since both D and E have d1 in their cache,

they both issue a data reply back to A.

This approach expands the search area compared to the server-based approach,

and thus expedites the discovery process. However, it can be cost effective in terms of

bandwidth and can have a severe impact on the overall traffic load in the network [12],

particulary in cases when there is a huge amount of contents, thus prompting sheer

number of requests. Consequently, most schemes utilizing this approach tend to use

limited flooding [12, 13]. A typical form of limited flooding restricts the propagation

of the request packet to a specific number of hops [12, 13].

The Split Cache scheme proposed in [49] employs the basic form of limited flooding
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Figure 2.4: Broadcast-based cache discovery.

in MANETs. In Split Cache, a hop count parameter is included in the request packet

when it is broadcast so as to limit the range of the request. This alleviates the

aforementioned problems. However, limited flooding still has several drawbacks [12].

For instance, if none of the nodes receiving the request has the requested data in its

cache, either the request is dropped or the requester waits for the timeout before it

resends the request to the server [12]. This causes an increased latency.

Two broadcast-based schemes in MANETs are investigated in Hamlet [50], both of

which adopt the limited flooding approach. These schemes are referred to as Mitigated

Flooding and Eureka [50]. In the former, the basic form of limited flooding, which

incorporates the use of a hop count parameter, is adopted. In Eureka [50], a network

steering capability is added. Such a capability enables routing the data towards

parts of the network where there is a higher probability that the data will be found.

To do that, requests are steered within the network using the concept of information



2.3. COOPERATIVE CACHE DISCOVERY 27

density. This reduces delay and increases packet delivery ratio compared to Mitigated

Flooding [12, 50].

Another MANET-based scheme that relies upon limited flooding is the Shared

Cache [51]. In this scheme, nodes are organized into clusters. When a node requests

a data packet, it first checks its local cache. In case of a cache hit, the data is

returned. Otherwise, the node broadcasts the request within the cluster. If the data

is available in the cache of a cluster member, it is sent back to the requester. If not,

upon overhearing the cache miss, the cluster head forwards the request packet to

the server. This reduces the delay encountered in the basic form of limited flooding

when a requesting node is forced to wait for a timeout before resending the request.

However, due to the dynamic topology of the network, maintaining these clusters can

also lead to increased overhead, particularly in dense networks and in cases when the

cluster head gets disconnected or move away [12, 51].

In [52], an ICN-based approach that uses limited-flooding for cache discovery is

proposed. In this scheme, rather than the hop-count parameter used in various ICN-

based schemes, including [53], the receiver of a request packet determines whether or

not to rebroadcast the packet by determining the redundancy of broadcasting. This

occurs by identifying the sender’s neighbors and determining if the neighbors of the

receiving node are a subset of those of the sender. If so, the node will not rebroadcast

the request packet since it has already been received by all of its neighbors. Thus,

this approach reduces the number of packets sent in the network by avoiding sending

redundant packets. However, it does not have the capability to direct the requests

where contents are more likely to be found.

In [54], an ICN-based scheme that uses limited flooding based on a link-weight
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parameter is introduced. In this scheme, the link-weight parameter serves the same

purpose as the hop-count parameter in basic limited flooding. However, it avoids

searching for the data where it is less likely to be found. This is done by taking

into consideration that the caching policy identifies paths with low delay rates by

avoiding congested links, and requires the data to be cached on the downstream end

of a congested link. Accordingly, in the cache discovery employed in [54], the link-

weight parameter used for limited flooding is the reverse of the link bandwidth. Thus,

a request is flooded until a link with a bandwidth that is as low as the bandwidth

specified is found.

2.3.3 Probing-based Cache Discovery

In this type of schemes, a node first determines the location of the requested data

within the collective cache before sending a direct request to the discovered caching

node [12, 13]. Thus, in case of a local cache miss, a node sends a broadcast message

requesting to be notified by all the nodes that have the data. The requester then

selects one of the replying nodes and sends a request directly to the selected node.

Typically, the requester chooses the first node from which it receives a reply as it

is considered the closest node [12]. For example, as shown in Figure 2.5, node A is

interested in data item d1. Upon local cache miss, it broadcasts a probing message

to request the location of d1. When B and C receive the probing message, they

rebroadcast it. Accordingly, the probing message reaches the caching nodes D and

E. They both respond by sending their location to node A. Once this information

is received, A selects the closer node (i.e., D), and issues the request to it. Upon

receiving the request, node D sends a reply back to A.
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Figure 2.5: Probing-based cache discovery.

Probing-based schemes benefit from the expanded search space provided by the

broadcast-based approach while minimizing the communication overhead typically

incurred due to the multiple data copies received by the requester [12]. However,

such schemes can cause increased delay compared to the broadcast-based approach

[12].

Route Stability [55] is a probing-based scheme proposed in MANETs. In Route

Stability, a query for the location of the requested data is broadcasted in the network.

Upon receiving the query, the nodes check their local cache to determine if there is a

match for the requested data. If so, a reply indicating the nodes address is sent back

to the requester. Otherwise, the node rebroadcasts the query. In order to limit the

range of the query, Route Stability calculates certain probabilities that indicate route

stability. In each forwarding node, the probability of a particular route is checked. If

the probability exceeds a certain threshold, the query is rebroadcasted. Otherwise,



2.3. COOPERATIVE CACHE DISCOVERY 30

the query is not rebroadcasted. This helps reduce the overhead associated with the

probing process. However, there is no guarantee that the requested replica can be

found along the routes that have higher stability.

Another probing-based scheme in MANETs is proposed in [56]. In this scheme,

rather than broadcasting query messages to all neighbors, the nodes send them to the

K most relevant neighbors that are considered more stable and less loaded, thus more

suitable to satisfy the request. The rationale behind this scheme is that caching nodes

may move away during the time between sending the probe reply and the requester

issuing the direct request. Consequently, both the requester and responder may lose

connectivity. In this case, it may be required to repeat the entire probing process,

thus wasting more resources and causing higher delay. To alleviate this problem, the

query is sent to certain neighbors that are not significantly loaded, and are stable

enough to be able to satisfy the request. This is done based on a scoring function.

However, the scoring function does not consider the probability that the selected

neighbors actually have the data in their cache.

Stateful forwarding [57] is a probing-based scheme proposed in ICNs. In Stateful

forwarding, nodes broadcast periodical probing messages on available interfaces in

order to retrieve requested contents via the best route. Such periodic probing reduces

the amount of traffic induced during the content discovery process. The best route

is determined by ranking different paths based on whether or not delivery failures or

congestions have been previously observed on them. Restricting the probing process

to certain routes helps reduce the amount of overhead and delay associated with

the probing process. However, it does not guarantee that the probing messages are

directed towards the nodes that actually have the data.
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Figure 2.6: Tracking-based cache discovery.

2.3.4 Tracking-based Cache Discovery

Many existing cooperative cache discovery schemes depend on tracking cached con-

tents [12, 13]. Such tracking information can be used to navigate requests towards

nearby caching nodes rather than directing them towards the far-away server or

blindly sending broadcast or probing messages. This type of schemes is referred

to as tracking-based schemes [12]. For example, as depicted in Figure 2.6, all neigh-

boring nodes periodically exchange their cached content information. Thus, node C

receives information from D indicating that it has the data item d1 in its cache. It

also receives similar information from E. Thus, C now knows that d1 is available at D

and E. It saves such information for subsequent use. At a later time, node A becomes

interested in d1. Upon local cache miss, node A checks if it has any cached content

information (tracking information) pertaining to d1. If not, it sends the request along

the request forwarding path to the server. Each intermediate node checks its own
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local cache for a matching replica. If it does not have the data in its cache, it checks

if it has any tracking information regarding the data. When the request reaches node

C, and based on its knowledge that both D and E have the data, it directs the request

to D, which responds by issuing a data reply back to A.

In Neighbor Caching [58], a tracking-based scheme is proposed within the context

of MANETs. In Neighbor Caching, when a node encounters the need for a cached data

item to be replaced, it coordinates with its neighbors to determine the best node to

which the replaced data can be migrated. Once the migration occurs, the node keeps a

reference to the neighboring node to which the data has migrated. In the future, if this

node initiates or receives a request for the migrated data item, it forwards the request

to the referenced neighboring node. Such a scheme can reduce the overhead associated

with cached content information exchange. However, it restricts the tracking process

to migrated contents only, which limits the benefits of the tracking process.

Another set of tracking-based schemes in MANETs depend on some form of infor-

mation exchange for tracking cached contents [12, 59, 60]. In particular, they rely on

nodes actively forming a group and periodically exchanging the status of their caches

[12]. For example, in GroupCaching [59], one-hop neighbors are organized into a

group. The members of each group periodically exchange information pertaining to

their cached contents. Two tables are maintained by each group member; a self table

and a group table. In the self table, a node maintains a list of its own cached data

items. In the group table, a node maintains a list of the cached data items in each

member of its group. Upon initiating or receiving a request for a data item, a node

first checks its self table for a matching replica. In case of a cache miss, the group

table is consulted. If the requested data is cached at one of its neighbors, the node
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forwards the request to that neighbor. Otherwise, the request is directed towards the

original data provider (i.e., the server). The exchange of cached content information

increases the benefits gained from the tracking process. This leads to reduced de-

lay compared to passive tracking schemes, such as Neighbor Caching [12]. However,

limiting the search space to one-hop neighbors can be disadvantageous. This is since

the dynamic nature of nodes causes the tracking information to be invalidated once

neighboring nodes move out of range.

Among the tracking-based schemes that rely on information exchange between a

group of nodes in MANETs is the scheme in [60]. In this scheme, cached content

information is periodically exchanged between neighboring nodes that lie within a

certain zone specified by a given number of hops. In order to resolve a request, a

node first checks its local cache. In case of a cache miss, it determines whether a

matching replica is available at one of the nodes in the specified zone. Otherwise, the

request is directed to the server. This scheme expands the search space compared

to schemes restricting the search space to one-hop neighbors only [12, 60]. However,

this comes at the expense of increased communication overhead [12].

In ICNs, tracking-based schemes are also referred to as Index-based schemes [13].

Among such schemes is the one in [61], where a data forwarding node decides whether

or not to reference the replica holder (i.e., data source) based on a probability. This

probability is calculated based on the node’s distance to the data holder. This track-

ing information can then be consulted to satisfy future requests. However, the lack

of explicit information exchange between the nodes restricts the range of tracking

information, thus limiting the search space and reducing cache hits [12, 13].

The schemes proposed in [62]-[93] are examples of tracking-based schemes in ICNs,
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where one-hop neighbors exchange their cached content information for tracking pur-

poses. Such schemes employ the same request resolution mechanism previously illus-

trated in MANETs. Due to the static nature of caching nodes in ICNs, maintain-

ing up-to-date tracking information does not yield as much overhead as the case in

MANETs in such schemes [12].

Most existing tracking-based schemes that rely on cached content information ex-
change between a group of nodes, can achieve reduced overhead and delay compared
to broadcast-based schemes and probing-based schemes [12, 13]. They also extend the
search space compared to server-based schemes [12]. However, in dynamic networks, in-
tensive number of messages might need to be exchanged to maintain up-to-date tracking
information, which could lead to huge overhead [12]. To reduce overhead, most existing
tracking-based schemes restrict information exchange to neighboring nodes only [12].
However, this limits the search space, and can thus cause failure to locate caching nodes
[12]. In this thesis, we propose two tracking-based cache discovery schemes that expand
the search space beyond the neighborhood scope, and we employ the use of vehicles tra-
jectory prediction to predict the location of mobile caching nodes and search for replicas
beyond restriction.

2.4 Cooperative Cache Placement

Several cooperative cache placement schemes have been proposed in MANETs and

ICNs. Such schemes can be categorized into global cooperative caching schemes and

local cooperative caching schemes [12, 13]. In the former, each node sends its cached

content information to all other nodes in the network. This helps make more in-

formed caching decisions, leading to significant increase in data diversity and efficient

utilization of the nodes storage resources, which can significantly yield higher cache

hits. However, global cooperative caching schemes typically induce huge communica-

tion overhead, particularly in highly dynamic networks [12]. Thus, global cooperative
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caching schemes are not typically adopted within the context of MANETs, whereas

there are few existing schemes in ICNs [13]. In contrast to global cooperative caching,

there are local cooperative cache placement schemes. In such schemes, cooperation

occurs between a group of nodes only. This reduces the amount of communication

overhead associated with the collaboration process. However, it limits the cooperation

range, causing caching decisions to get quickly invalidated, particularly in dynamic

networks. Local cooperative caching schemes can be further categorized into path-

based and neighborhood-based schemes. We discuss each of these categories in the

next subsections.

2.4.1 Global Cooperative Cache Placement

A global cooperative cache placement scheme in ICNs is proposed in [94]. This

scheme dynamically assigns data items to ICN-based caching nodes. In this scheme,

distributed managers that reside in caching nodes make caching decisions based on a

global view of the status of all caches, as well as the relevant request patterns of data

items. Each distributed cache manager exchanges information pertaining to its own

cached contents, observed request rates, and popularity of data items with all other

cache managers in the network. This information exchange takes place periodically

or in an event-based manner when changes in the cache status occur. Upon receiving

a data item, a distributed cache manager decides whether or not to cache the data by

coordinating with all other managers in the network in order to minimize the overall

network traffic. Towards this purpose, an optimization technique is implemented

to make optimal caching decisions. The global cooperation among cache managers

yields significant performance leverages and significantly reduces convergence time
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[94]. However, this comes at the expense of substantial amount of overhead [94].

In [95], global cooperation takes place between ICN-based caching nodes, and an

attempt to alleviate the costs associated with cache collaboration is made through the

use of content popularity ranking. Note that popularity is calculated in a distributive

manner by content routers. Each router sustains an Availability Information Base

(AIB), estimating which content could be possessed by which router. A popularity

ranking sequence is generated by each router via local measurements and is announced

to all other routers. Accordingly, each router updates its AIB. In order to handle the

inconsistency of content popularity measured by different routers, a self-adaptive dual

segment cache design algorithm is employed. The pairwise link cost and cooperative

forwarding/caching-related metrics are periodically announced by each router. The

main objective of the scheme is to optimally assign contents to caching routers in a

way that minimizes the average content access cost and cache miss rate. This scheme

shows significant improvements compared to hierarchical caching schemes that can

only exploit the storage resources of en-route caching nodes. However, the accuracy

of the cached content information can be highly affected by the correctness of the

popularity-based estimation process.

Despite the use of global cooperative caching in some schemes in ICNs, the extreme

amount of communication overhead associated with the collaboration process renders

these schemes disadvantageous in ICNs [13, 94, 95]. This is particularly the case when

there is a substantial amount of different contents, such as social media traffic.

In contrast to global cooperative caching, there are local cooperative cache place-

ment schemes. In such schemes, cooperation occurs between a group of nodes only.
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This reduces the amount of communication overhead associated with the collabora-

tion process. However, it limits the cooperation range, causing caching decisions to

get quickly invalidated, particularly in dynamic networks. Local cooperative caching

schemes can be further categorized into path-based and neighborhood-based schemes.

We discuss each category in the following subsections.

2.4.2 Path-based Local Cooperative Cache Placement

In this type of schemes, cooperation is held between nodes along the delivery path [13].

Typically, such cooperation lacks the explicit exchange of cached content information

between the nodes. This avoids incurring extra communication overhead. However,

it narrows the collaboration scope and leads to increased redundancy and wasted

cache space. For example, in Hamlet [96], which is a path-based cache placement

scheme that is applied within the context of MANETs, nodes along the delivery

path make caching decisions based on the diversity of information. In particular,

each intermediate node records the distance between itself and the request initiator

(i.e., where a replica is likely to be cached), as well as the distance to the data

provider. The node then calculates an index of information presence for each data

item. Upon receiving a data item, each node uses the presence index of such data item

to determine whether a replica should be cached. This can reduce redundancy and

wasted cache space along the delivery path. However, due to the dynamic nature of

MANETs, the calculated information presence index may not be correctly reflected.

In addition, requests patterns and data popularity are not considered in the caching

decision.

Split Cache [97] improves upon Hamlet [96] by enabling intermediate nodes to
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make caching decisions based on both the diversity of information and the frequency

of content requests. Split Cache adopts a cache split policy, where the cache is split

into two partitions, one caches popular data contents and the other caches less popular

contents. Split cache reduces delay compared to Hamlet, since the former takes

data popularity into consideration, which enables queries for frequently requested

contents to be satisfied from nearby caching nodes, rather than having to propagate

farther away. However, as previously mentioned, due to the frequent movement of

nodes, both the presence and request patterns information can get quickly revoked

[97]. Such rapid invalidation of this information further narrows the already limited

collaboration scope in path-based schemes.

In ICNs, the static nature of caching nodes makes the aforementioned problem

less of a concern. For example, in [98], caching decisions are made based on the

number of copies to be cached on a forwarding path. This is estimated based on the

cache capacity of the caching nodes along the delivery path. The main objective of

such a policy is to enable fairness pertaining to the distribution of contents along the

delivery path. For this purpose, content routers strive to probabilistically cache data

items to enable fair multiplexing of the path cache capacity among various content

flows per unit of time while sustaining considerable reductions in cache evictions and

efficient utilization of the nodes storage resources. In addition, data items targeting

requesters that are located further away from the data provider are less likely to be

cached in nodes that are near this data provider. This is since such data items have

a higher chance to be cached deep along the delivery path than contents targeting

requesters that are located closer to a source. This scheme has been shown to yield

significant reductions in terms of server hit ratio, delay, and cache evictions. However,
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this comes at the expense of high computational cost [13, 98]. Also, the scheme does

not consider the request patterns of data items in the caching decision [13].

The Least Unified Value-path scheme (LUV-path) [99] addresses the drawbacks

of other schemes, such as [98], where there is a high probability of caching unpopular

contents [13]. In addition to taking contents popularity into consideration, LUV-path

enables caching routers along the delivery path to implicitly collaborate together

to increase data diversity and reduce caching redundancy. Towards this purpose,

LUV-path allocates different weights to passing-by contents between upstream routers

and downstream routers. Such weights are assigned in a coordinated way based on

the content popularity and the number of hops from the caching node to the data

provider. LUV-path addresses the fact that duplicated contents in upstream routers

are less likely to be accessed, leading to much lower cache hits. Thus, in LUV-path,

the caching probability for new contents increases at upstream routers compared

to downstream routers. As it is less likely for downstream routers to cache new

data items, popular contents, whose weight increases every time they get accessed,

would reside in downstream routers, thus closer to consumers. Thus, LUV-Path has

the capability of directing popular contents towards the network edge to be located

closer to consumers while increasing data diversity. However, the limited scope of the

cooperation range significantly restricts the benefits gained from cooperative caching

[13].

2.4.3 Neighborhood-based Local Cooperative Cache Placement

In this type of schemes, cooperation occurs between a node and its neighbors [12, 13].

Such schemes typically involve an explicit exchange of cached content information
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among neighboring nodes in order to make more informed caching decisions. This

slightly expands the cooperation range compared to path-based caching schemes [13].

However, this comes at the expense of increased communication overhead, particu-

larly in dynamic networks [12, 13]. Consequently, many neighborhood-based schemes

restrict the cooperation range to one-hop neighbors only [59, 100, 101, 102].

GroupCaching [59] is a neighborhood-based cooperative caching scheme proposed

in MANETs. In GroupCaching, one-hop neighbors are organized into a group. Each

node periodically exchanges its cached content information with its remaining group

members. Caching decisions are then made collaboratively within each group in order

to increase data diversity and avoid wasted cache space. Thus, upon receiving a data

item, a node checks whether any of its group member already has the data in its

cache. If not, the data is cached. If the node does not have enough cache space, it

randomly selects one of its neighbors that have enough cache space and sends the data

to it for caching. If there is no enough cache space in the group, the node selects the

group member that has the least recently used data item and sends the data to it for

replacement. Several other schemes in MANETs adopt the same approach, including

[100]-[103]. In these schemes, the increased data diversity within the neighborhood of

nodes increases data accessibility, and thus reduces access delay compared to path-

based schemes [12, 13]. However, due to the mobility of nodes, the exchanged cached

content information is characterized by a short lifetime, which results in unstable

caching decisions [12].

Another neighborhood cooperative caching scheme in MANETs, where one-hop

neighbors form a collective cache is proposed in [103]. In this scheme, the cache

admission policy is based on data diversity within the group, as well as the distance
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between the node and the data provider. If the distance between the former and the

latter is too small, the data is not cached. This further avoids wasting the nodes

storage resources. In addition, if the data is not already cached within the group and

the node does not have enough cache space, a replacement policy that is based on a

utility function is adopted. In such a policy, a certain utility function that is based

on four factors is used. These factors include the popularity of the data item, its

time-to-live, its size, and the distance between the data provider and consumer. This

improves data accessibility and cache hit ratio [103]. However, the aforementioned

problems are still predominant [12].

The scheme in [60] extends the cooperation range to include neighbors within

a certain number of hops. Such neighboring nodes form a zone and in each zone,

the nodes periodically exchange their cached content information and energy levels.

Caching decisions are made based on both data diversity and content popularity to

optimize cache placement within zones in order to efficiently utilize the available

cache space and improve data availability. Thus, when a node receives a frequently

accessed data item, it checks whether the data is already cached within its zone. If

not, it caches the data. If the node does not have enough cache space, the least

frequently accessed data item is selected for replacement and is migrated to the most

valuable zone member. The most valuable zone member is the one with the highest

cache space and residual energy level. This scheme tends to improve data availability

and reduce access latency. However, as the number of hops specifying the zone

range increases, the amount of communication overhead incurred due to the exchange

of cached content information and energy levels significantly increases. Since such

information can get quickly invalidated in networks with highly dynamic nature, the
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additional communication overhead may be incurred without much profit.

As previously mentioned, in ICNs, the caching nodes are static. Thus, the lifetime

of the exchanged cached content information is not as short as in dynamic networks.

In [104], a neighborhood-based caching scheme is proposed to push popular contents

closer to consumers, while reducing data redundancy and wasted cache space. In

this scheme, one-hop neighbors form a group and their cached content information

is periodically exchanged. The cache admission policy enables the caching of only

one replica along the data delivery path. The caching node is determined based

on two conditions. First, in order to avoid data redundancy, the data item should

not be already cached at any of its neighbors. Second, if the incoming content is

not the least frequently accessed compared to the already cached data items. In

order to enable popular contents to reside near the consumers, caching decisions

begin during the request forwarding process. As the request propagates from the

requester to the data provider, the forwarding node compares the access frequency of

the requested data with that of the least frequently accessed data item in its cache. If

the aforementioned data diversity and content popularity conditions are satisfied, the

node is designated as the content caching node. If not, the same process is repeated

by the next request forwarding node. Note that when the data propagates back, it is

cached at the designated node. This scheme brings the data closer to the requester,

thus reduces access delay. However, the cooperation range is still limited. A multi-

hop neighborhood collaborative caching scheme is proposed in [105] to better utilize

the storage resources within several hops in ICNs.

Rather than determining whether or not to cache a data item, the neighborhood-

based caching scheme in [63] enables nearby nodes to eliminate the redundancy of
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their cached contents. Thus, neighboring nodes periodically evict duplicate contents

from their caches in a collaborative manner. This enables a significant amount of

the nodes storage resources to be released and further used to store more fresh and

popular contents. To do so, each node periodically exchanges its cached content

information with its one-hop neighbors. Whenever there is a potential gain yielded

from redundancy elimination, a new round of the cooperative redundancy elimination

process is triggered. This gain is calculated based on the amount of released caching

slots.

The drawback of path-based and neighborhood-based schemes is that their cooperation
range is limited [13]. We propose to expand this range by exploiting the mobility and
static nature of moving and parked vehicles, respectively. These elements are used to
acquire and distribute cached content information among a wider range of nodes, from
parked to moving vehicles, and vice versa. As opposed to most existing techniques, along
with on-path caching, we also apply an implicit form of off-path caching by exploiting
the trajectory of vehicles.

2.5 Leveraging Cooperative Caching within VANETs

In this section, we highlight the type of approaches that can be leveraged and the ones

that should be avoided when applying cooperative caching within VANETs. This is

discussed from the perspective of the following characteristics:

• Bandwidth Utilization: VANETs are constrained in terms of bandwidth.

Thus, due to the excessive bandwidth utilization associated with the broadcast-

based and probing-based discovery schemes, they should be avoided within

VANETs [12]. In contrast, tracking-based schemes can be leveraged [12]. How-

ever, the amount of overhead incurred during the cached content information
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exchange in order to track the cached contents and the nodes holding them

should be taken into consideration. This is particularly important when ex-

panding the cooperation range beyond the neighborhood scope. Server-based

discovery schemes typically involve the least amount of overhead among all the

other discovery schemes [12, 13]. Such schemes are the ones that are typically

used within VANETs. However, they extremely restrict the search space, which

can lead to low cache hits [12, 13]. Since global-based cache placement schemes

involve excessive bandwidth utilization due to the exchange of cached content

information among all the nodes of the network [13], they should be avoided.

In contrast, local-based cache placement schemes can be leveraged.

• Dynamic Topology: The schemes that can be affected by the rapidly changing

topology in VANETs include the probing-based discovery, the tracking-based

discovery, and the global-based cache placement schemes [12, 13]. In probing-

based discovery schemes, prior to issuing a request, a node broadcasts a probing

message to determine the location of the nodes that have the data. The clos-

est node (i.e., the first one to respond) is then selected to be the target of

the issued request. This selection is done under the assumption that by the

time the request is issued, the caching node will still be the closest. In this

case, a changing topology might lead to some increase in delay and bandwidth

utilization [12]. This adds more delay to the already increased delay involved

in the probing-based discovery approach compared to other discovery schemes

[12, 13]. This is due to the probing process that needs to be performed before

the request-response process could even begin. In tracking-based schemes, the

tracking information pertaining to the nodes holding the cached contents and
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their locations, could be quickly invalidated due to the highly dynamic topol-

ogy in VANETs [12]. However, there is an opportunity in VANETs to exploit

the fact that beacon messages are periodically exchanged among neighboring

vehicles. Such messages could be leveraged by each vehicle to include its own

cached content information and exchange it with its neighbors. In addition,

the predictability of the movement of vehicles can be used to predict their fu-

ture location in order to keep track of the position of caching nodes even when

vehicles move out of range.
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Chapter 3

Predictive Proactive Caching at Parked Vehicles

3.1 Introduction

In this chapter, we explore the use of predictive proactive caching by proposing a

Predictive Proactive Caching Framework (PPCF) to reduce the load at backhaul

links and provide a certain QoS to social media users that have a predictable behavior.

PPCF relies on the fact that some users tend to maintain a daily routine in the route

they follow, the time of navigating that route, and the type and time of requesting a

certain content. For instance, as a vehicle is moving during a typical morning on the

driver’s daily route to work, he/she is used to dropping off their children at school

first, who in turn are used to accessing their Instagram accounts to check the latest

posts of public figures. Such a daily routine triggers a predictable behavior that PPCF

utilizes to pre-cache the data at parked vehicles for the users to proactively acquire

either before the time of their requests or within a specified time frame. Hence, PPCF

aims to sustain a certain quality of service demanded by users.

PPCF consists of two basic modules executed by the data center. Note that the

data center is the original data provider, and it is the centralized entity that makes
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all vital decisions in these two modules. The first module is the prediction module

that predicts all the information required to make informative caching decisions. This

information includes the period of encounter of requesters with each road segment

along their trajectory. We mainly focus on the prediction procedure of this period.

This is due to the effect of different weather and traffic conditions on the prediction

accuracy, which can in turn have a significant impact on the performance of the cache

placement procedure. For this purpose, we propose a novel travel time prediction

technique that uses the Long Short-Term Memory (LSTM) model, trained using

Particle Swarm Optimization (PSO), while taking weather and traffic conditions into

consideration. To the best of our knowledge, this is the first PSO-based LSTM

model to be introduced in travel time prediction. This is as opposed to the typical

LSTM model trained using the gradient descent (GD) backpropagation algorithm. In

addition, we use the predicted average travel time to estimate a personalized travel

time for each user by considering their different driving behaviors.

The second module is the proactive cache placement module that enables the data

center to select the appropriate road segments for caching. In order to make the cache

placement decision and tackle all the related time-sensitive constraints, we present

an optimal solution, called the Vehicular Optimal Proactive Caching (VOPC). The

objective of VOPC is to maximize cache hits by assigning replicas to caching spots

that yield maximum certainty in their spatiotemporal availability for requesters. This

is while sustaining a cache capacity limit and a predetermined quality of service. Once

a road segment is selected, the data center chooses the parked vehicle that has the

maximum available cache space to cache the replica.

VOPC is introduced as a benchmark that can be used to determine the upper
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bound of the potential of predictive proactive caching in improving the quality of

service in VANETs. It enables researchers to quantify the potential gains of predictive

proactive caching schemes, assess their performance based on the gap to the optimal

solution, and determine if there is a room for improvement. The caching problem in

VOPC is formulated as an Integer Linear Programming (ILP) problem. Considering

the known complexity of ILP, solving this problem is NP-Complete. Thus, a greedy

heuristic scheme, called the Proactive Caching at Parked Vehicles (PCPV) scheme,

is also proposed to cope with practical real-time requirements.

We implement VOPC and PCPV using the NS-3 network simulator [64] integrated

with the Gurobi optimizer [65] in order to generate the optimal solution in VOPC. The

performance of the optimal and heuristic solutions VOPC and PCPV are compared,

and we use VOPC to quantify the potential gains of PCPV. In addition, we assess

the performance of predictive proactive caching compared to the baseline broadcast-

based approach. This is while neutralizing the issues that render the latter unsuitable

for Internet access applications. Moreover, extensive experiments are conducted to

evaluate the performance of PCPV compared to VOPC and the broadcast-based ap-

proach under varying conditions. Simulation results show that VOPC and PCPV

significantly outperform the broadcast-based approach in terms of delay, packet de-

livery ratio, cache hit ratio, and satisfaction ratio. They also show that VOPC can

act as an upper bound on the reachable potential of predictive caching, and that

PCPV can perform very close to the optimal solution in many cases.

In order to assess the performance of the proposed prediction model, namely

PSO-LSTM, we compare it to the GD-LSTM model. Simulation results show that

the former can significantly outperform the latter in terms of prediction accuracy. We
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also implement VOPC and PCPV using both PSO-LSTM and GD-LSTM in order

to evaluate the effect of the level of prediction accuracy on the efficiency of the cache

placement procedure. We refer to them as VOPC-PSO, VOPC-GD, PCPV-PSO, and

PCPV-GD.

The remainder of this chapter is organized as follows. Section 3.2 outlines some re-

lated work. Section 3.3 presents the predictive proactive caching framework, including

the prediction module, and the cache placement module. Section 3.4 illustrates the

performance evaluation and simulation results. Section 3.5 summarizes and concludes

the chapter.

3.2 Related Work

An overview of the related work in proactive caching has already been discussed in

Section 2.2.1 in Chapter 2. Thus, in this section, we only highlight some of the related

work in travel time prediction in VANETs.

Due to the fluctuations of the vehicles’ travel time on roads, there is a strong need

for mathematical models that are capable of predicting travel time with adequate

accuracy. The most prominently used travel time prediction models can be classified

into four categories; historical average models, regression models, filtering models,

and machine learning models [66]-[68].

Historical average models [69]-[71] predict future travel time based on historical

data collected from previously observed trips. On the one hand, the algorithms

incorporated in historical average models are typically simple and involve relatively

small computation time. On the other hand, they work under the assumption that

traffic conditions remain stationary. Thus, these models are adequately accurate only
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in cases when traffic conditions are somewhat stable. Some historical average models,

such as [69] and [70], predict the arrival time of vehicles using the historical average

travel time directly, or jointly with other inputs. Other models, such as [71], predict

the travel time of vehicles using their average speed on road segments.

In regression models, a multivariate statistical technique is applied to determine

the correlation that exists between a set of independent variables and a given depen-

dent variable [66]. In contrast to historical average models, linear regression models

can perform adequately under unstable traffic conditions [66]-[68]. Linear regression

models have been lucubrated by many researchers to predict vehicles’ arrival time

[72, 73]. For example, in [72], a set of linear regression models have been proposed,

where the distance over links, and weather parameters are defined as the set of inde-

pendent variables. In [73], linear regression models have also been used, with different

sets of independent variables defined. In [74], a linear model predicts the travel time

of a given trip at the current time by integrating the most recent calculated travel

time of the trip and the historical average travel time of the same trip departing at the

same time. Linear regression models have the capability to determine the significance

of independent variables in predicting the travel time [66]. However, the applicability

of such models is typically limited [66]. This is due to the inter-correlation between

variables in transportation systems [66]. Other regression models, such as the Au-

toregressive Integrated Moving Average (ARIMA) model [75] have been explored.

ARIMA fits a time series model by exploiting the historical series of travel time and

then estimates the future travel time one by one [75].

Filtering models, such as the Kalman filter model [76], exhibit the dynamic ca-

pability of updating their predictions according to new data that reflect the varying
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features of the transit-operating environment. In particular, such models are able

to continuously update the state variable (i.e., the travel time) as new observations

manifest. However, data fluctuations might lead to difficulties in solving time lag

[68, 76].

Machine learning models, such as Artificial Neural Networks (ANNs), are highly

popular in predicting travel time as a result of their ability to solve difficult non-

linear relationships. For example, the objected-oriented neural network approach

used in [77] composes the network input of the amalgam of the current observed

speed and the flow data of the upstream and downstream stations along the freeway

section, and uses that to predict the next travel time on that section. Support Vector

Machines (SVMs) have also been used for travel time prediction [78]. ANNs and

SVMs have shown significant superiority over other models in terms of prediction

accuracy, including the historical average and regression models, as demonstrated in

the studies conducted in [72, 79, 80]. However, despite such superiority, they still

lack the ability to dynamically modify the prediction results [67]. In other words, the

prediction capability of such models is limited to estimating the travel time depending

on historical data only with no regard to real-time information.

Recently, the Long Short-Term Memory (LSTM) neural network model has also

been investigated for travel time prediction [81]. It has been shown in [81] that deep

learning models, such as LSTMs, can render promising results in terms of accuracy

in the travel time prediction problem. This is due to their ability to take sequential

dependencies into consideration. However, the work in [78] can only provide a short-

term prediction of the average travel time. Recently, LSTMs have been used to

perform long-term travel time prediction [82]. The main goal in this type of prediction
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is to predict the travel time at a specific day and time at least one week ahead.

However, the LSTM models used do not consider the effect of the varying weather

conditions. In addition, most of the existing ANNs and LSTMs developed in order

to predict the travel time are based on the Backpropagation algorithm (BP) that

relies on GD [72, 79, 80]. The most prominent drawback of the BP algorithm is local

minima entrapment [72, 79].

In order to improve the training process, we propose the use of Particle Swarm

Optimization (PSO) rather than BP to train the LSTM model. Note that PSO has

been previously used with ANNs in some engineering problems, such as predicting

voltage stability [83], and solving power flow problems [84], and it has been shown to

provide high prediction accuracy. The proposed model also enables long-term predic-

tions, while taking into consideration the varying weather conditions. Furthermore,

while most existing predictions focus on the average travel time, we also provide

personalized estimates of the travel time of each user.

3.3 Predictive Proactive Caching Framework

In the proposed Predictive Proactive Caching Framework (PPCF), we assume that

requesters subscribing to the service grant the data center access to their trajectories,

as well as their social media profiles. This information is granted in exchange for

the service and according to a privacy agreement. As previously mentioned, the data

center is the original data provider accessed via an RSU. Each user indicates his/her

maximum acceptable delay upon subscribing to the service. Thus, the deadline of

each user’s request is determined. The data center is responsible for choosing the

optimal road segments for caching. The data center is equipped with a prediction
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module that allows it to predict three pieces of information. First, it predicts the

request time of each user using request patterns predictors, such as [91]. Second, it

estimates the posting frequency of a given public figure. This information indicates

the Time-to-Live (TTL) of the data. Third, it predicts the period of encounter of the

requester with each road segment along its specified trajectory.

In the proposed prediction module, we focus on the prediction of the period of

encounter only. We do so due to the fact that the prediction accuracy can be signifi-

cantly affected by various factors, including dynamic weather conditions. In contrast,

the remaining pieces of information are not affected by many factors, so they can be

predicted with significantly high accuracy using many exiting predictors [91]. Note

that the posting frequency of a given public figure specifies the TTL of the data.

This TTL indicates the expected time before a public figure publishes a new post,

rendering the previous data obsolete.

After a road segment is selected, the data center sends the replica to the parked

vehicle that has the maximum available cache capacity at the selected road segment to

be cached. Parked vehicles that are willing to dedicate part of their storage capacity

to the caching service are solicited by the data center in exchange for some incentives.

In the following subsection, we present the system model.

3.3.1 System Model

Let U be the set of users subscribing to the service. Every user u ∈ U can request a

certain data d ∈ D, where D is the set of recent contents published by public figures

followed by the users. Each data item d has a time-to-live TTLd, after which a new

post is generated by the corresponding public figure. Such a new post is considered
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a new version of d. Each version of a data item d, denoted ld, is associated with a

generation time gdl , and an expiry time tdlexp. The trajectory of every user u ∈ U

is denoted Tu. Note that Tu= r1 , r2, ..rk represents the sequence of road segments

along the vehicle’s trajectory, where rj denotes the road segment encountered by the

vehicle. The set of all road segments is denoted R. A road segment rk ∈ R represents

a directed edge eij between two different intersections Ii and Ij, where eij 6= eji.

The time at which a given ld is cached at a road segment rj is denoted tjdlcach. The

maximum cache capacity at a road segment rj is denoted Cj.

The time of request of user u for data d is denoted τud , and the deadline of the

request is denoted ηud . A time period, denoted εuj , is assigned to each road segment

rj ∈ Tu along the trajectory of u. This period indicates the start time tu,j,s and the

end time tu,j,e during which it is estimated that user u will encounter rj (i.e., its time

of arrival and departure to and from rj). A probability of encounter, denoted P u
j , is

associated with each period of encounter. Such a probability represents the level of

certainty of the estimated period. We only focus on the level of certainty of the period

of encounter due to the profound effect of varying weather and traffic conditions on

it, which can in turn impact the spatiotemporal availability of the cached replicas.

The problem of estimating the period of encounter can be considered as a travel

time prediction problem considering that the users can provide the time at which they

begin their daily trips, or such time can be estimated using historical average models

[71]. This indicates the time of arrival to the first road segment along their trajectory.

The time of departure from any road segment rj along the user’s trajectory can be

calculated as given by Eq. 3.1, where γ
tu,j,s
j is the estimated travel time along rj

at time tu,j,s. The time of arrival at any road segment rj is equal to the departure
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time from the previous road segment along the user’s trajectory (i.e., tu,j,s = tu,j−1,e).

Thus, once the travel time is estimated, the period of encounter of each vehicle with

each road segment along its trajectory can be determined.

tu,j,e = tu,j,s + γ
tu,j,s
j (3.1)

It can be deduced from the way the period of encounter is estimated that the

effect of the travel time prediction error tends to accumulate as users move further

along their trajectory. This accumulation occurs since the arrival time of any vehicle

at any road segment rj along its trajectory tu,j,s relies on the departure time from

its previous road segment rj−1, which in turn depends on the estimated travel time

at rj−1. Thus, the first road segment along a user’s trajectory tends to render the

least error compared to subsequent road segments, whereas the last one renders the

highest error. Accordingly, the closer a road segment is to the first road segment in

the sequential order of a user’s trajectory, the lower the prediction error, and thus

the higher the certainty. Thus, the probability of encounter P u
j is calculated as given

by Eq. 3.2, where Λu
rj

is the position of rj in the sequential order of trajectory Tu of

user u.

P u
j = 1−

Λu
rj
− 1∑|Tu|

i=1 Λu
ri
− 1

(3.2)

Note that the data center can have access to a plethora of traffic monitoring ser-

vices that provide the most recent traffic updates. This includes the actual average

travel time at every road segment. Parked vehicles can also periodically report in-

formation pertaining to the actual average travel time at the road segments where

they reside. Such updates can be used to adjust the cache placement decisions if the
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actual values of the average travel time significantly differ from the predicted values.

3.3.2 Prediction Module

In this section, we present the proposed PSO-LSTM prediction module. To do that,

we first provide a detailed discussion of the data preparation stage. The model pre-

diction methodology and training procedure are then illustrated.

A) Data Preparation

The dataset used is generated using the Simulation of Urban MObility (SUMO)

tool [86], which is a microscopic traffic simulator that can accommodate large road

networks, import real-life road maps, and create realistic mobility traces. Using

SUMO, we create a road topography that consists of 120 different edges, and emulate

the traffic behavior of users that have a repetitive pattern in terms of the daily route

they follow. This is done over a period of 6 months, where the traffic of one day

is simulated over a period of 2000 seconds, and only two types of days, triggering

two different types of traffic distribution are considered per week, namely weekdays

and weekends. Typically, changes in traffic does not occur every second, and thus the

travel time values tend to remain relatively stable for some period of time [76, 81, 82].

Accordingly, we divide the total period of 2000 seconds per day into a number of

consecutive time intervals, each of which is composed of 30 seconds. Thus, for each

edge, there is a total of 66 rows representing the travel time values per day at that

edge, and 528 rows per month. The 6-month period involves 3,168 rows per edge,

and a total of 380,160 for all edges.

Each of the aforementioned rows includes the following information: the weather

condition, the day of the week, the time of the day, the road segment ID (i.e., edge ID),
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and the average travel time. We consider three types of weather conditions (sunny,

moderately snowing, and heavily snowing), as well as two types of days (weekdays,

and weekends). In order to create realistic traffic, we adopted the analysis used in [89]

that studies the variations in traffic conditions over one week to detect the changes in

traffic volume that occur over the day during weekdays and weekends. Note that aside

from the time of the day and the average travel time, the remaining aforementioned

features are categorical features. Thus, we represent each of them as a vector of 1’s

and 0’s using one-hot encoding [90].

We take different weather conditions into consideration since they can have a

profound impact on the daily traffic. For instance, in case of snow, the road surfaces

tend to become rather slippery, which forces drivers to become more cautious as they

adopt a higher following distance rate and lower speed in order to avoid accidents [87].

Some studies have been conducted to reproduce that same effect in traffic simulators

in a realistic manner, including SUMO [87, 88]. In [87], real data sets were used in

order to facilitate the calibration of SUMO to different weather conditions. In [87], it

has been shown that the effect of weather conditions can be simulated by varying three

parameters in SUMO. Such parameters are the acceleration, desired speed, and the

car-following distance [87]. Note that the latter can be controlled using the parameter

bx in the Wiedemann car-following model incorporated into SUMO [87]. In alignment

with the findings of [87], different weather conditions can be reflected by varying the

acceleration of vehicles in SUMO between 0.1 and 1.0, with 0.05 increments, the

desired speed between 15 km/h and 55 km/h, with increments of 5 km/h, and the

following distance between 0.25 and 6 with 0.25 increments.
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In long-term travel time predictions, as the case in our proposed model, the pre-

diction of future travel time along any given road segment at a certain time period on

Saturday for example requires exploiting the data representing the travel time values

at the same time period in the N previous Saturdays of the past N weeks. Accord-

ingly, the data preparation stage converts the aforementioned rows of the dataset into

a sequential structure, where each sample is composed of N time steps, each of which

consists of the previously discussed features [82].

B) Long Short-Term Memory Model (LSTM)

LSTMs are a special type of Recurrent Neural Networks (RNNs) that have the

ability to learn long-term dependencies [81]. The ability to remember information

that goes back to a long period of time is the default behavior of LSTMs. It is not a

behavior that they struggle to learn. As a result, LSTMs have been shown to work

well in problems related to time-series prediction [81].

An LSTM has a chain-like structure that is composed of a number of cells in its

hidden layer, referred to as LSTM cells. As depicted in Figure 3.1(a), each LSTM cell

relays a message to its successor. An LSTM cell consists of three gates, referred to as

input gate, forget gate, and output gate. Such gates control the flow of information

to the cell state [81, 82]. As depicted in Figure 3.1(b), the cell state is the horizontal

line that runs down through the entire chain at the top of the diagram. The gates

enable regulating the information that need to be removed and/or added to the cell

state. At time t, the input is denoted xt. Such an input can be a single value or a

multivariate input. In our case, xt is a multivariate input. It is a matrix of size X×B,

where X is the size of the input features, and B is the batch size [81, 82]. The batch

size is used in the gradient descent training process to indicate the number of training
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(a) LSTM neural network.

(b) LSTM cell structure.

Figure 3.1: LSTM neural network architecture. Redrawn from [81]

samples that the model goes through before updating the internal parameters. In our

LSTM model, B = 1. The cell input state is denoted C̃t, the cell output state is

denoted Ct, and its preceding state is denoted Ct−1. The hidden layer output and

its previous output are denoted ht and ht−1, respectively. The size of C̃t, Ct, ht, and

ht−1 is H × B, where H is the number of hidden units [81]. The input, forget, and

output gates are denoted it, ft, and ot, respectively, and are all of size H × B. The
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forget gate is used to determine the information to forget or to keep, the input gate

specifies which values to update, and the output gate decides which parts of the cell

state to output [81, 82].

As demonstrated in Figure 3.1(b), the LSTM cell structure shows that both Ct

and ht are passed on to the next cell [81]. In order to calculate Ct and ht, the following

procedure, referred to as the forward propagation procedure, is performed [81].

1) The input, forget, and output gates are first calculated using Eq. 3.3, Eq. 3.4,

and Eq. 3.5, respectively. The cell input state is then calculated as given by Eq.

3.6. The matrices W i
x, W

f
x , W o

x , and WC
x are the weight matrices of size H ×X that

connect the input xt to the input gate, forget gate, output gate, and the cell input

state, respectively. In contrast, the matrices W i
h, W

f
h , W o

h , and WC
h are the weight

matrices of size H ×H that connect ht−1 to the input gate, forget gate, output gate,

and the cell input state, respectively. The matrices bi, bf , bo, and bC are the bias

matrices of size H × B of the input gate, the forget gate, the output gate, and the

cell input state, respectively. Note that σ is the sigmoid function, which is given by

Eq. 3.7, and tanh is the hyperbolic tangent function.

it = σ(W i
x.xt +W i

h.ht−1 + bi) (3.3)

ft = σ(W f
x .xt +W f

h .ht−1 + bf ) (3.4)

ot = σ(W o
x .xt +W o

h .ht−1 + bo) (3.5)

C̃t = tanh(WC
x .xt +WC

h .ht−1 + bC) (3.6)

σ(z) =
1

1 + exp(−z)
(3.7)
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2) The cell output state Ct is calculated using Eq. 3.8.

Ct = it ∗ C̃t + ft ∗ Ct−1 (3.8)

3) The hidden layer output ht is calculated using Eq. 3.9.

ht = ot ∗ tanh(Ct) (3.9)

4) In order to predict the travel time, we create an LSTM neural network as depicted

in Figure 3.1(a) [81]. At time t, the input xt is the historical data that includes

information about the weather, the day of the week, the time of the day, the road

segment, as well as the historical average time. The final output of the network,

denoted x̃t+1, is the predicted future average time on the same day along that road

segment. Using the aforementioned calculated value of ht, we calculate the predicted

value as given by Eq. 3.10, where W2 is the weight matrix connecting the hidden

layer and the output layer, and b is the bias term of the latter. Note that the series

LSTM-based prediction shown in Figure 3.1(a) is based on N historical data.

x̃t+1 = W2.ht + b (3.10)

The aforementioned steps require learning the weight and bias matrices that would

render the minimum prediction error. Thus, the LSTM model needs to be trained

in order for these matrices to be learned. We provide a detailed discussion of the

proposed training procedure below.

C) LSTM Training
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The functional relationship between dependent and independent variables is not

enforced in LSTMs [83]. Rather, such a relationship is based on the training process.

Thus, the training process is a pivotal component that has a profound impact on

the prediction accuracy [83]. In most existing LSTM-based models, the training

process is typically based on the gradient descent Backpropagation algorithm (BP)

[81, 82]. This algorithm can lead to local minima entrapment. Thus, we propose

to exploit the use of PSO during the training process since it has the capability of

significantly expanding the search space compared to the gradient descent algorithm,

thus increasing the chance of finding the global minima [83, 84].

The PSO algorithm was proposed by Kennedy and Eberhart as a metaheuristic

algorithm that relies on the concept of swarm intelligence, which has the ability

to solve complex mathematical problems in engineering [85]. In PSO, a number of

particles move in the search space based on certain dynamics until they reach the

best solution [83, 84]. It can be successfully incorporated into the optimization of

nonlinear continuous functions. PSO is also easy to implement without the need for

any gradient information [83, 84].

In PSO, every solution of a given problem is represented by a particle that can

iteratively navigate in the search landscape for the purpose of reaching the best

solution. The total number of particles is denoted S, the total number of iterations is

denoted K, and the total number of components is denoted J . The position of each

component j ∈ J of each particle pi ∈ L at iteration k ∈ K is iteratively updated by

considering two vectors, namely the position vector and the velocity vector, denoted

Zk+1
ij and V k+1

ij , respectively. The former specifies the position of the particle in the

search landscape, while the latter indicates the direction and intensity of movement.
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In the proposed PSO-LSTM, the position and velocity of each particle is expressed

in the form of a matrix rather than a vector. In particular, the components of each

particle are the aforementioned weight and bias matrices, whose optimal values (i.e.,

position) need to be learned. Note that the position of each particle is evaluated

based on a certain fitness function. In the proposed model, this function is the Root

Mean Square Error (RMSE), which is given by Eq. 3.11, where Q is the set of

observations/samples, and |Q| is the number of observations, x̃q is the qth predicted

value of the travel time and xq is its corresponding qth observed value.

RMSE =

√∑|Q|
q=1(x̃q − xq)2

|Q|
(3.11)

In each iteration k, the matrices Zk+1
ij and V k+1

ij of the component j of each particle

pi are calculated using Eq. 3.12 and Eq. 3.13, respectively [85]. In Eq. 3.12, P k
ij is

the best local position of the jth component of pi, and Gk
j is the best global position

of the jth component among all particles [85].

V k+1
ij = ωV k

ij + c1r1(P k
ij − Zk

ij) + c2r2(Gk
j − Zk

ij) (3.12)

Zk+1
ij = Zk

ij + V k+1
ij (3.13)

Note that the best position indicates the solution rendering the minimum RMSE. ω

is the inertia weight that lies in the range [0, 1] and controls how much the particle’s

movement is influenced by its preceding motion [85]. c1 and c2 are the learning

coefficients of the local and global solution, respectively [85]. They help weigh the

importance of the previous experiences of the particles [85]. r1 and r2 are two random
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numbers in the range [0, 1] that are used to control the randomness of the search [84].

Such random parameters can help avoid premature convergence, thus increasing the

chance of finding the global optima [85].

Based on the aforementioned discussion, the PSO-LSTM training procedure works

as follows (Algorithm 1):

1) Set the number of components J to 10, where the components represent the weight

and bias matrices (line 12). Initialize the the local minimum error of each particle,

denoted RMSELmin
i , as well as the global minimum error, denoted RMSEGmin (lines

13 & 14). For each particle pi ∈ M , and for each component j ∈ J , initialize the

position and velocity matrices, Zk
ij and V k

ij , and set the best local position P k
ij, as well

as the weight and bias matrices to the corresponding Zk
ij (lines 15-19).

2) In each iteration k ∈ K, do the following for each particle pi ∈M (lines 20 & 21):

a) Perform the LSTM forward propagation procedure to calculate the predicted value

of each sample q ∈ Q. This is done using equations Eq. 3.3- Eq. 3.10 (lines 22-24).

b) Based on the predicted travel time values acquired, calculate the error RMSEk
i

using Eq. 3.11.

c) If RMSEk
i is less than the particle’s local minimum error, set the latter to RMSEk

i ,

and its best local position to Zk
ij (lines 26-29). Otherwise, they remain the same.

d) Determine the particle, denoted pb, that renders the minimum error among all

particles (i.e., the one that has the minimum local RMSE). If the particle’s local

minimum error is less than the global minimum error, set RMSEGmin to the particle’s

local minimum RMSE, and set pb to pi (lines 30-32). Otherwise, RMSEGmin remains

the same (lines 33 & 34).

3) Once all the particles are processed, if RMSEGmin has changed, the best global
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Algorithm 1 : PSO-LSTM Training

1: Input:
2: Number of historical time steps N
3: Set of training data Q
4: Number of iterations K
5: Number of particles S
6: Number of components J
7: Learning coefficients c1 & c2
8: Inertia weight ω
9:

10: LSTM TRAINING(N)
11: Begin
12: J ← 10
13: RMSEGmin ← ∞
14: RMSELmin

i ← ∞ //∀i ∈ S
15: for all i ∈ S do
16: for all j ∈ J do
17: Initialize Z0

ij and V 0
ij

18: P 0
ij ← Z0

ij

19: Set the weight & bias matrices to the corresponding Z0
ij

20: for all k ∈ K do
21: for all i ∈ S do
22: for all q ∈ Q do // each sample in Q
23: for all t ∈ N do // each time step t
24: Calculate the predicted value x̃q // Eq. 3.3 - Eq. 3.10

25: Calculate the error RMSEk
i // Eq. 3.11.

26: if RMSEk
i <RMSELmin

i then
27: RMSELmin

i ← RMSEk
i

28: for all j ∈ J do
29: P k

ij ← Zk
ij

30: if RMSEGmin<RMSELmin
i then

31: RMSEGmin ← RMSELmin
i

32: pb =pi
33: else
34: RMSEGmin remains the same
35: if RMSEGmin is not the same then
36: for all j ∈ J do
37: Gj=Z

k
bj

38: for all i ∈ S do
39: for all j ∈ J do
40: Update V k+1

ij // Eq. 3.12.

41: Update Zk
ij // Eq. 3.13.

42: return Gj //∀j ∈ J
43: End
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position of each component Gk
j is set to that of pb (i.e., Gk

j=Z
k
bj) (lines 35-37).

4) For each particle, update the position of the weight and bias matrices using Eq.

3.12 and Eq. 3.13 (lines 38-41).

5) After finishing the last iteration, the global best position Gj is acquired ∀j ∈ J

(line 42). The final weight and bias matrices are set accordingly.

Once the training procedure is terminated, and all hyperparameters are deter-

mined, we perform the LSTM forward propagation procedure on the testing data to

predict the average travel time on each road segment at each time interval. We then

estimate the travel time of each individual user. In order for this to occur, we perform

the following procedure, detailed below, after training the model.

D) Travel Time Estimation of Individual Users

In our proposed prediction scheme, we consider the fact that the personalized

travel time of different drivers can deviate from the estimated average travel time

based on their driving behavior. For instance, more cautious drivers tend to move

relatively slower than most average drivers, while expert drivers can move a little

faster. Thus, we classify the users in our dataset into three classes; class 1: cautious,

class 2: average, and class 3: expert. This is done by calculating the degree of their

membership to each class, denoted ϑij. The degree of membership of user i to class 1,

ϑi1, is calculated as the ratio of the number of times that the individual travel time of

user i subceeds the average travel time by a certain threshold, denoted thdm, to the

total number of samples. In contrast, ϑi3 is the ratio of the number of times that the

individual travel time of user i exceeds the average travel time by thdm, to the total

number of samples, while ϑi2 is the ratio reflecting the number of times that neither

the first case nor the second one applies. The class rendering the highest membership
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is the one to which user i belongs.

(1) We cluster the training data into Y clusters, so that those belonging to users

moving along the same road segment on the same type of day, as well as at the same

time interval, and under the same weather conditions over the available months, are

grouped together.

(2) Each cluster y ∈ Y is then divided into By sub-clusters enclosing users in y whose

movement is associated with the same month and the same week.

(3) For each cluster b ∈ By, ∀y ∈ Y , we calculate the standard deviation, SDb,y of

the users’ individual travel time. SDb,y is calculated based on Eq. 3.14, where γ́b,y

is the average travel time of the users in cluster b ∈ By, γi,b,y is the individual travel

time of user ui ∈ b, and nb,y is the number of users in b ∈ By.

SDb,y =

√∑nb,y

i=1 (γi,b,y − γ́b,y)2

nb,y
(3.14)

(4) We then calculate the pooled standard deviation for each cluster y ∈ Y , denoted

SDy
p to estimate the aggregated standard deviation pertaining to all the sub-clusters

By belonging to y. Note that this will be used to estimate the final individual travel

time of users. The value of SDy
p is calculated using Eq. 3.15.

SDy
p =

√√√√∑By

b=1(nb,y − 1)SD2
b,y∑By

b=1(nb,y − 1)
(3.15)

5) Once the pooled standard deviation is determined, the estimated individual travel

time of each user u in the testing set satisfying the same conditions in y can be
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calculated based on Eq. 3.16, where γ̄y is the predicted average travel time.

γ̃u,y =


γ̄y − SDy

p if u is a cautious driver

γ̄y if u is an average driver

γ̄y + SDy
p if u is an expert driver

(3.16)

3.3.3 Optimal-based Proactive Cache Placement

In this subsection, we present the optimal solution of the proactive cache placement

module, called the Vehicular Optimal Proactive Caching (VOPC). VOPC is intro-

duced as a benchmark that can act as the upper bound on the reachable potential

of predictive proactive caching. We provide a detailed discussion of the ILP cache

placement problem formulation.

Our objective is to maximize cache hits that ensure the spatiotemporal availability

of the cached replicas for the users to proactively acquire within a certain time frame.

In order to ensure such an availability, the following restrictions need to be taken

into consideration when making a caching decision at road segment rj to satisfy the

request of user u for data item d:

1) rj must be part of the user’s trajectory (rj ∈ Tu).

2) The deadline of the request should be after the user u starts its period of

encounter with rj (ηud > tujstart). This is to ensure that the user does not acquire the

cached data after the deadline of the request.

3) The cached replica should still be valid by the time the user starts passing by

rj (tdlexp > tujstart). This is to guarantee that the data is acquired before its expiry

time.

4) The cached replica must still be valid by the time the user requests it (tdlexp >
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τud ).

5) The replica must be already cached at rj before the user is done passing by the

road segment (tujend > tjdlcach).

6) The replica should already be cached and available at rj before the deadline

(ηud > tjdlcach).

The set of requests satisfying the aforementioned restrictions for each road segment

rj ∈ R can be predetermined. To do so, for each rj ∈ R, we specify the set of users F d
j

who request d and abide to restrictions (1) and (2). In order to check the remaining

restrictions, potential updated versions of each data item d ∈ D, as well as their

caching and expiry time need to be determined. Thus, we specify the potential

versions of d that can satisfy the requests of the users in F d
j . Such versions are the

ones that will be generated during the period of encounter of the requesters in F d
j

with rj. This period begins from the start time of their earliest period of encounter

with rj, denoted a, until the end time of the latest period of encounter, denoted b.

As depicted in Figure 3.2(a), in order to specify the potential versions of a data

item d, we use the version available at the current time, denoted ldc , whose generation

time gdlc is known. Starting from ldc , we determine the subsequent versions. The first

version that can satisfy the requests of F d
j is the first one whose expiry time > a,

whereas the last version is the one whose expiry time > b. For example, as shown

in Figure 3.2(a), the candidate versions of d1 that can be assigned to requesters

satisfying restrictions (1) and (2), are determined. The start and end time of the

earliest and latest periods of encounter of such requesters with rj are given by a and

b, respectively. The generation time of the current version, lcur, is known to be at

8:05. The TTL of d1 is 30 min. Thus, lcur expires at 8:35, marking the generation of
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(a) Candidate versions of d1.

(b) Intervals for the updated versions of d1, d2, and d3.

Figure 3.2: An example illustrating the process of determining the spatiotemporal
caching slots at road segment rj.

the next updated version lnext which will expire at 9:05. This replica is considered the

first candidate version of d1 that can be cached at rj, since its expiry time is greater

than a. The version lnext+1 is the last candidate since its expiry time exceeds b.

Once the potential versions are determined, the lifetime of each version at the

corresponding road segment is specified. Thus, for each road segment, we define a set

of intervals Adj for every data item. Each interval starts from the time at which the

corresponding version is to be cached at rj, denoted tjdlcach, until the time it expires,
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denoted tdlexp. Note that the data center sends each version for caching once it is

generated. Thus, tjdlcach is equal to gdl + ∆jduration, where ∆jduration is the amount of

time required for the road segment (i.e., parked vehicle) to receive the replica from

the data center. The value of ∆jduration is calculated as the length of the shortest

path to rj divided by the average propagation speed. As depicted in Figure 3.2(b),

once the versions of d1 at rj are determined, the set of their intervals are defined. The

defined intervals represent the spatiotemporal caching slots to which the requests can

be assigned. Since d1 has two versions, the two intervals I1d1 and I2d1 are defined. For

each interval k ∈ Adj , and based on the aforementioned restrictions (3-6), we define

the set of users belonging to F d
j that consider k a feasible spatiotemporal caching

slot. This set is denoted Bd
jk.

Another important restriction is ensuring that the cache capacity limit at each

road segment is not exceeded. The cache capacity of a road segment is only af-

fected by the replicas of different data items assigned to it in parallel. For in-

stance, in Figure 3.2(b), intervals I1d1 , I1d2 , and I1d3 overlap. Thus, if each of

them has at least one request assigned to it, the consumed cache capacity would

be 3. Hence, for each road segment rj ∈ R, we define Oj as the set of sets ψj,

where ψj is the set of intervals that overlap in rj. In Figure 3.2(b), this is given by

Oj={{I1d1 , I1d2 , I1d3}, {I2d1 , I1d2 , I2d3}, {I1d1 , I1d2 , I2d3}, {I2d1 , I2d2}}.

The objective is to assign the requests to the proper spatiotemporal caching slots,

such that the probability of cache hits that guarantee the acquisition of the data

within the desired time frame is maximized. As previously mentioned, for each

caching slot, the set of requests that consider it feasible for caching is denoted Bd
jk.
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Bd
jk is predetermined based on the assignment restrictions (1-6). The problem is for-

mulated as a 0-1 Integer Linear Program (0-1 ILP), where the decision variable xdijk

is set to 1 if the request of user i for data item d is assigned to interval k at road

segment j, and 0 otherwise. In the objective function, the probability of cache hits

is reflected using the probability of encounter of users with the road segments. The

reason for this is that such a probability, P u
j , determines the degree of accuracy of

the estimated period of encounter, and thus plays a vital role in assuring the spa-

tiotemporal availability of the assigned replicas. For example, if user u passes all the

restrictions relative to a particular spatiotemporal caching slot at rj, but its probabil-

ity of encounter with the latter is small, then another caching slot might be a better

alternative for u.

max
xdijk

∑
d∈D

∑
j∈R

∑
k∈Ad

j

∑
i∈Bd

jk

P i
jx

d
ijk

s.t.

C1:
∑
j∈R

∑
k∈Ad

j

xdijk ≤ 1 ∀i ∈ U,∀d ∈ D

C2:
∑
k∈ψj

δjk ≤ Cj ∀j ∈ R, ∀ψj ∈ Oj

C3:
∑
i∈Bd

jk

xdijk ≥ δjk(M + 1)−M ∀j ∈ R, ∀k ∈ Adj

C4:
∑
i∈Bd

jk

xdijk < δjk(M + 1) + 1 ∀j ∈ R, ∀k ∈ Adj , ∀d ∈ D

The aforementioned objective is subject to the constraints C1-C4. Constraint C1

specifies that each request must be assigned to at most one interval. This is to make

sure that each request is assigned only once. Constraint C2 indicates that for each

rj ∈ R, the total number of overlapping intervals at rj that have at least one request
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assigned to them should not exceed the maximum cache capacity Cj. This constraint

is checked for each set of overlapping intervals ψj ∈ Oj at rj. Constraints C3 and C4

are artificial constraints designed to verify C2 (i.e., the cache capacity constraint). In

order for C2 to be verified, we need to determine the number of overlapping inter-

vals that have at least one request assigned to them. For this purpose, we define an

artificial variable, δjk, which is set to 1 if at least one request is assigned to interval

k at road segment j, and 0 otherwise. Thus, if
∑

i∈Bd
jk
xdijk≥1, then δjk=1. Other-

wise, δjk=0. This can also be expressed as follows: if δjk=1, then
∑

i∈Bd
jk
xdijk≥1.

Otherwise, if δjk=0, then
∑

i∈Bd
jk
xdijk<1. Since it is not possible to include a condi-

tional statement in the formulation problem, constraints C3 and C4 are constructed

to serve the same purpose. The variable M in C3 and C4 is set to a large positive

value to ensure that it is larger than the maximum possible value of the summation∑
i∈Bd

jk
xdijk.

In order to verify that the conditional statement is satisfied by C3 and C4, consider

that the value of δjk is set to zero in both constraints. This results in the following

inequality: −M ≤
∑

i∈Bd
jk
xdijk < 1. Similarly, if δjk is set to 1 in C3 and C4, the

inequality, 1 ≤
∑

i∈Bd
jk
xdijk < M + 2, is obtained. Thus, C3 and C4 serve the desired

purpose.

3.3.4 Heuristic-based Proactive Cache Placement

In order to deal with practical real-time requirements, we propose the greedy heuristic

algorithm Proactive Caching at Parked Vehicles (PCPV) in order to solve the afore-

mentioned cache placement problem. In PCPV, the data center selects the roads

segments for caching based on a selection procedure that is composed of the following
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three stages:

a) Grouping users based on data similarity

The data center groups users that request the same data items together. Let G

be the set of groups generated by the data center. To determine the sequential order

for processing the groups, every group g ∈ G is ranked based on the popularity of the

data requested by its users. The popularity of the data is determined by the number

of users that are interested in it. Once the groups are ranked, they are sorted in

a descending order based on their ranks. Then, the following stages (b and c) are

performed for each group g ∈ G.

b) Determining the feasible road segments and intervals for caching

The same aforementioned time-constraint checkpoints (1-6) indicated in VOPC

are tested to determine the road segments that are eligible for caching. A feasibility

matrix, denoted F g
m×n×o is created accordingly. Such a feasibility matrix indicates

the spatiotemporal caching slots that are eligible for caching for each user within the

group, where m = |g|, n = |R|, and o = |Ad,gj |. Note that, as previously mentioned,

Adj is the set of intervals at which the potential versions of d can be cached in rj. In

order to do that, for each road segment rj ∈ R, we perform the same aforementioned

steps indicated in VOPC until we determine the set of users in g, denoted Bd,g
jk , that

consider the interval k ∈ Ad,gj a feasible spatiotemporal caching slot. The feasibility

matrix is then filled based on Eq. 3.17

fijk =

 1 ui ∈ Bd,g
jk

0 Otherwise
(3.17)

c) Assigning the requests to spatiotemporal caching slots
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As previously mentioned, the goal is to maximize cache hits by maximizing the

probability of encounter of the requests assigned to the designated replicas. This is

while maintaining the cache capacity limit and the QoS demanded by users. Note

that this QoS is maintained through the aforementioned restrictions that were used

to construct the feasibility matrix.

In order to solve the cache placement problem, an iterative procedure is executed

as detailed in Algorithm 2. A matrix called the selection matrix, denoted Sgm×n×o

is created and iteratively updated to select the spatiotemporal caching slots for all

users/requests within group g ∈ G.

The selection matrix is filled based on Eq. 3.18, where w is the iteration number,

P i
j is the probability of encounter of user i with road segment rj. As previously

mentioned in VOPC, Oj is the set of sets ψj, where ψj is the set of intervals that

overlap in rj. Also, δjk = 1 if at least one request is assigned to a replica at interval

k in road segment rj. Otherwise, δjk = 0.

swijk =


P i
j if sw−1

ijk > 0, and∑
k∈ψj

δjk ≤ Cj,∀ψj ∈ Oj

0 Otherwise

(3.18)

Let U
′

be the set of users in g ∈ G who have not been assigned a replica location

yet and G
′

be the set of users in g ∈ G who have already been assigned a replica

location. Initially, the iteration number w is set to 1 (line 10), and the selection

matrix is set to the feasibility matrix (i.e., s0
ijk = fijk) (line 11). Also, U

′
is set to

g ∈ G, G
′

is empty, and the list of assigned replicas is empty (lines 12-15). For each

interval k at each road segment rj, δjk is set to 0 if g = 1. Otherwise, δjk is equal to



3.3. PREDICTIVE PROACTIVE CACHING FRAMEWORK 76

Algorithm 2 : PCPV-Assigning the requests to spatiotemporal caching slots

1: Input:
2: Set of All Road Segments R
3: Probability of Encounter P i

j ∀rj ∈ Ti ∀i ∈ U
4: Iteration Number w
5: Cache Capacity at Road Segment rj , Cj ∀rj ∈ R
6: Feasibility Matrix F g

m×n×o = fijk m = |g|, n = |R|, 0 = |Ad,g
j | ∀g ∈ G

7:
8: ASSIGN REQUESTS(g)
9: Begin

10: w ← 1
11: S0

m×n×o ← {s0
ijk=fijk} // Selection Matrix

12: U
′ ← g //Set of users in g with no assigned replica location

13: g
′ ← ∅ //Set of users in g that have the same replica location

14: G
′ ← ∅ //Set of g

′
with an already assigned replica location

15: LR[] ← ∅ // List of Assigned Replicas
16: for all j ∈ R do
17: for all k ∈ Ad,g

j do
18: if g = 1 then
19: δjk = 0

20: if g 6= 1 then
21: δjk = δprevjk // Latest value from previous group

22: while U
′

isNotEmpty do
23: for all j ∈ R do // Columns of Matrix

24: for all k ∈ Ad,g
j do // layer of Matrix

25: for all i ∈ U ′
do // Rows of Matrix

26: if sw−1
ijk 6= 0 then

27: Update swijk // Eq. 3.18
28: DCH+ = sijk //Degree of Cache Hits
29: DCH List[] ← tuple (j, k, DCH)

30: highest DCH ← the maximum value of DCH
31: rĵk̂ ← the spatiotemporal caching slot with highest DCH
32: δĵk̂ ← 1

33: for all i ∈ U ′
do

34: if swijk 6= 0 then

35: g
′ ← g

′ ∪ i
36: G

′ ← G
′ ∪ g′

37: U
′

= U
′ \g′

38: LR[] ← tuple (g
′
, rĵk̂, dg ) // List of Assigned Replicas

39: w ← w + 1

40: return LR[]
41: End
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its latest value that was assigned during processing the previous group (lines 16-21).

As long as U
′

is not empty, the following steps are iteratively repeated (line 22):

1) The selection matrix is updated by Eq. 3.18 (lines 23-27).

2) The degree of cache hits over each interval in each road segment, denoted DCHrjk

is calculated as the sum of the selection matrix values for all users in U
′

over interval

k in road segment rj (lines 28 & 29). The spatiotemporal caching slot selected for

caching, denoted rĵk̂, is the one rendering the maximum degree of cache hits (lines 30

& 31). The value of δĵk̂ is updated by setting it to one (line 32).

3) The selected spatiotemporal caching slot represents location of the replica for the

users who consider it an eligible segment for caching. Thus, the set of users in U
′

who have non-zero entries in the selection matrix over the selected road segment are

grouped together in g
′ ∈ G′ and removed from the set U

′
(lines 33-37). A tuple is

added to the list of assigned replicas associating g
′ ∈ G′ to rĵk̂ and the data item to

be sent, dg (line 38). If U
′

is still not empty and the cache in all road segments is

full, a Least Frequently Used replacement policy is used.

4) The iteration number is incremented by one (i.e., w = w + 1) (line 39), and the

steps 1-4 are repeated. This is done until U
′

becomes empty. Once this occurs, the

list of assigned replicas can be obtained (line 40).

3.3.5 Data Acquisition from Parked Vehicles

Once the data center makes all the cache placement decisions, it sends the replicas to

the designated parked vehicles for caching. Note that moving vehicles are the ones

that forward the data. When the data center sends a data packet to a parked vehicle

to be cached, it also sends a list of the proactive requesters, denoted LPR, that should
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be satisfied by the received replica. Upon receiving the data packet, the parked vehicle

caches the data and extracts the LPR. Beacon messages are periodically exchanged

among neighboring vehicles. Thus, when a parked vehicle receives a beacon message,

it checks if the source ID of the message matches one of the IDs in LPR. If so, the

parked vehicle sends the replica to the moving vehicle.

In case the requester arrives too early or too late to acquire the data (i.e., the

data has not been cached yet or it has already expired), the data center strives to

give the requester another chance for data acquisition. To do so, the cache placement

procedure is repeated by the data center if new information that could affect the

successful delivery of data has come to its knowledge. This includes two possibilities;

the first is the actual content’s expiry time, and the second is the most recent update

on the actual average travel time of users. The latter is accessible by the data center

via traffic update services. If any of this two possibilities occurs, the data center

re-evaluates whether or not any of the critical time-constraints has been violated by

any requester. For example, if the data center finds out that the average travel time

it predicted contradicts with the actual travel time, it can determine whether some

requesters have missed their designated replicas. Accordingly, it will re-examine the

caching procedure to make an attempt to provide them with another replica while

they are still on the move. Note that moving vehicles that forward the data to and

from the data center keep a copy in their caches as well. Thus, they can also act as

data providers if they are opportunistically encountered.
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3.4 Performance Evaluation

In this section, we use VOPC to quantify the potential gains of the heuristic-based pre-

dictive caching approach PCPV. We also evaluate the performance of the predictive

approach compared to a promising representative of the Broadcast-based Proactive

Caching (BPC) approach. BPC is the scheme in [23]. It is implemented while ig-

noring the effects of the bandwidth issues that render the broadcast-based approach

unsuitable for social media access applications. In addition, we compare our pro-

posed PSO-LSTM prediction technique to the Gradient Descent-based LSTM model

(GD-LSTM). Thus, we implement two versions of VOPC and PCPV; one using PSO-

LSTM and another using GD-LSTM. These versions are referred to as VOPC-PSO

and PCPV-PSO, as well as VOPC-GD and PCPV-GD. Furthermore, in order to

assess the effect of taking varying weather conditions into consideration in the predic-

tion model, we evaluate the prediction accuracy of both GD-LSTM and PSO-LSTM

compared to the long-term GD-based LSTM model proposed in [82], which has not

taken the weather into consideration. We refer to the latter as GD-LSTM-NW. Note

that this LSTM model has been shown to outperform other prominent time series

prediction techniques, including ARIMA [82].

We use the following performance metrics: 1) the average delay experienced start-

ing from the time a request is generated until the data packet is received, 2) the packet

delivery ratio, which is the ratio of data packets successfully acquired by users to the

total number of generated data packets, 3) the cache hit ratio, which is the ratio

of requests satisfied by caching nodes to the total number of received data packets,

and 4) the satisfaction ratio, which is the ratio of data packets received before the

specified deadline to the total number of data received.
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In addition to the aforementioned metrics, two more metrics are used in order to

assess the prediction accuracy of the prediction model. The first metric is the RMSE,

given by Eq. 3.11, and the second is the coefficient of determination, referred to as

R2, which is another prominent statistical measure for evaluating the performance of

prediction models. R2 is defined as the percentage of variance in a dependent variable

that is caused by its relationship with an independent variable [81]. It is given by Eq.

3.19, where SSRegression, and SSTotal are the squared sum of the regression error, given

by Eq. 3.20, and the squared sum of the total error, given by Eq. 3.21, respectively.

Note that xi, and x̂i are, respectively, the actual and predicted values of the average

travel time, while x̄ is the mean value of the data points.

R2 = 1− SSRegression
SSTotal

(3.19)

SSRegression =

Q∑
i=1

(xi − x̂i)2 (3.20)

SSTotal =

Q∑
i=1

(xi − x̄)2 (3.21)

3.4.1 Simulation Setup

Simulations are conducted using the NS-3 network simulator [64]. NS-3 is integrated

with Gurobi [65] to generate the optimal solution in VOPC. Table 3.1 summarizes the

simulation parameters. Simulations are performed over a 6× 6 road grid topography,

comprised of 120 edges. Realistic vehicular mobility traces are created using the

SUMO traffic simulator [86]. The network consists of 600/km2 moving vehicles, 200 of

which are requesters. The simulation period is set to 2000 seconds. The transmission
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Table 3.1: Simulation parameters of VOPC, PCPV, LSTM-GD, and LSTM-PSO.

Simulation Parameters Value
Dimensions of the Road Topography 6× 6
Number of Edges 120
Simulation Time 2000 sec
Communication Technology IEEE 802.11p WAVE
Communication Range 200 m
Beacon Interval 1 sec
Number of Requesters 200
Number of Public Figures 50
TTL of Contents 5-7 minutes
Number of Parked Vehicles 240
Cache Capacity Percentage (θ) 60%
Percentage of Road Segments with Parked Vehicles 100%
Deadline Factor (β) 10 seconds
Number of Hidden Layers 1
Number of Hidden Units (H) 12
Number of Epochs in GD 50
Number of Epochs in PSO 30
Number of Particles 40
Learning Rate in GD 0.1
Inertia Weight (ω), c1, and c2 0.5, 1.5, and 1.5

range set to 200 m and the beacon interval set to 1 seconds. We use the IEEE 802.11p

WAVE standard as a representative of vehicular communication technologies, but all

the proposed schemes in this thesis can work regardless of the adopted underlying

communication technology. Traffic updates are reported to the data center every 3

minutes. In BPC, data is broadcasted every 8 seconds.

Based on the Zipf-like distribution with a skewness factor=0.5, the interest gen-

eration is distributed among 50 public figures, each of which publishes a new post

every 5 − 7 minutes, rendering the previous one obsolete. The number of parked

vehicles is 240, uniformly distributed among the road segments. Each parked vehicle
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remains at its assigned parking space for the entire simulation period. We vary the

dedicated cache capacity at roadside caching units at each intersection in BPC, as

well as the total cache capacity of the parked vehicles at each road segment in VOPC

and PCPV. This is expressed as the percentage, denoted θ, of the total number of

contents that can be requested. The time of each request is assigned a random value

that lies within the trip duration of the requester. The deadline of each request is

set to the request time+β. Unless otherwise specified, θ and β are set to 60% and

10 seconds, respectively. The percentage of road segments that have parked vehicles

residing at them is set to 100%. The threshold thdm is set to 15 seconds.

The number of hidden units H in the three LSTM models is set to 12. The batch

size is set to 1, the number of epochs in GD-LSTM and GD-LSTM-NW is set to 50,

whereas that of PSO-LSTM is set to 30. The number of particles is set to 40, and

the values of ω, c1, and c2 are set to 0.5, 1.5, and 1.5, respectively. The learning rate

in gradient descent is 0.1, and the number of time steps in the three models is 6. We

split the dataset into 80% training data and 20% testing data.

3.4.2 Results and Discussion

In our experiments, we evaluate the performance of BPC, PCPV-GD, PCPV-PSO,

VOPC-GD, and VOPC-PSO under varying cache capacity percentage θ, percentage

of road segments with parked vehicles κ, and deadline factor β. In addition, we

evaluate the prediction accuracy of GD-LSTM-NW, GD-LSTM, and PSO-LSTM. The

results acquired are discussed below. Simulation results are presented at a confidence

level=90%.

1- Prediction Model Results
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Table 3.2: Prediction performance results.

R2 RMSE
Algorithm H = 10 H = 12 H = 14 H = 10 H = 12 H = 14
GD-LSTM-NW 76 79 77 10.25 8.89 7.54
GD-LSTM 80 84 85 7.67 6.01 5.87
PSO-LSTM 85 93 93 4.74 3.18 3.18

We first present the results of the three prediction models GD-LSTM-NW, GD-

LSTM, and PSO-LSTM in terms of R2 and RMSE in order to evaluate their per-

formance in terms of prediction accuracy. Table 3.2 shows the numerical values of

R2 and RMSE of each of the three schemes over different number of hidden units

H. As shown in Figure 3.3(a), PSO-LSTM yields the highest R2 among all schemes

at H = 10, with a difference gain of 9%, and 5% compared to GD-LSTM-NW,

and GD-LSTM, respectively. As depicted in Figure 3.3(b), PSO-LSTM also renders

the lowest RMSE, with a reduction of 53% and 38% compared to GD-LSTM-NW,

and GD-LSTM, respectively. Also, GD-LSTM outperforms GD-LSTM-NW, where

it yields a difference gain of 4% in terms of R2, and a reduction of 25% in terms of

RMSE.

The leverage of PSO-LSTM further increases at H = 12, where it also renders the

highest R2 and lowest RMSE. In particular, it yields a difference gain of 14% and 9%

in R2, and a decrease of 64% and 47% in RMSE compared to GD-LSTM-NW, and

GD-LSTM, respectively. In addition, at H = 12, GD-LSTM improves both R2 and

RMSE compared to GD-LSTM-NW, where it renders a difference gain of 5% in R2,

and a decrease of 32% in RMSE.

It is worth mentioning that the leverage gained in PSO-LSTM can be attributed

to the fact that PSO has a higher chance of finding the global optima, due to its
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(a) R2.

(b) RMSE.

Figure 3.3: RMSE and R2 over varying hidden units in GD-LSTM-NW, GD-LSTM,
and PSO-LSTM.

ability to expand the search space. This is in contrast to GD, which tends to suffer

from local optima entrapment. The disregard of the influential factor pertaining to

weather conditions in GD-LSTM-NW further exacerbates the problem. This is since
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the model fails to capture the relationship between different travel time occurring at

various weather conditions.

When H is equal to 14, PSO-LSTM sustains the same performance in both R2

and RMSE as those yielded at H = 12, while the corresponding values of GD-LSTM

slightly increase, with a difference gain in R2 of only 1%, and a reduction in RMSE of

only 2% compared to its previous values at H = 12. In contrast, when H is equal to

14, the performance of GD-LSTM-NW slightly deteriorates compared to its previous

values at H = 12. In particular, GD-LSTM-NW yields a 2% difference loss in its R2,

and a decrease of 15% in its RMSE.

In the remaining experiments presented in this section, we implement our proac-

tive cache placement schemes VOPC and PCPV with both PSO-LSTM and GD-

LSTM in order to study the effect of the level of prediction accuracy on the per-

formance of the cache placement procedure. Since the performance of PSO-LSTM

has not changed from H = 12 to H = 14, and that of GD-LSTM has only slightly

improved, we set H to 12 in our experiments since the gain is not worth the time

cost.

2- The Impact of Cache Capacity

In this experiment, the cache capacity percentage θ is varied from 20% to 100% to

assess the performance of our proposed schemes under low, medium, and high cache

capacity.

Figure 3.4 shows the performance of BPC, PCPV-GD, PCPV-PSO, VOPC-GD,

and VOPC-PSO in terms of average delay over varying percentage of cache capacity.

Note that in Figure 3.4, the curves of VOPC and PCPV that are implemented using

the same prediction model are circled together. This is to indicate that the schemes
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Figure 3.4: Average delay over varying cache capacity (θ).

within the same group are compared to each other. In addition, each circled group

is compared to the other group. This applies to every graph in this section that has

these circles.

As depicted in 3.4, the predictive approach demonstrates significant reduction in

delay compared to BPC, where PCPV-GD, and PCPV-PSO improve the average de-

lay by up to 72% and 81%, respectively, while VOPC-GD and VOPC-PSO improve

it by up to 92% and 97%, respectively. This is since requesters in BPC rely on op-

portunistic encounter with vehicles that happen to have the data. Such an encounter

might take some time to occur, which could delay the process of data acquisition. The

possibility of this encounter is further prolonged as the cache capacity θ decreases.

This is due to the reduction in data availability. In contrast, the predictive approach

enables the data to be proactively acquired within a certain time frame specified by
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users.

As demonstrated in Figure 3.4, PCPV approaches the optimal solution VOPC as

θ increases. In contrast, the gap between the two increases as θ decreases, where the

gap between PCPV-GD and VOPC-GD rises up to 28%, while that between PCPV-

PSO and VOPC-PSO rises up to 24% when θ is equal to 20%. This indicates a room

for improvement in the heuristic solution. The reason is that the lower the cache

capacity, the higher the chance of assigning requests to road segments with which the

users have more accumulated prediction error. This is since road segments yielding

lower accumulated error might already be fully occupied. As a result of the higher

prediction accuracy yielded by PSO-LSTM compared to GD-LSTM, the magnitude

of the accumulated prediction error at road segments encountered further ahead along

the users’ trajectory is reduced in VOPC-PSO and PCPV-PSO compared to VOPC-

GD and PCPV-GD, respectively. This leads to significant reduction in delay achieved

by the former schemes compared to the latter. In particular, PCPV-PSO outperforms

PCPV-GD by up to 38%, while VOPC-PSO outperforms VOPC-GD by up to 42%.

Thus, VOPC-PSO yields the upper bound on the potential improvement in delay.

Figure 3.5 demonstrates the performance of the schemes in terms of packet delivery

ratio over varying percentage of cache capacity. As shown in the Figure, VOPC yields

the upper bound on the reachable packet delivery ratio. The predictive approach,

including VOPC and PCPV, exhibits a significant improvement over BPC, where

PCPV-GD, and PCPV-PSO increase the packet delivery ratio by up to 18% and

24%, respectively, while VOPC-GD and VOPC-PSO improve it by up to 31% and

33%, respectively. This is because the chance that the broadcasted data packets reach

the requesters in BPC is largely dependent on the opportunistic encounter with the
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Figure 3.5: Packet delivery ratio over varying cache capacity (θ).

corresponding data holders. In contrast, in both VOPC and PCPV, the data is

acquired by requesters as they deterministically pass by the caching nodes, thus sig-

nificantly reducing the risk of packet loss.

As shown in Figure 3.5, the potential gain of PCPV-GD in terms of packet delivery

ratio can reach up to 6% compared to VOPC-GD, while that of PCPV-PSO can reach

up to 3% only. The gap between PCPV and VOPC increases as θ decreases. This

is due to the increasing risk that requesters pass by the designated caching nodes

either before the data has been cached or after it has expired. Such a risk manifests

as the cache capacity is reduced due to the higher risk that replicas are placed at

road segments with higher accumulated prediction error, since those with lower error
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might already be fully occupied. In contrast, as θ increases, this risk is significantly

reduced. Thus, PCPV gets closer to the optimal solution. Note that PCPV-PSO

and VOPC-PSO outperform their GD counterparts, with an increase of up to 11%,

and 8%, respectively. This is due to the higher prediction accuracy of PSO-LSTM

compared to GD-LSTM, which in turn reduces the accumulated prediction error at

road segments, thus reducing the risk of packet loss.

We conduct the same experiment to evaluate the performance in terms of cache

hit ratio over varying (θ). As depicted in Figure 3.6, VOPC and PCPV significantly

outperform BPC, where PCPV-GD, and PCPV-PSO improve the cache hit ratio by

up to 23% and 29%, respectively, while VOPC-GD and VOPC-PSO improve it by

up to 29% and 33%, respectively. This is due to the fact that as θ decreases, data

availability at caching nodes decreases in BPC, which makes it harder for requesters

to opportunistically encounter caching nodes that have the contents they desire. In

contrast, VOPC and PCPV are designed such that contents are mainly acquired

from caching nodes as requesters pass by. The only possibility for data acquisition

from the data center is when requesters pass by the designated parked vehicle that is

responsible for acting as their data provider, but the data is not found. This could

occur either because they have departed the road segment before the data has been

cached or arrived after it has already expired. In which case, the data center can give

them another chance for data acquisition when it re-examines the cache placement

procedure or it can directly send them a replica if there is no caching opportunity. The

latter option could reduce the cache hit ratio. As previously mentioned, as θ increases,

this risk is significantly reduced. Also, even if this risk occurs, there is a possibility

that the data might be opportunistically acquired from nearby caching nodes, which
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Figure 3.6: Cache hit ratio over varying cache capacity (θ).

could be parked or moving vehicles. Note that such a possibility increases as θ

increases, due to the increased data availability at caching nodes.

As shown in Figure 3.6, VOPC provides the upper bound on the potential cache

hit ratio increase under varying θ, where VOPC-PSO yields the highest cache hit ra-

tio. Note that the gap between PCPV and the optimal solution is significantly small,

where it can reach up to 4% between PCPV-PSO and VOPC-PSO, and 5% between

PCPV-GD and VOPC-GD. This indicates that PCPV approaches the optimal solu-

tion even under low values of θ. This can be largely attributed to the aforementioned

alternatives that enable the data to still be acquired from caching nodes even when

requesters reach their designated caching slots too early or too late to be procured.
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Since the aforementioned risk is reduced in VOPC-PSO and PCPV-PSO compared

to their GD counterparts, they achieve a slightly higher cache hit ratio compared to

VOPC-GD, and PCPV-GD, with an improvement of up to 4%, and 5%, respectively.

Figure 3.7 depicts the effect of varying θ on the satisfaction ratio of users. It shows

that VOPC and PCPV yield significant improvement in terms of satisfaction ratio

compared to BPC, where PCPV-GD, and PCPV-PSO improve it by up to 63% and

81%, respectively, while VOPC-GD and VOPC-PSO improve it by up to 86% and

98%, respectively. This can be attributed to the fact that in contrast to VOPC and

PCPV, BPC does not attempt to abide by a specific QoS demanded by users. This

makes users more susceptible to acquiring the data later than their desired deadline

due to the much higher delay yielded by BPC.

As depicted in Figure 3.7, the satisfaction ratio of the predictive approach signifi-

cantly increases as θ increases. This can be attributed to the significant reduction in

delay yielded by VOPC and PCPV, due to the aforementioned reasons. In addition,

as θ decreases, the chance of finding caching nodes that the requesters pass by before

their deadline decreases, and if found, they might have a high accumulated prediction

error, thus increasing the risk of low satisfaction ratio.

Note that VOPC provides the upper bound on the potential satisfaction ratio

increase, where the potential gain of PCPV compared to the optimal solution increases

as θ decreases, rising to up to 12% in PCPV-GD compared to VOPC-GD, and 10% in

PCPV-PSO compared to VOPC-PSO. In contrast, as θ increases, PCPV gets closer to

the optimal solution. The lower gap between PCPV-PSO and VOPC-PSO compared

to that between PCPV-GC and VOPC-GC can be attributed to the lower prediction

accuracy of LSTM-PSO, which helps reduce the accumulated error, and thus utilize
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Figure 3.7: Satisfaction ratio over varying cache capacity (θ).

more caching nodes that could help deliver the data before the specified deadline.

In fact, VOPC-PSO and PCPV-PSO outperform their GD counter parts, where the

former improves the satisfaction ratio by up to 12% compared to VOPC-GD, and the

latter improves it by up to 14% compared to PCPV-GD.

3- The Impact of the Percentage of Road Segments with Parked Vehicles

In this experiment, the percentage of road segments that have parked vehicles

residing at them, denoted κ, is varied from 20% to 100% in order to study the effect

of the scalability of road segments that are available for caching on the performance

of the schemes.

Figure 3.8 demonstrates the effect of varying κ on the average delay. As shown in
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Figure 3.8: Average delay over varying percentage of road segments with parked ve-
hicles (κ).

the Figure, varying κ has no effect on the performance of BPC. This is since BPC

does not use parked vehicles for caching. Due to the same aforementioned reasons,

the predictive approach significantly improves the delay compared to BPC, where

PCPV-GD, and PCPV-PSO improve it by up to 73% and 79%, respectively, while

VOPC-GD and VOPC-PSO improve it by up to 87% and 94%, respectively. Note

that both VOPC and PCPV yield higher delay as κ decreases. This can be attributed

to the fact that decreasing κ limits the number of road segments available for cache

selection. This can force the data center to place replicas at road segments with which

the requesters have low probability of encounter (i.e., high accumulative prediction

error). This poses the risk of having the data cached at road segments that requesters

encounter after their specified deadline. This risk further increases as the prediction
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accuracy decreases. This explains the leverage gained by VOPC-PSO and PCPV-

PSO compared to their GD counterparts, where the former improves the delay by up

to 40% compared to VOPC-GD, while the latter improves it by up to 34% compared

to PCPV-GD.

As shown in Figure 3.8, the gap between PCPV and the optimal solution VOPC

increases as κ decreases, reaching up to 25% between PCPV-GD and VOPC-GD, and

22% between PCPV-PSO and VOPC-PSO, thus indicating a room for improving the

delay in the heuristic solution. This can be attributed to the fact that the aforemen-

tioned risk is handled by PCPV on a group-by-group basis, where it divides the users

into groups and process them sequentially to allocate the requests to spatiotempo-

ral caching slots. Thus, a replica might miss a better caching slot merely because a

different group of requests have been handled first, and that slot has already been

occupied. In contrast, the optimal solution can handle all requests at once. Accord-

ingly, it can optimally allocate the requests to reach the global solution. Note that

the gap between PCPV and VOPC significantly decreases as κ increases, where the

heuristic solution gets closer to the optimal.

Figure 3.9 shows the effect of varying κ on the packet delivery ratio, where BPC

outperforms PCPV-GD, VOPC-GD, and PCPV-PSO by 11%, 5%, and 2%, while it

renders a 3% lower packet delivery ratio compared to VOPC-PSO when κ is equal to

20%. As κ increases, the predictive approach starts to improve the packet delivery

ratio compared to BPC. In particular, PCPV-GD, and PCPV-PSO improve it by up

to 18% and 20%, respectively, while VOPC-GD and VOPC-PSO improve it by up to

23% and 26%, respectively. This is because as κ decreases in the predictive approach,

the risk of having requesters that do not pass by any road segment that has parked
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Figure 3.9: Packet delivery ratio over varying percentage of road segments with
parked vehicles (κ).

vehicles increases. This forces data acquisition to occur either from the far-away data

center or from caching nodes that are opportunistically encountered. Data acquisition

from the data center suffers from the risk of dropping the packet due to failure to

reach the requester. This could occur due to the movement of the requesters and the

risk of erroneous estimations of their location, as well as the lack of a stable residence

for the replicas to be cached along the route of the requesters. Note that, as the

number of road segments available for cache selection decreases, the risk of allocating

replicas to road segments that have high accumulative prediction error increases.

This increases the risk of caching the data at road segments that requesters pass by

either before the data has been cached or after it has already expired. Consequently,
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more reliance on opportunistic encounter with caching nodes, or resorting to the

data center for data acquisition takes place. Since the broadcast-based approach

increases data availability at caching nodes by broadcasting the data, which increases

the possibility of opportunistic encounter, it renders a higher packet delivery ratio at

κ = 20%. However, as κ increases, the aforementioned risks decrease, which enables

the predictive approach to render a much higher packet delivery ratio than BPC.

As shown in Figure 3.9, VOPC-PSO yields the highest upper bound on the po-

tential packet delivery ratio. Also, VOPC-PSO and PCPV-PSO outperform their

GD counterparts, where the former improves the packet delivery ratio by up to 8%

compared to VOPC-GD, while the latter improves it by up to 10%. This is due to

the high prediction accuracy rendered by PSO-LSTM compared to GD-LSTM, which

helps reduce the accumulated prediction error of the period of encounter at road seg-

ments. Note that PCPV tends to approach the corresponding optimal solution as κ

increases, while the gap between the two solutions increases as κ decreases, reaching

up to 7% between PCPV-PSO and VOPC-PSO, and up to 5% between PCPV-PSO

and VOPC-PSO, indicating only a slight room for improvement in the heuristic so-

lution.

In Figure 3.10, the impact of varying κ on the cache hit ratio is depicted. It is

shown that as κ increases, the cache hit ratio increases. As previously mentioned,

data acquisition in the predictive approach is mostly achieved by parked vehicles as

requesters pass by the corresponding road segments. However, as κ decreases, the

risk of resorting to the data center for data acquisition increases. This is due to

the increased possibility of the aforementioned risks. When κ is equal to 20%, BPC

slightly outperforms PCPV-GD, with an increase of 2%, while VOPC-GD and PCPV-
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Figure 3.10: Cache hit ratio over varying percentage of road segments with parked
vehicles (κ).

PSO improve the cache hit ratio by only 2%, and VOPC-PSO improves it by 7%

compared to BPC. This is due to the fact that some requesters do not pass by any

of the road segments that have parked vehicles for caching. The higher improvement

rendered in VOPC-PSO is particularly attributed to its higher prediction accuracy

compared to its GD counterpart, and the fact that it seeks the optimal solution.

The higher prediction accuracy reduces the risk of requesters passing by their corre-

sponding caching road segments when the data is not there, thus reducing the risk

of having to resort to the far-away data center. As κ increases, all the predictive ap-

proach schemes start to significantly outperform BPC, reaching an improvement of up
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to 17%, 17%, 18%, and 19% in PCPV-GD, VOPC-GD, PCPV-PSO, and VOPC-PSO,

respectively.

As shown in Figure 3.10, PCPV-PSO improves the cache hit ratio by up to 10%

compared to PCPV-GD, while VOPC-PSO improves it by up to 7% compared to

VOPC-GD. This is due to the aforementioned reasons. In both cases, PCPV tends

to approach the optimal solution as κ increases, with a gap of 0% at κ = 100%. In

contrast, this gap increases as κ decreases, reaching up to 7% between PCPV-GD and

VOPC-GD, and 10% between PCPV-PSO and VOPC-PSO. This indicates a slight

room for improving the heuristic solution.

In Figure 3.11, the effect of varying κ on the satisfaction ratio is demonstrated.

As shown in the Figure, the satisfaction ratio in BPC is not affected by κ, since it

does not involve the use of parked vehicles. In contrast, as κ increases, the satisfaction

ratio increases in the predictive approach. This can be attributed to two reasons. The

first reason is the fact that as κ decreases, the number of available road segments in

the cache selection process decreases, which forces the data center to assign replicas to

road segments with which users have high accumulative prediction error. This means

that more requests are assigned to road segments with which the corresponding users

have inaccurate estimation of their period of encounter. This increases the risk of

data acquisition after the specified deadline, which reduces the satisfaction ratio. The

second reason is the fact that lower values of κ increases the risk of the data center

not being able to find caching slots for more users, since they do not pass by any of

the road segments that have parked vehicles. This forces data acquisition to occur

from the data center, or a caching node encountered along the request forwarding

path. The prolonged delay from the data center due to the movement of requesters,
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Figure 3.11: Satisfaction ratio over varying percentage of road segments with parked
vehicles (κ).

further decreases the satisfaction ratio. Note that as κ increases, data availability

increases, which means that even if the aforementioned risk occurs, the possibility of

encountering a nearby caching node increases, which increases the satisfaction ratio.

Figure 3.11 shows that the predictive approach significantly outperforms BPC.

In particular, it is shown that the satisfaction ratio increases by up to 60%, 63%,

63%, and 65% in PCPV-GD, VOPC-GD, PCPV-PSO, and VOPC-PSO, respectively,

compared to BPC. This can be attributed to the fact that data acquisition in BPC

does not abide to a specific time frame, and it tends to be prolonged due to its reliance

on opportunistic encounter with caching nodes that happen to have the data. This

increases the risk of acquiring the data after the deadline. In contrast, the predictive
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approach enables data acquisition to occur in a deterministic way while abiding to a

specific QoS.

As shown in Figure 3.11, VOPC-PSO and PCPV-PSO outperform their GD coun-

terparts, where the former improves the satisfaction ratio by up to 7% compared to

VOPC-GD, and the latter improves it by up to 9% compared to PCPV-GD. This can

be attributed to the higher prediction accuracy rendered by PSO-LSTM compared to

GD-LSTM, which reduces the aforementioned risk. In both cases, the gap between

PCPV and VOPC is reduced as κ increases, thus enabling it to get significantly closer

to the optimal solution. However, as κ decreases, this gap tends to increase, reach-

ing up to 9% between PCPV-GD and VOPC-GD, and 7% between PCPV-PSO and

VOPC-PSO. This implies that there is a slight room for improvement in the heuristic

solution.

4- The Impact of the Deadline Factor

In this experiment, the deadline factor, denoted β, is varied from 10 to 50 seconds

in order to study the effect of the deadline specified by users. In order to evaluate

this effect when the cache capacity is low in particular, we set the percentage of cache

capacity θ to 20%. Note that since BPC does not abide to any specified deadline, it

remains the same throughout all the following results.

Figure 3.12 depicts the effect of varying β on the average delay. It shows that

as β increases, the average delay increases in the predictive approach. This can be

attributed to the fact that increasing β increases the possibility of the data center

assigning replicas to road segments that requesters pass by within a longer time

frame. This particularly occurs when road segments with which users have earlier

time of encounter have already been occupied. This can lead to data acquisition at
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Figure 3.12: Average delay over varying deadline factor (β).

a later time. Due to the higher prediction accuracy rendered by VOPC-PSO and

PCPV-PSO compared to their GD counterparts, VOPC-PSO reduces the delay by

up to 46% compared to VOPC-GD, while PCPV-PSO reduces it by up to 38%. Note

that VOPC-PSO renders the highest upper bound on the potential average delay

improvement.

As shown in Figure 3.12, the gap between PCPV and the optimal solution signifi-

cantly decreases as β increases, as it performs much closer to the optimal solution. In

contrast, this gap increases as β decreases, reaching up to 28% between PCPV-GD

and VOPC-GD, and up to 22% between PCPV-PSO and VOPC-PSO. This can be

attributed to the fact that the aforementioned risk tends to increase in PCPV, since

it handles the cache allocation problem on a group-by-group basis. Thus, a better

solution for a later group of requesters might no longer be available. This leads to



3.4. PERFORMANCE EVALUATION 102

Figure 3.13: Packet delivery ratio over varying deadline factor (β).

yielding higher delay compared to VOPC. Note that the predictive approach signifi-

cantly outperforms BPC, with an improvement of up to 62%, 73%, 76%, and 85% in

PCPV-GD, VOPC-GD, PCPV-PSO, and VOPC-PSO, respectively. This is since the

increase in delay rendered in the predictive approach is still guided by the specified

deadline, as opposed to leaving it completely without any form of control in BPC.

Despite the effect of increasing β on increasing the average delay, there are several

benefits gained from such an increase. One of these benefits is in terms of the packet

delivery ratio, where as shown in Figure 3.13, the packet delivery ratio increases as β

increases. This can be attributed to the fact that increasing β can increase the number

of feasible road segments that can be used for caching for each request. This reduces
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the risk of not being able to serve a request because all available spatiotemporal

caching slots are either already occupied or they violate the user’s specified deadline.

In addition, it enables the same slot to serve more users, since it is considered feasible

by multiple of them. In contrast, when β is too small, this forces the data center

to allocate more replicas at different caching slots to serve all the users requesting

the same data. This leads to occupying more of the available storage resources, and

thus failing to find enough space to serve all requests. This leads to resorting to data

acquisition from the far-away data center, which involves the previously discussed

risks.

As shown in Figure 3.13, VOPC-PSO and PCPV-PSO outperform their GD coun-

terparts, where VOPC-PSO improves the packet delivery ratio by up to 8% compared

to VOPC-GD, while PCPV-PSO improves it by up to 11% compared to PCPV-GD.

This is because VOPC-PSO and PCPV-PSO can reduce the risk of requesters pass-

ing by their corresponding caching road segments before the data has been cached

or after it has expired. This is due to the higher prediction accuracy of PSO-LSTM

compared to GD-LSTM. Note that even if this risk occurs, another chance for data

acquisition can be given to the corresponding requesters the next time the data center

re-examines the cache placement procedure. The increased available cache space due

to increasing β can help seize such an opportunity to serve those who could not be

accommodated because they reached the designated road segments too late or too

early. Thus, increasing β can significantly improve the packet delivery ratio. It is

worth mentioning that as β increases, the gap between PCPV and the optimal solu-

tion decreases, reaching a 0% gap at β = 50, while this gap slightly increases at lower

values of β, reaching up to 5% between PCPV-GD and VOPC-GD, and 3% between
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Figure 3.14: Cache hit ratio over varying deadline factor (β).

PCPV-PSO and VOPC-PSO. Accordingly, there is a very slight room for improving

the heuristic solution. Note that due to the same previously discussed reasons, the

predictive approach outperforms BPC by up to 39%.

In Figure 3.14, the effect of varying β on the cache hit ratio is demonstrated. As

shown in the Figure, the cache hit ratio increases as β increases in the predictive ap-

proach. This can be attributed to the same aforementioned reasons that contributed

to the increase in the packet delivery ratio.

As shown in Figure 3.14, VOPC-PSO renders the upper bound on the potential

improvement of the cache hit ratio. Note that VOPC-PSO increases the cache hit

ratio by up to 4% compared to VOPC-GD, while PCPV-PSO improves it by up to
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5% compared to PCPV-GD. This is due to the higher prediction accuracy yielded by

LSTM-PSO compared to LSTM-GD, which reduces the aforementioned risk. Mean-

while, the gap between PCPV and VOPC increases as β decreases, reaching up to 5%

between PCPV-GD and VOPC-GD, and 4% between PCPV-PSO and VOPC-PSO.

This occurs at β = 10 seconds, but as β increases, PCPV gets much closer to the

optimal solution, until reaching a 0% gap starting from β = 40 seconds. This is since,

even though PCPV handles the request allocation process on a group-by-group basis,

the previously discussed risk can still be handled when the cache placement procedure

is re-examined. This is since at higher β, there is a higher possibility of benefiting

from this second chance of data acquisition due the increase in the utilization of the

caching storage resources. Finally, as shown in Figure 3.14, the predictive approach

can improve the cache hit ratio by up to 35% compared to BPC.

The effect of varying β on the satisfaction ratio is demonstrated in Figure 3.15.

It is shown that as β increases, the satisfaction ratio increases in the predictive ap-

proach. This is because, as β increases, the window of opportunity for data acquisition

increases, which can reduce the effect of erroneous predictions. As a result, the pre-

dictive approach can improve the satisfaction ratio by up to 120% compared to BPC.

Note that the upper bound on the potential satisfaction ratio improvement is yielded

by VOPC-PSO. As shown in Figure 3.15, VOPC-PSO and PCPV-PSO increase the

satisfaction ratio compared to their GD counterparts, where VOPC-PSO renders an

improvement of up to 12% compared to VOPC-GD, and PCPV-PSO yields an im-

provement of up to 14% compared to PCPV-GD. This is because the higher predic-

tion accuracy provided by PSO-LSTM enables it to reduce the risk of the requesters

passing by their allocated caching slots after the deadline. In addition, since VOPC
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Figure 3.15: Satisfaction ratio over varying deadline factor (β).

seeks the optimal solution by maximizing cache hits that abide to the demanded time

frame of the requesters, the gap between the heuristic solution, PCPV, and VOPC

increases as β decreases, reaching up to 11% between PCPV-GD and VOPC-GD,

and 9% between PCPV-PSO and VOPC-PSO. This implies a room for improving the

heuristic solution. In contrast, this gap decreases as β increases, till it reaches a 0%

gap between PCPV and the optimal solution at β = 50.

3.5 Summary

In this chapter, we proposed a predictive proactive caching framework that uses

parked vehicles to pre-cache the data at the proper time and place for users to proac-

tively procure as they pass by. This framework relies on the fact that some users
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exhibit a predictable behavior as a result of following a daily routine. In order to

exploit such a predictable behavior, the proposed framework includes a prediction

module, as well as a cache placement module. In the former, the travel time of users

at each road segment along their trajectory is estimated in order to be fed into the

latter. This is in order to enable informed proactive cache placement decisions to be

made by the data center.

In the prediction module, we proposed a PSO-based LSTM model that takes the

effect of weather conditions into consideration. The prediction module also enables the

estimation of a personalized travel time for each user. In the cache placement module,

we have introduced VOPC as a benchmark that allows researchers to quantify the

potential gains of predictive proactive caching schemes, evaluate their performance,

and certify if there is a possibility for improvement. It presents an optimal solution to

pre-cache the data at parked vehicles so as to be proactively procured by users within

a specific time frame. In VOPC, the caching problem has been formulated as an

Integer Linear Programming (ILP) optimization problem. Furthermore, we proposed

a greedy heuristic approach that takes into consideration all the time-constraint issues

required to select the most suitable road segments for caching. To maximize cache

hits in both VOPC and PCPV, the probability of encounter of proactive users with

road segments along their trajectory is also taken into consideration.

We evaluated the performance of the proposed prediction model in terms of pre-

diction accuracy, and we compared it to two gradient descent-based LSTM models

that are implemented with and without considering the weather conditions, namely

GD-LSTM and GD-LSTM-NW. Simulation results have shown that PSO-LSTM out-

performs both models in terms of RMSE and R2. We also implemented VOPC
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and PCPV using both PSO-LSTM and GD-LSTM to evaluate the effect of the level

of prediction accuracy on the cache placement process. In addition, we compared

the predictive proactive caching approach (i.e., VOPC and PCPV) to the baseline

broadcast-based approach. Simulations have shown that the former significantly out-

performs the latter in terms of delay, packet delivery ratio, cache hit ratio, and sat-

isfaction ratio. We have also demonstrated the benefit of VOPC in quantifying the

potential gains of the heuristic-based predictive scheme.
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Chapter 4

Tracking-based Content Discovery in VANETs

4.1 Introduction

One of the important decisions in caching is the one made during the cache discovery

process [12]. Discovering where the content is cached is the first process that needs to

be performed when a node requests any content. Most caching schemes in VANETs

focus on the cache placement policy and ignore the cache discovery process. In fact,

they mostly assume the use of a server-based cache discovery process, where cache

discovery relies on the opportunistic encounter with a caching node en-route to the

data center [12]. This significantly restricts the search space, and can lead to failure

in locating caching nodes, which can eventually reduce cache hits.

Many existing cooperative cache discovery schemes in different network paradigms,

including MANETs [12] and ICNs [13], depend on some form of information exchange

for tracking cached contents [12]. Such information can be used to navigate requests

towards nearby caching nodes rather than blindly directing them towards the far-away

data center. This type of schemes is referred to as ”tracking-based schemes” [12]. Such
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schemes can expand the search space compared to server-based schemes, and can sus-

tain lower overhead and delay compared to broadcast-based schemes, where requests

are flooded [12]. However, in dynamic networks, preserving up-to-date tracking in-

formation might necessitate the exchange of excessive number of messages, which

could trigger massive overhead [12]. Hence, information exchange is typically limited

to neighboring nodes only in the majority of tracking-based schemes in MANETs

[12]. This restriction can still limit the search space and can thus reduce cache hits

[12]. Also, despite its irrefutable leverage in MANETs and ICNs, cooperative cache

discovery has been rarely explored within the context of VANETs [12]. This can be

attributed to the intensively dynamic nature of vehicles, which curtails the lifetime of

cached content information and stimulates recurrent instabilities in caching decisions,

including cache discovery decisions [12].

In order to tackle the aforementioned problems, we propose the Cooperative Con-

tent Discovery (CCD) scheme. In CCD, we utilize the static nature of parked vehicles

to create a rather stable residence for cached content information. We do so to keep

the information received from encountered vehicles alive at road segments for later

use. In addition, we leverage such a static nature to provide a more stable tracking

service of the movement of moving vehicles, including that of caching nodes. This

further increases the lifetime of the cached content information. We rely on beacon

messages that are typically exchanged periodically between neighboring nodes [12],

as well as the mobile and static nature of moving and parked vehicles, respectively,

to diffuse cached content information within the network. This diffusion occurs as

parked and moving vehicles exchange certain information upon encounter, including

their cached content information, via beacon messages. This information diffusion
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helps expand the search space.

To the best of our knowledge, CCD is the first cooperative cache discovery scheme

within VANETs that uses a tracking-based policy and extends the search space be-

yond the neighborhood scope. However, such an expansion is still restricted by the

extent of the available trails that moving vehicles leave to the tracking service provided

by roadside parked vehicles. In order to expand the search space beyond such restric-

tions, we propose the Prediction-Assisted Cooperative Content Discovery (PACD)

scheme. In PACD, we enable vehicles to predict the location of mobile caching nodes

based on partial knowledge of the trajectory of their ongoing trips, as well as the

historical trajectories/trips of other moving vehicles that have similar movement pat-

terns. All possible data providers are then dynamically ranked based on their prox-

imity to the requester, as well as an entropy measure that assesses the uncertainty of

their estimated positions. In addition, we reduce the amount of overhead associated

with the exchange of cached content information by employing the use of bloom fil-

ters [14]. To the best of our knowledge, PACD is the first tracking-based cooperative

cache discovery scheme in VANETs that relies on vehicles trajectory prediction to

dynamically discover caching nodes closer to the requester.

Vehicles trajectory prediction has been considered a pivotal building block in

many smart-mobility services, such as traffic management and hazard warning sys-

tems [106]. However, most existing techniques either detect individual movement

patterns based on the historical trajectories of the subject vehicle [107]-[113], or they

extract collective movement patterns from the historical trajectories of all available

vehicles in the training set [110]-[112]. In the former, predictions rely on vehicles

having some form of a repetitive pattern, which is not always the case [107, 114].
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In the latter, predictions are made at too coarse a granularity and fail to account

for the similarity between various trajectories [106]. In this thesis, we propose a

novel clustering-based trajectory prediction scheme that builds a separate prediction

model for each cluster of vehicles that share similar trajectories. In the proposed

trajectory prediction scheme, we cluster similar trajectories using the Any Relation

Clustering Algorithm (ARCA), which is a soft clustering algorithm that enables an

object to belong to more than one cluster [115]. We then use the Mixture Transition

Distribution-Probit (MTD-Probit) model to train each cluster [116].

In order to evaluate the performance of the proposed CCD and PACD schemes,

we implement them along with the proposed cooperative cache placement scheme,

which will be presented in Chapter 5. Thus, their performance evaluation is provided

in Chapter 5. The remainder of this chapter is organized as follows. In Section 4.2,

we overview some related work. In Section 4.3, we provide a detailed description of

the proposed scheme CCD. In Section 4.4, we present the proposed scheme PACD.

In Section 4.5, we summarize the discussion.

4.2 Related Work

An overview of the related work in cooperative cache discovery has already been

discussed in Section 2.3 in Chapter 2. Thus, in this section, we only highlight some

of the related work in vehicles trajectory prediction.

In [107] and [108], trajectory predictions are performed by capturing individ-

ual movement patterns based on the historical trajectories of the subject vehicle

[107, 108]. However, such schemes work well only if the vehicles exhibit a frequent
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routine that can be exploited in the prediction process [106]. In [110] and [112], pre-

dictions are made by exploiting all historical trajectories in the training set to extract

collective movement patterns, by using a T-pattern tree, and a recurrent neural net-

work, respectively. Such schemes perform predictions at too coarse a granularity and

fail to capture the right scope of similarity among various trajectories [106].

In [106], [117], and [118], the authors consider clustering various trajectories based

on their similarity, and then constructing a separate prediction model for each cluster.

This helps improve the prediction accuracy compared to the collective-based approach

[106]. Among the most commonly used similarity measures are the Minimum Edit

Distance (MED) [106], and the Dynamic Time Warping (DTW) [117, 119]. However,

MED can lack sequential context sensitivity in some situations [119, 121], and DTW

is sensitive to noises that manifest in the training data [106, 119]. In addition, most

of these schemes adopt a hard clustering algorithm, which does not allow any given

trajectory to be assigned to more than one cluster [106]. A first-order Markov chain

model [117], or a variable-length Markov chain (VLMC) model [106, 118] is used

to train each cluster. The former disregards the historical states and focuses on

current information only, thus reducing the prediction accuracy [120]. The latter can

parsimoniously model high-order Markov chains, which take a sequence of historical

states into consideration, and can thus ameliorate accuracy. However, VLMCs tend to

overlook the frequency of a given sequence in the historical data [120]. Furthermore,

they are capable of providing parsimonious efficiency only if there is enough number

of branches that possess similar probability distributions to be aggregated in the

tree-based approach [120].

In our proposed prediction algorithm incorporated into PACD, we strive to resolve
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the aforementioned problems by presenting a novel clustering-based prediction algo-

rithm that employs the Mixture Transition Distribution-Probit (MTD-Probit) model

[116]. The MTD-Probit model is an improved variation of the MTD model [120]. It

constructs parsimonious high-order Markov chains with significantly reduced param-

eters compared to the fully parameterized model, while considering the frequency of

any given sequence in the training data [116]. It has been used in some problems,

such as predicting stock market trends [122, 123], and has been shown to achieve

high prediction accuracy [116]. In addition, in contrast to most existing schemes, we

incorporate the use of the soft relational clustering algorithm ARCA [115] to enable

trajectories to belong to more than one cluster. Furthermore, we use the XXDice-

similarity coefficient [121] to determine the similarity between trajectories. It has been

demonstrated in different text matching applications that the XXDice-similarity co-

efficient can yield higher precisions than other similarity measures, including MED

[121].

4.3 Cooperative Content Discovery (CCD)

In this section, we provide a detailed description of the system model, as well as the

tracking procedure, and the cooperative cache discovery process of CCD.

4.3.1 CCD System Model

Let U be the set of requesters. Each requester u ∈ U can be interested in a certain

data item d ∈ D, where D is the set of data items that can be requested. Each data

item d ∈ D is assigned a unique name, as the case in named data networking [13],

and is coupled with a time-to-live TTLd. This TTL reflects the estimated duration
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before a given public figure generates a new post, rendering the previous one obsolete.

Upon creating a data packet, the data center (i.e., the original data provider) appends

its header with the corresponding TTL of the data. The expiry time of the cached

content can be determined based on this TTL. A set of road segments R denotes

all road segments in the network. A road segment rk ∈ R represents a directed edge

eij between two different intersections Ii and Ij, where eij 6= eji. Let V be the set

of moving vehicles in the network. Each moving vehicle v ∈ V has a trajectory trv,

where trv = r1, r2, ..rk represents the sequence of road segments traversed by vehicle

v along its ongoing trip.

The data center recruits moving and parked vehicles for the caching service by

offering some incentives, such as free parking spaces. Vehicles can have access to a

plethora of traffic statistics via navigation services. This includes the traffic density

and average speed of vehicles at every road segment. Changes in this traffic statis-

tics are triggered by major traffic updates that occur at various traffic checkpoints

throughout the day (example: morning, afternoon, rush hour, and evening). Each

moving vehicle vi knows the trajectory of its ongoing trip via the navigation service

that it has. Typically, each vehicle periodically sends its current position, as well as

its speed, and heading to its neighbors via beacon messages [5]. Note that the current

road segment at which vi is located, denoted ricur, can be determined from its current

position. In the proposed scheme, along with ricur, each moving vehicle is also willing

to share the next road segment to which it is heading, denoted rinext, with vehicles.

Parked vehicles located at each road segment are grouped into parking clusters,

created using a similar scheme to the one in [11]. In order to increase the diversity of

cached contents during the cache placement process (which will be explained later in
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the next chapter), a cluster head (CH) is elected to manage the caching decisions at

all parked vehicles within its cluster. Thus, the CH is responsible for maintaining the

cached content information within its cluster. It is also responsible for interchanging

such information with neighboring vehicles through the exchange of beacon messages.

Hence, the nearest parked vehicle to the entrance of the road segment is the one chosen

to act as the CH. This is to guarantee that the necessary information are interchanged

between moving and parked vehicles once the former move into the road.

In CCD, each vehicle maintains a List of Cached Data (LCD), containing the

names of its own cached data items. Using beacon messages, each vehicle sends its

last encounter information to all of its neighbors. If the sender of the beacon message

is a CH, the last encounter information consists of its position, as well as the LCD

of its cluster. If the sender of the beacon message is a moving vehicle vi, the last

encounter information is composed of its LCD, position, speed, heading, and the

next road segment to which it is heading rinext.

A time threshold, denoted ti,next+1,e, is defined as the time of departure of vehicle

vi from road segment rnext+1, where the latter is the road segment to which vi is

heading after rinext. Note that e in ti,next+1,e stands for the end of the period of

encounter with the road segment (i.e., the time of departure). The time threshold

ti,next+1,e is estimated by the node that receives the beacon message, and is also added

to the last encounter information. It is used to indicate the upper limit on the time

during which vi is known to be located within close proximity to the last node that

knows where it headed, as explained later in details.

Once a vehicle receives a beacon message from vi, it extracts the corresponding

last encounter information, associates it with a timestamp ti, representing the last
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time of encounter with vi, and sustains it in the Table of Possible Providers (TPP). If

the beacon message is received from a moving vehicle, the receiving vehicle calculates

the time of departure of vi from ricur, denoted ti,cur,e. This time is calculated as the

sum of ti,cur,s and the estimated travel time along ricur starting from time ti,j,s, as

given by Eq. 4.1. For any road segment rj, ti,j,s is the estimated time of arrival of vi

at rj. For ricur, ti,j,s is set to the last time of encounter ti. The travel time of a vehicle

vi along a road segment rj at time ti,j,s is denoted τ
ti,j,s
j , and is given by Eq. 4.2. The

value of τ
ti,j,s
j is calculated based on the length of the road segment, denoted Lj, and

the estimated average velocity of vehicles on the road segment at time ti,j,s, denoted

ξ
ti,j,s
j . The arrival time of vi at road segment rj is equivalent to the departure time of

vi from rj−1, as given by Eq. 4.3. Similarly, the arrival and departure time of vi to

and from rinext, denoted ti,next,s and ti,next,e, respectively, as well as the aforementioned

time threshold ti,next+1,e, are calculated.

ti,j,e = ti,j,s + τ
ti,j,s
j (4.1)

τ
ti,j,s
j =

Lj

ξ
ti,j,s
j

(4.2)

ti,j,s = ti,j−1,e = ti,j−1,s + τ
ti,j−1,s

j−1 (4.3)

The receiver of the beacon message adds the estimated departure time from ricur,

rinext, and rinext+1 to the TPP for later use. Note that the TPP provides information

about the currently and previously encountered vehicles that hold the data in their

cache and that can thus act as data providers. Even if the LCD in the received beacon

message is empty, the last encounter information is still maintained in the TPP of

the receiving vehicle. This is done for location tracking purposes. Parked vehicles
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(a) At time t1. (b) At time t2.

(c) At time t3.

Figure 4.1: An illustrative scenario of CCD.

subscribing to the caching service maintain a similar table. When a node receives

a request packet, it ranks each caching node in the TPP based on its proximity to

the requester, as well as the age of information. Based on the ranks, the request can

be directed to a data holder that is closer to the requester than the current destined

data provider. Initially, the latter is the data center. An entry in the TPP about a

caching node is considered obsolete if the corresponding data reaches its expiry time.

In order to illustrate the main notion behind the scheme, consider the scenario

depicted in Figure 4.1. As shown in Figure 4.1(a), at time t1, the moving vehicle v2,

which has the data d1 in its cache, encounters the moving vehicle v1 and the cluster
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head CH1. The parking cluster of CH1 has the data d4 in its cache. The next road

segment to which vehicle v2 is heading is r9. Based on the received beacon messages,

each vehicle updates its TPP. Based on such information, v1 and v2 now both know

that d4 is available at CH1. Also, v1 and CH1 are aware that d1 is available at v2,

and that the latter is heading to r9 next. At time t2 (Figure 4.1(b)), vehicles v1 and

v2 have already moved away. CH1 receives a request for d1 issued by the requesting

vehicle v3 and destined to CH3 (dotted line). Assume that CH3 is a caching node

that was previously encountered by v3. Upon receiving the request, CH1 consults its

TPP and determines that v2 is closer to the requester than CH3. Thus, it directs the

interest packet to v2 (dotted line). Similarly, when v1 receives a request for d4 from

the requesting vehicle v6, it consults its TPP and directs the packet to CH1 (solid

line). Meanwhile, v1 encounters the caching vehicle v5, which has d1 in its cache.

Accordingly, v1 updates its TPP to indicate that d1 is available at both v2 and v5. At

time t3 (Figure 4.1(c)), vehicle v4 sends a request for d1 to the distant data center.

When v1 receives the interest packet during the forwarding process, it checks its TPP

and ranks the previously encountered data holders v2 and v5 to select the closest node

to the requester. Accordingly, v5 is selected. Note that if v2 was selected, it would

have been reachable via CH4, since the latter knows where v2 has headed after r9.

4.3.2 CCD Tracking Procedure at Moving and Parked Vehicles

This tracking procedure can be performed by a moving vehicle or a CH in order to

track the new position of another moving vehicle vk that it maintains an entry about

in its TPP. In order for a vehicle vf to do that, it considers the following three cases:

1) The vehicle vk has not reached rknext yet. In other words, it is still moving on rkcur.
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This is the case if the current time tcur is less than the estimated time of arrival of

vk to rknext (tcur<tk,next,s). Thus, the new position of vk can be estimated based on

its old position, which is recorded in the TPP of vf , and the estimated distance that

it has traversed on rkcur since the last time of encounter tk. This distance is denoted

distk,cur,tk . The latter is calculated based on the vehicle’s speed and heading (i.e.,

velocity vector
−→
Vk), as given by Eq. 4.4.

distk,cur,tk =
−→
Vk(tcur − tk) (4.4)

2) The vehicle vk has reached rknext, and it is still there (i.e., tk,next,s≤tcur≤tk,next,e).

In this case, its new location can be estimated based on its last known position (i.e.,

the start point of rknext), and the total estimated distance that it has traversed on

rknext since its time of arrival there tk,next,s. This distance is denoted distk,tk,next,s
. This

estimated distance is given by Eq. 4.5, where
−→
V tk,next,s

is the velocity vector. This

velocity vector is determined based on the heading of vk on rknext and the estimated

average speed of vehicles on rknext at time tk,next,s.

distk,tk,next,s
=
−→
V tk,next,s

(tcur − tk,next,s) (4.5)

3) The vehicle vk has reached rknext+1 (i.e., tcur>tk,next,e). In this case, the new position

of vk can be tracked through the CH at rknext, denoted CHk
next. This is since it would

have information about rknext+1. Hence, in this case, we set the new position of vk to

that of CHk
next. If vk has already left rknext+1 (i.e., tcur>tk,next+1,e), the same logic is

applied and the new position of vk is set to that of CHk
next. Note that CHk

next has

information about rknext+1, and the cluster head at rknext+1 would also have information
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about rknext+2, and so on.

4.3.3 CCD Cache Discovery at Moving and Parked Vehicles

This procedure is either triggered by a requesting vehicle or a vehicle that is for-

warding an interest packet, denoted vf . Initially, the current data provider to which

the interest packet is directed is the data center. Note that the interest packet is

associated with the last time of encounter of the requesting vehicle. This indicates

the last time at which the requesting vehicle was located at the position included

in the packet. Also, the last time of encounter of the current data provider vc, and

its tc,next+1,e (if it is a moving vehicle), are also included in the interest packet. As

illustrated in Algorithm 3, the cache discovery procedure is executed as follows:

(a) Upon receiving an unexpired interest packet, the vehicle vf tracks the most recent

location of the requester vreq. The purpose of this tracking procedure is twofold.

First, since we aim at finding a closer data provider to the requester, we strive to

determine the most recently observed position of the latter. Second, we endeavor to

alleviate the problem associated with the fact that by the time the data is issued

back to the requester, its position might have significantly changed. Thus, the packet

might be dropped if the requester cannot be tracked. In CCD, when vreq passes by a

neighboring node, including a CH, it sends information about the next road segment

to which it is heading. Due to the static nature of parked vehicles, it is possible to

reach vreq by following its trails via the CH in the road segment where it has last

been seen, denoted rlast. Note that even if the recent position of the requester cannot

be closely estimated, it is possible to expedite the process of data access by finding

a data holder that is closer to rlast than the current data provider. This is since vreq

is reachable via rlast. The tracking procedure works as follows (lines 12-15): when a
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Algorithm 3 : CCD Cache Discovery at Moving and Parked Vehicles

1: Input:
2: Forwarding Vehicle v
3: Interest Packet I
4: Reply Packet rep
5: Requested Data d
6: Requesting Vehicle vreq //source of I
7: Current Data Provider vcp //destination of I
8: Neighborhood list NB
9:

10: cache discovery(I)
11: Begin
12: if I is not expired then
13: if vreq is recorded in vf ’s TPP then
14: if tTPP

req ≥ tIreq then //t is the last time of encounter
15: NewPosreq = track newPos(I, vreq) //Updated Pos.
16: treq = tTPP

req //Updated-t recorded in TPP
17: Update the vreq position and treq in I

18: if there is d matching I in the cache then
19: generate a reply rep
20: forward rep
21: else if any node in NB has d in its cache then
22: update vcp in I //The neighbor with the cached data
23: forward I
24: else
25: if vcp is a moving vehicle then
26: if vcp is recorded in vf ’s TPP then
27: if tTPP

cp ≥ tIcp then
28: NewPoscp = track newPos(I, vcp)
29: tcp = tTPP

cp //Updated-t recorded in TPP

30: if vf is in the range of vcp’s Position then
31: if vcp is not in NB then
32: vcp=data center

33: if ID of d matches an entry in vf ’s TPP then
34: determine Ω //Set of possible providers of d in the TPP
35: for all vi ∈ Ω̂ do // Ω̂ = Ω ∪ the data center ∪ vcp
36: if vi is a moving vehicle then
37: NewPosvi = track newPos(I, vi)
38: calculate rankvi using Eq. 4.6
39: else
40: calculate rankvi using Eq. 4.7

41: Calculate rankmax = maxvi∈U rankvi
42: C = argmaxvi∈Ω̂ rankvi

43: update vcp, its position, tcp, tcp,next+1,e in I //if any changed
44: forward I
45: End
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vehicle, vf , receives an unexpired interest packet, it checks if the requesting vehicle is

among the vehicles registered in its TPP (i.e., vreq has been previously encountered by

vf ). If it is, and the recorded time of encounter in the TPP treq is more recent than the

time of encounter associated with the interest packet, the requester’s new position is

estimated according to the information in the TPP (i.e., its position, speed, heading,

rreqnext, and treq,next+1,e). Otherwise, its position remains the same as that indicated

in the interest packet. In order to estimate the new position of vreq, vf applies the

aforementioned tracking procedure. Accordingly, the position of the requester and

its associated last time of encounter are updated in the interest packet (lines 16 &

17). Note that when the data is found, the requester’s position and its last time of

encounter are copied in the reply packet. The requester tracking process is applied

by all vehicles along the data delivery path as well.

(b) vf checks if it has a match of the requested data in its own local cache (i.e., vf

is an intermediate caching node or the destination of the interest packet). If so, the

vehicle issues a reply packet and sends it back to the requester (lines 18-20).

(c) If not, vf checks if any of its 1-hop neighbors, denoted NB, has the data in its

cache. If so, it sends the interest packet to it (lines 21-23).

(d) Otherwise, if the packet’s destination (i.e., the current data provider) is a moving

vehicle, vf tracks its most recent position. To do so, it applies the same tracking

procedure applied for the requester (lines 24-29).

(e) If the estimated position of the current data provider is within the communication

range of vf , but the former cannot be found, then the current data provider is set to

the data center. Otherwise, the current data provider remains the same (lines 30-32).

(f) vf checks its TPP. If an entry matching the name of the requested data is found
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in the TPP, it determines the associated set of vehicles in the table that can act

as potential providers of the requested data, denoted Ω. The vehicle then assigns a

rank to each node vi∈Ω. This rank assesses the usefulness of the node as a potential

data provider and the benefit of forwarding the interest packet towards it rather

than the current data provider. The rank is based on two factors: 1) The age of

information. That is, the older the information stored about the vehicle, the less the

accuracy of its estimated position. In particular, the longer it has been since vi left

its rinext+1, the further it is from where it can be reached (i.e., CHnext), and thus

the less reliable its proximity information. Accordingly, if the current time exceeds

the estimated time threshold of vi, denoted ti,next+1,e, by more than a certain time

step, the rank of vi is set to zero. As previously mentioned, ti,next+1,e, indicates the

estimated departure time of vi from rinext+1. 2) The second factor based on which the

rank is calculated is the estimated distance (in hops) between the vehicle caching the

data and the requester, denoted d̂iReq. The closer it is to the requester, the higher

the rank. Note that the number of hops between vi and the requester is calculated by

dividing the distance diReq by the communication range. Thus, in order to calculate

the ranks, if a vehicle vi∈Ω is a moving vehicle, its most recent location must be

estimated before calculating its rank. In this case, the vehicle vf tracks the most

recent location of vi based on the last encounter information registered in the TPP,

and using the same aforementioned tracking procedure. Taking the new estimated

positions into consideration, the vehicle calculates the rank of each moving vehicle

vi, denoted rankmi , using Eq. 4.6, where tcur is the current time, ti is the last time

of encounter with vehicle vi as recorded in the TPP, tmax is the most recent time

of encounter among that of vcp and all moving vehicles in Ω, dmin is the minimum
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distance between the requester and all possible providers, ∇ is a certain time step,

and α1 and α2 are weighting factors set in the (0, 1] range; α1 +α2=1. If vi is a parked

vehicle, its rank, denoted rankpi , is calculated using Eq. 4.7. In addition, vf ranks

the current data provider vcp using Eq. 4.6 or Eq. 4.7. Note that if vcp is a moving

vehicle, its tcp,next+1,e, as well as its last time of encounter, are associated with the

interest packet. The vehicle also ranks the data center using Eq. 4.7 since it might be

closer to the requester, so it might be better to direct the packet to it (lines 33-40).

rankmi =

 0 tcur > ti,next+1,e +∇

α1
ti

tmax
+ α2

dmin

d̂iReq
Otherwise

(4.6)

rankpi =
dmin

d̂iReq
(4.7)

(g) The maximum rank among that of all vi∈Ω, the current data provider, and the

data center, is then determined. The node that has the maximum rank is selected as

the current data provider and the packet’s destination is updated. The last time of

encounter, as well as the new estimated position of the destination and its tc,next+1,e,

are also updated in the packet (lines 41-43).

(h) vf anchors the packet towards the estimated position of the current data provider

using the following forwarding procedure (line 44): 1) If there is a CH in the neigh-

borhood of vf that is more adjacent to the destination than itself, vf forwards the

packet to it. This is to enable the packet to encounter as many CHs as possible to

benefit from the information maintained in their TPPs in the discovery process. 2)

Otherwise, greedy forwarding is used to direct the packet towards the destination. In

greedy forwarding, the nearest neighboring node to the destination is the one to which
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the packet is forwarded. Aside from CHs, forwarding occurs using moving vehicles

only. However, if vf fails to find any moving vehicle within its neighborhood, it is

possible to forward the packet to parked vehicles.

If vf is a requesting vehicle, it performs the aforementioned steps (b) and (c). In

case of a cache miss, it sets the current data provider to the data center and applies

steps (f)-(h).

4.4 Prediction-Assisted Cooperative Content Discovery (PACD)

In this section, we provide a detailed description of the system model of the proposed

PACD scheme, the incorporated prediction model, as well as the cooperative cache

discovery procedure.

4.4.1 PACD System Model

PACD shares the same system model as CCD, with some additional features. In

PACD, along with ricur, each moving vehicle is also willing to share the next road

segment to which it is heading rinext, as well as the ` − 2 consecutive road segments

that preceded the current one. This provides information about a total of ` road

segments, including ricur and rinext, that represent a partial trajectory of the vehicle’s

ongoing trip.

The aforementioned partial trajectory is used for location prediction of mobile

caching nodes that any vehicle maintains information about in its TPP. The data

center is responsible for the training of the prediction model. For this purpose, we

assume that the data center has access to a set G = tr1, tr2, ...trN of N histori-

cal trajectories recorded from previous trips carried by different vehicles. Note that
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the proliferation of the use of the Global Positioning System (GPS) and location-

acquisition technologies in vehicles, has generated a huge amount of trajectories that

can be exploited for this purpose [117]. The data center clusters these historical

trajectories based on their movement similarity. It then trains each cluster using

the MTD-Probit model to generate the corresponding matrix of `-order transition

probabilities. Each of these probabilities reflects the probability of moving to a given

road segment given a previous set of ` road segments representing a known partial

trajectory. The data center sends each of these clusters, along with the transition

probability matrix corresponding to each cluster, to moving and parked vehicles sub-

scribing to the service. This process can be done once every few months for example

if new training trajectories become available to the data center.

Using its known trajectory, each moving vehicle that has received the aforemen-

tioned clusters from the data center, associates its ongoing trip to the clusters that

reflect high similar movement patterns to its own trajectory. Along with the aforemen-

tioned information included in the exchanged beacon messages, each vehicle includes

the ID of the clusters to which it belongs, as well as metadata about its cached con-

tents (i.e., cached content information). During the information exchange process,

we use a b-bit bloom filter to reduce the size, and thus the associated overhead of the

exchanged cached content information. We use the term last encounter information

to refer to all the information included in each beacon message. Any vehicle vj can

use the last encounter information it receives from another vehicle vi, including the

` road segments of its ongoing trip and the clusters to which it belongs, to predict

the future locations of vi via the corresponding maximum transition probabilities

associated with the clusters.
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The cooperation range is further extended by adopting the same methodology used

in our cooperative cache placement scheme. In this methodology, a data structure

called the List of Clusters (LC) is maintained by the CH of each parking cluster. The

LC includes the last encounter information of its own cluster, as well as that of other

clusters. Note that for CHs, the last encounter information represents their positions

and their cached content information. Thus, the LC maintained by a CH includes

metadata about the cached contents of the CH’s own cluster, as well as that of other

parking clusters. The cached content information about other clusters is acquired

during information exchange with moving vehicles that have passed by other parking

clusters. Note that each entry in the LC is composed of the ID of a CH, and the

corresponding b-bit bloom filter representing its cached data items. Moving vehicles

preserve their own LCs as well. The LCs are exchanged between CHs and moving

vehicles via beacon messages. Entries of LCs are removed once the expiry time of the

corresponding data is reached.

Once a vehicle receives a beacon message from vi, it extracts the corresponding last

encounter information, associates it with a timestamp ti representing the last time of

encounter with vi, and sustains it in its TPP. If the beacon message is received from

a moving vehicle, the receiving vehicle gauges the time of departure of vi from ricur,

denoted ti,cur,e. Note that ti,cur,e is calculated in the same way that was previously

explained in the CCD scheme. Similarly, the arrival and departure time of vi to and

from rinext, denoted ti,next,s and ti,next,e, respectively are determined.

The receiver vj of a beacon message from vi adds the estimated departure time

from ricur and rinext to its TPP for later use. During the tracking procedure, vj keeps

track of the current location of all moving vehicles that it has record of in its TPP.
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Note that if the current time tcur is less than ti,cur,e, then vi is still at the road segment

at which it was located at the time of encounter. If tcur<ti,next,e, then vi is at rinext.

Otherwise, the vehicle vj uses the prediction model to predict the position of vi at

time tcur. If vi is a parked vehicle, no prediction is required, due to its static nature.

When a request packet is received by vj, it checks its TPP and ranks all possible

data providers based on their distance from the requester (i.e., number of hops), as

well as the entropy of the estimated position (i.e., level of prediction uncertainty).

This procedure is dynamically performed by the requester, as well as each request-

forwarding vehicle during the cache discovery process. Note that initially, the request

packet is directed to the data center. This cache discovery process continues until the

requested content is found.

Figure 4.2 demonstrates an illustrative scenario depicting the cache discovery pro-

cess. In this scenario, assume that moving vehicle v1 does not have any data in its

cache, and that it has previously encountered CH4 and CH5. Accordingly, v1 main-

tains the cached content information pertaining to CH4 and CH5 in the form of bloom

filters (BF) in its LC. The LC of CH1 has information about the cached contents in

its own cluster only, which are d1 and d4. As shown in Figure 4.2(a), at time t1, v1 en-

counters both v2 and CH1, and they exchange their own cached content information,

as well as that maintained in their LCs via beacon messages. This leads to the update

of their corresponding LCs as depicted. Consider that vehicle v2 is moving along the

trajectory shown by the solid line, and that it has the data d4 in its cache, whereas

its LC is empty. Upon its encounter with v1, v2 sends its cached content information

to v1 in the form of a BF. In addition, v2 sends the ` road segments representing its

partial trajectory to v1. Assuming that `=3, the ` road segments of v2 are rprev=r3,
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(a) At time t1

(b) At time t2

Figure 4.2: An illustrative scenario of PACD.
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rcur=r7, and rnext=r5. Also, v2 includes the set of trajectory clusters with which

its own trajectory yields high membership. Based on the received information, v1

updates its TPP, and predicts the remaining trajectory of v2. As shown in Figure

4.2(b), at time t2, v1 receives a request packet for d4 from the requester v3. v1 first

checks its local cache, and when it does not find a match, it checks its own TPP and

determines that d4 can be provided by CH1 and v2, so it ranks them based on their

proximity to v3 and the entropy of their location. The current location of v2 that has

been predicted by v1 is r6, which is much closer to v3 than CH1. Thus, v1 sends the

request packet to v2 (dotted line), which sends the data packet back to v3 (solid line).

Based on the aforementioned discussion, and as depicted in Figure 4.3, the sys-

tem architecture is composed of four modules; the prediction training module, the

information exchange module, the tracking module (i.e., prediction module), and the

cache discovery module. The first module takes place at the data center, while the

remaining modules take place at moving and parked vehicles (i.e., CHs). Note that

S, U(w), [ρi,g], and [Q
′
c] shown in Figure 4.3 are the information that each vehicle

needs in order to make the necessary prediction later on. They will be discussed later

in details. In the next subsections, we discuss each of the aforementioned modules.

4.4.2 PACD Prediction Model Training at the Data Center

The data center clusters the available set of training trajectories G based on their

route similarity. It then trains each cluster separately using the MTD-Probit model.

Thus, the training procedure involves the following three stages:

Stage 1: Create the similarity matrix

In order to cluster the trajectories, the data center first creates the similarity
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Figure 4.3: PACD system architecture.

matrix SN×N by calculating the similarity sim(tri, trj) between each pair of trajec-

tories tri and trj in the training set G, where i 6= j, and |G|=N . Such a similarity

is calculated based on the XXDice Similarity Coefficient (XXDSC) [124], which is

the generalized version of DSC [121] [124]. This family of similarity coefficients has

been widely used in text matching and DNA sequencing applications to determine

the similarity between two sequences [121]. It has been demonstrated that XXDSC

can outperform several other measures in terms of similarity precision, including the

minimum edit distance and the longest common subsequence measures [121].

DSC, given by Eq. 4.8, is defined as the ratio between twice the number of shared

`-grams in both sequences to the sum of the total number of `-grams in each sequence,
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where an `-gram is a token (i.e., subsequence) of length ` of the complete sequence.

DC(tri, trj) =
2× |`-grams(tri) ∩ `-grams(trj)|
|`-grams(tri)|+ |`-grams(trj)|

(4.8)

To improve the precision of DSC, XXDSC was designed to take the order/position of

the shared `-grams into consideration [124]. In order to calculate XXDSC(tri, trj), we

define two arrays A and B of size %ij for the two trajectories tri and trj, respectively,

where A and B are the arrays of shared `-grams between tri and trj, sorted in the

order in which they appear in the corresponding sequence, and %ij is the number of

these shared `-grams (i.e., %ij=|`-grams(tri) ∩ `-grams(trj)|).

For each pair of trajectories tri and trj in the training set G, where i 6= j, the value

of XXDSC(tri, trj) that reflects the similarity sim(tri, trj), is calculated as given by

Eq. 4.9 [124], where posA(A[x]) and posB(A[x]) are the positions of the `-gram A[x]

in array A and array B, respectively. The value of sim(tri, trj) is set to 1 if i = j.

sim(tri, trj) =

∑%
x=0

2
1+(posA(A[x])-posB(A[x]) )2

|`-grams(tri)|+ |`-grams(trj)|
(4.9)

An Example demonstrating the process of calculating the XXDice similarity co-

efficient is depicted in Figure 4.4. Figure 4.4(a) shows the sequence of road segments

traversed along the routes represented by each of the three trajectories tr1, tr2, and

tr3. In Figure 4.4(b), consider `=3. The `-grams of tr1 (green, left), tr2 (brown, mid-

dle), and tr3 (blue, right) are extracted. The number of `-grams in each trajectory is

14. In Figure 4.4(c), for each of the two pairs of trajectories tr1 and tr2, and tr1 and

tr3, the arrays A and B represent the shared `-grams among each pair, organized in

the order in which they appeared in the corresponding trajectory. This reflects the
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(a) Trajectories tr1, tr2,
and tr3

(b) `-grams of tr1, tr2, and tr3

(c) Shared `-grams between tr1 & tr2, and between tr1 & tr3

Figure 4.4: XXDice similarity coefficient example.
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position of each of the shared `-grams in each trajectory. Using Eq. 4.9, the XXDice

similarity coefficient between tr1 and tr2 is 0.64, while that between tr1 and tr3 is

0.36.

Stage 2: Cluster similar trajectories

In this stage, the data center clusters the trajectories in the training set G based on

their similarity. This is done while taking into consideration the possibility that some

trajectories may belong to more than one cluster. Thus, we use a fuzzy clustering

approach. In fuzzy clustering, N objects are clustered into C clusters by determining

the degree of membership of each object to each cluster [115]. The Fuzzy C-Means

(FCM) clustering technique is considered one of the most prominent and stable fuzzy

clustering algorithms in the literature [115][125][126]. However, FCM is only applica-

ble when the objects to be clustered are portrayed as points in a multi-dimensional

space [115][125][126].

In order to be able to use fuzzy clustering for objects represented by relationships,

typically expressed as pairwise dissimilarity values, a few fuzzy relational algorithms

that are based on the FCM technique have been proposed [115][125][126]. One of these

algorithms is the Any Relation Clustering Algorithm (ARCA) [115]. In contrast to

other existing fuzzy relational algorithms, which impose some restrictions to ensure

that the dissimilarity matrix between the objects is an Euclidean matrix [125][126],

ARCA does not impose such restrictions [115]. In addition, ARCA has been shown to

be more stable and scalable than most existing fuzzy relational clustering algorithms

[115].
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In fuzzy clustering, the clustering problem is resolved by first detecting C proto-

types that are most representative of as many groups of objects, and then construct-

ing a cluster around each of these prototypes [115][125][126]. Similarly, in ARCA,

each object (i.e., each trajectory in our case) is defined by a vector of its relational

strength with the remaining objects in the data set [115]. A prototype is a trajectory

whose relationship with all the trajectories in the data set G is representative of the

relationships between a cluster of similar trajectories [115].

ARCA employs an iterative algorithm that partitions the data set by minimizing

the Euclidean distance between each object that has a high membership to a given

cluster and the prototype of that cluster [115]. The optimal partitioning is deduced by

minimizing the objective function in Eq. 4.10 subject to the constraints in Eq. 4.11

and Eq. 4.12, where (tr1, tr2, ...trN) are the objects (i.e., trajectories) to be clustered,

(ρ1, ρ2, ...ρC) are the prototypes of each cluster, ui,k is the degree of membership of

object trk to the cluster with prototype ρi, ϑ is the fuzzification coefficient which

controls the degree of fuzziness of the clusters, and δ(trk, ρi) is the deviation between

the dissimilarity between trk and all the other trajectories in G, and between ρi and

all the other trajectories in G.

Jϑ(U, V ) =
C∑
i=1

N∑
k=1

uϑi,kδ
2(trk, ρi) (4.10)

ui,k ∈ [0, 1] ∀i, k (4.11)

C∑
i=1

ui,k = 1 ∀k (4.12)

The value of δ(trk, ρi) is given by Eq. 4.13, where s′k,g is the dissimilarity between

the pair of trajectories trk and trg, and ρi,g is the dissimilarity between the prototype
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ρi and the trajectory trg. Note that, the dissimilarity matrix S ′N×N is obtained from

the similarity matrix SN×N , where s′k,g=1− sim(trk, trg).

δ(trk, ρi) =

√√√√ N∑
g=1

(s′k,g − ρi,g)2 (4.13)

We use the standard Lagrange multipliers minimization method to solve the afore-

mentioned problem, where the Lagrangian multipliers are given by λk, 1 ≤ k ≤ N ,

and the Lagrange function to be minimized is given by Eq. 4.14. Note that J(U, V )

is the objective function given by Eq. 4.10.

L(U, V, λ1, λ2...λk) = J(U, V ) +
N∑
k=1

λk(1−
C∑
i=1

ui,k) (4.14)

Using the standard Lagrange multipliers minimization method, the following it-

erative algorithm is preformed as shown in Algorithm 4:

I) Initialization:

1) Set the number of clusters C, where 2 ≤ C ≤ N .

2) Set ϑ, where 1 ≤ ϑ <∞.

3) Select an initial partition U(0)=[u
(0)
i,k ].

II) Iteration: At step w, where w = 0, 1, 2, ..., do the following (lines 16 & 17):

1) For each cluster ci, 1≤i≤C, and trajectory trajk, 1≤k≤N , calculate ρ
(w)
i,k using Eq.

4.15 (lines 18-20).

ρ
(w)
i,k =

∑N
g=1 u

ϑ(w)
i,g s′k,g∑N

g=1 u
ϑ(w)
i,g

(4.15)

2) For each cluster ci, 1≤i≤C, and trajectory trajk, 1≤k≤N , calculate δ(trk, ρi)
(w)

using Eq. 4.13 (line 21).
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Algorithm 4 : PACD Prediction Training at the Data Center

1: Input:
2: Set of training trajectories G
3: Number of clusters C 2 ≤ C ≤ N
4: The fuzzification coefficient ϑ 1 ≤ ϑ <∞
5: U(0) = [u

(0)
i,k ] initial degree of membership ∀trk ∈ G, ∀i ∈ C

6: Clustering termination threshold ε
7:
8: PredModelTraining(G)
9: Begin

10: for all i ∈ G do
11: for all j ∈ G do
12: if i 6= j then
13: Calculate sim(tri, trj) Eq.4.9
14: else
15: Set sim(tri, trj) to 1

16: Set w=0
17: while w ≥ 0 do
18: for all 1 ≤ i ≤ C do
19: for all 1 ≤ k ≤ N do
20: Calculate ρ

(w)
i,k Eq. 4.15

21: Calculate δ(trk, ρi)
(w) Eq. 4.13

22: Calculate u
(w+1)
i,k to update to U(w + 1) Eq. 4.16

23: Calculate ||U(w + 1)− U(w)||
24: if ||U(w + 1)− U(w)|| < ε then
25: Terminate clustering procedure by setting w= -1
26: else
27: Set w = w + 1

28: for all c ∈ C do
29: Get the number of road segments in c, m
30: for all 1 ≤ i0 ≤ m do
31: for all 1 ≤ ik ≤ m do
32: Calculate P (i0|ik) via P̂ (i0|ik) Eq. 4.26

33: Estimate parameters η1, η2, ..η` that maximize LL in Eq. 4.27
34: for all 1 ≤ Xt = i0 ≤ m do
35: for all 1 ≤ Xt−` = i` ≤ m do
36: ...
37: for all 1 ≤ Xt−1 = i1 ≤ m do
38: Q́c=[P (Xt=i0|Xt−`=i`,..Xt−1=i1)] Eq.4.25

39: Send SN×N to vehicles similarity matrix between N trajectories
40: Send final U(w) to vehicles Final membership degrees to clusters

41: Send final [ρ
(w)
i,g ] to vehicles Final prototype values

42: Send Q́c to vehicles ∀c ∈ C
43: End
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3) Update the membership degrees U(w) to U(w + 1) by calculating u
(w+1)
i,k for each

cluster ci, 1≤i≤C, and trajectory trajk, 1≤k≤N using Eq. 4.16 (line 22).

u
(w+1)
i,k =

1∑C
j=1( δ(trk,ρi)

(w)

δ(trk,ρj)(w) )
2

ϑ−1

(4.16)

4) Calculate ||U(w+ 1)−U(w)||. If ||U(w+ 1)−U(w)|| < ε, terminate the clustering

procedure. Otherwise, go to step 5 (lines 23-26).

5) Set w = w + 1 and repeat steps 1− 4 (line 27).

A trajectory is considered to be a member of any given cluster if its membership

to that cluster is greater than or equal to a certain membership threshold Uth.

Stage 3: Train the MTD-Probit model in each cluster

In this stage, the data center trains the MTD-probit model in each cluster. The

MTD-Probit model [116] is a variation of the standard MTD model [120]. Both mod-

els have been proposed to approximate the high-order Markov chain model using sig-

nificantly fewer parameters than the fully parameterized model [120][116]. However,

MTD-Probit has been shown to render higher precisions in estimating the transition

probabilities of the high-order Markov chain model than the original MTD model

[116]. Among the advantages of the MTD-Probit model is that it does not involve

any constraints or super-imposed restrictions [116]. This facilitates capturing a broad

range of associations among a set of variables that only nonparametric approaches can

capture [116][122][123]. In order to explain the employed MTD-Probit model and the

need for parsimonious high-order Markov chains, we first provide a brief description

of the Markov chain model.

The Markov chain model is a probabilistic model that represents a sequence of
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possible events [120][116]. It is simple and easy to implement [120], which makes it

highly eligible to be used in a setting where there are multiple clusters that need

to be separately trained. In discrete Markov chain models, an event is defined as a

discrete-time random variable Xt which can take any value in the finite set {1, ...,m}.

The main objective is to predict the value of Xt as a function of the values of the

observations preceding that variable. In the first-order Markov chain model, the

probability of Xt relies on the state yielded in the previous event only. Thus, as given

in Eq. 4.17 [120], the current observation at time t is conditionally independent of

those up to time t−2, and is only dependent on the immediate past that is represented

by the previous observation at time t−1, where qi1i0 is the transition probability from

state i1 to state i0.

P (Xt = i0|X0 = it, ...Xt−1 = i1) = P (Xt = i0|Xt−1 = i1)

= qi1i0

(4.17)

Considering all possible combinations of states, a transition matrix, denotedQm×m,

is created, where the sum of the transition probabilities in each row is equal to 1, and

m is the number of states [120]. Thus, the total number of independent parameters

to be estimated in a first-order Markov chain model is m(m−1) [120]. One drawback

of the first-order Markov chain model is that it is extremely limited, since it restricts

its memory of past events to the immediately preceding event only, which could affect
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the prediction accuracy [120].

Qm×m =



Xt

Xt−1 1 2 3 ... m

1 q11 q12 q13 ... q1m

2 q21 q22 q23 ... q2m

3 q31 q32 q33 ... q3m

... ... ... ... ... ...

m qm1 qm2 qm3 ... qmm


In order to avoid the aforementioned restriction, high-order Markov chain models

are designed to model situations where the current state does not depend on the first

lag only but rather on the last ` observations [120]. Thus, as the case in our model,

predicting the next road segment in an on-going trip would depend on the last ` road

segments that have been traversed. This is referred to as an `-order Markov chain

model, where the transition probability from the sequence i`, ..i1 to i0 is given by Eq.

4.18 [120].

P (Xt = i0|X0 = it, ...Xt−1 = i1)

= P (Xt = i0|Xt−` = i`, ...Xt−1 = i1)

= qi`..i0

(4.18)

The high-order Markov chain model can provide higher prediction accuracy than

the first-order Markov chain model [120]. However, the number of independent pa-

rameters that need to be estimated in the former is equal to m`(m − 1) [120][116].

Hence, as the order ` of the chain and the number m of potential states increase, the

number of independent parameters grows exponentially [120][116]. This can trigger
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biased estimates in cases when certain sequences of states do not frequently appear

in the data [120][116][127]. In other words, the number of independent parameters

can get too large to be efficiently, or even identifiably estimated, which could affect

the prediction accuracy [120][116][127]. The MTD model has been proposed in order

to approximate high-order Markov chains using much less parameters compared to

the fully parameterized model [120].

In the MTD model, each entry of the transition matrix constitutes the probability

of observing an event at time t, given the previous events occurring from time t − `

to t− 1. The effect of each lag on the current state is considered separately, and the

transition probability is given by Eq. 4.19 [120], where λg is the weight parameter

incorporated with lag g, and qigi0 is the transition probability from state ig to state

i0. Note that the transition matrix Q used in Eq. 4.19 for the MTD model is not the

same as the transition probability matrix generated in the first-order Markov chain

model [120]. The only similarity is that they both have the same size m×m [120].

P (Xt = i0|Xt−` = i`, ...Xt−1 = i1)

=
l∑

g=1

λgP (Xt = i0|Xt−g = ig)

=
l∑

g=1

λgqigi0

(4.19)

In order to estimate the parameters Qm×m and {λ} of the MTD model, the log-

likelihood of the model, given by Eq. 4.20, should be maximized [120][127][128]. Note

that in Eq. 4.20, ni`...i0 is the number of times that the sequence i`...i0 appears in the

data, and the summation is carried out for each of the `+ 1 variables i`, ...i0 varying

from 1 to m. In order to make sure that the results yielded by the model are in
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the form of probabilities, the vector of lag parameters, λ = (λ`, ...λ1)
′
, is subject to

the constraints given by Eq. 4.21 and Eq. 4.22. In addition, as given by Eq. 4.23

and Eq. 4.24, respectively, Q should be a stochastic matrix where each transition

probability qij is not less than zero and the transition probabilities in each row sum

to one [120][127]. Thus, the maximization of the log-likelihood is done subject to the

constraints given by Eq. 4.21, Eq. 4.22, 4.23, and 4.24 [120][127][128].

max LL =
m∑

i`...,i0=1

ni`...i0 log(
∑̀
g=1

λgqigi0) (4.20)

Subject to

∑̀
g=1

λg = 1 (4.21)

λg ≥ 0 ∀g = 1, ...` (4.22)

qiki0 ≥ 0 ∀ik ∈ 1, ...m,∀i0 ∈ 1, ...m (4.23)

m∑
i0=1

qiki0 = 1 ∀ik ∈ 1, ...m (4.24)

As previously mentioned, the number of independent parameters that need to

be estimated to create the transition probability matrix Q is m(m − 1) [120]. In

addition to such parameters, an `th-order MTD model requires the estimation of `−1

independent parameters (since they all sum to 1). Thus, in contrast to the high-

order model that involves the estimation of m`(m− 1) independent parameters, the

number of independent parameters in the MTD model is reduced to m(m−1)+(`−1),

increasing only linearly with ` [120][127][128]. For example, if m=4, the number of

parameters for a second-order chain (i.e., `=2) in the MTD model is 13, as opposed
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to the 48 parameters in the typical third-order Markov chain model. Accordingly,

as m and ` increase, the MTD model can be much more parsimonious than the

fully parameterized high-order Markov chain model [120][127][128]. However, the

MTD parameters Qm×m and {λ} are difficult to estimate due to the nonlinearity

of the objective function and the large number of constraints that the model has to

adhere to [120][128][116]. Thus, no analytical solution is available to the log-likelihood

maximization problem subject to the constraints that Qm×m and {λ} have to satisfy

[128]. It could be profoundly challenging to reach a global maximum, specially if the

initial values are too distant from the optimal values.

Recently, the MTD-Probit model has been proposed to parsimoniously approxi-

mate the high-order Markov chain model while avoiding the estimation problem as-

sociated with the MTD model [116]. To do so, the MTD-Probit model eliminates any

form of constraints or restrictions, thus facilitating the estimation procedure [116].

It has been shown to significantly outperform the MTD model in terms of provid-

ing a more accurate representation of the transition probability P (Xt = i0|Xt−` =

i`, ...Xt−1 = i1) [116][122][123]. In the MTD-probit model, the transition probability

is modeled as given by Eq. 4.25, where the parameters ηj ∈ < are the weights of the

nonlinear combination, which indicate that the larger the coefficient, the larger the sig-

nificance of the corresponding variable P (Xt = j), and Φ represents the (cumulative)

standard normal distribution function [116]. Note that it is possible to replace Φ by

a different distribution function of any continuous random variable that has the state

space < [116]. No constraints are required since PΦ(Xt = i0|Xt−` = i`, ...Xt−1 = i1)
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in Eq. 4.25 is bounded within the range [0, 1] regardless of the values of ηj [116].

P (Xt = i0|Xt−` = i`, ...Xt−1 = i1) =

PΦ(Xt = i0|Xt−` = i`, ...Xt−1 = i1): =

Φ(η0 + η1P (i0|i1) + ...η`P (i0|i`))∑m
ik=1 Φ(η0 + η1P (ik|i1) + ...η`P (ik|i`))

=

Φ(η0 +
∑`

g=1 ηgqigi0)∑m
ik=1 Φ(η0 +

∑`
g=1 ηgqigik)

(4.25)

The argument of Φ(.) in the numerator of Eq. 4.25 adopts the same principle used

in the MTD model, with an additional constant term η0 [116]. This parameter can

be eliminated but it has been shown that it can usually improve the fit (i.e., bring

PΦ(Xt = i0|Xt−` = i`, ...Xt−1 = i1) closer to P (Xt = i0|Xt−` = i`, ...Xt−1 = i1) [116].

The denominator of Eq. 4.25 is used for normalization purposes [116].

The estimation process in the MTD-probit model is a two-step procedure that

works as follows [116]: 1) The quantities P (i0|ik)=qiki0 are estimated nonparametri-

cally via the use of the consistent estimators P̂ (i0|ik)=qiki0 given by Eq. 4.26 [116].

P̂ (i0|ik) = qiki0 =
niki0∑m
ix=1 nikix

(4.26)

Note that this is the ratio of the number of transitions from state ik to state i0, de-

noted niki0 , to the total number of transitions from state ik to every other state. 2)

The parameters ηj are estimated via the maximum likelihood method by maximizing

the log-likelihood LL given by Eq. 4.27. Due to the absence of any constraints, the

estimation procedure becomes much easier, and standard numerical optimization rou-

tines can be employed [116]. Thus, we utilize the Constrained Maximum Likelihood
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module in the GAUSS software for the estimation procedure [129].

LL =
m∑

i`...,i0=1

ni`...i0 logPΦ(Xt = i0|Xt−` = i`, ...Xt−1 = i1) (4.27)

As depicted in Algorithm 4, for each cluster c ∈ C obtained in the previous

clustering stage (line 28), the following training procedure is applied: 1) get the

number of road segments m in all the training trajectories available in c. (line 29), 2)

calculate the parameters P (i0|ik) via the estimators P̂ (i0|ik) in Eq. 4.26, ∀ 1≤i0 ≤

m and 1≤ik ≤ m (lines 30-32), 3) estimate the parameters ηj that maximize LL in

Eq. 4.27 using the Constrained Maximum Likelihood module in the GAUSS software

(line 33), 4) create the high-order transition matrix Q
′
c by calculating the transition

probabilities using Eq. 4.25 (lines 34-38).

Upon subscribing to the service, the vehicles download the similarity matrix SN×N ,

the final membership values of the trajectories to the created clusters U(w), the final

prototype values [ρ
(w)
i,g ], and the Q

′
c matrix, ∀ c ∈ C from the data center (lines 39-42).

As explained later in details, this information is used when a vehicle needs to predict

the current location of a mobile caching vehicle.

4.4.3 PACD Information Exchange at Vehicles

As previously mentioned, parked and moving vehicles on the road exchange some

information via beacon messages upon encounter. Typically, beacon messages include

certain information observed at the time of encounter, including the vehicle’s position,

speed, and heading [5]. Intuitively, the current position of a vehicle vk provides

information about the current road segment rkcur that the vehicle is located at. Along

with the information typically enclosed in beacon messages, each vehicle adds its own
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cached content information, as well as the cached content information maintained in

its LC. In addition, for each moving vehicle vk, beacon messages also include the set

of IDs of the clusters that its trajectory has high membership with. This set, denoted

Ĉk, where Ĉk ⊂ C, is the set of clusters whose trajectories exhibit high similarity

with the vehicle’s trajectory trajk.

In order for vk to determine Ĉj, it calculates the membership ui,k of its own

trajectory trajk to each cluster ci ∈ C using Eq. 4.16. The clusters with which trajk

yields a membership greater than or equal to a certain membership threshold Uth, are

included in Ĉk. Furthermore, vk includes in the beacon message its expected time of

trip termination tk,last,e, which is the expected time of departure from the last road

segment in its ongoing trip. Note that this time is calculated using Eq. 4.1. This

time helps informing other vehicles when a vehicle whose information they maintain

in the TPP has reached its destination, and thus access to its cached contents might

no longer be feasible.

Thus, the information included in the beacon message of each moving vehicle vk

consists of the following: 1) current position (and thus rkcur), 2) speed, 3) heading, 4)

next road segment along its trajectory rknext, 5) sequence of the ` − 2 previous road

segments that were traversed before rkcur in the vehicle’s ongoing trip, 6) Ĉk, 7) tk,last,e,

8) its own cached content information (i.e., names of contents that it holds in its

cache), and 9) cached content information maintained by vk in its LC, which includes

the cached content information pertaining to the clusters of parked vehicles that it has

encountered so far. Note that each CH of a parking cluster also includes the typical

information in its own beacon messages (i.e., position, speed, and heading), along

with its maintained LC, which includes the cached content information reflecting the



4.4. PREDICTION-ASSISTED COOPERATIVE CONTENT
DISCOVERY (PACD) 148

names of the data cached in its own cluster, as well as in other clusters. The latter are

the ones the CH acquire information about through the exchanged beacon messages

with neighboring moving vehicles.

The problem with exchanging the aforementioned cached content information is

the relatively large number of bytes that the name of each content can take [13][130].

As the number of contents increases, cached content information can lead to a signif-

icant increase in the size of beacon messages, which can in turn lead to an increased

overhead. In order to reduce the size of beacon messages, and consequently the

amount of overhead triggered, we send the cached content information pertaining to

each vehicle in the form of a b-bit bloom filter. Similarly, each entry maintained in

the LC of each vehicle is expressed as a b-bit bloom filter to reflect the cached content

information in the corresponding parking cluster.

A bloom filter is a probabilistic data structure that facilitates set membership

queries, and is highly efficient in terms of space [14][131]. It is designed to quickly

and space-efficiently provide information as to whether or not an element is present in

a set. This efficiency comes at the expense of providing such information in the form

of a probability [14][131]. In particular, a bloom filter either states that an element

is definitely not in the set, leaving no room for a probability of false negative, or that

it is probably in the set, leading to a probability of false positive [14][131]. Such a

probability is not an issue as long as it is kept sufficiently low, which is highly feasible

[14][131], as explained later.

A bloom filter is composed of an array of b bits that represents a set D =

{d1, d2, ...dz} of z elements [131]. Note that in our case, the set of elements rep-

resents the set of possible content names (i.e., data items). Initially, all bits of the
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array are set to zero [131]. The main idea is to use y independent hash functions h1,

h2,...hy to map each item d∈D to one of the positions of the array, with a uniform

random distribution over the range {0, ..b−1} [131]. We use MurmurHash3 since it

is one of the most prominent hash functions that has a low collision rate and high

performance [131].

In order to include the cached content information in beacon messages when they

are sent from vehicles, the name of each cached content is hashed using all y hash

functions, and the corresponding positions in the b-bit bloom filter are set to 1. When

a vehicle vj receives the beacon message, it maintains the bloom filter reflecting the

cached content information of the corresponding node in its TPP. If vj receives an

interest packet requesting a certain content later on, it checks whether the requested

content x is in the set of cached elements represented by the bloom filter belonging

to any of the data holders in its TPP. In order to do that, it checks whether all bits

at the positions indicated by hn(x), ∀ 1 ≤ n ≤ y, are set to 1. If so, it is assumed

that x is present in the set of cached contents. Otherwise, if at least one of the bits

of hn(x) is set to zero, then x is definitely not in the set.

An illustrative scenario of bloom filters is depicted in Figure 4.5, where all bits of

the b-bit bloom filter are initially set to zero. In this scenario, we assume that b = 16,

and the number of hash functions is y = 3. In order to send a bloom filter indicating

the presence of d4 and d5 in its cache, the beacon message sender vs determines

the value of each of the three hash functions of d4 and d5, and sets the bits at the

corresponding positions to 1. When the beacon message receiver vr receives a request

packet for d7 later on, it calculates the three hash functions of d7, and checks if all the

bits at the corresponding positions are set to 1. If so, then d7 is probably a member.
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Figure 4.5: An illustrative scenario of bloom filters.

Otherwise, as the case here, d7 is definitely not a member.

There is a probability of false positive in bloom filters, which is triggered by

indicating that an element x is present in the set of cached contents when it is actually

not. Such a probability is denoted f and is given by Eq. 4.28 [14][131]. Note that the

number of hash functions y can have a profound effect on the value of f . Accordingly,

the optimal number of y that minimizes f , denoted yopt, has been estimated by taking

the derivative and has been shown to be equivalent to Eq. 4.29 [14][131].

f = (1− e−yz/b)y (4.28)

yopt =
b

z
ln2 (4.29)

In order to further reduce the overhead, we assume that vehicles send the original

beacon message that does not involve any additional information as long as the time

for sending the one with the extra information has not been triggered. This time

is triggered periodically but over a longer interval than that of the original beacon

message. For example, if the latter is sent every t seconds, the larger beacon message
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is sent every xt seconds, where x > 1. We can also restrict the number of parking

clusters that the LC maintained by each node can include information about.

4.4.4 PACD Trajectory Prediction at Moving & Parked Vehicles

This procedure is triggered when one of the following two cases occurs: The first

case is when a vehicle vf (a moving vehicle or a parked CH) receives a beacon

message from a moving vehicle vi for the first time (i.e., vf ’s TPP does not already

have an entry related to vi). The second case is when an entry about vi already

exists but the information enclosed in the new beacon message pertaining to the `

road segments of its trajectory differs from what vi has previously predicted. For

example, assume that at time t, vf receives a beacon message from vi for the first

time, where it shares the following ` = 3 road segments of its ongoing trip: r1, r3, r6,

corresponding to rprev, rcur, rnext. This matches the first aforementioned case, so the

prediction procedure is triggered, and vf predicts the remaining trajectory of vi to

be: r4, r5, r7, r9, r2. Then, at time t + ∆, vf and vi encounter each other once again,

and vf receives a new beacon message from vi. By then, vi has already traversed r1,

r3, and r6. Thus, in this beacon message, vi shares some updated information about

the ` road segments of its ongoing trip, indicating them as follows: r6, r4, r8. Since

this partial trajectory does not match the previously predicted trajectory by vf , the

prediction procedure is triggered and vf repeats the prediction process given the new

received information.

In order to predict the remaining trajectory of any moving vehicle vi, vf explores

Ĉi, which is the set of clusters of similar trajectories with which vi has high member-

ship. Note that Ĉi is indicated in the received beacon message from vi. As previously
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mentioned, each cluster c ∈ C is associated with an MTD-Probit high-order matrix

Q
′
c. Thus, for each cluster ck ∈ Ĉi, the corresponding matrix Q

′
ck

is used to predict

the following road segment that vi is expected to traverse after rinext. Another piece of

information that is used in the prediction process is the sequence of ` road segments

{j1,..j`} constituting part of vi’s ongoing trip. Since we have no prior knowledge as to

how many steps h should be predicted (i.e., the number of the following road segments

that vi is estimated to visit after rinext), we start with h=1 first and then iteratively

increment h if the expected departure time of vi from rinext+h is less than ti,last,e. Note

that ti,last,e is included in the received beacon message to indicate the expected time

at which the trip of vi is expected to terminate. We define the set of ` road segments

used for high-order prediction as Lh=j`−(h−1),..j1−(h−1). Note that, when h = 1, the

sequence L1 is equal to j`,..j1, which is the sequence that was provided by vi upon

encounter. We also define W ck
j`−(h−1),..j1−(h−1)

={wck1,Lh
, ..wckm,Lh

} as the row in the matrix

Q
′
ck

that represents all the transition probabilities from the sequence Lh to each of

the m road segments that are included in the trips comprising the cluster. Note that

for each possible state, representing all possible sequences of ` road segments in Q
′
ck

,

vf keeps track of the state yielding the maximum transition probability in the cor-

responding vector W ck
j`−(h−1),..j1−(h−1)

. At each step h, rinext+h is predicted within each

cluster ck ∈ Ĉi, and the road segment yielding the least prediction uncertainty (i.e.,

the one with minimum entropy) is selected.

It is worth mentioning that vf associates each road segment constituting the rel-

evant part of vi’s trajectory with the expected time of departure from that road

segment, as well as the entropy of prediction associated with it. This includes ricur,

rinext, and the set of predicted road segments following rinext. Since ricur and rinext are
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Algorithm 5 : PACD Trajectory Prediction at Moving & Parked Vehicles

1: Input:
2: Set of ` road segments of vi, L

i
1 = j`,..j1

3: Set of clusters vi’s trajectory has high membership with, Ĉi

4: Time of vi’s trip termination, ti,last,e
5:
6: Trajectory Prediction(L(1), Ĉi, ti,last,e)
7: Begin
8: Set minEntropy=∞
9: Set h = 1

10: while h ≥ 1 do
11: for all ck ∈ Ĉi do
12: Predict the following road segment ri,cknext+h // Eq. 4.30
13: Calculate individual entropy Eck

i,h // Eq. 4.31
14: if Eck

i,h ≤ minEntropy then
15: Set cḱ=ck

16: Set the final predicted rinext+h to r
i,cḱ
next+h

17: Set the individual entropy Ei,h to E
cḱ
i,h

18: Calculate the sequence entropy Eseq,h
i // Eq. 4.32

19: Calculate the departure time ti,next+h,e // Eq. 4.1

20: Add rinext+h, Eseq,h
i , and ti,next+h,e to the set R̂i

21: if ti,next+h,e < ti,last,e then
22: Set h =h+ 1
23: else
24: Set h = 0 // Terminate the procedure

25: End

known and not predicted, the entropy associated with both of them is set to 0. The

time of departure from ricur and rinext, denoted ti,cur,e and ti,next,e, respectively, are

calculated using Eq. 4.1. The road segments, along with their corresponding entropy,

and time of departure are maintained by vf in a set denoted R̂i. If ti,next,e < ti,last,e

(i.e., rinext is not the last road segment along vi’s trajectory), vf predicts the remaining

trajectory of vi by performing the following steps depicted in Algorithm 5:

1) Initially, set h to 1 (line 9). Do the following as long as h = 1 or ti,next+h,e < ti,last,e

(line 10)

2) For each ck ∈ Ĉi, do the following (line 11):
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I) Predict the road segment ri,cknext+h that vi is most likely to visit in h steps follow-

ing rinext. This road segment is estimated to be the one that yields the maximum

transition probability in W ck
j`−(h−1),..j1−(h−1)

, as given by Eq. 4.30 (line 12).

ri,cknext+h = arg max
1≤j0≤m

P (Xt+(h−1) = j0−(h−1)|Xt−(`−(h−1))

= j`−(h−1), ..Xt−(1−(h−1)) = j1−(h−1))

= arg max
1≤j0−(h−1)≤m

qckj`−(h−1)....j1−(h−1)j0−(h−1)

= arg max
1≤x≤m

wck,Lh
x

(4.30)

II) For each cluster, vf calculates the individual entropy of the predicted road segment

ri,cknext+h yielded in the previous step (line 13). This entropy is denoted Eck
i,h and is

given by Eq. 4.31 [132]. Note that the uncertainty increases when the states are

equally probable (i.e., resembling a uniform distribution) [132]. This occurs when

the transition probabilities from the current state to any of the other possible states

are too close to each other [132]. For example, if a vehicle is at state j`..j1 and can

transition to either state j0 = 2 with transition probability 0.5 or state j0 = 3 with

transition probability 0.5, the entropy would be extremely high. This is as opposed

to a case where the probabilities are 0.8 and 0.2, respectively (i.e., the two states are

not equally likely).

Eck
i,h =

m∑
j0−(h−1)=1

qckj`−(h−1)..j0−(h−1)
log2 q

ck
j`−(h−1)..j0−(h−1)

(4.31)

3) Find the cluster cḱ ∈ Ĉi that renders the minimum entropy Eck
i,h, and set the final

predicted road segment at step h, denoted rinext+h, to r
i,cḱ
next+h. Set the individual
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entropy of rinext+h, denoted Ei,h, to E
cḱ
i,h (lines 14-17).

4) vf uses the set of predicted road segments starting from rinext+1 to rinext+h, denoted

Υi, where |Υi| = a, to calculate the prediction entropy of the entire sequence until

rinext+h. We make a distinction between the sequence entropy Eseq,h
i and the individual

entropy Ei,h. The latter reflects the degree of uncertainty associated with a single

estimated road segment rinext+h in step h. In order to measure the sequence entropy

Eseq,h
i , the sum of the individual entropy Ei,h of the current and preceding values of

h is calculated as given by Eq. 4.32 (line 18).

Eseq,h
i =

a∑
h=1

Ei,h (4.32)

5) Calculate the departure time from rinext+h, denoted ti,next+h,e, using Eq. 4.1. Add

rinext+h, along with its corresponding sequence entropy Eseq,h
i , and ti,next+h,e to the set

R̂i. If ti,next+h,e < ti,last,e, set h to h + 1 and go to step 2. Otherwise, terminate the

procedure (lines 19-24).

The vehicle vf keeps track of the current road segment that vi is traversing at

the current time tcur, denoted ricurNew . Initially ricurNew is set to ricur, ti,curNew ,e is set

to ti,cur,e, and Eseq,curNew
i is set to 0. Note that as time goes on, this position differs

from ricur that was recorded at the time of encounter. Once tcur exceeds ti,curNew ,e,

the next road segment in the set R̂i is set as ricurNew , and its corresponding time of

departure and entropy are set as ti,curNew ,e and Eseq,curNew
i , respectively. This goes on

continuously so that the information regarding ricurNew can be maintained by vf in

its TPP. As explained later, such information can then be accessed by vf during the

content discovery process. Note that the new current position of vi can be determined

based on the start position of ricurNew and the total distance it has traversed on ricurNew
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starting from the time of arrival at ricurNew (given by Eq. 4.2) till tcur. This total

distance is denoted disti,ti,curNew,s
, and is given by Eq. 4.5.

4.4.5 PACD Content Discovery at Moving and Parked Vehicles

This algorithm is either performed by a requesting vehicle vreq or a vehicle that is

forwarding an interest packet vf . The purpose is to dynamically find a closer data

holder to the requester than the current data provider. Initially, the current data

provider vcp to which the vehicle navigates the request packet is set as the data

center (i.e., the original data provider). Four pieces of information are appended to

the interest packet. The first is the last time of encounter of the requesting vehicle

t̂i, which specifies the last time at which the requesting vehicle was spotted in the

indicated position in the packet. The second is the entropy Eseq,h
req , which reflects

the degree of uncertainty in the estimated position of the requesting vehicle that is

included in the packet. Note that when the requesting vehicle issues the request

packet, such an entropy is set to 0. This is since the position indicated is known to

be 100% correct. The last time of encounter of the current data provider t̂cp, and the

entropy of its estimated position Eseq,h
cp are also included in the interest packet. If

the current data provider vcp is a static node, such as the data center or any parked

vehicle, the corresponding entropy is set to 0. As portrayed in Algorithm 6, the cache

discovery procedure is performed as follows:

(a) Once a vehicle vf receives an unexpired interest packet, it determines the most

accurate estimation of the current position of the requester vreq (lines 8-18). To

do so, vf checks its own TPP to determine if vreq is among the vehicles it maintains

information about (i.e., vreq has been previously encountered). If so, and if the entropy
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Algorithm 6 : PACD Cache Discovery at Moving and Parked Vehicles

1: Input:
2: Forwarding Vehicle vf , Interest Packet I
3: Reply Packet rep, Requested Data d
4: Requesting Vehicle vreq, Current Data Provider vcp //source of I, destination of I
5: Neighborhood list NB
6: content discovery(I)
7: Begin
8: if I is not expired then
9: if vreq is recorded in vf ’s TPP then

10: if E
seq(rTPP

curNew )
req < E

seq(rIcurNew )
req then //E is the entropy

11: NewPosreq = rTPP
curNew

12: else if E
seq(rTPP

curNew )
req = E

seq(rIcurNew )
req then

13: if tTPP
req ≥ tIreq then //t is the last time of encounter

14: NewPosreq = rTPP
curNew

15: else if tTPP
req < tIreq then

16: NewPosreq = rIcurNew

17: else
18: NewPosreq = rIcurNew

19: Update vreq’s position, treq, and E
seq(rIcurNew )
req in I

20: if there is D matching I in the cache then
21: generate a reply rep
22: forward rep
23: else if any node in NB has d in its cache then
24: update vcp in I //The neighbor with the cached data
25: forward I
26: else
27: if vcp is a moving vehicle then
28: if vcp is recorded in vf ’s TPP then

29: if E
seq(rTPP

curNew )
cp < E

seq(rIcurNew )
cp then

30: NewPoscp = rTPP
curNew

31: else if E
seq(rTPP

curNew )
cp = E

seq(rIcurNew )
cp then

32: if tTPP
cp ≥ tIcp then

33: NewPoscp = rTPP
curNew

34: else if tTPP
cp < tIcp then

35: NewPoscp = rIcurNew

36: else
37: NewPoscp = rIcurNew

38: Update vcp’s position, tcp, and E
seq(rIcurNew )
cp in I

39: if vf is in the range of vcp’s Position then
40: if vcp is not in NB then
41: vcp=data center

42: if d matches an entry in vf ’s TPP then
43: determine Ω //Set of potential providers of d in the TPP
44: calculate rankk using Eq. 4.33 // ∀ vk ∈ Ω̂
45: calculate rankmax = maxk∈Ω̂ rankk
46: set vcp = argmaxk∈Ω̂ rankk

47: update vcp, its position, tcp, and E
seq(rIcurNew )
cp in I

48: forward I
49: End
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associated with the most recent location rreqcurNew indicated in the TPP is less than

that included in the interest packet, the current position of the requester is acquired

from the TPP. If the entropy indicated in the TPP is greater than that in the interest

packet, vreq’s current position is set to that indicated in the interest packet. If the

entropy associated with the position indicated in the TPP is equal to that in the

interest packet, the one associated with the most recent time of encounter is selected.

(b) Based on the outcome of step (a), the requester’s current position, its correspond-

ing prediction entropy, and the last time of encounter are updated in the interest

packet (line 19). Note that later on, when the requested content is found, such in-

formation is copied in the data packet to enable the requester tracking process to be

continued by all encountered vehicles along the data forwarding path as well.

(c) The vehicle vf checks its own local cache to determine whether there is a match

of the requested content. If so, vf sends a reply packet back to the requester (lines

20-22).

(d) If not (i.e., local cache miss), vf checks the set of its neighbors NB, to determine

if any of them has the data in its cache. If so, vf forwards the interest packet to it

(lines 23-25). Otherwise, the following steps are preformed.

(e) If the current data provider vcp (i.e., the destination of the interest packet) is

a moving vehicle, vf determines the most accurate estimation of vcp’s current road

segment rcpcurNew , as well as its corresponding entropy. To do this, it applies the same

logic performed for the requester in steps (a) and (b) (lines 26-38). Otherwise, if vcp is

a static node (i.e., a parked vehicle or the data center), its position and corresponding

entropy remain the same. Note that the entropy of any static node is set to 0, since

its position is fixed, and thus no uncertainty is involved.
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(f) If the estimated position of vcp is within the communication range of vf but the

former cannot be found, then the current data provider is changed to the data center

(lines 39-41). Otherwise, vcp remains the same.

(g) The vehicle vf checks its TPP to determine the set of vehicles that have the

requested content d ∈ D in their cache (lines 42 & 43). To do so, vf checks the

bloom filter associated with each vehicle in its TPP to determine if all the bits at

the positions resulting from the hash functions hx(d) ∀ 1 ≤ x ≤ y, are set to 1. If

so, then the requested content is said to be present among the cached contents of the

corresponding vehicle. Accordingly, vf adds the latter to the set of possible providers

of the requested content, denoted Ω.

(h) Once all possible data providers have been determined, vf ranks each vehicle

vk ∈ Ω to evaluate the profit of navigating the request packet to it instead of the

current data provider vcp (line 44). Such a rank, denoted rankk, is calculated based

on two factors: 1) The distance (in hops) between the data holder vk and the requester,

d̂kReq. The closer they are to each other, the better. Thus, the lower the distance,

the higher the rank. Note that the number of hops between vk and the requester is

calculated by dividing the distance dkReq by the communication range. Intuitively,

the distance is calculated using the requester’s updated position obtained in step (a).

In order to determine the distance dkReq, vf uses rkcurNew (i.e., the road segment at

which vk is currently traversing) and the corresponding position, maintained in vf ’s

TPP. As previously explained in the aforementioned trajectory prediction procedure,

such a position reflects the most recent estimation of vk’s current position. If vk ∈ Ω is

a parked vehicle, the position maintained in the TPP is a well known position rather

than an estimated position, since its location is fixed. 2) The second factor used to
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rank each potential data provider vk ∈ Ω is the prediction entropy (i.e., uncertainty)

of its estimated position Eseq,h
k . The lower the entropy, the higher the rank. The

entropy associated with rkcurNew of each vehicle vk ∈ Ω has already been obtained

during the trajectory prediction procedure. Note that if vk is a parked vehicle, the

corresponding entropy is set to 0. Based on the two aforementioned factors, vf ranks

each vk ∈ Ω by multiplying the normalized values of d̂kReq and Eseq,h
k , as given by Eq.

4.33. For simplicity, we refer to Eseq,h
k as Ek. The vehicle vf also ranks the data center

and the current data provide vcp using Eq. 4.33 in order to consider all possible data

providers. The rank of vcp is calculated based on its position and associated entropy

obtained in step (e).

rankk =

(max
vj∈Ω

Ej)− (Ek)

(max
vj∈Ω

Ej)− (min
vj∈Ω

Ej)
×

(max
vj∈Ω

d̂jReq)− (d̂kReq)

(max
vj∈Ω

d̂jReq)− (min
vj∈Ω

d̂jReq)
(4.33)

(i) The vehicle vf determines the node yielding the maximum rank among vk ∈ Ω, the

current data provider vcp, and the data center. This node is set as the current data

provider, and the destination of the interest packet is updated accordingly. Thus, the

corresponding new position of the current data provider, its entropy, and last time of

encounter are updated in the interest packet (lines 45-47).

(j) The vehicle vf directs the interest packet towards the estimated position of the

current data provider (line 48). This is done using the same forwarding procedure

previously illustrated in CCD.

If vf is the requesting vehicle, it starts the content discovery process by associ-

ating the interest packet with its current position, setting its associated entropy to

0, and setting the last time of encounter to the current time. It then performs the
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aforementioned steps (c) and (d). In case of a cache miss, it executes steps (g)-(j)

after setting the data center as the current data provider.

Once the requested data is found, a data packet is sent from the data holder

back to the requester. Each vehicle along the data forwarding path makes a cache

placement decision to determine whether or not to cache the content. We discuss the

proposed cooperative cache placement scheme in the next chapter, along with the

performance evaluation of both CCD and PACD when implemented with the cache

placement procedure.

4.5 Summary

In this chapter, we proposed two tracking-based cooperative cache discovery schemes

within VANETs, namely CCD and PACD, that can expand the search space beyond

the neighborhood scope. Such an expansion aims at increasing the possibility of

locating replicas that are close to the requester during the request-forwarding process,

and thus increasing cache hits and improving the quality of service. Both CCD and

PACD rely on beacon messages, as well as the mobility and stability of moving and

parked vehicles, respectively, to diffuse cached content information into the network.

CCD exploits the static nature of parked vehicles to keep the cached content

information alive at road segments for subsequent use, as well as to provide a rather

stable tracking service. This helps expand the search space without having to send

extra messages and incurring additional overhead. The tracking service in CCD

exploits the trail of breadcrumbs that moving vehicles leave behind as they pass by

the stationary parked vehicles. This trail is used to dynamically find closer replicas

to the requester. CCD dynamically ranks potential data providers based on their
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proximity to the requester, as well as the age of the maintained information.

PACD strives to expand the search space even further by dynamically predicting

the location of mobile caching nodes. For this purpose, ARCA is employed to cluster

historical trips of various vehicles based on their route similarity using the XXDice

similarity coefficient. Each cluster is then trained using the MTD-Probit model to

predict the remaining trajectory of vehicles. Using these predictions, PACD tracks

all possible data providers and ranks them based on their proximity to the requester,

as well as their prediction entropy. The latter reflects the level of uncertainty in

the predicted location. In addition, PACD enables the exchange of cached content

information that belong to parking clusters residing beyond the communication range

of vehicles. This is done while reducing the amount of overhead incurred via the use

of bloom filters. The performance evaluation of both CCD and PACD is presented

in the next chapter, since there is a need to implement them along with the cache

placement scheme, and the entire solution (i.e., cache discovery and cache placement)

needs to eventually be compared to existing caching schemes in VANETs.
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Chapter 5

Probabilistic Cooperative Caching in VANETs

5.1 Introduction

Cooperative cache placement has been shown to be a beneficial technique for ame-

liorating the performance of data access in multiple network paradigms, such as

MANETs [12] and ICNs [13]. In cooperative caching, the nodes tend to trade in-

formation pertaining to the data they carry in their cache. Cooperative caching has

been shown to help move the data within a closer proximity to the requester, augment

data diversity, and achieve efficient utilization of the nodes’ cache resources [12, 13].

Consequently, this leads to increased cache hits [12, 13]. This is paramount when the

amount of contents is so profuse that they cannot always be fully accommodated, as

the case in social media. However, despite its demonstrated leverage in many network

paradigms, cooperative caching within VANETs has been mostly overlooked. This is

due to the highly dynamic nature of vehicles, which can lead to unstable caching de-

cisions. For example, caching decisions made by neighbors based on their information

exchange can get rapidly revoked as vehicles move out of range.

In this thesis, we propose the Probabilistic Cooperative Caching at Moving and
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Parked Vehicles (PCCMPV) scheme. In order to take advantage of the benefits of

cooperative caching within VANETs, we counteract the aforementioned problems by

exploiting the static nature of parked vehicles. We do so to provide a more stable

residence for both the cached replicas and the received cached content information

about other vehicles. This enables the extension of the cooperation range between

nodes, and thus making more informed caching decisions. Such an extension is facil-

itated by sending different nodes’ cached content information from parked to moving

vehicles, and vice versa, via beacon messages.

As opposed to most existing caching schemes in VANETs that either cache the

data at static nodes only, such as RSUs, or at moving vehicles only, PCCMPV caches

the data at both parked and moving vehicles. In addition, PCCMPV is the first

cooperative caching scheme in VANETs that extends the cooperation range beyond

the neighborhood scope. In PCCMPV, we populate valuable road segments with

diverse cached data to increase cache hits. This is to allow data to be acquired from

nearby caching nodes rather than the far-away data center. We do so by dynamically

assigning a probability of caching to vehicles along the data delivery path. Such a

probability evaluates the importance of vehicles as caching nodes. For parked vehicles,

this probability is calculated based on the traffic density of the corresponding road

segment, as well as its closeness centrality, and remoteness from the closest data

holder. Most existing cooperative caching techniques tend to adopt on-path caching

techniques only [12, 13]. In PCCMPV, we exploit the trajectory of moving vehicles

to also apply an implicit form of off-path caching.

We evaluate the performance of PCCMPV using the NS-3 simulator [64]. We
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compare it to the Caching-Assisted Data Delivery (CADD) scheme [35] and the Dis-

tributed Probabilistic Caching (DPC) scheme [9]. This is since CADD is a caching

scheme in VANETs that, despite not involving any explicit form of cooperation

between the nodes, implicitly inherits some features of cooperative caching, while

DPC is a non-cooperative caching scheme that has been shown to outperform many

other caching schemes in VANETs, including the baseline (cache all) reactive caching

scheme [9]. However, since CADD performs caching only at static nodes deployed at

intersections, while DPC performs caching at moving vehicles only, we implement a

combination of CADD and DPC. This is in order to ensure a fair comparison with

PCCMPV that implements caching at both moving and parked vehicles. We refer to

the combination of CADD and DPC as CADPC. In addition, in order to have a rep-

resentative of explicit cooperative caching, as well as to ignore the effect of the cache

discovery component during comparison, we implement both CADPC and PCCMPV

while adopting the same explicit cooperative cache discovery methodology used in

the GroupCaching (GC) scheme that is commonly used in dynamic networks [59].

Note that GC has been discussed in Section 2.3.4 in Chapter 2. We refer to the two

schemes as CADPC-GC and PCCMPV-GC. Simulation results show that PCCMPV-

GC outperforms CADPC and CADPC-GC in terms of access delay, packet delivery

ratio, and cache-hit ratio.

In order to evaluate the performance of our proposed tracking-based cache discov-

ery schemes CCD and PACD, which were presented in Chapter 4, we implement them

both via the NS-3 simulator. We compare CCD and PACD to each other, as well as

to the tracking-based cache discovery approach adopted in GC. This is since GC is

the baseline neighborhood-restricted cache discovery approach that is typically used
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in dynamic networks [12]. In addition, since CCD does not involve the exchange of

LCs that PACD adopts, we also implement CCD with LCs (CCDLC), and compare

it to GC, CCD, and PACD. Note that all cache discovery schemes are implemented

while using the same cache placement scheme (i.e., PCCMPV). This is in order to

evaluate their performance in an independent way, without the influential effect of

the cache placement procedure.

We evaluate the proposed prediction technique in PACD by implementing the

latter using the Regional Markov Model (RMM) scheme [106]. This is since RMM

is a cluster-based prediction scheme that has been shown to outperform a number of

trajectory prediction techniques in the literature. We refer to it as RPACD. Simula-

tion results show that PACD outperforms RPACD in terms of prediction accuracy.

They also show that: 1) CCD, CCDLC, and PACD outperform GC, 2) CCDLC out-

performs CCD, and 3) PACD achieves the best results among all schemes. This is in

terms of access delay, packet delivery ratio, and cache-hit ratio. Furthermore, it has

been shown that the use of bloom filters in PACD enables it to significantly reduce

beacon overhead compared to CCDLC.

Finally, we compare our proposed schemes to the aforementioned CADPC, and

CADPC-GC as well. This is in order to evaluate our entire solution, which integrates

both the proposed cache discovery and cache placement schemes, compared to existing

caching schemes in the literature.

An overview of the related work in reactive and cooperative caching in VANETs,

as well as other network paradigms, has already been provided in Sections 2.2, and 2.4

in Chapter 2. The remainder of this chapter is organized as follows. In Section 5.2,

we provide a detailed description of the proposed scheme (PCCMPV). In Section 5.3,
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we discuss the performance evaluation, as well as the simulation results of PCCMPV,

CCD, CCDLC, and PACD. In Section 5.4, we summarize the discussion.

5.2 Probabilistic Cooperative Caching At Moving and Parked Vehicles

(PCCMPV)

The system model adopted in PCCMPV is the same as that of the cache discovery

scheme PACD that was discussed in Chapter 4. In PCCMPV, we strive to make

informed caching decisions by relying on information exchange between parked and

moving vehicles via beacon messages. This exchange can help reduce the redundancy

of the cached contents, which can help sustain efficient usage of the storage resources.

For this purpose, we use the same information exchange procedure that was adopted

by PACD. The leverage of this information exchange is depicted in Figure 5.1.

In Figure 5.1(a) that illustrates a non-cooperative caching scenario, as the data

packet d4 propagates back to the requester v3 along the data delivery path (dotted

line), it encounters CH1, which needs to determine whether or not to cache the

data. Unaware that CH2 and CH4 already have d4 cached in their own clusters,

CH1 caches the data. This reduces data diversity and wastes cache space due to the

proximity between CH1 and CH2, as well as between CH1 and CH4. In Figure 5.1(b),

consider a similar scenario using PCCMPV. Assume that vehicle v1 has previously

passed by CH2 and CH4, and so it already has information about the cached data

at both clusters. Such information is maintained in its own LC. Afterwards, when v1

enters the road where CH1 resides, both CH1 and v1 exchange their LCs via beacon

messages. Accordingly, CH1 now knows the cached data in CH2 and CH4, including

d4. CH1 then receives d4, intended to the requester v3. Thus, it makes an informed
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(a) Non-cooperative caching.

(b) Cooperative caching using PCCMPV.

Figure 5.1: An illustrative scenario of non-cooperative versus cooperative caching.

decision and does not cache the data. Meanwhile, CH1 and v2 have exchanged their

LCs. Consequently, v2 also has information about the cached data in CH2 and CH4.

Hence, when v2 receives d4, it checks its own trajectory (solid line), and determines

that it will pass by both CH3 and CH4 (data holders). Also, it assesses the importance
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of the other roads along its trajectory based on a number of metrics, including their

proximity to CH2 and CH4. Thus, it does not cache d4. In the next subsections, we

provide a detailed description of the proposed cache placement procedure at parked

and moving vehicles.

5.2.1 PCCMPV at Parked Vehicles

This procedure is triggered when a CH receives a data packet to be forwarded. Note

that the packet forwarding procedure is the same as the interest forwarding procedure

presented in the previous chapter. Two flags, referred to as caching and forwarding

flags are included in the data packets to indicate whether the received data should be

cached only, forwarded only, or both. Initially, only the forwarding flag is set. When

a parked vehicle receives a data packet, it checks the caching and forwarding flags

in the data packet. If both flags are set, then the parked vehicle caches a copy of

the received data and forwards the original packet by applying the data forwarding

procedure.

When a data packet is received by a CH, it determines whether or not to cache

the data at its parking cluster. To do so, it calculates its own probability of caching.

Such a probability represents the importance of the road segment at which the parking

cluster resides. This importance is based on three metrics; the traffic density of the

road segment, its closeness centrality, as well as its remoteness from the nearest

data holder. The traffic density is used to reflect that the more congested the road

segment is, the greater the possibility for the cached data to be hit. The closeness

centrality is used to determine whether the cached content would be closely located,

and thus rapidly accessed by requesters at other highly populated road segments.
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This is considering that the latter do not have the data cached in their corresponding

parking clusters. We focus on such road segments due to the high chance of requests

occurring at or passing by them. The remoteness from the nearest data holder,

including the data center point of contact, is used to ensure data diversity.

In order to calculate the probability of caching, the CH calculates three scores

representing each of these metrics. Each score is a value in the range [0, 1]. Such a

score represents the normalized value of the corresponding metric, calculated relative

to that of the road segments in R, where R is the set of road segments in the road

network. The traffic density score of a road segment rj at time t is denoted ϕ̂tj,

its closeness centrality score is denoted χ̂tj, and its remoteness from the closest data

holder score is denoted Γ̂tj,d. Note that in each data packet, we include a field in its

header, referred to as the caching status field, which specifies the last parking cluster

along the packet’s delivery path that cached the data. Initially, this field is empty.

Once a cluster head CHj receives a data packet d, it checks the caching status

field in the packet and updates its LC accordingly. If d is not already cached in the

cluster, the following procedure, illustrated in Algorithm 7, is then performed:

(a) CHj checks if a major traffic update has occurred or a change in the cache status

of the road segments in R has become known to it since the last time the three scores

of the road segment rj, ϕ̂
t
j, χ̂

t
j, and Γ̂tj,d were calculated (line 8). If not, the previously

calculated values of the scores can be used (lines 9-11). Otherwise, CHj recalculates

them. CHj uses Eq. 5.1 to calculate the traffic density score ϕ̂tj, where ϕtj denotes

the raw (non-probabilistic) traffic density of rj (lines 12 & 13).

ϕ̂tj =
ϕtj −mink∈R ϕ

t
k

maxk∈R ϕtk −mink∈R ϕtk
(5.1)
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Algorithm 7 : PCCMPV at Parked Vehicles

1: Input:
2: Set of All Road Segments R
3: Reply Packet d
4: ϕ̂

tprev
i , χ̂

tprev
i , Γ̂

tprev
i,d //previous scores

5:
6: CachePlacement(d, CHi)
7: Begin
8: if no update in the traffic or cache status since tprev then

9: ϕ̂t
i=ϕ̂

tprev
i

10: χ̂t
i=χ̂

tprev
i

11: Γ̂t
i,d=Γ̂

tprev
i

12: else
13: calculate ϕ̂t

i //Eq. 5.1
14: check LC and detect M // M=set of road segments storing d
15: for all r ∈ R do
16: if r /∈M and ϕ̂t

i > avg then
17: add r to ξ

18: construct Graph G(V,E) //V=ξ ∪ ri
19: for all k ∈ V |k 6= j do
20: distjk+=distjk

21: χt
i=1/distik //Eq. 5.2

22: calculate χ̂t
i //Eq. 5.3

23: calculate Γ̂
tprev
i,d //Eq. 5.4

24: calculate P t
ri,d

, Ôd,t, and P̃ t
ri,d

//Eq. 5.5, Eq. 5.6, and Eq. 5.7

25: if P̃ t
ri,d
≥ thc then

26: cache d at parked vehicle with max cache capacity in the cluster

27: End

It then calculates the closeness centrality score χ̂tj of rj. To do so, the value of the

closeness centrality of rj, before being normalized, denoted χtj, is first calculated as

follows: CHj checks its LC to determine, to the best of its knowledge, the set of road

segments, denoted M , that already have the data cached (line 14). The remaining

roads in R are then filtered based on their traffic density. Thus, CHj creates a set,

denoted ξ, of road segments that do not have the data cached, and whose normalized

traffic density is above average (lines 15-17). It then creates a graph G(V,E) of |V |

vertices that represent the road segments in ξ ∪ rj, and |E| edges (line 18). This graph

depicts the accessibility of rj from every other road segment (i.e., parking cluster)
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in ξ. Each edge exy is associated with a weight that reflects the shortest distance

between rx and ry, represented in the form of hop counts. As given by Eq. 5.2, CHj

calculates the raw value of the closeness centrality of rj, denoted χtj, by calculating

the inverse of the sum of the shortest-path distances between rj and the other nodes

in G(V,E), where distjk is the shortest-path distance between rj and rk (lines 19-21).

χtj =
1∑

k∈V,j 6=k distjk
(5.2)

CHj then calculates the closeness centrality score χ̂tj of rj by applying Eq. 5.3 (line

22). It also calculates the remoteness from the nearest data holder score Γ̂tj,d, as

given by Eq. 5.4, where Γtj,d is the raw value of the score (line 23). This raw value

is the minimum distance between rj and all the possible data holders in the set M
′
,

minw∈M ′ distjw, where M
′
= M ∪ data center.

χ̂tj =
χtj −mink∈R χ

t
k

maxk∈R χtk −mink∈R χtk
(5.3)

Γ̂tj,d =
Γtj,d −mink∈R Γtk,d

maxk∈R Γtk,d −mink∈R Γtk,d
(5.4)

(b) Once the three scores have been determined, CHj calculates the probability of

caching content d at time t due to the importance of the road segment rj at which it

resides (line 24). Such a probability is denoted P t
rj ,d

, and is calculated using Eq. 5.5,

where ω1, ω2, and ω3 are weighting factors in the range (0, 1], such that Σ3
x=1ωx= 1.

P t
rj ,d

= ω1θ
t,norm
i + ω2ψ

t,norm
i,d + ω3χ

t,norm
i,d (5.5)
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(c) CHj then calculates the final probability of caching, denoted P̃ t
rj ,d

by multiplying

P t
rj ,d

by the normalized value of the popularity of the content d at time t, denoted

Ôd,t. Note that Ôd,t is calculated as given by Eq. 5.6, where Od,t is the raw value of

d’s popularity (line 24). Od,t is the number of users following the public figure that

generates d. Thus, P̃ t
rj ,d

is given by Eq. 5.7 (line 24).

Ôd,t =
Od,t −minf∈D Of,t

maxf∈D Of,t −minf∈D Of,t

(5.6)

P̃ t
rj ,d

= Ôd,t × P t
rj ,d

(5.7)

(d) CHj refrains from caching the data at its parking cluster if P̃ t
rj ,d

is less than a

certain caching threshold thc. Otherwise, the parked vehicle that encloses the highest

available caching space in the parking cluster is selected by CHj to cache the data

(lines 25 & 26). When CHj decides where the data should be cached, it creates a copy

of the data packet after setting the caching flag, and sends it to the selected parked

vehicle for caching. CHj also modifies the caching status field of the original data

packet to indicate its own cluster. When there is no enough cache space in the parking

cluster, replacement occurs. A Least Frequently Used (LFU) replacement policy that

takes the popularity of the content into consideration is used when needed.

5.2.2 PCCMPV at Moving Vehicles

This procedure is triggered when a moving vehicle vm receives a data packet d to be

forwarded. In order to determine whether or not to cache the data, vm calculates its

own probability of caching. Such a probability is determined based on the importance

of each road segment along the remaining part of its trajectory during which d remains
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valid, provided that vm is estimated to traverse the road segment before the expiry

time of d. For example, if the remaining trajectory of vm is {r2, r6, r8}, the expiry

time of d is texp, and vm is estimated to arrive at r8 after texp, then the valid remaining

trajectory is {r2, r6} only. Such a valid remaining trajectory is denoted t̂r
m

rem.

The importance of a road segment rmj along t̂r
m

rem is determined based on three

metrics: 1) the stand-alone importance of rmj , 2) the period of time that vm is ex-

pected to spend traversing rmj , and 3) the chance of the data packet reaching rmj

during the data delivery process. The first metric is considered to be the same as

the aforementioned probability of caching given by Eq. 5.5. Note that this is the

probability of caching d at rj at time tm,j,s due to the importance of rj, where tm,j,s

is the time of arrival of vm at rj. The second metric is utilized to indicate that the

longer the period of time that vm spends moving on rmj , the better. This is since the

cached data would then reside longer at rmj and can thus accommodate more users.

Such a period is represented by the travel time of vm on rmj , starting from its time

of arrival tm,j,s. As previously mentioned in Chapter 4, this period is denoted τ
tm,j,s

j ,

and is given by Eq. 4.2. The third metric is used to reflect the notion that the less

the chance that the data packet will pass by rmj during the data delivery process, the

higher the probability of caching should be. This is because the decision to cache d at

vm would then grant the road segment rmj another chance to obtain and hold d. Such

a possibility is determined based on the remoteness of rmj from the packet destination.

This is because the more distant the road segment is, the lower the possibility of it

receiving the data packet. This is since the data packet is typically forwarded towards

the destination.

The aforementioned metrics are calculated in the form of three scores in the range
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[0, 1]. Such scores represent the normalized values of each metric, calculated for the

road segment rmj , relative to the road segments in R. The stand-alone importance

score of rmj is denoted Θ̂
tm,j,s

j,d , its travel time score is denoted η̂
tm,j,s

j , and its distance

score is denoted Ψ̂
tm,j,s

j,d . The probability of caching d at vm due to the individual

importance of each rmj ∈ t̂r
m

rem, denoted P
tm,j,s

vm,j,d
, is determined based on these three

scores. Note that such an importance is equal to zero if the road segment already

has the data cached in the corresponding parking cluster. This is provided that the

existing replica does not expire while vm is on the road segment. This is since if that

occurred, a cached replica in the vehicle would be useful for rmj , as it would make up

for the expired one.

When a data packet d is received by a moving vehicle vm, the latter updates its

LC based on the information provided in the caching status field associated with the

data packet. If vm does not already have d in its local cache, it performs the following

procedure, as demonstrated in Algorithm 8:

(a) vm determines its valid remaining trajectory t̂r
m

rem (lines 7-15). In order to do

that, it first detects its original remaining trajectory t̂r
m

o before omitting any parts

that need to be removed to ensure the validity constraint. In addition, its total travel

time along t̂r
m

o , denoted τ totalm,o , is determined. Note that τ totalm,o is the sum of the travel

time of vm along each road segment in t̂r
m

o . The vehicle vm then calculates the amount

of time that d would spend in its cache before it expires, denoted tdm,valid. It does

so by determining the minimum value among the time-to-live of d, TTLd and τ totalm,o .

For example, if the validity time of d is 20 minutes and the total travel time of vm

along T rom is 30 minutes, then d would be valid at vm for 20 minutes only. The road

segments in t̂r
m

o whose travel time does not exceed tdm,valid are sequentially included
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Algorithm 8 : PCCMPV at Moving Vehicles

1: Input:
2: TTL of the Data, TTLd

3: Reply Packet d
4:
5: CachePlacement(d, vm)
6: Begin
7: determine t̂r

m

o //original remaining trajectory of vm
8: calculate τ totalm,o //total travel time along trajectory t̂r

m

o

9: tdm,valid=min(TTL, τ totalm,o ) //time during which d is valid

10: for all rmk ∈ t̂r
m

o do

11: τ totalm,rem+=Lk/V
tm,k,s

k // travel time of trajectory t̂r
m

rem

12: if τ totalm,rem≤tm,valid then

13: add rk to t̂r
m

rem

14: else
15: break
16: for all rmj ∈ t̂r

m

rem do
17: get tm,j,s and tm,j,e // using the travel time at each road
18: check LC
19: if d is cached at rmj then
20: if texp,d ≥ tm,j,e then

21: P
tm,j,s

vm,j,d = 0
22: else if texp,d < tm,j,e then
23: tm,j,s=texp,d

24: if P
tm,j,s

vm,j,d has not been assigned then

25: calculate Θ̂
tm,j,s

j,d , η̂
tm,j,s

j , Ψ̂
tm,j,s

j,d // Eq. 5.8, Eq. 5.9, Eq. 5.10

26: calculate P
tm,j,s

vm,j,d // Eq. 5.11

27: P
tm,j,s

vm,j,d+=P
tm,j,s

vm,j,d // calculate sum

28: Calculate Probtvm,d, Ôd,t, P̃ rob
t

vm,d // Eq. 5.12, Eq. 5.6, Eq. 5.13

29: if P̃ rob
t

vm,d ≥ thc then
30: cache d at vm
31: End

in t̂r
m

rem.

(b) For each road segment rmj ∈ t̂r
m

rem (line 16), vm applies the following steps: (1)

Calculate the time of arrival and departure to and from rmj , tm,j,s and tm,j,e, respec-

tively (line 17). (2) Check the LC to determine whether rmj already has the data d

cached in its parking cluster, and whether the expiry time of d, denoted texp,d, exceeds

tm,j,e. If this is the case, set P
tm,j,s

vm,j,d
to zero (lines 18-21). (3) If rmj already has the
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data cached but texp,d is less than tm,j,e, let tm,j,s be equal to texp,d (lines 22 & 23).

(4) If case (3) occurs or case (2) does not apply, go to step (5) and (6) (lines 24-26).

(5) Calculate the three aforementioned scores Θ̂
tm,j,s

j,d , η̂
tm,j,s

j , and Ψ̂
tm,j,s

j,d , by applying

Eq. 5.8, Eq. 5.9, and Eq. 5.10, respectively. Note that P
tm,j,s

rj ,d
is determined based

on Eq. 5.5.

Θ̂
tm,j,s

j,d = P
tm,j,s

rj ,d
(5.8)

η̂
tm,j,s

j =
η
tm,j,s

j −ming∈R η
tm,g,s
g

maxg∈R η
tm,g,s
g −ming∈R η

tm,g,s
g

(5.9)

Ψ̂
tm,j,s

j,d =
Ψ
tm,j,s

j,d −ming∈R Ψ
tm,g,s

g,d

maxg∈R Ψ
tm,g,s

g,d −ming∈R Ψ
tm,g,s

g,d

(5.10)

(6) Calculate P
tm,j,s

vm,j,d
using Eq. 5.11. Determine the probability of caching d at vm

at time t, denoted Probtvm,d, by calculating the average of the individual caching

probabilities at the road segments belonging to t̂r
m

rem, as given by Eq. 5.12, where

c = |t̂rmrem| (lines 27 & 28).

P
tm,j,s

vm,j,d
=


0 d is cached,

texp,d ≥ tm,j,e

ω4Θ̂
tm,j,s

j,d + ω5η̂
tm,j,s

j + ω6Ψ̂
tm,j,s

j,d Otherwise

(5.11)

Probtvm,d =

∑
z∈t̂rmrem

P
tm,z,s

vm,z,d

c
(5.12)

(c) vm then calculates the final probability of caching, denoted P̃ rob
t

vm,d by multiplying

Probtvm,d by Ôd,t, that is calculated as given by Eq. 5.6 (line 28). Thus, P̃ rob
t

vm,d is



5.3. PERFORMANCE EVALUATION 178

given by Eq. 5.13 (line 28).

P̃ rob
t

vm,d = Ôd,t × Probtvm,d (5.13)

(d) If P̃ rob
t

vm,d is less than the caching threshold, thc, the data will not be cached.

Otherwise, vm caches the data (lines 29 & 30). A LRU replacement policy is used if

needed.

5.3 Performance Evaluation

In this section, we evaluate the performance of PCCMPV compared to CADD [35]

and DPC [9]. Both CADD and DPC have been discussed in Section 2.2.2. We

have selected CADD for comparison because it inherits some implicit features of

cooperative caching. This is advantageous since cooperative caching has rarely been

explored within the context of VANETs. Meanwhile, DPC is a representative of

non-cooperative caching, and it has been shown to outperform a number of caching

schemes in VANETs, including the baseline reactive caching scheme that follows a

cache all policy [33]. Note that CADD enables caching to occur at static roadside

caching units only, while DPC adopts caching at moving vehicles only. Accordingly,

since our proposed PCCMPV scheme exploits both moving and parked vehicles for

caching, we implement a hybrid approach of both CADD and DPC, where static

nodes use the caching policy adopted in CADD, and moving vehicles adopts the one

used in DPC. This is to ensure a fair comparison. We refer to this combination of

both CADD and DPC as CADPC.

The comparison of PCCMPV to CADPC is used to show how explicit coopera-

tive caching performs compared to implicit, as well as to non-cooperative caching in
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VANETs. Note that the cache discovery approach applied in CADPC is the one used

in both CADD and DPC, which is the server-based approach (Section 2.3.1).

In order to evaluate the performance of the proposed cache discovery schemes,

CCD and PACD, that were presented in the previous chapter, we implement both

of them while using PCCMPV for cache placement. We refer to each of them

as PCCMPV-CCD and PCCMPV-PACD. For the purpose of exploring the effect

of expanding the search space beyond the neighborhood scope, we also implement

the neighborhood-restricted tracking-based cache discovery approach adopted by the

GroupCaching (GC) scheme while using PCCMPV for cache placement. We refer to

it as PCCMPV-GC. GC has been commonly used in MANETs, and it is considered to

be adequately applicable to VANETs [12]. This is since it yields much less overhead

for highly dynamic networks than other cooperative cache discovery schemes [12].

It is worth mentioning that the exchange of LCs (i.e., the cached content informa-

tion of encountered parking clusters) via beacon messages is employed by PCCMPV,

and this information exchange is utilized by the cache discovery module in PACD but

not in CCD. In fact, CCD only enables the vehicles to exchange their own cached

content information. Thus, we also implement CCD with LCs, and we refer to it as

PCCMPV-CCDLC. This is to show the effect of the further expansion of the coop-

eration scope that the exchange of LCs achieves. In addition, comparing PACD to

CCDLC facilitates demonstrating the effect of the predictive approach proposed in

PACD.

We also assess the performance of the proposed trajectory prediction scheme in-

corporated in PACD. In order to do that, we implement the same cache discovery

employed in PACD using the Regional Markov Model (RMM) [106] for comparison.
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This is since RMM is a clustering-based trajectory prediction technique that has been

shown to outperform other state-of-the-art trajectory prediction schemes in VANETs

[106]. Note that RMM has been discussed in Section 4.2. We refer to the use of

PACD with RMM for prediction as RPACD, and since we also apply it with PC-

CMPV for cache placement, the entire scheme is referred to as PCCMPV-RPACD.

In summary, for the purpose of evaluating the proposed cache discovery schemes, we

compare PCCMPV-GC, PCCMPV-CCD, PCCMPV-CCDLC, PCCMPV-PACD, and

PCCMPV-RPACD. For simplicity, during discussion, we will refer to those schemes

using their cache discovery names only; GC, CCD, CCDLC, PACD, and RPACD.

In order to show the impact of using bloom filters during the information exchange

process, only PACD is executed using them. Note that we ignore the amount of

overhead rendered in PCCMPV in all schemes, and we focus on the overhead yielded

due to the cache discovery approach used. Since CCDLC adopts the same information

exchange module as PACD, comparing CCDLC to PACD can demonstrate whether

or not using bloom filters can help reduce the overhead, and to what extent.

For the purpose of assessing the performance of the proposed cache placement

scheme only, without taking the cache discovery aspect into consideration, we also

implement CADPC with the cache discovery scheme used in GC. We refer to it as

CADPC-GC. This enables PCCMPV-GC to be compared to CADPC-GC. Note that

the explicit exchange of cached content information in CADPC-GC is also used to

cache the data only when none of the neighbors of a node has it. In summary, for

the purpose of evaluating the cache placement scheme, we compare PCCMPV-GC to

CADPC and CADPC-GC.

Assessments and comparisons are done in terms of the following performance
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metrics: 1) the average delay, which is the average time taken starting from the request

generation time until the requested data is acquired, 2) the packet delivery ratio,

which is the ratio of the number of data packets successively procured by requesters

to the total number of data packets issued, 3) the cache hit ratio, which is the ratio

of the number of data packets retrieved from caching nodes to the total number

of data packets acquired, 4) the beacon overhead, which is the ratio of the total

extra information exchanged among vehicles for the purpose of cooperative caching

to the total amount of information exchanged, including the original amount typically

included in beacon messages in VANETs, and 5) the prediction accuracy, which is

the ratio of the number of accurate predictions to the total number of predictions.

5.3.1 Simulation Setup

The NS-3 network simulator [64] is used to implement and evaluate all the aforemen-

tioned schemes. For the road topography, we use the same settings and parameters

presented in Chapter 3. Table 5.1 summarizes the simulation parameters. A 6 × 6

grid topography with 120 edges is created. Realistic vehicular mobility traces are gen-

erated using the traffic simulator SUMO [86]. Simulations are carried out for a total

simulation period of 2000 seconds each. We use the IEEE 802.11p WAVE standard

with a communication range of 200 meters. Two types of beacon messages are sent

out; the original beacon message with no additional information, and the one with

extra information due to cooperative caching. Either one of the two types of beacon

messages is used, depending on the corresponding beacon time interval. The former

is sent every 1 second, and the latter is sent every 5 seconds as a replacement to the

former. The original size of the beacon message is 500 bytes, since this lies within its
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Table 5.1: Simulation parameters of PCCMPV, CCD, and PACD

Simulation Parameters Value
Dimensions of the Road Topography 6× 6
Simulation Time 2000 sec
Communication Technology IEEE 802.11p WAVE
Communication Range 200 m
Original Beacon Interval 1 sec
Extra Information Beacon Interval 5 sec
Original Beacon Size 500 Bytes
Number of Requesters 200
Number of Public Figures 50
TTL of Contents 5−7 minutes
Content Name Size 30 Bytes
Number of Parked Vehicles 240
Bloom Filter Size (b) 24 Bytes
Number of Hash Functions (y) 3
Caching Threshold (thc) 0.25
Number of Trips 1000
Number of Clusters (C) 25
Clustering Fuzzification Coefficient (ϑ) 2
Clustering Termination Threshold (ε) 0.001
Membership Threshold (Uth) 0.2

typical size range [133][134].

The number of requesters is set to 200, and the interest generation is distributed

among 50 public figures on social media based on a Zipf-like distribution with a

skewness factor=0.5. Each public figure creates a new post every 5 − 7 minutes

rendering the previous one obsolete. The size of each content name is set to 30 bytes.

Note that Named Data Networking (NDN) is capable of supporting a maximum

name length of up to 30 bytes [130]. The time of each request is set to a random

value within the requester’s trip duration. Unless otherwise specified, the number of

moving vehicles is set to 600/km2, and 240 parked vehicles are uniformly distributed
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among all road segments. Each parked vehicle resides at its designated parking space

throughout the entire simulation period. We express the cache capacity of moving

vehicles, RCSs in CADPC, and the collection of parked vehicles at each road segment

in terms of the percentage β of the total contents that can be requested. Unless

otherwise specified, β is set to 60%, the percentage of road segments with parked

vehicles is 100%, and the order of the Markov model ` is set to 3. The values of ∇,

α1, and α2 in CCD and CCDLC are set to 2 minutes, 0.2 and 0.8, respectively.

The bloom filter size b is set to 24 bytes and the number of hash functions y is set

to 3. The caching threshold thc is set to 0.25. We created 1000 trajectory sequences,

80% were used for training, while the remaining 20% were used for testing. In the

clustering algorithm ARCA, we set the number of clusters C to 25, the fuzzification

coefficient ϑ to 2, the termination threshold ε to 0.001, and the membership threshold

Uth to 0.2. In PCCMPV, the weighting factors ω1-ω3 are set to 0.3, 0.4, and 0.3,

respectively, while ω4-ω6 are set to 0.4, 0.3, and 0.3, respectively.

5.3.2 Results and Discussion

In our experiments, we evaluate the performance of PCCMPV, CCD, CCDLC, and

PACD under varying vehicular densities, cache capacity percentage β, percentage

of road segments with parked vehicles κ, and Markov model order `. The results

obtained are presented below. Simulation results are presented at a confidence

level=90%.

1- The Impact of Vehicular Density

In this experiment, we vary the number of moving vehicles from 200 to 1000

to assess the performance of PCCMPV, CCD, and PACD under varying vehicular
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Figure 5.2: Cache hit ratio over varying vehicular densities.

densities. We set the cache capacity percentage β to 40% to also evaluate their

performance given a small cache capacity.

Figure 5.2 depicts the effect of this variation on the performance in terms of

cache hit ratio. As shown in the Figure, PCCMPV-GC yields a significant increase

of up to 40% and 20% in cache hit ratio compared to CADPC and CADPC-GC,

respectively. This can be attributed to the more informed caching decisions made in

PCCMPV due to the use of explicit cooperative caching, as well as the extension of the

cooperation range beyond the neighborhood scope. Such an extension is facilitated by

the exchange of the vehicles’ own cached content information, as well as that of other

parking clusters maintained in their LCs. This enables caching more diverse data at

valuable nodes, which reduces the wasted cache capacity, and leads to more cache hits.

As the number of moving vehicles increases, more cached content information can be

exchanged. This increases data availability, as it enables more efficient utilization of
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the vehicles’ cache capacity, which improves the cache hit ratio. In contrast, CADPC

incurs higher delay than CADPC-GC and PCCMPV due to the lack of any form of

explicit collaboration between the nodes in both CADD and DPC. Also, CADPC uses

a server-based cache discovery scheme, which relies on the opportunistic encounter

with caching nodes along the data delivery path to the data center. This limits the

search space compared to CADPC-GC and PCCMPV-GC, and reduces the chances

of finding caching nodes, which in turn reduces cache hits.

CADPC-GC performs better than CADPC due to the explicit exchange of cached

content information among the neighboring nodes in GC, which increases data di-

versity compared to CADPC. Also, the neighborhood-restricted tracking-based cache

discovery approach adopted in GC increases the search space compared to the server-

based scheme used in CADPC, which further increases cache hits.

As shown in Figure 5.2, CCD outperforms PCCMPV-GC by up to 17%. This

is because the tracking-based cache discovery procedure employed in CCD expands

the search space beyond the neighborhood scope. Such an expansion is attributed to

the stable tracking service provided by parked vehicles, which tracks the location of

caching nodes. This leads to extending the lifetime of the cached content information,

which helps sustain the expanded search space for a longer time, and in turn makes

it easier to locate the caching nodes. Note that as the number of moving vehicles

increases, road segments get more congested and thus vehicles tend to slow down.

This increases the validity time of the last encounter information registered in the

vehicles’ TPP in CCD, which leads to more reliable tracking of the caching nodes.

In contrast, in PCCMPV-GC, once two neighboring nodes move out of range, their

cached content information gets immediately nullified.
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CCDLC further improves the cache hit ratio, with an increase of up to 27% and

10%, compared to PCCMPV-GC and CCD, respectively. This is due to the exchange

of the LCs maintained by vehicles, along with their own cached content information,

which enables the vehicles in CCDLC to also track the cached data at static parked

vehicles that they have not necessarily encountered.

PACD achieves the highest cache hit ratio among all the other cache discovery

schemes, with an increase of up to 47%, 30%, and 20% compared to PCCMPV-GC,

CCD, and CCDLC, respectively. This is attributed to the fact that PACD increases

the chances of data acquisition from caching nodes by eliminating any restrictions on

the search space during the data discovery process. This is since it follows a prediction-

assisted tracking-based scheme, which enables reaching caching nodes wherever they

are located. In contrast, CCD and CCDLC limit the search space to the extent of

the trails left by moving vehicles at the CHs they encounter.

The same cache discovery scheme used in PACD is employed in RPACD, but with

a different prediction scheme. As depicted in Figure 5.2, PACD outperforms RPACD

by up to 11%. This is because RPACD renders a lower prediction accuracy than

PACD, which increases the risk of having to navigate the requests to the data center

when the locations of caching nodes are not accurately predicted. As the number

of moving vehicles increases, more cached content information is exchanged among

vehicles, which provides them with more options for possible data providers to select

from in their TPP. This enables vehicles to select caching nodes that have lower

entropy, and thus a higher certainty in their predicted location.
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It is worth mentioning that PCCMPV-CCD outperforms CADPC and CADPC-

GC in terms of cache hit ratio, by up to 56% and 32%, respectively, while PCCMPV-

CCDLC outperforms them by up to 69% and 43%, respectively. PCCMPV-PACD

significantly increases cache hit ratio compared to both CADPC and CADPC-GC,

by up to 100% and 70%, respectively. This is due to all the aforementioned reasons

related to both the cache placement scheme PCCMPV, and each of the cache discovery

schemes CCD, CCDLC, and PACD.

We conduct the same experiment to assess the performance of PCCMPV, CCD,

and PACD in terms of average delay. As shown in Figure 5.3, PCCMPV-GC out-

performs both CADPC and CADPC-GC by up to 31%, and 23%. This is because

of the significant increase in the cache hit ratio, due to the aforementioned reasons.

Such an increase facilitates acquiring the data from nearby caching nodes rather than

the far-away data center. As the number of moving vehicles increases, the amount of

exchanged cached content information increases, which improves caching decisions,

and thus improves the delay.

As shown in Figure 5.3, CCD significantly reduces the delay compared to PCCMPV-

GC, with a reduction of up to 30%. This can be attributed to the fact that CCD

adopts a tracking procedure that facilitates finding nearby caching nodes that can be

located beyond the neighborhood scope. This increases the potential of data acquisi-

tion from nearby caching nodes, which further improves the delay. This is as opposed

to the restricted search space in PCCMPV-GC, where a vehicle can fail to find a

nearby caching node if none of its neighbors has the requested data. The average de-

lay is further improved by CCDLC, with a reduction of up to 39% and 18% compared

to PCCMPV-GC and CCD, respectively. This is due to the LCs exchanged among
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Figure 5.3: Average access delay over varying vehicular densities.

vehicles in CCDLC, which provides the vehicles with information about more poten-

tial caching nodes that can be much closer to the requester, and can in turn reduce

the delay even further. Such information increases as the number of moving vehicles

increases. Thus, more delay reduction is yielded under higher vehicular densities.

PACD yields the least amount of delay compared to the remaining schemes, with

an improvement of up to 81%, 77%, and 70% compared to PCCMPV-GC, CCD, and

CCDLC, respectively. This can be attributed to the significant improvement in cache

hit ratio, and the unrestricted search space facilitated by the incorporated prediction

technique. Also, the ranking process plays an important role as it emphasizes on

replicas within closer proximity to the requester. This is in contrast to the tracking

procedure in CCD and CCDLC that relies on navigating the requests to the CH

(i.e., parked vehicle) that has last seen it, rather than predicting its actual position.

Accordingly, data acquisition in PACD has higher chances of being acquired from
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caching nodes closer to the requester than all the other schemes.

PACD renders a lower delay than RPACD, with a reduction of up to 42%. This

is due to the higher prediction accuracy rendered by PACD (as will be demonstrated

later on). Such an improved prediction accuracy reduces the risk of navigating re-

quests to the wrong location of a caching node, thus forcing it to be redirected to

another, or to the far-away data center. Note that due to traffic congestion, vehicles

tend to slow down as the vehicular density increases. This extends the lifetime of the

exchanged cached content information in PCCMPV-GC. It also increases the chance

of tracking mobile caching nodes before they navigate too far away from the last

trails they leave behind in CCD and CCDLC, or before too many predicted locations

are accumulated in PACD and RPACD. Thus, the delay decreases as the number of

vehicles increases.

Evidently, PCCMPV-PACD significantly improves the delay by up to 88% and

83% compared to CADPC and CADPC-GC. This can be attributed to all the afore-

mentioned reasons related to PCCMPV and PACD.

We evaluate the packet delivery ratio by performing the same experiment. As

depicted in Figure 5.4, as the number of vehicles increases, PCCMPV-GC increases

the packet delivery ratio by up to 33%, and 15% compared to CADPC and CADPC-

GC, respectively. This can be attributed to the highly improved delay in PCCMPV-

GC, which in turn reduces the chance of dropping data packets due to the inability

to find the requester. This typically occurs when the requester moves too far away

from its request initiation position. The earlier the data arrives, the less the chance

for this to occur. Lower delay also reduces the risk of failure to reach the requesting

vehicle due to the fact that its trip has already ended.
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Figure 5.4: Packet delivery ratio over varying vehicular densities.

As depicted in Figure 5.4, as the vehicular density increases, CCD increases the

packet delivery ratio by up to 14% compared to PCCMPV-GC. This is due to the

significant improvement in delay yielded by CCD compared to PCCMPV-GC. In

addition, the tracking procedure applied in CCD as a part of the cache discovery

process provides a means to track the requester’s position. This is achieved through

a rather stable tracking service leveraged by the static nature of parked vehicles. As

a result, the risk of dropping the data packets is reduced.

CCDLC further improves the packet delivery ratio by up to 22% and 12% com-

pared to CCD. This is due to the reduced delay in CCDLC, which increases the

chance of data packets reaching the designated requesters before their trips are ter-

minated. PACD renders the highest packet delivery ratio among all schemes, yielding

an improvement of up to 47%, 35%, and 25% compared to PCCMPV-GC, CCD, and

CCDLC. This can be attributed to the much lower delay it achieves, as well as the
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prediction-based tracking procedure that it adopts to locate the requester, which di-

minishes the risk of dropping the data packet. As a result of the higher prediction

accuracy that PACD yields compared to RPACD, it improves the packet delivery

ratio by up to 10% over the latter.

Note that due to all the aforementioned reasons pertaining to the performance

of PCCMPV and PACD, PCCMPV-PACD significantly improves the packet delivery

ratio by up to 87% and 66% compared to CADPC and CADPC-GC.

We consider the same comparison to evaluate the amount of beacon overhead

triggered due to information exchange. As depicted in Figure 5.5, CADPC does not

involve any explicit exchange of cached content information, so it does not render any

extra beacon overhead. In contrast, CADPC-GC, PCCMPV-GC, and CCD all render

the same amount of overhead, since in all of them neighboring vehicles exchange their

own cached content information. Note that such an overhead slightly increases as

the number of moving vehicles increases due to the increase in the total amount of

exchanged cached content information, which can slightly affect the beacon overhead

ratio.

Due to the fact that each vehicle also exchanges with its neighbors the cached

content information pertaining to the parking clusters maintained in its LC, CCDLC

increases the overhead by up to 159% compared to PCCMPV-GC. The exchange of

LCs also applies to PACD. However, the use of bloom filters in PACD ensures a much

lower overhead compared to CCDLC, with a reduction of up to 57%. Since we adopt

the use of bloom filters that have a fixed size, the amount of information exchanged

or maintained in the caches does not have an effect on the beacon overhead. Thus,

the beacon overhead yielded by PACD remains the same as the vehicular density inc-
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Figure 5.5: Beacon overhead over varying vehicular densities.

reases.

Despite the reduction in overhead that PACD achieves compared to CCDLC, its

overhead is still higher than that of PCCMPV-GC and CCD by up to 15%. This

is because the number of content names that can be included in GC and CCD is

low, since in this experiment, only 40% of the cache capacity can be used. Note that

since PACD and RPACD are the same in everything except the prediction technique,

RPACD renders the same amount of beacon overhead as PACD.

We perform the same experiment in order to evaluate the performance in terms of

prediction accuracy. Note that PACD and RPACD are the only schemes that involve

prediction. Hence, they are the only ones considered in this experiment. As depicted

in Figure 5.6, as the number of moving vehicles increases, the prediction accuracy in-
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Figure 5.6: Prediction accuracy over varying vehicular densities.

creases in both schemes. This can be attributed to the fact that the speed of vehicles

becomes lower as the traffic becomes more congested. This reduces the number of

road segments that vehicles traverse since their last time of encounter, which facilitates

more accurate predictions due to the less reliance on ` predicted road segments, and

more reliance on known or partially known ` road segments for prediction. PACD

improves the prediction accuracy compared to RPACD, with an increase of up to

15%. This can be attributed to three main reasons. First, the use of the XXDice

similarity measure in PACD, which can achieve higher precisions compared to the

Minimum Edit Distance (MED) that is used in RPACD. This is due to the lack

of sequential context sensitivity in MED in many situations [119][121]. Second, the

realization of more accurate representation of the trajectory clusters in PACD. This
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is due to the use of a soft clustering algorithm, as opposed to the hard clustering one

used in RPACD. Third, the use of the MTD-probit model in the training procedure

adopted in PACD, which takes the frequency of a given prediction sequence in the

historical data into consideration, as opposed to the VLMC model used in the training

procedure in RPACD [116][122][123][127].

2- The Impact of Cache Capacity

In this experiment, we vary the cache capacity percentage β from 20% to 100%

to assess the performance of PACD under low, medium, and high cache capacity.

Figure 5.7 demonstrates the effect of this variation on the cache hit ratio. As

shown in Figure 5.7, the cache hit ratio diminishes as β decreases in all schemes.

This is since as β decreases, vehicles can host less amount of data in their caches.

This makes it imperative for cache placement schemes to make efficient utilization

of the available storage resources so as to reduce the amount of wasted cache space.

As a result, PCCMPV-GC manages to yield a much higher cache hit ratio than

CADPC and CADPC-GC, with an increase of up to 48% and 20%, respectively. This

is also due to the much extended cooperation range offered by the stable residence of

cached content information, including the vehicles’ LCs, at parked vehicles. This is

as opposed to the neighborhood-restricted range in CADPC-GC and the lack of any

explicit cooperation in CADPC.

In addition to the aforementioned reasons, PCCMPV implements an implicit form

of off-path caching, along with the typical on-path caching methodology. This extends

the potential candidates for caching a replica, as it takes into consideration the road

segments that moving vehicles are expected to traverse along their trajectory. Thus,
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Figure 5.7: Cache hit ratio over varying cache capacity (β).

the cache capacity utilization increases even further. Furthermore, PCCMPV con-

siders the traffic density at road segments. This, along with considering the content

popularity, increase the possibility of caching the data where matching requests are

triggered or encountered.

As shown in Figure 5.7, as β decreases, the cache hit ratio is reduced in all cache

discovery schemes. This is because as β decreases, the need for an expanded search

space increases, since the nodes cannot cache many contents. Thus, the chance of

finding the requested data within a limited search space decreases. Accordingly, CCD

improves the cache hit ratio by up to 14% compared to PCCMPV-GC.

Due to the exchange of the vehicles’ LCs in CCDLC, which enables vehicles to

track more cached contents in the network, it outperforms both PCCMPV-GC and

CCD by up to 23%, and 10%, respectively. With its unrestricted search space and

prediction technique, PACD further increases the cache hit ratio by up to 42%, 30%,
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and 18%, respectively compared to PCCMPV-GC, CCD, and CCDLC.

PACD also outperforms RPACD by up to 8%. This is due to the lower prediction

accuracy rendered in RPACD. Note that the lower the cache capacity, the less the

potential data providers of a particular content that are maintained in a vehicle’s

TPP. This, along with the lower prediction accuracy yielded by RPACD, cause the

vehicles to navigate requests to caching nodes that do not necessarily render a low

entropy, but rather the lowest among the potential candidates. Accordingly, failure

to find the caching nodes at their estimated position might occur, thus forcing more

requests to eventually be directed to the data center.

Due to the aforementioned leverages gained by PCCMPV and PACD, Figure 5.7

also shows that PCCMPV-PACD outperforms CADPC and CADPC-GC by up to

104% and 65%, respectively.

We conduct the same experiment to assess the average access delay of the proposed

schemes. As depicted in Figure 5.8, the delay decreases as β increases in all schemes.

This is attributed to the higher cache hits, which increase the chance of acquiring the

data from caching nodes rather than the remote data center. PCCMPV-GC yields

the lowest delay among CADPC and CADPC-GC, with an improvement of up to

41% and 29%, respectively. This is because, along with the higher cache hit ratio

achieved by PCCMPV as β increases, it also makes caching decisions while taking

the closeness centrality of road segments into consideration. This helps increase data

acquisition from caching nodes that reside within closer proximity to the requester,

which further reduces the delay. Note that as β increases, the potential of selecting

caching nodes located at road segments with high closeness centrality increases, since

their cache capacity can accommodate more contents.
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Figure 5.8: Delay over varying cache capacity (β).

Figure 5.8 also shows that CCD achieves a lower delay than PCCMPV-GC, with

an increase reaching up to 21%. This is because in contrast to GC, vehicles in

CCD keep track of previously encountered caching nodes even when they move out

of range, and dynamically rank them based on their proximity to the requester.

Thus, the incorporated tracking procedure and ranking process in CCD dynamically

detect closer replicas to the requester. Note that this is done while taking the age

of information into consideration. Thus, the ranking process might favor a further

replica than a closer one if the cached content information about the former is more

recent. Such a risk increases if there are only few potential data providers to select

from. Thus, as β increases, this risk decreases, since the chance of having more

potential data providers in the vehicles’ TPP increases.

Due to the exchange of the LC maintained by vehicles, the aforementioned risk
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decreases even further in CCDLC. Consequently, as shown in Figure 5.8, CCDLC ren-

ders a lower delay than PCCMPV-GC and CCD, with an improvement that reaches

up to 34% and 21%, respectively. However, once the caching nodes maintained in the

TPP navigate far away from the next road segment to that where the CH that has

last seen them resides, the tracking procedure in CCD and CCDLC fails to locate

nearby caching nodes. In contrast, with its underlying prediction technique, PACD

can perform its tracking procedure without any restrictions, and can still be able to

dynamically select a closer replica to the requester. Accordingly, PACD outperforms

PCCMPV-GC, CCD, and CCDLC by up to 86%, 82%, and 74%, respectively. Note

that the increase in the number of caching nodes in the vehicles’ TPP because of the

increase in β, reduces the risk of favoring a more remote replica to the requester due

to its lower entropy than a closer one with higher entropy. Also, PACD improves the

delay by up to 54% compared to RPACD. This is since RPACD renders a lower pre-

diction accuracy than PACD. Hence, the aforementioned risk has a higher occurrence

rate in the former than the latter, particularly at low values of β, thus triggering a

higher delay. It is worth mentioning that PCCMPV-PACD improves the delay by up

to 90% and 83%, over CADPC and CADPC-GC, respectively.

In order to assess the packet delivery ratio under varying β, we perform the same

experiment. As depicted in Figure 5.9, as β increases, the packet delivery ratio

increases. Note that PCCMPV-GC achieves the best performance among CADPC

and CADPC-GC, yielding an increase of up to 38% and 19%, respectively. This is due

to the lower delay achieved by PCCMPV-GC as β increases, which in turn reduces

the risk of dropping the data packets. As previously mentioned, this could be because

the data packets manage to reach the requesters before they move too far away from
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Figure 5.9: Packet delivery ratio over varying cache capacity (β)

their position at the time of the request initiation, or data packets reach the requesting

vehicles before they conclude their trips and leave the system. Since CCD and CCDLC

achieve a lower delay than PCCMPV-GC, and provide a means to track the requester’s

location, this risk is further reduced. Thus, CCD improves the packet delivery ratio

by up to 12% compared to PCCMPV-GC. Also, as CCDLC renders an even lower

delay than CCD, it yields a higher packet delivery ratio, with an increase of up to

17%, and 7% over PCCMPV-GC and CCD, respectively.

Figure 5.9 also shows that as β increases, the packet delivery ratio of PACD

increases, where it yields the best performance among all the other schemes. This

is due to the significant reduction in delay achieved by PACD as β increases, as

well as its prediction-based tracking procedure of the requester’s location. Thus,

PACD outperforms PCCMPV-GC, CCD, and CCDLC by up to 30%, 20%, and 13%,

respectively.
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Figure 5.10: Beacon overhead over varying cache capacity (β)

Since PACD can more accurately predict the location of the requester than RPACD,

higher packet delivery ratio is rendered in the former, with an increase of up to 6%.

Note that as β increases, the gap between PACD and RPACD decreases. This is due

to the significantly low delay achieved by both schemes, which increases the chances

that the requester is still within close vicinity to its original position, thus reducing

the need for predicting its location. As depicted in Figure 5.9, and due to all the

aforementioned reasons, PCCMPV-PACD outperforms CADPC and CADPC-GC by

up to 75% and 55%, respectively

We conduct the same experiment to evaluate the amount of beacon overhead.

Due to the lack of any explicit exchange of cached content information in CADPC,

it does not involve any beacon overhead. As depicted in Figure 5.10, the amount of

overhead in CADPC-GC, PCCMPV-GC, and CCD increases as β increases. This can

be attributed to the increase in the number of content names that can be added to
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beacon messages to reflect the vehicles’ cached content information. Since in the three

schemes, vehicles exchange their own cached content information only, they render

almost the same amount of overhead. CCDLC yields the highest amount of overhead

among all schemes. This is due to the fact that neighboring vehicles exchange their

own cached content information, as well as that of other parking clusters sustained in

their LCs. Since such LCs are also exchanged in PACD but using bloom filters, the

amount of overhead yielded in PACD is significantly reduced compared to CCDLC,

with a reduction of up to 62%.

Note that varying β has no effect on PACD. This is since no matter how much

information is cached, the size of the exchanged bloom filters remains the same.

Thus, at lower values of β, PACD yields higher beacon overhead than GC and CCD,

with an increase of up to 32%. However, as β increases, PACD starts to render a

lower overhead than GC and CCD, with a reduction of up to 40%. This is due to

the leverage gained by the use of bloom filters in parsimoniously representing the

cached content information, as opposed to their increase in the other schemes. The

same applies to RPACD, since the only difference between PACD and RPACD is the

adopted prediction technique.

3- The Impact of the Percentage of Road Segments with Parked Vehicles

In this experiment, we vary the percentage of road segments that have parked

vehicles, κ, from 20% to 100% in order to study the effect of the scalability of parked

vehicle-occupied road segments on the performance of the proposed schemes. Note

that this variation does not have any effect on CADPC, and CADPC-GC, since

neither of these scheme involves the use of parked vehicles.

We evaluate the impact of the variation of κ on the cache hit ratio of the proposed
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Figure 5.11: Cache hit ratio over varying percentage of road segments with parked
vehicles (κ).

schemes. As shown in Figure 5.11, as κ increases, the cache hit ratio increases in

all schemes. This can be attributed to the fact that the lower the value of κ, the

lower the data availability at road segments due to the lack of parked vehicles to

cache the data at. This reduces the number of road segments that have the contents.

However, PCCMPV exploits the trajectory of vehicles to assess the importance of the

road segments they pass by in terms of their traffic density and closeness centrality.

Thus, PCCMPV-GC still performs better than CADPC and CADPC-GC, yielding an

increase of up to 32% and 20%, respectively. Note that the cache placement scheme in

PCCMPV-GC, CCD, CCDLC, and PACD rely on the availability of parked vehicles

to provide a stable residence for the exchanged cached content information. This is

in order to ensure more diffusion of such information into the network. Thus, the

lower the value of κ, the lower the amount of exchanged cached content information
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among neighboring vehicles, which reduces data diversity and increases the amount

of wasted cache space. These factors can force more data to be acquired from the

data center rather than caching nodes, which reduces cache hits.

The lower the value of κ, the higher the reliance on moving vehicles for caching,

which makes the mission of locating such nodes during the cache discovery process

more crucial. Thus, as depicted in Figure 5.11, CCD yields a higher cache hit ratio

than PCCMPV-GC, with an increase of up to 10%. This is due to the ability of CCD

to track mobile caching nodes beyond the neighborhood scope, as opposed to GC.

However, since the cache discovery scheme used in CCD relies on the breadcrump

traces that moving vehicles leave at the CHs they pass by, the decrease in κ can

cause such traces to be shortly interrupted, which can reduce cache hits. This also

applies to CCDLC. However, since CCDLC further enables the use of the exchanged

LCs among neighboring vehicles in the discovery process, it increases the cache hit

ratio by up to 6% compared to CCD. Note that as κ decreases, the amount of cached

content information about parking clusters that is maintained in LCs decreases, thus

the cache hit ratio decreases.

The capability of PACD to predict the location of mobile caching nodes leads to a

significant increase in the cache hit ratio, even at low values of κ. In fact, it increases

the cache hit ratio by up to 31%, 26%, and 20% compared to PCCMPV-GC, CCD,

and CCDLC. In addition, PACD outperforms RPACD by up to 11%, due to its higher

prediction accuracy of the location of mobile caching nodes.

The same experiment is conducted in order to asses the average access delay. As

depicted in Figure 5.12, as κ increases, the average delay decreases in PCCMPV-GC,

CCD, CCDLC, PACD, and RPACD. This is due to the higher cache hit ratio that is
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Figure 5.12: Average delay over varying percentage of road segments with parked
vehicles (κ).

achieved by them as κ increases, which decreases the risk of acquiring the data from

the remote data center. Accordingly, CCD reduces the delay by up to 29% compared

to PCCMPV-GC. Also, the higher reliance on moving vehicles for data acquisition as

κ decreases, increases the risk of sending the request to the wrong estimated location

of a mobile caching node in CCD, thus triggering the need for it to be redirected to

another caching node or the distant data center, which increases the delay. The use of

LCs in CCDLC during the discovery process reduces this risk by providing information

about the cached contents at the available parking clusters. Thus, CCDLC reduces

the delay by up to 17% compared to CCD.

PACD further improves the delay by up to 80%, 72%, and 68%, compared to

PCCMPV-GC, CCD, and CCDLC, respectively. This is because PACD has a higher

chance of locating moving vehicles that have the data cached. Note that as κ decreases
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Figure 5.13: Packet delivery ratio over varying percentage of road segments with
parked vehicles (κ).

in PACD, the aforementioned risk increases. This problem further exacerbates as the

prediction accuracy decreases. Thus, PACD outperforms RPACD by up to 50%.

We assess the packet delivery ratio subject to the same experiment. As demon-

strated in Figure 5.13, the packet delivery ratio increases as κ increases. This is due

to the significant reduction in the average delay, which reduces the risk of dropping

the data packets. As opposed to PCCMPV-GC, CCD provides a tracking procedure

of the requester. Thus, it increases the packet delivery ratio by up to 10%. However,

the lower the value of κ, the higher the chance that the trails left by the requester at

encountered CHs get abruptly interrupted. This increases the risk of failure to find

the requester, thus dropping the data packet. The reduced delay achieved by CCDLC

as κ increases reduces this risk. Consequently, CCDLC improves the packet delivery
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ratio by up to 14% and 8%, respectively.

Along with the ability to predict the requester’s location without the need to

rely on CHs for tracking, PACD and RPACD also manage to achieve a significant

reduction in delay. This increases the chance of reaching the requester before it moves

too far away from its location at the time of the request initiation, or too far ahead

along its trajectory. Thus, PACD and RPACD perform almost the same, with PACD

slightly outperforming the latter by up to 4% due to its higher prediction accuracy.

PACD also outperforms PCCMPV-GC, CCD, and CCDLC by up to 20%, 14%, and

10%, respectively. Moreover, PACD outperforms CADPC and CADPC-GC by up to

58% and 40%, respectively.

In order to evaluate the impact of varying κ on the beacon overhead, the same

experiment is conducted. As depicted in Figure 5.14, CADPC does not involve any

beacon overhead, while the beacon overhead in CADPC-GC is not affected by varying

κ since there are no parked vehicles in it. PCCMPV-GC and CCD perform almost

the same, since they only require neighboring nodes to exchange their own cached

content information. As κ decreases, the beacon overhead slightly decreases in both

schemes. This is due to the decrease in the number of exchanged beacon messages,

since less vehicles (i.e., parked vehicles) become involved in the information exchange

procedure. This decrease reaches up to 9% compared to CADPC-GC. Since the size

of the extra information added to each beacon message is not profoundly affected,

the ratio between the total extra information exchanged among vehicles to the total

amount of information exchanged in beacon messages, does not significantly decrease.

As shown in Figure 5.14, the overhead decreases as κ decreases in CCDLC. This is

because as κ decreases, the cached content information maintained in LCs decreases,
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Figure 5.14: Beacon overhead over varying percentage of road segments with parked
vehicles (κ).

which in turn decreases the size of the extra information exchanged in beacon mes-

sages. However, despite this decrease, CCDLC still yields the highest overhead among

all schemes, with an increase of up to 125% compared to PCCMPV-GC and CCD.

PACD outperforms CCDLC even though it also involves the exchange of LCs.

This is because PACD adopts the use of bloom filters, which reduces the size of the

incorporated extra information. As shown in Figure 5.14, this reduction manifests

even further as κ decreases. This can be attributed to the fact that PACD includes

a fixed-sized bloom filter to represent the cached content information of each parking

cluster in the LCs. Consequently, as κ decreases, the maximum number of parking

clusters in LCs decreases, and thus the number of bloom filters that PACD includes

in a given beacon message decreases. Hence, the use of bloom filters in PACD enables
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Figure 5.15: Prediction Accuracy over varying order of Markov chain (`).

it to reduce the beacon overhead by up to 76% compared to CCDLC. Also, since less

number of bloom filters is used, the gap between PACD and PCCMPV-GC, as well

as CCD increases, till it yields a reduction of up to 47% compared to both of them.

Note that RPACD and PACD yield the same amount of overhead. This is since they

adopt the same information exchange procedure.

4- The Impact of the Order of the Markov Model (`)

In this experiment, we vary the order of the Markov model ` from 1 to 5. Note

that this variation does not have any effect on CADPC, CADPC-GC, PCCMPV-

GC, CCD, and CCDLC, since no prediction is involved in any of these schemes. In

contrast, prediction is incorporated in RPACD and PACD only. Thus, they are the

only schemes considered in this experiment.

As shown in Figure 5.15, the prediction accuracy increases as ` increases, with

PACD yielding a significant increase of up to 16% compared to RPACD. This is
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Figure 5.16: Cache hit ratio over varying order of Markov chain (`).

because as ` increases, more historical information pertaining to the partial trajectory

traversed by vehicles is provided, thus enabling more accurate predictions. Note

that `=1 indicates the use of the first-order Markov model. Thus, in this case, the

superiority of PACD over RPACD is solely attributed to the leverage of both the

XXDice similarity measure and the soft clustering technique ARCA, compared to the

MED approach and the hard clustering technique used in RPACD. Such a leverage

increases as ` increases, since the precision of the XXDice similarity measure, and

thus that of ARCA increases. When ` is above 1, the MTD-probit model also starts

to show some leverage compared to the VLMC model. This is due to the same

previously mentioned reasons.

Figure 5.16 demonstrates the effect of varying ` on the cache hit ratio. As shown in
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the Figure, the cache hit ratio increases as ` increases. PACD triggers the highest

cache hit ratio, yielding an increase of up to 71%, 52%, 30%, 18%, 13%, and 5%

compared to CADPC, CADPC-GC, PCCMPV-GC, CCD, CCDLC, and RPACD,

respectively. This is because as ` increases, the prediction accuracy increases, which

reduces the risk of reaching the predicted location of a caching node only to find that

it is not actually there. This can increase the risk of eventually having the interest

packet redirected to the remote data center, which could reduce cache hits.

As shown in Figure 5.16, the gap between PACD and RPACD is relatively small.

This can be attributed to the fact that the cache discovery process is dynamically

performed at every intermediate node along the data delivery path. Accordingly, the

interest packet can be redirected to another caching node rather than the distant data

center in case of failure to reach another designated caching node. Another reason is

the ranking process that enables vehicles to favor a more distant caching node than

a closer one based on the entropy (i.e., uncertainty) of the predicted location.

The aforementioned reasons could trigger a higher access delay in RPACD com-

pared to PACD, as depicted in Figure 5.17. Note that this delay is reduced as `

increases, due to the higher prediction accuracy. In fact, Figure 5.17 shows that

PACD renders the lowest delay among CADPC, CADPC-GC, PCCMPV-GC, CCD,

CCDLC, and RPACD, with a reduction of up to 94%, 92%, 88%, 83%, 79%, and

57%, respectively.

As depicted in Figure 5.18, the packet delivery ratio increases as ` increases. Note

that PACD yields the highest packet delivery ratio, with a significant increase of up to

96%, 60%, 50%, 30%, 25%, and 14% compared to CADPC, CADPC-GC, PCCMPV-

GC, CCD, CCDLC, and RPACD, respectively. The leverage gained by PACD over
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Figure 5.17: Average delay over varying order of Markov chain (`).

Figure 5.18: Packet delivery ratio over varying order of Markov chain (`).
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Figure 5.19: Beacon overhead over varying order of Markov chain (`).

RPACD can be attributed to the higher prediction accuracy of the requester’s location

provided by the former. In addition, the low delay rendered by both PACD and

RPACD indicates that more predictions are applied while the requester has only

traversed along a few road segments beyond its location at the time of encounter,

thus increasing the chance of having an accurate predicted location of the requester.

We study the effect of varying ` on the amount of overhead. As depicted in

Figure 5.19, the amount of overhead remains the same in CADPC-GC, PCCMPV-

GC, CCD, and CCDLC as ` increases, since none of these schemes involves the use

of any prediction model. In contrast, the amount of overhead in PACD and RPACD

slightly increases as ` increases. This is due to the increase in the number of previously

traversed road segments that are exchanged between vehicles. Note that the size of

such information is so small compared to the exchanged cached content information.

Thus, increasing ` leads to a negligible increase in overhead, that can only reach up
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to 3%. As previously mentioned, PACD and RPACD generate the same amount of

overhead, since the use of bloom filters is incorporated in both of them.

5- Reactive versus Proactive

In Chapter 3, we introduced VOPC-PSO, which acts as an optimal predictive

proactive caching benchmark that can quantify the potential gains of predictive proac-

tive caching schemes, evaluate their performance, and certify if there is a possibility

for improvement. In the following discussion, we show the performance of our pro-

posed reactive caching schemes compared to VOPC-PSO over varying cache capacity.

This is since VOPC-PSO can also be used as a benchmark to evaluate the perfor-

mance of reactive caching schemes. Thus, we use it to determine the gap between

each of PCCMPV-CCD, PCCMPV-CCDLC, and PCCMPV-PACD on the one hand,

and the optimal solution on the other. This can show the performance gains of using

our proactive over reactive caching schemes, and can further assess the performance

of the latter.

Figure 5.20(a), Figure 5.20(b), and Figure 5.20(c) depict the performance of the

aforementioned schemes in terms of cache hit ratio, packet delivery ratio, and aver-

age delay, respectively. As shown in each of the three Figures, our proactive caching

solution outperforms the reactive caching solution. In particular, as shown in Fig-

ure 5.20(a), the gap between each one of the schemes PCCMPV-CCD, PCCMPV-

CCDLC, and PCCMPV-PACD on the one hand, and VOPC-PSO on the other, can

reach up to 31%, 20%, and 6%, respectively in terms of cache hit ratio. Figure 5.20(b)

shows that this gap can reach up to 28%, 22%, and 8%, respectively in terms of packet

delivery ratio, whereas it can reach up to 105%, 99%, and 84%, respectively in terms

of delay.
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(a) Cache hit ratio. (b) Packet delivery ratio.

(c) Average delay.

Figure 5.20: Performance results of PCCMPV-CCD, PCCMPV-CCDLC, PCCMPV-
PACD, and VOPC-PSO over varying cache capacity.
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Note that the superiority of the predictive proactive caching solution compared

to the three reactive caching solutions is attributed to two reasons. The first rea-

son is that the former can achieve better utilization of the available cache capacity

than the latter. This is since cache placement decisions are made by one central-

ized entity, and thus it has a global knowledge of the cached content information of

each node. The second reason is the fact that VOPC-PSO pre-caches the data at

the parked vehicles that the requesters pass by. This reduces the risk of failure to

find caching nodes, which increases cache hits. Also, VOPC-PSO strives to satisfy

each request before a certain time frame specified by the corresponding user. Thus,

it significantly reduces the delay. In contrast, the reactive caching solutions rely on

cache discovery in order to find the caching nodes. In addition, they may favor a more

distant caching node rather than a closer one if there is more reliability in its esti-

mated position, which increases the delay compared to VOPC-PSO. This explains

the significantly lower gap of PCCMPV-PACD compared to the gaps rendered by

PCCMPV-CCD, and PCCMPV-CCDLC, since the cache discovery policy of PACD

significantly outperforms that of CCD and CCDLC.

VOPC-PSO does not need to track the requester’s location, since data is acquired

as the requester passes by the caching node. This reduces the risk of dropping the

data packet due to failure to locate the requester, which increases the packet delivery

ratio. In contrast, each one of PCCMPV-CCD, PCCMPV-CCDLC, and PCCMPV-

PACD adopts a specific procedure to track the requester, where the one adopted in

PCCMPV-PACD relies on prediction. Thus, the gap between it and VOPC-PSO is

lower than the other two. Note that in Figure 5.20(a), Figure 5.20(b), and Figure
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5.20(c), the gap between the three reactive caching schemes and VOPC-PSO de-

creases as the cache capacity percentage increases. This is since the chance of finding

the caching nodes increases, due to the same reasons previously mentioned in the

discussion of the impact of cache capacity.

5.4 Summary

In this chapter, we proposed the Probabilistic Cooperative Caching at Moving and

Parked Vehicles (PCCMPV) scheme. In PCCMPV, we exploit the static and mobile

nature of parked and moving vehicles, respectively, to dynamically populate valuable

road segments with diverse cached data. To do so, we dynamically assign a probability

of caching to nodes along the data delivery path to assess their importance as caching

nodes. For parked vehicles, such a probability relies primarily on the traffic density

of the corresponding road segment, as well as its closeness centrality, and remoteness

from the nearest data holder. PCCMPV provides an implicit form of off-path caching

by assessing the trajectory of moving vehicles encountered along the data delivery

path to calculate their probability of caching. Performance evaluation of PCCMPV

demonstrates significant improvements in terms of delay, packet delivery ratio, and

cache hit ratio compared to other caching schemes in vehicular networks.

We also evaluated the performance of CCD and PACD that were proposed in

Chapter 4. To do that, we implemented them along with PCCMPV for cache place-

ment and compared them to other cache discovery schemes. Performance evalua-

tion shows that CCD significantly improves delay, packet delivery ratio, and cache

hit ratio, compared to the server-based cache discovery approach typically used in

VANETs, as well as to a neighborhood-restricted tracking-based cooperative cache

discovery scheme that is commonly used in dynamic networks. This is done without
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yielding any additional overhead than the latter. We also implemented CCD while

adopting the exchange of LCs among neighboring vehicles (i.e., CCDLC). CCDLC

has been shown to improve the performance even further. However, this is done at the

expense of significant additional overhead. Performance evaluation has demonstrated

the superiority of PACD compared to CCD and CCDLC in terms of delay, packet

delivery ratio, and cache hit ratio, while significantly reducing beacon overhead com-

pared to CCDLC, due to the use of bloom filters. The prediction technique used in

PACD has also been shown to outperform a clustering-based trajectory prediction

scheme in terms of prediction accuracy.
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Chapter 6

Conclusion and Future Directions

6.1 Summary

In this thesis, we explored the use of VANETs as an edge caching platform for social

networking. This was motivated by the need to mitigate the substantial traffic load

at backhaul links in 5G networks. This traffic load can be triggered by social media

traffic, which is the predominant source of Internet traffic that stems primarily from

mobile devices. We proposed caching solutions that aimed at maximizing cache hits

and improving the quality of Internet services in VANETs. Note that our work is

not restricted to social media applications only. Rather, it can accommodate any

application that involves non-real-time, highly popular, and noncritical contents.

Chapter 1 provided an overview of the research problem, as well as our objec-

tives and contributions. Chapter 2 presented an overview of VANETs, and its basic

characteristics. It also discussed existing proactive and reactive caching schemes

in VANETs. In addition, since cooperative caching has rarely been investigated in

VANETs, we reviewed existing cooperative caching schemes in MANETs and ICNs,

including cooperative cache discovery and cache placement schemes. Based on this
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review, we discussed which ones should be leveraged and which should be avoided

within the context of VANETs.

Chapter 3 presented our predictive proactive caching solution that is based on

the fact that some users tend to follow a daily routine. This leads to exhibiting a

rather consistent and predictable behavior in terms of the route they follow, the time

of taking that route, and their social media access behavior. Such a predictable be-

havior is utilized to pre-cache the data at parked vehicles to be proactively procured

by requesters as they pass by. For this purpose, we presented two modules; a predic-

tion module, and a proactive cache placement module. In the former, we proposed

a long-term travel time prediction scheme that takes varying weather conditions into

consideration. This scheme is based on an LSTM model that uses particle swarm

optimization (PSO) in the training procedure rather than the gradient descent (GD)

method. This is in order to expand the search space and avoid local minima entrap-

ment. In order to demonstrate the effect of taking the weather into consideration

in the prediction procedure, we implemented both GD-LSTM and GD-LSTM-NW,

where the weather is considered in the former but not the latter. We compared

the three models; LSTM-PSO, GD-LSTM, and GD-LSTM-NW. We conclude from

the results that LSTM-PSO is better than both GD-LSTM, and GD-LSTM-NW, and

GD-LSTM is better than GD-LSTM-NW, in terms of prediction accuracy.

In the proactive cache placement module, we introduced an optimal and a heuristic

solution. The Vehicular Optimal Proactive Caching (VOPC) benchmark was intro-

duced as the optimal solution in order to quantify the potential gains of predictive

proactive caching in improving the quality of Internet services in vehicular networks.

The caching problem in VOPC was formulated as an integer linear programming
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(ILP) optimization problem, and can thus act as an upper bound on reachable po-

tential. The objective is to maximize cache hits by assigning replicas to caching spots

that yield maximum certainty in their spatiotemporal availability for requesters. This

is while sustaining a cache capacity limit. We also proposed a greedy heuristic so-

lution, called the Proactive Caching at Parked Vehicles (PCPV) scheme to solve the

caching problem. We evaluated the performance of PCPV compared to the optimal

solution VOPC, and implemented VOPC and PCPV using both PSO-LSTM and GD-

LSTM. This is to demonstrate the effect of the prediction accuracy on the efficiency

of the cache placement procedure. We also compared the proposed predictive proac-

tive caching approach to the broadcast proactive caching (BPC) approach. We

conclude from the results that the predictive approach is better than BPC in terms

of delay, packet delivery ratio, cache hit ratio, and satisfaction ratio under different

scenarios. However, when the percentage of road segments that have parked vehicles

for caching significantly decreases, BPC slightly outperforms PCPV-GD in terms of

packet delivery ratio and cache hit ratio. In the same scenario, BPC also outperforms

PCPV-PSO in terms of packet delivery ratio, while they both sustain almost the same

cache hit ratio. PCPV approaches the optimal solution in most scenarios, but the gap

starts to increase, suggesting a room for improvement, under restricted cache capac-

ity, and when only small percentage of road segments have parked vehicles that can

be used for caching. We also conclude that the prediction accuracy of the travel time

can have a significant impact on the performance of the cache placement procedure.

This leads to VOPC-PSO and PCPV-PSO being better candidates for proactive cache

placement than VOPC-GD and PCPV-GD, respectively.

In Chapter 4, we presented two cooperative cache discovery schemes; CCD and
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PACD. CCD employs a tracking-based cache discovery scheme to dynamically navi-

gate requests towards caching nodes that are within close proximity to the requester.

It utilizes the last encounter information, as well as the static and mobile nature of

parked and moving vehicles, respectively, to diffuse cached content information, and

track caching nodes. CCD expands the search space beyond the neighborhood scope

by relying on such diffusion. It also relies on the static nature of parked vehicles for

tracking purposes. In particular, it enables parked vehicles to host the trails left by

moving vehicles as they pass by. Such trails act as breadcrumbs that indicate the

next road segment to which a moving vehicle is heading. Since the search space is

still restricted by such trails in CCD, we further expanded the search space beyond

such restrictions by proposing PACD.

PACD resorts to predicting vehicles’ trajectory in order to determine the location

of moving caching nodes wherever they are. PACD also exploits the static and mo-

bile nature of parked and moving vehicles, respectively, to promulgate cached content

information into the network. Such information are pertaining the cached contents of

the vehicles themselves, as well as those of parking clusters that have been encoun-

tered. The latter is referred to as LCs. In order to reduce the associated overhead,

PACD incorporates the use of bloom filters. It dynamically predicts the location of

mobile caching nodes in order to locate replicas that are closer to the requester. The

Any Relation Clustering Algorithm (ARCA) is employed to cluster trips based on

their route similarity using the XXDice similarity coefficient. Each cluster is then

trained using the MTD-Probit model to predict the remaining trajectory of vehicles

based on partial knowledge of their ongoing trip. Using these predictions, PACD

tracks all possible data providers and ranks them based on their proximity to the
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requester, as well as their prediction entropy.

In Chapter 5, we presented the proposed cooperative cache placement scheme

PCCMPV. PCCMPV expands the cooperation range beyond the neighborhood scope.

It does so by exploiting the static and mobile nature of parked and moving vehicles,

respectively, to acquire and distribute cached content information among nodes. This

is done in the same way as in PACD. Based on the exchanged information, PCCMPV

pours diverse data into valuable road segments. This is done by dynamically assigning

a probability of caching to vehicles along the data delivery path to evaluate their

importance as caching nodes. PCCMPV further exploits the trajectory of moving

vehicles to induce a form of off-path caching at road segments.

We evaluated the performance of PCCMPV compared to a combination of an im-

plicit vehicular cooperative caching scheme, called CADD, as well as a non-cooperative

caching scheme, called DPC. We referred to this combination of schemes as CADPC.

We implemented PCCMPV while using the neighborhood restricted tracking-based

cache discovery scheme embedded in GroupCaching (GC). We referred to it as PCCMPV-

GC. We also implemented CADPC while using the server-based cache discovery

scheme that is typically used in VANETs, and while using GC. We referred to the

latter as CADPC-GC. We conclude from the results that PCCMPV is better than

CADPC and CADPC-GC in terms of delay, packet delivery ratio, and cache hit ratio

under different scenarios.

Along with the performance of PCCMPV, we also evaluated the performance of

the cache discovery schemes presented in Chapter 4. To do so, we implemented both

CCD and PACD while using PCCMPV for cache placement. We also implemented

CCD while incorporating the exchange of LCs that are used in PACD. This is in order
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to evaluate the effect of such additional information. We referred to it as CCDLC. We

conclude from the results that CCD is better than GC in terms of delay, packet delivery

ratio, and cache hit ratio. It manages to achieve such better results while maintaining

the same beacon overhead yielded in GC. We further conclude that CCDLC is better

than GC, and CCD, in terms of the aforementioned metrics. However, this comes at

the expense of a much higher beacon overhead. Meanwhile, PACD performs better than

GC, CCD, and CCDLC in all metrics, while significantly reducing beacon overhead

compared to CCDLC. This is due to the use of bloom filters in PACD. PACD also

manages to reduce the overhead compared to CCD as the cache capacity increases,

while rendering higher overhead under low cache capacity. In addition, PACD yields

a lower overhead than CCD when the percentage of road segments that have parked

vehicles for caching is low.

We evaluated the proposed trajectory prediction scheme, and assessed the effect of

prediction accuracy on the performance of PACD. To do so, we implemented PACD

using the proposed prediction model, as well as using the baseline clustering-based

prediction scheme RMM. We referred to the latter as RPACD. We conclude from the

results that PACD is better than RPACD in terms of prediction accuracy, and that

this superiority leads to significant improvements in terms of delay, packet delivery

ratio, and cache hit ratio.

6.2 Recommendations

The recommendations that stem from this work can be summarized as follows.

1. In order to recruit parked vehicles for the purpose of contributing to the caching

process, free parking spaces can be provided as incentives.
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2. Reactive caching can serve users who have a predictable behavior, as well as

those who do not possess such a behavior. However, predictive proactive caching

performs significantly better than reactive caching in serving the former type

of users, whereas it is not suitable for the latter.

3. The use of bloom filters can cater for a significant reduction in the amount of

beacon overhead associated with tracking-based cache discovery schemes. The

number of hash functions, as well as the size of bloom filters should be selected

such that the probability of false positive (given by Eq. 4.28 in Chapter 4) is

low.

4. In predictive proactive caching, it is recommended to inform the users before-

hand of whether or not their specified deadlines (i.e., QoS) can be achieved.

This is particularly important when the available cache capacity is too low to

accommodate high QoS for all users.

5. The use of a large number of hidden units in LSTMs should be avoided unless

the level of improvement in prediction accuracy is worth the computation cost.

6.3 Future Directions

There are several future directions and open issues that can be explored to fully

capture the potential of predictive proactive caching, as well as cooperative caching

in VANETs. We highlight some of them below.

1. In our proactive caching schemes, we assumed that parked vehicles remain in

their parking spaces during the entire time. However, there is some dynamic

nature associated with parked vehicles as they enter and leave their parking
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spaces. This adds another layer to the cache placement problem and the spa-

tiotemporal availability of replicas, where the duration of availability of parked

vehicles needs to be taken into consideration. In addition, there is a need for a

migration technique to regulate the way the cached data can be sent from one

parked vehicle to another when the time comes for it to leave.

2. In association with the previous point, the movement of parked vehicles opens

another possibility for prediction as well. The duration of availability of parked

vehicles could be more predictable for some parked vehicles than others. For

example, parked vehicles of users at the theater, or at school or work, have a

certain degree of stability, and thus predictability. Parked vehicles at Electric

Vehicle Charging Stations (EVCSs) provide another important setting where

there is a consistent participation pattern. This stems from the fact that electric

vehicles in EVCSs also possess a sense of stability in the duration of their

availability due to the predictable amount of time it takes to charge electric

vehicles. This makes them extremely promising candidates for caching. This

applies to both our proactive and cooperative caching solutions.

3. In our proactive and reactive caching schemes, we focused on selecting the best

road segments for caching. The parked vehicle that has the largest available

cache space at the selected road segment was then used to cache the designated

content. Other selection criteria pertaining to the parked vehicles themselves

can be explored in the future. For example, the duration of availability, as well

as the migration cost can be considered in the selection process. Note that the

latter is the communication overhead associated with transmitting the cached

data from departing parked vehicles when migration occurs.
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4. Our travel time prediction model that was incorporated into the predictive

proactive caching framework was based on an LSTM neural network model.

However, the prediction capability of such models rely on historical data only,

without any regard to real-time information if it differs from the training data.

In order to overcome this problem, we plan on using a hybrid model that uses the

proposed PSO-LSTM model for offline estimations, and a filtering technique for

dynamic adjustments. In this model, kalman filtering can be used for dynamic

adjustments in cases when there is a huge difference between offline estimations

and real-time information.

5. In our cooperative cache placement scheme, the probability of caching at moving

vehicles needs to also involve the probability of encountering another moving

vehicle that already has the data in its cache. This is in order to further increase

data diversity.

6. A hybrid caching scheme that consists of both our predictive proactive caching,

as well as the proposed cooperative caching schemes can be explored, where if

the former fails to serve a request, the latter can be triggered.

7. In the future, the proposed caching framework can be extended to accommodate

large-sized contents that require multiple transmissions.

8. We relied on a rather primitive scheme for classifying drivers behavior in order to

provide a personalized travel time prediction. In the future, more sophisticated

classification schemes can be explored.
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Appendix A

Mobile Ad Hoc Networks (MANETs)

Mobile Ad hoc Networks (MANETs) are composed of mobile devices (frequently re-

ferred to as mobile hosts-MHs) that form a wireless network and can communicate

with each other without the help of any network infrastructure such as access points or

base stations [12]. Any MH can directly communicate with its one-hop neighbors that

are within the transmission range of its broadcast channel. MHs can also cooperate

with each other to transmit/receive data using multihop wireless links to communi-

cate with other nodes that are not within their transmission range. MANETs are

characterized by their dynamic topology. This dynamic topology results from the

mobility of nodes, or their failure, which is typically caused by energy drainage [51].

Compared to VANETs, the dynamic topology of MANETs tends to be less frequent.

MANETs are characterized by their limited resources in terms of storage, energy,

and computing capability [12, 51, 100]. This is in contrast to VANETs, which tend

to have a much larger pool of resources to leverage [12]. In addition, MANETs are

characterized by their constrained bandwidth. However, the problem of bandwidth

limitation is less significant in MANETs than in VANETs, since the nodes that are
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within each others communication range tend to be much fewer in MANETs. Fur-

thermore, the mobility patterns of mobile nodes in MANETs are less constrained

than those in VANETs, and are thus harder to predict [12]. The aforementioned

characteristics trigger several challenges pertaining to the efficiency of data access in

MANETs, particularly in terms of data availability and energy efficiency [12]. For

instance, when MHs request data from a far-away server, several multi-hop data

transmissions are required in order for the request to be satisfied. This involves large

delay, energy consumption, and bandwidth usage [51, 100].
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Appendix B

Information-Centric Networks (ICNs)

Originally, the Internet has been designed by adopting an end-to-end communication

paradigm for the exchange of information between two endpoints; a client and a

server. However, the ever-increasing Internet usage and the fact that this usage is

mainly governed by content distribution and retrieval rather than connection to a

particular server, have rendered such a paradigm inadequate [13]. The mismatch of

conventional protocols and current Internet usage patterns have led to some difficulties

pertaining to availability, mobility, multi-homing, scalability, and performance [13].

Information-Centric Networks (ICNs) have emerged as a promising alternative

to shift the current Internet architecture towards a content-based communication

paradigm [13]. To do so, ICNs focus on content dissemination and retrieval. They

define a common protocol-corresponding to the network layerthat can be adopted

by various applications while utilizing the processing power and storage resources

within the infrastructure for content replication [13]. For this purpose, ICN routers

are supplied with cache memory and provided with a caching capability.

ICN architectures are based on the use of the publish/subscribe model. In such

a model, content providers announce their contents by publishing them to a Content
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Notification Service (CNS) and consumers request various contents by subscribing to

a CNS [13, 23, 44]. A CNS may be comprised of a name resolution service and/or

a name-based routing service [13]. In order to achieve the collective set of future

Internet requirements, ICNs employ the following core components [13, 23, 44]:

1) Content Naming: ICNs adopt the concept of content naming. To do that, ICNs

use Named Data Objects (NDO) [13]. Each stored and accessed object, such as

documents, movies, images, web pages, must be assigned a global unique name. The

NDO is completely independent of the content location, storage, and communication

method.

2) Routing: In ICNs, routing is handled using one of two approaches; name resolution

and namedbased routing. In the former, content routing consists of two steps. First,

requests or subscription messages are sent from the consumers to the name resolution

system (NRS), indicating the name of the requested content. The NRS resolves

the requested content by determining an individual or a set of addresses of content

providers or caching nodes that have the requested data. Second, the consumers send

request messages to the senders and the requested content is issued back to them. In

named-based routing, in just one step, consumers send request packets directly to the

original content provider or any caching node, which can resolve the request based

on the content name.

3) In-Network Caching: In ICNs, any network node can perform content caching.

Upon receiving a content request, a network node can directly respond if the content

is available in its local cache. Otherwise, it can direct the request to its peers or to the

original content provider. As the data propagates back to the requester, the content

can be selectively cached. ICN caching is referred to as universal caching since it has



251

three characteristics; First, uniform caching is provided for all contents carried by

any protocol. Second, any content can be cached regardless of its provider. Third,

ICN caching facilitates pervasive caching, since it is enabled by all ICN nodes rather

than being restricted to a few specialized caching nodes [13, 23, 44].
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