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Abstract 

Streaming video services have been growing rapidly in the past decade due to the wide adoption of more 

capable mobile devices such as smartphones and tablets, together with the deployment of higher capacity 

mobile networks and more efficient video compression and streaming techniques. Dynamic adaptive 

streaming over hypertext transfer protocol (DASH) can adapt bitrates to fluctuating network bandwidth. 

This makes measurement of perceived video quality a significant task. Therefore, there has been a strong 

demand for Quality of Experience (QoE) measurements and prediction models. The work in this thesis 

focuses on improving the performance of existing QoE prediction models that still have a few limitations. 

We propose a feature enhancement approach for QoE prediction using machine learning (ML) methods.  

Given the need for an accurate and reliable data set to do our analysis, train and evaluate our machine 

learning models, we utilize the Waterloo Streaming QoE Database III (SQoE-III) that combines the effects 

of video compression, initial buffering, and stalling events along with the subjective user responses to them. 

Additionally, the database contains the results of implementing various objective video quality assessment 

(VQA) models.  

First, we perform an extensive data and correlation analysis to study the effects of the different QoE key 

influence factors (KIF) which account for the video quality degradation. We further study the effect of 

quality switching that includes switching up and down, switch magnitude, ratio/time spent on the highest 

quality level/layer, in addition to the effect of stalling expressed as the number of stalls and their duration 

and initial buffering time. We analyze the effect of various objective video quality assessment (VQA) 

models on the QoE. The results of the analysis reveal the dependency between objective VQA models 

features, playback stalling, and quality switching features that affect the QoE. Towards effectively 

predicting user QoE and based on the results of our analysis, we identify/introduce a new set of enhanced 

features that combine objective VQA features, playback stalling features, and quality switching features, 

as input to various machine learning models to predict the values of QoE. Experimental results show that 

the proposed models are in close agreement with subjective opinions and significantly outperforms existing 
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QoE prediction models and can also provide a highly effective and efficient future for QoE prediction in 

video streaming services. 
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Chapter 1 

Introduction 

Given the expanding use of mobile video devices and the huge network bandwidth demands of streaming 

users, the biggest challenge in video content delivery is to enhance end user’s quality of experience (QoE) 

by creating better network-aware strategies. To this end, DHAS is being used by content providers as a way 

of dealing with network fluctuations. Dynamic adaptive streaming over hypertext (DASH) transfer 

protocol, is an international standard for adaptive video streaming, that provides video streams in a variety 

of bitrates (rate-adaptive). However, DASH has introduced an additional level of difficulty for measuring 

video quality since it varies the video quality during streaming to match available network bandwidth, and 

this causes fluctuation and results in QoE degradation. Predicating user’s quality of experience (QoE) for 

adaptive video streaming is needed to help service providers in delivering smooth, high-quality content to 

their customers in a cost-effective manner and better network resource allocation strategies. Predicting user 

QoE is a non-trivial task. Various QoE prediction models were proposed in the literature, but these models 

have limitations. In this chapter, we will shed light on some of these limitations and present our proposed 

solutions that will solve these problems and overcome a few of the limitations of these methods. 

1.1 Problem Statement 

There have been tremendous developments in the number of available mobile devices due to the large 

available network capacity and the evolving streaming technologies to transmit media service to devices, 

in addition to the popular protocol standards that are rate adaptive. However, these streaming strategies 

usually add more complexity to measure the perceptual video quality. While streaming content providers 

such as YouTube and Netflix are both increasingly deploying Dynamic HTTP adaptive streaming (HAS) 

strategies, they are still looking for efficient ways to fulfil user experience expectations to have smooth and 

high-quality video content.  
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Predicting user’s quality of experience (QoE) for adaptive video streaming is essential for the service 

providers in delivering this smooth and high-quality content to clients in a cost-effective manner and better 

network resource allocation methods. However, predicting user QoE is a non-trivial task as there are 

technical and perceptual factors that influence the quality of user experience, while adaptively streaming a 

video, and must be taken into consideration. Based on the results of previous studies [1] [2] [3], that initial 

delay, stalling and quality adaptation are the important influence factors, and each of these factors can 

include multiple dimensions. Various QoE prediction models were proposed in the literature, that studied 

the effects of these KIF on QoE. These studies have employed different approaches to tackle this issue, but 

they still face some limitations and shortcomings. Some of these include most of existing subjective video 

QoE datasets are limited in size, or their design is not suitable for streaming applications. In addition, they 

can’t be used to develop general QoE models as   they include only either quality change data or rebuffering 

data not both. In addition, these datasets are hand-crafted so it does not reflect the real-time impairments 

that user may perceive. Consequently, the usage of QoE quality prediction techniques was limited, as most 

mechanisms require large amounts of data. In addition, most of the proposed prediction models studied the 

interaction between one or two influence factors that may ignore the effect of others. Moreover, the effect 

of an objective VQA model on a subjective user QoE and its interaction with these KIF was not widely 

studied or investigated; although various methods on VQA were designed for specific applications such as 

quality assessment for static video or progressive video streaming. Furthermore, little work has been done 

to predict QoE based on objective VQA models that measure the perceptual effect of several distortions, 

such as compression, blurring, noise, or combine them with video impairments like initial buffering, 

rebuffering, the quality switch that happens during video streaming session and then compare them with 

subjective data comprising a wide variety of video sequences. 

In this work, we investigate the effect of multiple (multidimensional) KIF on user QoE using the SQoE-III 

database, which combines different factors combined with the results of implementations of various 

objective video quality assessment models (VQA) models measurements. This data simulates realistic 



3 

network conditions in a typical video streaming scenario. It is publicly available and considered as the 

second largest database with 450 streaming video sessions evaluated by 34 subjects. 

The streaming videos are impaired with initial buffering, playback buffering event and quality switching, 

and the various video quality assessment model measurements can be easily calculated from source videos. 

We performed a comprehensive correlation analysis to study the effect of quality variation, stalling (frame 

freezing), initial buffering (delay). We explore different issues that can have different effects on perceived 

quality. The impact of quality level variation can be represented by the number of switches, switch 

magnitude, time spent on the highest quality layer. Stalling can be represented by the time of stalling and 

its frequency/number. VQA measures need to be included in the QoE assessment. These factors are 

investigated in this work. Based on the results of this analysis, we found correlations between VQA 

measurement features, stalling features and quality variation features. These features are combined as input 

to various machine learning models to provide better prediction capabilities of the QoE measure for the 

tested dataset.  

1.2 Motivation and Objectives 

The motivation for this research is to improve the QoE prediction for HAS service by proposing a feature 

enhancement QoE prediction model using machine learning methods. 

To do this, we carried out data analysis on the SQoE-III database. The dataset is publicly available and is 

used here to extract features that reflect different KIFs. In addition, the availability of source videos made 

it possible to measure the VQA model metric scores on different video frames. The dataset has a large 

number of real streaming sessions that include the outcomes of an extensive subjective study that reflects 

the effect of rebuffering and other quality changes. This has helped in doing a detailed analysis of the 

extracted features and, combined with the VQA measures, to further select the best set of enhanced features 

to perform QoE prediction to improve the predictive power.  

The work presented in this thesis will follow the methodology below.   
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1. Use a publicly available dataset that offers real-time streaming video sequence, integrates many 

KIF that reflects many real impairments in the video session and being evaluated by a large user 

base. 

2. Perform an extensive correlation analysis to investigate the effect of different factors on user QoE 

3. Integrate VQA models in the correlation analysis, investigate its interaction with KIF and study 

their combined effect on QoE, something that is not widely studied in the past. 

4. Propose a new set of features that improve the prediction power for the QoE prediction model using 

machine learning. 

5. Perform detailed correlation and data analysis on the existing and the new proposed features. 

6. Integrate the Video Quality assessment models in the prediction of QoE models. 

1.3 Thesis Contributions 

The major contributions of this research are outlined below. 

1. We identify the most important features affecting the subjectively perceived quality of users while 

streaming a video by performing detailed correlation and data analysis 

2. We introduce a model with improved predictive power, where we propose a new feature set that 

takes into consideration objective video quality measures and adaptation-related parameters. 

Specifically, the amplitude and frequency of switch fluctuation, the ratio of time spent on the 

highest quality layer, and the time and frequency of stalls are considered. 

3.  We evaluate the model performance on test data using multiple evaluation metrics.  

4. Additionally, we perform a comparative analysis of the various machine learning models and 

recommended the best ones for predicting the QoE for the used dataset. 

1.4 Thesis Outline 

The thesis is organized into six chapters. Chapter 1 provides an introduction. Chapter 2 presents the 

literature review for existing QoE prediction models. In Chapter 3, we present the proposed approach 

(methodology) for QoE prediction; an analysis of the data is carried out on the used database. This 
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correlation and data analysis is applied to extract important key influence factors. In Chapter 4, we explain 

the preprocessing steps applied to the data and introduce the machine learning models that are used for QoE 

prediction. Chapter 5 discusses and compares the experimental results of the different models used for QoE 

prediction. Finally, Chapter 6 summarizes our findings and presents insight regarding potential future 

research directions. 
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Chapter 2 

Background and Related Work 

In this chapter, we present background information about the topics that will be discussed throughout this 

thesis. We will start with an introduction in Section 2.1. In Section 2.2, a brief definition of QoE is 

presented. Section 2.3 presents Video Quality of Experience Assessment (VQA) measurement and 

methodologies. In Section 2.4, we discuss the various influence factors which need to be taken into 

consideration for QoE model design. In section 2.5, performance evaluation metrics for QoE models are 

discussed. In Section 2.6, the HAS technology is presented. Section 2.7 reviews existing work in the field 

of HAS QoE models. In Section 2.8, an overview of the different types of machine learning algorithms is 

presented. 

2.1 Introduction 

According to Cisco Visual Networking Index and global mobile data traffic forecast that by 2021, the 

internet traffic will increase by 717 Terabyte, with video alone consuming 82% of the net consumption [4]. 

This is due to the significant advancement of network and user handheld technologies, especially the 

unrivaled progress of multimedia streaming services like Vimeo, Netflix, and YouTube. This has led to a 

switch in video delivery service from conventional Quality of Service (QoS) based assessments [5] to 

Quality of Experience (QoE) based assessment [6] , [7]. 

Various Video Quality assessment (VQA) models that measure the perceptual effects of several distortions 

such as compression, blurring, noise, jerkiness has been proposed aiming to predict the video quality as the 

end user perceives. In addition to the work done by multimedia service providers to improve video delivery 

service by increasingly adopting the use of HTTP Adaptive Streaming (HAS) technology. 

However, there is a need to develop a reliable and accurate QoE prediction models that consider various 

network and application level factors (including several QoS factors) and aim at predicting the QoE as 

experienced by the end user.  
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2.2 QoE Definition  

Quality of Experience (QoE) is a concept that describes the subjectively perceived quality of end users with 

a service [6], and it complements the QoS measure. QoE is defined as “the degree of delight or annoyance 

of the user of an application or service. It results from the fulfillment of their expectations with respect to 

the utility and /or enjoyment of the application or service in the light of the user’s personality and current 

state” [8] [9]. Additionally, “In the context of communication services, QoE is influenced by service, 

content, network, device, application, and context of use” [7]. This definition includes the end user’s 

experience and their level of satisfaction with the service offered. By understanding the end user’s 

experience and expectations, this will help in improving existing technologies and developing better future 

services. However, QoS does not perfectly reflect user perception for many services; it also fails to take 

user related factors into account. For example, in a video streaming scenario, the user does not explicitly 

notice delays in arriving packets because they are absorbed by the application buffer of the video player. 

The only effect the user may perceive is the playback interruption when the buffer is empty, which is 

considered a propagated network issue in the application layer. In short, QoS only describes the service 

delivery by objective network parameters such as jitter, delay, packet loss or throughput, which are 

considered technical measurements.  

On the other hand, QoE is application-dependent and requires an understanding of all influence factors. To 

do this, extensive subjective studies need to be conducted. The results of these studies measure the QoE in 

terms of the Mean Opinion Score (MOS) on an ordinal scale ranging from 1 (bad) to 5 (excellent) , known 

as Absolute Category Rating (ACR) scale [10]), or in terms of acceptability scores. 

In this work, we focus on predicting the overall QoE of a video session expressed in terms of MOS scores. 

2.3 QoE Assessment methods 

QoE assessment is the method of measuring or evaluating the QoE for a set of clients using an application 

or service with a dedicated procedure whereas taking under consideration the impacting factors that are 

simply collected, measured, controlled and reported using the procedures in [9]. The main objective of QoE 
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assessment is the design of a system that can identify the various factors and their influence on the end user 

QoE.  

Multimedia data uses lossy compression for transportation over the internet to decrease the transport cost 

and the required bandwidth. As a result, some information will be lost, and higher compression ratios will 

result in a higher amount of information loss, and this will lead to artifacts which is unpleasant to the user. 

In most real-world application, it is hard to provide a service without any artifact. Hence a proper QoE 

model/metric is required to help quantify the amount and type of distortions that might occur and measure 

the magnitude of their effects on the end user QoE [11].  

There are two main categories for the VQA models subjective and objective. On the one hand, subjective 

VQA depends on user feedback. Users can give feedback in the form of rates or scores based on their 

perception of the video quality. Such subjective assessment scores are typically expressed as Mean Opinion 

Score (MOS), which is the average of the scores collected from subjects/users doing the assessment. The 

common guidelines for performing these subjective tests are issued in ITU-R Rec BT.500 and ITU-T Rec 

P.910 [10], [11]. In these guidelines, the methods, procedures, and test settings that need to be done are 

described. 

On the other hand, objective VQA methods are mathematical methods that aim at providing a quality score 

that closely reflects the perceived image/video quality. Objective VQA methods employ different metrics 

such as Peak Signal to Noise Ratio (PSNR) [12], Structural Similarity (SSIM) index [13], and VQM [14]. 

Theses metrics are calculated on a frame-by-frame basis and a final score is found as the average/mean of 

each individual score on the full duration of the video sequence. There are different pooling 

techniques/methods that combine different objective scores, viz. the exponential weighting method, the 

averaging method and the Minkowski method [15]. 

The popular approach to assess an objective quality metric's performance is to calculate the mean square 

error (MSE) and coefficient of correlation values between the estimated MOS scores from the objective 

VQA measurements and the real MOS scores from the subjective assessment. This must be done on the 

same set of test sequences [16]. 
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In addition, most of the traditional objective VQA metrics were designed for quality estimation of 

compressed videos that are degraded due to packet losses that happen during the transmission process. They 

do not consider impairments such as quality switches, rebuffering, among others, which are present in HAS 

applications. This requires a new QoE estimation/prediction model that is designed for HAS applications 

and can take into consideration the Influence Factors (IFs) such as quality switching and rebuffering, for 

example, in combination with other impairments due to the lossy encoding operation. 

2.4 QoE Influence Factors  

A QoE IF is "any characteristic of a user, system, service, application, or context whose actual state or 

setting may have an influence on the Quality of Experience for the user'' [16]. Influence factors on QoE can 

be organized into four categories as depicted in [16]: 

1- System IFs: enclose a wide range of aspects that are related to media such as (quality fluctuation 

events) or network related such as (wired/wireless/mobile, bandwidth, delay, jitter, packet loss, 

etc.). 

2- Human IFs: incorporate individual characteristics of a user such as memory and recency effect, 

his usage history of the application (e.g., browsing history), his expectations from the service and 

demographic and socio-economic background. 

3- Context IFs: include location, viewing environment, time of the day, type of usage, and time of 

service consumption (peak time, etc.) 

4- Content IFs: explains the characteristics of the contents such as type of video, its duration and 

content aspects related to complexity including (temporal and spatial complexity). 

Managing QoE is a complex task and requires as a key step the design of an efficient QoE model, which is 

defined as “An algorithm with the purpose of estimating the subjective (perceived) quality of a media 

sequence,” in ITU-T Recommendations P.1201 [6]. This definition considers various influence factors and 

tries to estimate the end user's QoE. 
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2.5 Performance Evaluation of Objective QoE Models 

There are criteria that are aforementioned in Video Quality Experts Group (VQEG) FRTV Phase I and next 

in VQEG FRTV Phase II [17], [18], that are used to evaluate the performance of an objective video QoE 

model which are: 

- Prediction Accuracy: refers to the ability of the model to predict the subjective rating scores with 

a small error [11] [18].  

- Prediction Monotonicity: refers to the degree of the model’s prediction agreement with the 

relative magnitude of subjective rating scores [11] [19].  

- Predication Consistency: refers to the ability of a model to maintain prediction accuracy over a 

wide range of test sequences with a variety of video impairments [11] [19]. 

There are many metrics to evaluate the performance of a model, such as the Pearson Linear Correlation 

Coefficient (PLCC) [20], which is used to evaluate the model prediction accuracy by calculating the 

correlation between the predicted and actual subjective rating scores. In the same way, the Spearman’s 

Rank Correlation Coefficient (SRCC) [20] is used to evaluate the prediction monotonicity of a model 

between predicted and actual subjective scores. One can also evaluate the prediction consistency of the 

model using other measurements, such as the outlier Ratio (OR) [19]. QoE models that provide insight into 

how the IFs affect the QoE of the end user are of greater value against those models that fail to provide 

such insight. 

In this work, we use machine learning methods to build QoE prediction models for the HTTP Adaptive 

Video Streaming (HAS) application. In the following sections, we discuss the basic concepts of HAS and 

the existing HAS QoE models, followed by a brief introduction to the machine learning approaches.  

2.6 HTTP Adaptive Video Streaming 

The basic idea of HAS is that the video file is encoded at different representation levels and then divided 

into chunks (also referred to as segments) of equal durations (often 2, 4, or 10 seconds, depending on the 
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standard/implementation) which are then stored on a server. When a first request for the video file is made 

by the client, the server sends the corresponding manifest file (e.g., mpd for DASH, .m3u8 for HLS). These 

examples corresponds to the manifest files in a different implementation of HAS named Dynamic adaptive 

streaming over HTTP (DASH) [20]. DASH is an open source international standard developed by MPEG 

[21], while HLS stands for Apple HTTP Live Streaming which is a proprietary and vendor specific HAS 

implementation [22]. Each manifest file has the details about the video file such as video duration, available 

representation levels, codec, segment size, etc. The client then requests for video chunks based on its rate 

adaptation logic. The rate adaptation strategy/approach used at the client can be widely classified into 

buffer-based, throughput-based and hybrid approach. For a extensive survey of the rate adaptation methods 

for HAS, the reader can refer to the survey paper of Kua et al. [23]. Figure 2-1 illustrates the concept of 

streaming assuming a throughput-based rate adaptation method. It can be observed that the client, based on 

its network condition, adapts the quality of the video to provide a smooth streaming experience to the end 

user. 

 

 

 

 

 

 

 

 

The client starts to play out the video when the buffer contains enough data. This waiting time between the 

video request and the start of playback is referred to as initial delay and influences the QoE of HAS. When 

the buffer is depleted, the video playback stalls and can only be resumed after sufficient data is received. 

Streaming systems try to avoid stalling by adaptation of video bitrate to the current network conditions. To 

 
Figure 2-1:HAS Schematic(Q3,Q2,Q1 denote high, medium and low quality levels respectively [50] 



12 

change the video bitrate, some aspects of the transmitted video must be changed, e.g., frame rate, resolution 

or compression. 

HAS is one of the most popular streaming technologies for video delivery over the Internet, currently used 

by the primary Over the Top (OTT) providers such as YouTube and Netflix. Both, contribute more than 

50% of the total peak internet traffic for fixed access networks in North and Latin America [24]. The 

increasingly adoption of HAS can be credited to its scalability, since no special streaming server 

infrastructure is needed for the reuse of existing infrastructure. In addition to the existence of HTTP based 

progressive download solutions. It uses reliable transport protocols TCP with guaranteed packet delivery 

and congestion control mechanism. Therefore, network impairments such as packet loss do not cause any 

artifact as blurring, motion jerkiness, etc. In addition, it runs on HTTP, which is a firewall friendly, and 

considered a stateless protocol where server does not store any information related to the client and the 

requests. This is useful from the network point of view (e.g., load balancing) as each request is treated 

individually and can be handled by any of the servers without keeping track of which server is serving 

which request.  

There are some challenges in using HAS, including quality switching as it adapts the bitrate to fluctuating 

bandwidth and it depends on the network conditions and buffer status. Since quality switching is an 

important feature of HAS, which helps in minimizing the number of stalling events, frequent quality 

switching will result in an increased user annoyance. In addition, for most of the HAS applications, full 

segment download is required before playback can start. Such requirements can lead to increased stalling 

events during playback. It needs higher storage due to the creation of multiple quality representations for 

the same video/audio content.  

2.7 Related works on HAS QoE models 

In this section, we will show the QoE models particular to HTTP Adaptive video streaming. Mok et al. [25] 

presented one of the most punctual works towards building a QoE model for HAS applications. Their model 

quantifies the QoE for HAS applications as a simple linear equation using application and network layer 
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QoS parameters, considering (low, medium and high levels) of initial startup delay, rebuffering frequency 

and rebuffering duration, respectively. They found that rebuffering frequency is the main IF. Inspite their 

work proposes a simple linear equation that maps application QoS metrics to QoE, the subjective 

assessment used to perform the regression analysis to obtain the proposed model was limited to only a 

single video with a single resolution and rated by 10 users, which is not realistic for most HAS applications. 

Also, they assume constant network bandwidth, packet loss and round trip time which is not always true 

for the real networks. The important issue they have left out is considered one of the major IFs of HAS, 

quality switching [11]. 

Rodriguez et al. [26] introduce a model that takes temporal interruptions initial startup delay, (location, 

number and length of the rebuffering events) into account during a video session, and quality switching 

(location and number) to propose a new metric VsQMDASH The model is shown to be of low complexity and 

suitable for devices such as tablets and mobile phones which have limited power and processing 

capabilities. The model design is done using similar types of playout patterns and it also considers a fixed 

number (four) of segments. This raises an open question considering the performance of the model on 

unknown datasets employing different playout patterns and of different video length.  

Hoÿfeld et al. [27] investigate the effect of these five IFs: last quality level, quality switching amplitude, 

recency time for the different number of switches, time on the highest quality and the frequency of quality 

switching. The finding of the paper is that quality switching dimness the effect of recency and recency time 

(total duration of high-quality playback after last quality switch) and does not affect the QoE, it was 

observed that the time on highest quality level has more significant impact than that of the frequency of 

rebuffering. The authors do not consider other IFs (that are based on statistical analysis) and proposed a 

simple QoE model, that only consider two IFs and it takes into account the effect of amplitude (which is 

the difference between the two quality levels) only and the time on the highest level using an exponential 

relationship. In their subjective assessment, they used three full High definition (HD) video sequences and 

various rebuffering conditions and encoding (not described in the paper). An increase of MOS with an 

increase in the resolution or bitrate was observed [11]. 
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Yamagashi and Hayashi [28] display a quality model consisting of  a video quality estimation module and 

an audio quality estimation module, and they integrate the short term (per-second) audio-visual coding 

quality with other IFs factors such as the total length of rebuffering events and the number of rebuffering 

events. The authors conclusion is that the model performs quite well for video sequences without 

rebuffering and also with some specific sequences with rebuffering (where rebuffering occurs at the point 

where the compression quality is worse) [11]. This leads to the observation that the amount of QoE 

degradation due to rebuffering is dependent on the quality of the video frame where rebuffering occurs. 

The main limitation of this work is they did not include other IFs such as the initial loading delay, the 

performance evaluation of individual quality estimation modules, and so on/to name a few [11]. 

The work in Wang et al. [29] presents two QoE models based on regression and classification, using video 

quality metric Peak signal to Noise Ratio (PSNR). They propose an evolved PSNR (ePSNR) model based 

on standard deviation, average, minimum and maximum of differential PSNR (dPSNR). In their 

classification model, they use weighted K-nearest neighbor (WkNN) based on segment bitrate and video 

segment position to predict QoE. The subjective tests for both models use only two videos using real-world 

LTE network testbed[ [11].  

Duanmu et al. [30] present Streaming Quality Index (SQI) as a QoE model that considers the integrated 

effect of rebuffering, encoding quality and  initial loading delay. The overall quality is computed from the 

instantaneous quality in a moving average fashion. At each time slot, this instantaneous quality is a linear 

combination of instantaneous video presentation quality that is estimated at the server side using a frame-

level VQA model and the impact of rebuffering at individual frames. The authors assume that each 

rebuffering event is additive and independent, then they model the decline in memory  of memory retention 

due to the rebuffering happening based on Ebbinghaus forgetting curve [31]. After that they use this in a 

piecewise model to get the combined effect of rebuffering on QoE degradation. An evaluation of existing 

models (SSIM, MS-SSIM ,PSNR, SSIMplus) [32], FTW [33] and Mok et al. [25] and their proposed 

Streaming Quality Index (SQI) using PSNR, SSIM, SSIM, SSIMplus , MS-SSIM on designed database 

shows that the proposed SQI model, when used with SSIMplus as VQA model, has highest performance, 
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while other SQI models (SQI with PSNR, SSIM and MS-SSIM as VQA) perform better than other 

compared models. Their work is considered as a big step forwards towards QoE modeling by considering 

both rebuffering related information and encoded video quality, with reasonable performance on given 

dataset. The limitations of their work is that the database and IFs considered are limited due to the short 

duration of sequences (only 10 seconds videos, with fixed duration rebuffering and using only two 

rebuffering events at start and middle) which is not realistic.  

Bampis and Bovik [34] propose Video ATLAS which is machine learning-based framework, which 

integrates objective VQA metrics and QoE related features such as rebuffering-related and memory-related 

functions, to predict user QoE. The video quality is evaluated using well-known image and video quality 

metrics and other IFs. Then they combine the calculated features to be used with various learning-based 

algorithms. The authors conclusion was that IFs such as bitrate changes and rebuffering should be 

considered together and not independently, in spite of this negates  with the approach of many other models 

discussed (e.g., [28], [35]). Based on the results, it is observed that the video quality model used for the 

prediction of compressed video quality plays a very important role in the QoE prediction quality [11]. 

Ghadiyaram et al. [36] perform a subjective study to understand the impact of dynamic network 

impairments such as the stalling events on QoE of users watching videos on mobile devices. They construct 

a database named LIVEMSV that contains 176 distorted videos generated from 24 reference videos with 

26 hand-crafted stalling events. The authors used the single stimulus continuous quality evaluation 

procedure. In this procedure the reference videos are also evaluated to obtain a difference mean opinion 

score (DMOS) for each distorted video sequence. This study lacks the presence of video compression and 

quality switching that reduces the relevance of the database to real-world HAS scenarios. 

In Waterloo Streaming QoE Database I (SQoE-I) [30]  the interaction between video presentation quality 

and playback stalling experiences was investigated. This database consists of 20 reference videos of size 

1920×1080 pixels of diverse content. They encoded each reference video into 3 bitrates with x264 encoder, 

next a 5-second stalling event is simulated and added at either the beginning or the middle point of the 

encoded sequences. In total there are 200 video sequences, this include 20 source videos, 60 compressed 
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videos, 60 initial buffering videos, and 60 mid-stalling videos. The most important finding of this study is 

that the video presentation quality of the stalled frame constitutes strong correlation with the dissatisfaction 

level of the stalling event with statistical analysis [11]. 

In Waterloo Streaming QoE Database II (SQoE-II) [37]  short and long video clips of size 168 and 588 

respectively was used. These are varied in spatial resolution, compression level and frame-rate. A path-

analytical experiments to address the confounding factors and better explore the space of quality adaptations 

was carried out by the authors. In spite the interesting analysis, the database may not serve as a benchmark 

database due to the lack of stalling events [11]. 

2.8 Machine Learning  

Machine learning is a tool for turning information into knowledge, using techniques and algorithms to build 

a mathematical model to automatically make predication or decisions without being explicitly programmed 

to perform the task [38]. Machine learning has been shown to be successful in various fields, such as 

computer vision, speech recognition and natural language processing. The general categories of machine 

learning algorithms are supervised learning, unsupervised learning, and reinforcement learning 

2.8.1 Supervised Learning  

Supervised learning is the task of learning a function that maps the input features to desired output values 

[39]. Supervised learning algorithms receive a labeled dataset, where each sample in the dataset has a 

corresponding label or ground truth. Supervised learning can be further divided into classification and 

regression applications 

 Classification: Classification models approximate a mapping from the input variables to a discrete 

output variable [40]. A classification model classifies the inputs into one of two or more classes. 

The performance of the model is often measured by the classification accuracy. 

 Regression: Regression models approximate a mapping from the input variables to a continuous 

output variable [41]. The performance of a regression model is measured in terms of errors made 

in the model’s predictions. 
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2.8.2 Unsupervised Learning  

Unsupervised learning algorithms receive a set of input variables with no output variable or label [42]. The 

objective of unsupervised learning is to learn the underlying structure of the data and find an efficient 

representation for it. Two common unsupervised learning tasks are clustering and dimensionality reduction: 

 Clustering: Clustering groups samples into clusters based on their similarities [43]. Samples which are 

similar to each other are grouped into the same cluster. 

 Dimensionality Reduction: The idea of dimensionality reduction is to project samples from a high-

dimensional space onto a lower dimensional space without losing much information [44]. This reduces 

the complexity of the data while retaining its structure. 

2.8.3 Reinforcement Learning  

Reinforcement learning is a class of machine learning where an agent interacts with the environment [45]. 

The goal of reinforcement learning is to train the agent in such a way that for a given environmental state, 

it chooses the optimum action that yields the highest reward. 

2.9 Summary 

In this chapter, we presented background information regarding the work discussed in this thesis. We 

provided an overview about the work done in the literature for QoE modeling for HAS service. In the 

next chapter, we give detailed description on the dataset we used, and we will present our proposed 

methodology and analysis done on dataset. 
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Chapter 3 

Proposed Methodology 

In this chapter, a description of Waterloo SQoE-III database and the detailed correlation and data analysis 

that was carried out is presented. Section 3.1 shows the description of the dataset and its characterization. 

Section 3.2 explores the various features/factors of the data and explains how they are computed. In Section 

3.3, we will show the results of the carried-out analysis to understand the correlation between the different 

features and the user perceived quality (MOS). In addition, the results of feature visualization and 

exploration is presented. Section 3.4 explains the objective video quality assessment models used and 

explores results of correlation analysis to compare them with the subjective perceived quality. Section 3.5 

presents and explains our feature enhancement approach. 

3.1 Dataset Description and characterization 

In this work, the publicly available database the Waterloo Streaming Quality of Experience III (SQoE-III) 

[46] is used. The SQoE-III database, which is the most realistic, and to date is the second largest database, 

consisting of 450 streaming videos created from diverse source contents and distortion patterns, with six 

adaptation algorithms of diverse characteristics under 13 representative network conditions. These 

Adaptation Algorithms include the following. Rate-based [47]: the rate-based ABR algorithm, which is the 

default ABR strategy in the DHAS standard. It works by selecting the maximum available bitrate less than 

predicted throughput using arithmetic mean of previous 5 chunks. The BBA [48]: is a buffer-based 

adaptation work by selecting the bitrate as a piecewise linear function of buffer occupancy. AIMD [49]: 

This algorithm selects the bitrate based on the bandwidth estimation using the previous downloaded 

segment in an additive increase and multiplicative decrease manner. ELASTIC [50]: This algorithm uses 

PI controller to maintain a constant duration of video in the buffer using 5 seconds. QDASH [51]: picks an 
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intermediate bitrate when there is a bandwidth drop to avoid the negative impact of abrupt quality 

degradation. FESTIVE [52]: This algorithm balances both efficiency and stability, and incorporates 

fairness.  

The database contains in total 1560 video sessions produced from 20 source videos and 6 Adaptive bitrate 

algorithms and 13 bandwidth profiles. Almost around 25% of them were found to be duplications of each 

other and were removed from subjective experiments. The result was 1164 unique streaming videos. They 

selected 10 randomly streaming sessions from resulting streaming video pool for 15 content due to the 

limited duration of subjective experiment then reconstructed all streaming session for the other 5 contents. 

In summary waterloo database contains 20 source videos and 450 simulated streaming videos [39, 48].  

All streaming videos are assessed by a total of 34 subjects, of which 19 were males and 15 were females. 

The test videos included in the SQoE III database was generated from conducting a set of Dynamic 

Adaptive Video Streaming (DASH) video streaming experiments, and then recorded the relevant streaming 

activities, and reconstructed the streaming session using video processing tools. A log file was generated 

including the selected bitrates, duration of initial buffering, start time, and end time of each stalling event 

after each video streaming session, From the recorded logs, each streaming session was reconstructed by 

concatenating streamed bitrate representations, appending blank frames to the test video to simulate initial 

buffering, and inserting identical frames at the buffering time instance to simulate stalling event [39]. The 

database consists of 20 high-quality source videos of size 1920 x 1080 pixels that cover diverse content, 

and of an average duration range between 13 and 21 seconds (after adding these impairments). Details about 

distribution (characterization) of the impairments included  
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in these videos are presented and explained next [48]. The detailed specification of these videos’ contents 

is presented in Table 3-1. The spatial information (SI) and temporal information (TI) that reflect the 

complexity of video content are also shown in [46]. For example, in videos with static scenes and smooth 

motion such as CostaRica, PuppiesBath the SI and TI are both low. Meanwhile in high motion like sports 

videos as Ski movie, the SI is low while TI is high. Additionally, in Animation videos with high action the 

SI and TI are both high as BigBuckBunny. The video sequences are of diverse spatio-temporal complexity 

and widely span the SI-TI space. Using the sequences as the source, each video was encoded with an x264 

encoder into eleven representations using the encoding ladder shown in Table 3-2 to cover different quality 

levels. The test sequences were segmented with a segment length of 2 seconds [48].  

 

 

 

Figure 3-1:SI/TI for videos in Waterloo Database 
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Table 3-1: Specification of the videos in Waterloo III Database 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A total of 34 subjects assessed the videos. In the subjective testing (full details about subjective testing in 

[47]), the single-stimulus methodology was selected in which the reference/source videos are also evaluated 

in the same experimental session with the test streaming videos. A 100-point continuous scale was chosen 

because of its expanded range, and its fine distinctions between rating and its prior efficiency as opposed 

to a discrete 5-point ITU-R Absolute Category Scale (ACR). The raw subjective scores are converted to Z-

scores per session to account for any differences in the use of the quality scale between sessions. After 

outlier removal, Z-scores are linearly rescaled to lie in the range of [0, 100]. The final quality score for each 

individual video is computed as the average of rescaled Z-scores, namely the mean opinion score (MOS), 

Name FPS SI TI Description 

BigBuckBuny 

BirdOfPery 

Cheetah 

CostaRica 

CSGO 

FCB 

FrozenBanff 

MTv 

PuppiesBath 

RoastDuck 

RushHour 

Ski 

SlidingEditing 

TallBuildings 

TearofSteel1 

TearofSteel2 

TrafficAndBuilding 

Transformer 

Valentines 

ZapHighlight 

30 

30 

25 

25 

60 

30 

24 

25 

24 

30 

30 

30 

25 

30 

24 

24 

30 

24 

24 

25 

96 

44 

64 

45 

70 

80 

100 

112 

35 

60 

52 

61 

160 

81 

53 

56 

66 

72 

40 

97 

97 

68 

37 

52 

52 

46 

88 

114 

45 

84 

20 

82 

86 

13 

66 

11 

15 

56 

52 

89 

Animation, high motion 

Natural scene, smooth motion 

Animal, camera motion 

Natural scene, smooth motion 

Game, average motion 

Sports, average motion 

Natural scene, smooth motion 

Human, average motion 

Animal, smooth motion 

Food, smooth motion 

Human, smooth motion 

Sport, high motion 

Screen content, smooth motion 

Architecture, static 

Movie, smooth motion 

Movie, static 

Architecture, static 

Movie, Average motion 

Human, smooth motion 

Animation, high motion 



22 

from all valid subjects [48]. Figure 3-2 plots the histogram of MOS scores across distorted videos for the 

subjective study. The figure demonstrates that the distorted videos covers most of the quality range. The 

average standard deviation of opinion score in the MOS were 19. 

Table 3-2: Encoding Ladder of Video sequences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3-3(a)-(f), illustrates the 13 network traces used in the study. Figure 3-3 (a) shows the scenario where 

network bandwidth is stable with no change and in (b) the bandwidth is continuously increasing or Ramp 

up, while in (c) the bandwidth is continuously decreasing or Ramp down, and in (d), (e), the bandwidth is 

Representation 

index 

Resolution Bitrate(kbps) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

320x240 

384x288 

512x38 

512x3844 

640x480 

720x480 

1280x720 

1280x720 

1920x1080 

1920x1080 

1920x1080 

235 

375 

560 

750 

1050 

1750 

2350 

3000 

4300 

5800 

7000 

 

Figure 3-2: MOS statistics of Waterloo SQoE-III database 
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changing one step either up or down. Finally, in (f) the bandwidth keeps fluctuating up and down. They are 

of wide-range and represent stationary as well as different scenarios indexed from the lowest to the highest 

average bandwidth. Where I and XIII represent the cases with the lowest and highest average bandwidth of 

the network traces that varies between 200Kbps and 7.2Mbps, covering all range of bitrates in the encoding 

bitrate ladder [48].  

 

 

 

 

 

 

 

 

 

 

Figure 3-3:Network Traces used in the study 

Figure 3-4 shows an example of the distortion profiles of the streaming video sequences used in the 

subjective study. Each subfigure represents a streaming video which was generated by one or multiple 

bitrate adaptation algorithms under one network trace [48]. 
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Dataset Distribution  

In this section, we present the data analysis of the dataset to gain some insight about the relationship 

between the different features (startup delay, stalls, quality switches) and the MOS. As existing databases 

suffer from including patterns that reflect realistic scenarios as mentioned in Chapter 2, specifically the 

Waterloo Streaming QoE-I database [30] that comprises videos with only one stalling event either at the 

beginning or the middle point, such simplification makes the analysis of human QoE behavior easier. 

However, these hand-crafted distortion patterns can hardly represent distortions in the real adaptive 

streaming scenario that are dependent on the behavior of the adaptive bitrate algorithms (ABR) algorithms. 

In addition, the distortion types of video sequences are isolated, such that spatial resolution adaptation 

which is very important and commonly used in practice is not presented; In addition, the network 

information and bitstream [48], which are valuable to develop an ABR algorithms and objective QoE 

models, are not available. Along this direction, we make some statistical analysis on the distribution of the 

attributes/factors that this database reflects to make sure that it contains realistic scenarios.  

 

(a) BigBukBunny (b) Birdofprey (c) FCB 

Figure 3-4: Distortion profiles of the streaming video sequences in the subjective study 



25 

Figures 3-5 to 3-8 present a brief characterization of the studied dataset. Figure 3-5 presents the results of 

data interpolation to convert MOS from (1-100 to 1-5) range. The MOS scores range from 1.5 to 4.9, with 

about 20% of the videos rated as of poor quality (i.e., MOS < 3), 40% rated as good quality  

(i.e., 3.5 < MOS < 4), and 20% rated as excellent quality (i.e., MOS > 4.5).  

 

 

 

 

 

  

 

 

 

 

 

As shown in Figure 3-6, more than 30% of the tested conditions have four stalling/rebuffering events and 

approximately 50% of the video conditions consider perfect quality, with one stalling or without stalling. 

Roughly 15% are having three stalling events, and 10% with two stalling events are clearly visible, with 

55% of the videos having 0s stall duration. Almost 45% of the videos having an average stalling duration 

between 0.1 and 5s, and 5% between 5 to 7s as shown in Figure 3-7.  

We use the terms stalling and rebuffering interchangeably in this thesis to refer to the event when there is 

no data in the buffer, hence the video playback is stalled (frame freeze occurs) [48]. Stall/rebuffer duration 

refers to the combined length of all stall events in a single video session. 

A video session indicates the audiovisual playback from start till the end of the video and includes the 

effects of initial loading time, rebuffering events and quality switching if any. Hence, in presence of any of 

these events the video session length will be longer than that of total video playback length [48]. 

 
Figure 3-5:Distribution of MOS 
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More than 30% of the tested conditions have four switches, and about 10% of the video conditions consider 

perfect quality, with one or without switches. About 20% are having two switches and about 40% of the 

videos having three switches, as shown in Figure 3-8. 

 

 

Figure 3-6:Distribution of number of rebuffering events 

Figure 3-7:Distribution of stall duration 
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Quality switching is referred to as the rate or quality or bitrate adaptation, and it is the change of quality 

over the duration of the video playback [48]. 

3.2 Quality Influence Features  

The following are the features of the dataset and how they are computed: 

 Initial buffer time/delay (Ti): this metric represents the elapsed time starting from the time that the 

player establishes a connection to a video server until the time that enough player video buffer is 

filled up and the player starts receives video frames. It is measured in seconds. It is the waiting 

times in the beginning to pre-download the video before watching [48] [46]. 

 Rebuffer percentage ( 𝑷𝒓): This metric is an aggregate metric that can reflect duration of a long 

video “stalls” observed by the user. This metric is the fraction of the total session time (i.e., playing 

plus rebuffer time) spent in buffering. It is computed as [46]: 

∑
𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒓𝒆𝒃𝒖𝒇𝒇𝒆𝒓 𝒆𝒗𝒆𝒏𝒕 𝒊

𝒔𝒆𝒔𝒔𝒊𝒐𝒏 𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏𝒊                                                               (3.1) 

 Rebuffer count (𝑪𝒓):. In a  video session that experiences “video stall” where each stall time is 

small but the total number of stalls is high, may not have a high buffering ratio but may be just as 

 Figure 3-8:Distribution of number of switches 
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annoying to a user [46]. As Rebuffer percentage metric does not capture the number of induced 

interruptions observed by a user. We need to capture frequency of stall using this metric. 

 Stall duration/total duration of rebuffering: Length of all rebuffering events in a single media 

session [46] [48]. 

 Quality switch count (𝑪𝒔): The number of quality switches is a metric that describes the variance 

of the session. High values indicate very frequent switching which can lead to a decreased QoE. 

This is calculated as follows [46] [48] (we will be using bitrate and quality interchangeably 

throughout this thesis):  

𝐠(𝒔𝒊) = {
𝟏  𝒊𝒇 𝒊 = 𝟎

𝟏  𝒊𝒇 𝒇(𝒔𝒊−𝟏) ≠ 𝒇(𝒔𝒊)

𝟎 𝒆𝒍𝒔𝒆

                                                             (3.2) 

 Average bitrate/quality switch magnitude (𝑩̅𝒔): This metric was also identified as an influencing 

factor of flicker effect. people likes multiple switches with smaller bitrate differences to abrupt 

quality variation. It is Measured in kilobytes per switch,  It is computed as [46] [48] 

∑
|𝒃𝒊𝒕𝒓𝒂𝒕𝒆𝒊−𝒃𝒊𝒕𝒓𝒂𝒕𝒆𝒊−𝟏|

# 𝒐𝒇 𝒔𝒘𝒊𝒕𝒄𝒉𝒆𝒔
𝒏
𝒊=𝟐                                                                        (3.3) 

                 where n is the number of segments. 

 

 Ratio on the highest video quality layer (𝑷𝒉): This metric measures the percentage of time spent 

on the highest quality layer. Previous studies have argued that the effect of quality switch count is 

negligible compared to the percent of time on the highest quality layer [49], [50].  

 Frame per second (fps): video frames per second 

Table 3-3 summarizes the features we have used in QoE prediction that are computed from Waterloo 

database. 
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Table 3-3 Features used in QoE prediction 

 

  

3.3 Correlation and Data Analysis 

In this section, we will present the data and correlation analysis that was applied to the dataset to study the 

effect of each feature on Mean Opinion Scores (MOS).  

We evaluate the performance of each feature using the Spearman correlation coefficient (SRCC) and 

Pearson correlation coefficient (PLCC). 

The PLCC is used to measure the linear association strength between two variables. Given paired data 

{ {𝑥1, 𝑦1}, … , {𝑥𝑛, 𝑦𝑛} }, PLCC computed by the following: [51] 

𝑟 =  
∑ (𝑥𝑖− 𝑥̅)(𝑦𝑖−𝑦)̅̅ ̅𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

                                          (3.4) 

 

Feature Description 

Initial buffer time/Delay 

(Ti): 

Time duration between the request for video playback 

by the client and the actual 

start of the video playback. 

Rebuffer percentage 

( 𝑃𝑟): 

Rebuffering refers to the event when there 

is no data in buffer. 

Rebuffer count (𝐶𝑟): Frequency of rebuffering refers to the number of 

rebuffering events per unit of time 

 

quality switch count (𝐶𝑠): Refers to the change of bitrate/quality over the duration 

of the video playback. 

Average quality switch 

magnitude (𝐵̅𝑠): 

Refers to the "gap" between the levels of quality switching. 

Ratio on the highest video 

quality layer (𝑃ℎ): 

Time on the highest layer indicates the percentage of 

time the media playback is at the highest quality. 

FPS Frame per second of all videos. 

Stall duration The length of all rebuffering events in a single media 

session. 

MOS The average video MOS score. 
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where: 

 𝑛 is the sample size 

 𝑥𝑖 and 𝑦𝑖 are individual sample points. 

 𝑥̅ is the first sample mean defined as: 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖−1  

 𝑦̅ is the second sample mean defined as: 𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖−1  

The coefficient is calculated by dividing the covariance of two variables by the product of their standard 

deviations. A correlation coefficient value of 1 means a perfect positive correlation, while a value of -1 

means a perfect negative correlation. A value of 0 means there is no correlation at all. 

The SRCC is used to measure the strength and direction of monotonic association between two variables 

in a single value between -1 and +1. It uses ranks instead of assumptions about the distributions of the two 

variables ranking (from low to high) is obtained by assigning a rank of 1 to the lowest value, 2 to the next 

lowest and so on. SRCC is computed by the following [51]. 

𝜌 =  
∑ (𝑅(𝑥𝑖)− 𝑅(𝑥̅̅ ̅̅ ̅)).(𝑅((𝑦𝑖)−𝑅(𝑦̅̅ ̅̅ ̅𝑛

𝑖=1 ))

√(∑ (𝑅(𝑥𝑖)−𝑅(𝑥̅̅ ̅̅ ̅)2) ).𝑛
𝑖=1 √(∑ (𝑅(𝑦𝑖)−𝑅(𝑦̅̅ ̅̅ ̅)2).𝑛

𝑖=1

                                                                 (3.5) 

where: 

 R(x) and R(y) are the ranks of the observation in the sample 

 𝑅(𝑥̅̅ ̅̅ ̅) and 𝑅(𝑦̅̅ ̅̅ ̅)are the mean ranks. 

The scatter plots of the above-mentioned quality features versus the MOS, are presented in 2 parts. Part (1) 

is shown in Figure 3-9(a)-(d) and part (2) is shown in Figure 3-10 (e) –(h). For initial rebuffer_time in 

Figure 3-9 (a), we can see that it has low impact on QoE as users tend to be more patient to longer initial 

delays than other video distortions such as stalls and quality changes. Figure 3-9 (b, c, d) highlights the 

relationships between the MOS scores and the number and duration of rebuffering events respectively. It 

can be observed that a larger number of rebuffering events tends to decrease user experience. In Figure 3-

9 (c), one can see that in certain video sessions that there are 2, 3 and 4 rebuffering events but the average 

duration is not in decreasing MOS order. In this case, the average rebuffering duration was 3.2,2.56 and 2.3 
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sec. This means that larger rebuffering occurrence not necessary results in larger rebuffering duration, but 

users are sensitive to combined effect of rebuffering occurrences and duration. As shown in Figure 3-9(b) 

that longer rebuffer duration lowers QoE. But when rebuffering time is more than two seconds, duration 

neglect effect [52] appear that may reduce this effect, according to this duration neglect aspect, users may 

remember the duration of an impairment, but they become insensitive to its duration after certain time when 

making subjective QoE evaluation. For the quality switch magnitude in Figure 3-10 (e) and (f), users prefer 

multiple switches with small quality switch difference than sudden quality switches. In Figure 3-10 (h), 

when user stays more time on highest quality level the MOS values increase.   

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3-9:Quality features versus MOS (part 1) 

(a)                                                                                              (b) 

(c)                                                                                     (d) 
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 (g)                                                                               (h) 

(e)                                                                                          (f) 

Figure 3-10:Quality features versus MOS (part2) 
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Table 3-4 SRCC and PLCC between features and MOS  

Quality Metric SRCC PLCC 

Initial_buffer_time -0.029 0.269 

Rebuffer_percentge -0.266 -0.269 

Rebuffer_count -0.136 -0.183 

quality_switch_count -0.164 -0.076 

Average_switch_mag 0.140 0.113 

ratio_highest_video_qual_layer 0.355 0.369 

stall_duration -0.186 -0.328 

Fps 0.002 -0.072 

 

Table 3-4 shows that the time spent on the highest video quality layer reveals noticeably moderate 

correlation with MOS. This result agree with  previous studies [49] [50] that the time spent on the highest 

video quality layer is an important influence factor on QoE. The explanation is that the number of quality 

difference between successive quality layers in this study are relatively large, as shown in Table 3.2, that 

videos are encoded into 11 quality levels/layers. In our study, we consider layers 5 till 11 as higher layers. 

As the difference between consecutive quality layers are significantly large, this allow us to consider more 

layers in our computation without throwing away important information about the reaming quality layers. 

The quality switch count and average equality switch magnitude have relatively little impact on MOS. For 

the rebuffer_percentage and count, the correlation is small.  

We have compared the performance of each metric separately and the result of correlation measured by 

SRCC and PLCC presented in Table 3-4 suggests that none of them, by itself is sufficient to predict QoE 

accurately. Figure 3-11 shows the correlation matrix between different features and the MOS to get insights 

about the relationship between the different features amongst each other. It can be seen that most pairs are 

quite independent of each other, which indicates that the used features may supplement each other, and 

their combined use may provide better performance. The correlation between ratio_on_highest quality layer 
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has moderate correlation with MOS. The rebuffer_percentage have moderate correlation with stall duration 

which is expected as they are dependent on each other.  
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To summarize this section, we presented Waterloo III database and the different Quality influence features 

which reflect the impairments that interrupt video during the video playback. There is another type of 

impairments of videos that occur while video being transmitted and encoded. In the next section, we discuss 

these impairments. 

3.4 Objective Video Quality Assessment  

In a classic adaptive bitrate video streaming scenario, an adaptive bitrate allocation strategy is applied to 

optimize bandwidth consumption. These adaptive bitrate schemes lead to compression and blocking 

artifacts [53], commonly introduced during video encoding, and are one of the major causes of reduced 

perceptual video quality. Other network-related distortions arise from packet losses [54] or impairments of 

Figure 3-11:correlation matrix between Quality Features and MOS 
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the source videos such as blurring, and scaling artifacts. These type of impairments are common in that 

there are no implied playback interruptions. To help measure the video quality degradations induced by 

these video distortions, a variety of video quality assessment (VQA) algorithms/models have been proposed 

which include full reference (FR) video quality model such as Peak Signal-to-Noise Ratio (PSNR) [12], 

Structural Similarity Index metric (SSIM) [55] and Multi-Scale Structural Similarity Index (MS-SSIM) 

[56] , temporal full reference (FR) models such as Video Quality Metric (VQM) [14], Video Multimethod 

Assessment Fusion (VMAF) [57], and reduced-reference models like Spatio-Temporal Reduced Reference 

(STRRED) [58].  

Previous work done on QoE prediction studied the effect of each type of impairment separately. Since most 

VQA models do not consider the effect of playback interruption that occurs in video session (rebuffering, 

quality switching, intial_buffering, etc), it is important to understand whether they can be applied to 

streaming videos and test their performance in case of video streaming. In this regard, a number of objective 

quality metrics including PSNR, SSIM [55], MS-SSIM [56], STRRED [58], VQM [14], VMAF [57], 

SSIMplus [32], and Video Intrinsic Integrity and Distortion evaluation Oracle model (VIIDEO) [59] are 

evaluated against human subjective scores measured as MOS. These metrics are considered important and 

correlate well with human subjective opinion (MOS). The process of testing performance of these metrics 

is performed by dividing the video data into two sets, A and B. The first set, SetA, is the source videos with 

no impairment in a normal playback while the second set, SetB, is the entire Waterloo streaming videos 

with impairments. The correlation analysis is discussed next.  

3.4.1 Correlation Analysis between Objective VQA model against MOS 

The Waterloo dataset contains the implementations of these VQA models which was obtained from the 

original authors. Spearman’s correlation coefficient (SRCC) is used for performance evaluation by 

comparing MOS and objective QoE scores. Table 3-5 presents the result of the correlation.  
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Table 3-5 Result of correlation between VQA models and MOS 

 

 

 

 

 

 

 

 

 

               

Clearly, there is a drop in the correlation from set A to set B for all metrics. This suggests a performance 

degradation of the objective quality models for videos affected by playback impairments, which is expected. 

However, in any streaming application, such impairments often occur, therefore the need to combine 

playback interruption impairment features with objective quality features to obtain a unified QoE-aware 

information to improve the predictive power of QoE prediction model. Therefore, we integrate the objective 

video quality features with the features extracted from Waterloo dataset that measures playback interruption 

features namely, initial_buffering, rebuffering duration and frequency, and quality switch number, and 

magnitude (introduced in Section 3.2) to significantly improve the QoE prediction.  

Figure.3-12 shows the scatter plots of the above-mentioned quality features versus the MOS scores. The 

figure shows that SSIMplus and VQM are the best performing models. While SSIM performed similar to 

MS_SSIM, while VIIDEO has the worst performance.  

 VQA model SRCC 

SetA SetB 

PSNR 0.667 0.460 

SSIM [55] 0.7448 0.524 

MS-SSIM [56] 0.743 0.5217 

SSIMplus [60] 0.8298 0.5617 

VQM [57] 0.8192 0.5650 

 STRRED [59] 0.6760 0.488 

VMAF [58] 0.7977 0.5613 

VIDEO [61] 0.4388 0.3506 
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Figure 3-12:correlation between VQA models against MOS 

We also plotted the correlation matrix between all features combined with SSIMplus as our VQA metric 

against the MOS to get insights about relationship between VQA and our features as shown in Figure 3-13. 

It is clear that there is correlation between reb_per, stall duration and SSIMplus. Additionally, there is 

                                          (a)                                                                                       (b) 

                                 (c)                                                                                          (d) 

(e)                                                                                   (f) 
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correlation between ratio_on_highest quality layer and SSIMplus. This correlation map results shows there 

is dependency between VQA metric namely SSIMplus in our case and stalling features. The same hold for 

correlation between VQA and ratio_on_higher_layer. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13:correlation matrix between Quality features combined with SSIMplus against MOS 

 

3.5 Proposed Feature Enhancement Scheme 

The work in this thesis is based on combining VQA models features with quality influence features to 

perform the QoE prediction using different machine learning techniques. Our proposed feature 

enhancement scheme is shown in Figure 3-14. 

The proposed Feature Enhancement Scheme is based on combination of QoE-related features extracted 

from Waterloo SQoE (III) video dataset such as detection of streaming stalling, and quality switching, 

combined with video quality metrics that measures compression artifacts resulted from the video encoding 

process such as blocking, blurring or ringing, and is computed on frame-by-frame level with different 
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pooling techniques are used to collapse frame score into a final score. We presented examples of existing 

pooling techniques in Chapter 2, such as averaging, exponential weighting, etc. The average pooling is the 

methods used in all VQA algorithms in this work. Examples of these metrics includes: SSIMplus [55], 

VMAF [57], STRRED [58]. 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

In our first experiment, we apply linear regression model to investigate the effect of integrating VMAF as 

our VQA metric with the QoE features. To do this, the four impairment features with highest correlation 

with the MOS score are picked up as the independent parameters of the regression model. In Figure 3-15. 

one can observe the importance and strength of correlation of each feature with the MOS. 

The regression model is assessed using Spearman’s Rank Correlation (SRCC) and Pearson Linear 

Correlation Coefficient (PLCC). The bottom part of Table 3.6 shows the results of linear regression 

QoE-related features 

Proposed Feature Enhancements Scheme 

Objective video 
quality assessment 

metrics 

QoE prediction model 
Based on ML 

 
Figure 3-14:Proposed Feature Enhancement Scheme 
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prediction model using only the QoE features. The top part of the table shows the result when the VMAF 

is added as the objective models (VQA) to the QoE features. 

The results in the table were produced as follows. The dataset is split into 80% training and 20% testing 

subsets, and we apply linear regression on the training subset and the resulting model is tested using the 

test-subset. To avoid any bias due to data division we repeated the process 100 times. We computed the 

SRCC between the predicted and actual quality scores at end of each iteration and took median of SRCC 

scores. Rather than showing all combinations, we include the first 4 regression models with highest 

correlation as shown in Figure 3-15 with VMAF as our objective model.  

Table 3-6: Result of Linear Regression 

 

Regression model SRCC 

 

PLCC 

61.55-1.026 Ti +0.0004𝐶𝑠 -8.187𝑃𝑟-

0.0038𝑃ℎ+12.758VMAF 

0.815 0.769 

 

Regression Model SRCC PLCC 

61.57-2.05 Ti -0.33𝐶𝑠 -6.738𝑃𝑟+ 7.224𝑃ℎ 0.398 0.301 
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Figure 3-15:Correlation coefficient between all features combined with VMAF against MOS 

From result of linear regression, we can see that there is great improvement in the monotonicity and linearity 

when combining all features. The detailed results of our experiments is presented in Chapter 5.  

3.6 Summary 

In this chapter, we described the dataset attributes and its characterization is explored. Also, we did 

correlation analysis between the different features and MOS, in addition, we performed correlation analysis 

between MOS and VQA model. Then we presented our proposed feature enhancement Scheme. In the next 

chapter, we present the data preprocessing steps that we have done and discuss the process of QoE 

prediction using different machine learning  

 

 

Figure 3-15. Correlation coefficient between all features 

combined with VQM against MOS 
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Chapter 4 

 Modeling and Prediction Methods 

In Chapter 3, we presented our methodology in extracting the different set features from the videos in the 

dataset. These features will be applied as the independent input variables to any prediction model.  In this 

chapter, we will use different machine learning prediction models to calculate the Quality of Experience 

(QoE) as a predicted variable.  

In this chapter, we explain the steps that were carried out to apply the machine learning models on the 

Waterloo dataset for Quality of Experience (QoE) prediction. In Section 4.1, we present the steps to prepare 

the data to be processed by the machine learning models. In Section 4.2, we discuss the different techniques 

used for feature scaling and selection. In Section 4.3, we present the various machine learning models that 

we applied for QoE prediction. In Section 4.4, the hyperparameters tuning process for the different models 

is outlined. In Section 4.5, we describe different techniques for data splitting. Finally, in Section 4.6, we 

present the evaluation metrics that were used to assess the performance of the models. 

4.1 Data Preprocessing 

Raw data is often noisy and incomplete; therefore, machine learning models cannot be applied directly on 

raw data. To ensure the accuracy and efficiency of the machine learning models, some preprocessing steps 

need to be performed before the data can be fed to the models. In the next subsections, the preprocessing 

steps used in this work are presented. 

4.1.1 Feature Scaling 

Feature scaling is often required in machine learning when the data features have different ranges, especially 

when tested models rely on the distance between the features. Therefore, features with larger ranges would 

influence the result more than those with smaller ranges. The following are a few more commonly used 

scaling techniques: 

1- Mean Normalization 
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 Mean normalization causes the data to have values between -1 and 1 and mean of 0. Mean normalization 

can be performed using the following formula: 

𝒙′ =
𝒙−𝒎𝒆𝒂𝒏(𝒙)

𝐦𝐚𝐱(𝒙)−𝐦𝐢𝐧 (𝒙)
                                                       (4.1) 

To perform mean normalization, it is necessary to know the maximum and minimum values of the data. 

2- Min-Max Scaling  

Min-Max scaling can also be used to scale data features. In Min-Max scaling, the features are scaled 

between 0 and 1 [60]. The formula for Min-Max scaling is given by the following equation: 

𝒙′ =
𝒙−𝐦𝐢𝐧 (𝒙)

𝐦𝐚𝐱(𝒙)−𝐦𝐢𝐧 (𝒙)
                                                       (4.2) 

3- Standard Scaling (Z-score) 

The Standard scaling method standardizes the features by removing the mean and scaling to a unit variance 

value. The standard score of a sample x is calculated as: 

𝒙𝒏𝒆𝒘 =  
𝒙−𝝁

𝝈
                                                       (4.3) 

 

where 𝝁 and 𝜎 are the mean and standard deviation of the training samples. Centering and scaling happen 

independently on each feature by computing the relevant statistics on the samples in the training set.  

In this work, the standard scaling method was used. 

4.2 Feature Selection 

Feature selection is the process of selecting the features that contribute the most to the prediction variable. 

It is an important step in the machine learning pipeline as training a model with irrelevant features could 

decrease the accuracy of the model and result in erroneous predictions. Moreover, training the model with 

fewer attributes reduces the complexity of the model, and makes the model simpler and easier to 

understand. In the following subsections, three commonly used methods for feature selection are discussed. 

4.2.1 Univariate Selection  
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This method performs statistical tests that indicate which features have the strongest relationship with the 

target variable. The Chi-square test is one example of these statistical tests and is often used to test the 

association between two variables [61]. Basically, the Chi-square between each feature and the target is 

calculated, and then features with best Chi-square scores are selected. 

The Chi-square is calculated using the following equation: 

𝒙𝒄
𝟐 = ∑

(𝑶𝒊−𝑬𝒊)𝟐

𝑬𝒊
                                                             (4.4) 

where c is the degree of freedom which represents the number of values in the final calculation that are free 

to vary, O is the observed value and E is the expected value. 

When a feature has a high correlation with the target value, the observed count is far from the expected 

count. Therefore, the features will have a high Chi-square value. Having a high Chi-square value means 

that the target value is dependent on the feature, and thus the feature can be selected for model training. 

4.2.2 Feature Importance 

The importance of each feature in the dataset can be computed using the feature importance property of the 

model. The idea of feature importance is to calculate a certain score for each feature in the dataset, where 

higher scores indicate that this feature contributes more toward the prediction of the target variable. Two 

common techniques that are used for computing feature importance are model specific feature importance 

and permutation feature importance. 

1- Model Specific Feature Importance  

This technique is implemented by the Random Forest algorithm. By using this technique, the average 

reduction in impurity caused by each feature is calculated across all the trees in the forest. Furthermore, the 

features that cause the nodes to split closer to the root will have a higher feature importance value [62]. 

2- Permutation Feature Importance  

Permutation feature importance measures the importance of a certain feature by permuting that feature and 

then measuring the mean decrease in performance. A feature has a high importance value when the model’s 
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prediction performance decreases and when the feature’s values are permuted, meaning that the feature 

contributed to the model’s prediction. Along with the feature importance estimate, this technique also gives 

a measure of uncertainty of that estimate. On the contrary, the main disadvantage of the permutation feature 

importance is that it becomes computationally expensive when the feature space increases. 

4.2.3 Correlation Matrix with Heatmap 

Correlation is a statistical term that measures the association between variables [63]. A positive correlation 

between two variables means that when one variable increases, the other increases as well. On the contrary, 

a negative correlation means that when one variable increases, the other decreases. 

Correlation analysis can help with feature selection, as a feature that has a high correlation with the target 

variable can be selected as input to the model. Furthermore, features with high correlation with each other 

can be linearly dependent, and therefore have a similar effect on the target variable. In that case, one of the 

two features can be dropped. 

We used the univariate feature selection method to select the best k-features regarding the strength of its 

relationship with target variable. We found that the most important features for QoE prediction are the 

init_buf_time, reb_perc, time_hig_layer, av_sw_mag, stall_dur, sw_count combined with any objective 

video quality assessment (VQA) metrics presented in Chapter 3. Therefore, we only used these variables 

as input to machine learning model and disregarded the remaining data variables. 

4.3 Models 

In order to demonstrate the behavior of the regression process, we evaluated several types of regression 

models [43]: linear models (Ridge and Lasso regression), Support Vector regression (SVR) using RBF 

kernel and ensemble methods such as Random Forest (RF). For the ensemble method, feature normalization 

was not required, but we preprocessed the features for all regression models using standard scaling only on 

the training data. For each of the regression models, we determined the best parameters using 10-fold cross 

validation method with the training set. This process was repeated on all possible train/test splits. 
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To determine the best model that could be used for QoE prediction on this dataset, we evaluate and compare 

the result of all tested models. The evaluation and comparison results are presented in Chapter 5. All the 

models that we used were implemented in Scikit-Learn library in Python. 

The following outlines the machine learning models that we used in this work: 

1- Ridge Regression 

Ridge regression is a variant of linear regression [64], which is a machine learning algorithm that performs 

regression analysis [65]. Regression models a target value based on the input features. Particularly, 

regression predicts a dependent variable value based on a given independent variable. In linear regression, 

this is done by finding a linear relationship between the dependent and independent variables, as shown in 

Figure 4-1. A simple regression line can be modelled by: 

                                       𝒚̂ = 𝑩𝟎 + 𝑩𝟏𝒙                                                           (4.5) 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Linear regression example 
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where x is the input training data and 𝒚 ̂is the predicted target variable. During training, the model tries to 

find the best-fit line to predict the value of y, the observed value, for a given value of x, by finding the 

optimal values for the coefficients 𝐵0 and 𝐵1. Figure 4-1, shows an example of linear regression with one 

independent variable. 

The task of finding the best-fit line is often solved by minimizing the sum of squares of the residuals [66], 

where a residual is the difference between the observed value and the value fitted by the model. This 

formula for minimizing the sum of squares is shown below: 

𝒎𝒊𝒏𝑩𝟎,𝑩𝟏, ∥ 𝒚̂ − 𝒚 ∥𝟐
𝟐
                                                     (4.6) 

Two common problems that occur in machine learning are the underfitting and overfitting. Underfitting 

occurs when the model does not learn enough from the data and cannot capture its underlying structure 

[67]. This causes the model to have unreliable predictions and low generalization power. By comparison, 

overfitting occurs when the model is very flexible, and cannot generalize well from the training data to 

other unseen data [68]. In other words, the model performs well on the training set, but performs poorly on 

the test set. When there is collinearity between the data variables, that is, the data variables are highly 

correlated, the least squares method causes overfitting. Overfitting is a major concern, because it negatively 

impacts the performance of the model. To prevent overfitting, regularization techniques are often used to 

reduce the complexity of the model. There are two variants of linear regression that perform regularization: 

Lasso Regression: Performs L1 regularization [69], where the least squares method is modified to also 

minimize the absolute sum of β through the shrinkage hyperparameter λ, as illustrated in the following 

formula: 

𝒂𝒓𝒈𝒎𝒊𝒏𝜷∈ℝ𝚸  ∥ 𝒚 − 𝑿𝜷 ∥𝟐
𝟐+ 𝝀 ∥ 𝜷 ∥𝟏                                      (4.7) 

 where β is the coefficient vector [ 𝐵0, 𝐵1 ]. 

Ridge Regression: performs L2 regularization, where the least squares method is modified to also 

minimize the squared absolute sum of β through the shrinkage hyperparameter λ, as shown in the following 

formula:  
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𝒂𝒓𝒈𝒎𝒊𝒏𝜷∈ℝ𝚸  ∥ 𝒚 − 𝑿𝜷 ∥𝟐
𝟐+ 𝝀 ∥ 𝜷 ∥𝟐

𝟐
                                   (4.8) 

 where β is the coefficient vector [ 𝐵0, 𝐵1 ]. 

 

2- K-Nearest Neighbor for Regression 

The K-Nearest Neighbor (KNN) is a supervised learning algorithm that is commonly used in machine 

learning tasks for classification and regression due to its simplicity and applicability in many real-world 

problems. It is a non-parametric algorithm that does not make assumptions about the data distribution. The 

KNN algorithm predicts the target value based on the similarity between different points. To find similar 

points, the algorithm uses a distance measure such as Euclidean distance, Hamming distance, Manhattan 

distance, or Minkowski distance [70]. 

For every point 𝑃𝑖 it takes as input, it finds the nearest k neighboring points of 𝑃𝑖 using one of the distance 

measures mentioned above, and then predicts the output of 𝑃𝑖 based on the value of its nearest neighbors. 

In case of classification, the output label of 𝑃𝑖 would be equal to the majority vote of its k neighbors. In 

case of regression, the output target value of 𝑃𝑖 would be the mean of its nearest k neighbors. Accordingly, 

for the algorithm to compute the output of any point, the algorithm needs to have available all the other 

points. As a result, all the training data is stored and used in the testing stage. This process takes up memory 

and disk space which causes the testing to be slower. Figure 4-2 displays two examples of KNN for 

regression and classification, where the number of k is three. 
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Figure 4-2: KNN Example for (a) regression, (b) classification. 

 

Other than taking up space and memory, the algorithm has yet another disadvantage, it requires feature 

scaling since distance measures like the Euclidean distance are very sensitive to the magnitude of the data. 

The one advantage of the KNN algorithm is that its training phase is significantly faster than other machine 

learning algorithms, as it is not required to train the model for generalization. 

3- Support Vector Machine Regression (SVR)  

Support vector machine (SVM) is a supervised learning algorithm that can be used for both classification 

(SVC) and regression (SVR). SVM uses a technique called the kernel trick to transform the data variables 

into a higher dimensional space, and then finds the optimal linear boundary between the possible outputs 

based on these transformations [71]. Before explaining how SVM works, we should first clarify a few 

terms. A hyperplane is a separation line that helps classify different data points in the case of classification, 

or a line that fits the data in the case of regression. Additionally, there are two other lines in SVM called 

the boundary lines, and their function is to create a boundary. In classification, these boundary lines separate 

the two classes. In regression, the boundary lines bound the points that are considered for the prediction 
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process. Another term we need to define is the support vectors, which are points that are closest to the 

boundary, and can even lie on it. 

 In the case of classification, the SVC uses the kernel trick to convert a problem with data that is not linearly 

separable into data that is separable. For example, if there are two classes in the data and the classes are not 

linearly separable, the kernel trick can add one more dimension to the data, and then the algorithm can find 

a hyperplane that could separate the two classes in the higher dimensional space.  

In the case of regression, SVR uses the kernel trick to map the input into a higher dimensional feature space 

and then constructs a linear regression model in this higher dimensional space [72]. 

In SVR, the distance between the hyperplane and the boundary line is denoted by ε. The goal is to find the 

optimal value of ε so that the support vectors lie within that boundary line. Figure 4-3 illustrates the concept 

of SVR, where the hyperplane is shown by the solid line, and the boundary lines are shown by the dashed 

lines in the figure.  

The linear function is given by: 

𝑦̂ = 𝒘𝒙 + 𝒃                                                          (4.9) 

where 𝑦 is the predicted target variable, 𝑥 is the input variable, 𝑤 is the weight coefficient and 𝑏 is the bias. 

The optimization process needs to maximize the margin by minimizing the squared sum of the weight 

coefficients to ensure the function is as flat as possible, and it is given by the following formula: 

𝟏

𝟐
 |𝒘|𝟐                                                             (4.10) 

The constraint that all of the residuals are less than ε is ensured by the following rule: 

∀𝒊: |𝒚𝒊 − (𝒘𝒙𝒊 + 𝒃)| ≤ 𝜺                                               (4.11) 

where 𝒊 is data points. 
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Figure 4-3: SVR Algorithm 

 

4- Random Forest for Regression  

Random Forest is a type of ensemble learning method, where a group of weak models are combined to form 

a strong model [73]. It is a supervised learning algorithm that is constructed through an aggregation of 

decision trees, where each tree is trained on a subset taken from the data. Generally, the larger the number 

of decision trees, the more accurate the prediction results are.  

Decision trees use a tree-like graph to formulate rules and make predictions based on these rules. In decision 

trees, each node represents a feature, each branch represents a decision, and each leaf represents an output. 

The goal is to create a tree for each of the features in the dataset and use the tree to produce a different 

output at each leaf. The output that is produced depends on the set of decisions made by the tree as it 

processes the input feature vector.  

The decision trees are constructed in a top-down approach that is also known as recursive binary splitting. 

The construction begins at the top of the tree where entire dataset is available, and then splits the predictor 

space into two new branches down the tree. During construction, an important step is to identify the feature 

that will be represented by the root node at each level. For efficient prediction, we need to split the nodes 

at the most informative features [74]. In the case of classification, a metric commonly used in this step is 
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the information gain [71], which is the decrease in entropy. Entropy is a measure of the impurity in the data 

samples and is computed by:  

 

𝑬(𝒕) = − ∑ 𝒑(𝒊|𝒕) 𝒍𝒐𝒈𝟐 𝒑(𝒊|𝒕)𝒎
𝒊=𝟏                                      (4.12) 

 

where 𝑝(𝑖|𝑡) is the number of samples and t represents a node in the tree. 

 

Whenever we split a node, the entropy changes. Information gain computes the difference between entropy 

before and after the split of a node. 

 

In the case of regression, however, another metric is needed to accommodate for the continuous variables. 

A metric that could be used in regression is the weighted mean square error (MSE), which is given by: 

 

 𝑴𝑺𝑬 (𝒕) =
𝟏

𝑵𝒕
∑ (𝒚(𝒊) − 𝒚̂𝒕)𝟐

𝒊 ∈ 𝑫𝒕
                                              (4.13) 

 

where 𝑁𝑡 is the number of training samples at node 𝑡, 𝐷𝑡 is the training subset at node t, 𝑦(𝑖) is the actual 

target value, and 𝑦̂𝑡 is the predicted target. 

Decision trees are widely used due to their high level of accuracy and stability. Unlike linear models, they 

are capable of mapping nonlinear relationships within the data attributes. 

As we mentioned before, random forest is a collection of decision trees. It works by randomly picking a 

few sub-samples from the data samples to build each tree. Then, several features are selected randomly 

from all features to ensure that the trees are not highly correlated. To make a prediction, each tree makes a 

vote by predicting the target value. The forest then takes the average of all the votes by the different trees 

in the forest. The Random Forest algorithm is illustrated in Figure 4-4. 
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Figure 4-4:  Random Forest algorithm structure [75]  

There are numerous advantages to use the Random Forest algorithm. It is a robust model that can handle 

datasets with high dimensionality. Moreover, the model is very useful in data exploration, as it has a 

property called feature importance that shows the importance of each feature to the prediction, which is 

useful for feature selection. Additionally, the model requires less data cleaning than many other modeling 

techniques and it does not make any assumptions about the data distribution. 

4.4 Hyperparameters Tuning 

Hyperparameters are configurable parameters that define the model architecture and govern the training 

process [76]. They are tuned by training the model, testing it and examining the error, and then adjusting 

the parameters. Moreover, hyperparameters are not learned automatically by the model, they must be set 

manually. Various methods have been proposed for hyperparameter tuning.  

The following are the most often used: 

1- Grid Search  
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In this method, the set of hyperparameters are defined and then an extensive search is performed to search 

through all combinations of hyperparameters to find the optimal one [77]. Moreover, the method determines 

the optimal hyperparameter by measuring the performance using cross-validation. The grid search is a 

simple, easy to use method, but it can be computationally expensive when the data has a high dimensional 

space. 

2- Random Search  

Unlike grid search, where all different hyperparameter combinations are tested, this method pulls a set of 

random values from the hyperparameter space until the optimal value is found [75]. The random search 

method has a higher speed and performance level than the grid search. However, a disadvantage of this 

method is that it is not affected by previous selections when choosing the next set of hyperparameters. 

3- Bayesian Optimization  

In this method, a probabilistic model is constructed between the hyperparameter values and the performance 

measure using the test data [78]. Additionally, different hyperparameters combinations are tested and the 

model is adapted based on the evaluation of these combinations. 

 

In addition, different machine learning algorithms require different hyperparameters to be tuned. For each 

algorithm below, we discuss the hyperparameters that need to be optimized. 

Ridge Regression: The hyperparameter that is used in ridge regression is shrinkage hyperparameter λ as 

we described earlier. A larger value of  λ reduces the model complexity and prevents overfitting. However, 

after a certain point, increasing the value of λ may lead to underfitting. Hyperparameter tuning in ridge 

regression involves balancing the regularization strength to achieve the best possible model performance.  

KNN for Regression: Choosing the value of k affects the performance of the model. Increasing the value 

of k reduces the noise and leads to smoother predictions although, increasing the value may cause 

underfitting. As with ridge regression, the idea of hyperparameter tuning in KNN regression is to find the 

optimal value of k that improves the performance of the model. 
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SVR: The hyperparameters used in SVR training are the kernel function, 𝜀, and the regularization 

parameter C, which penalizes misclassification and margin errors. As there are multiple combinations of 

these hyperparameters, they are often tuned using the grid search. This approach is based on the concept of 

exhaustive search; in where it tries out different hyperparameter combinations and determines the optimal 

value of each hyperparameter.  

Random Forest for Regression: Hyperparameters in a Random Forest include the number of decision 

trees in the forest and the maximum number of features considered by each tree for splitting a node. 

Increasing the number of decision trees improves the accuracy of the model as it considers the votes from 

various trees, however, this process can be computationally expensive. Moreover, increasing the maximum 

number of features considered by each tree for splitting a node can lead to a higher model performance as 

it causes the trees to have more features to select from the optimal split, but this can cause overfitting. 

4.5 Data Splitting 

To effectively evaluate the performance of machine learning models, cross-validation is a commonly used 

method. In cross-validation, the dataset is split into two subsets a training set and a test set [79]. The training 

set is the partition of the dataset that the model is trained on. The test set is the partition of the dataset that 

the model has not seen before. Both the training set and the test set consist of some input features and a 

target variable. The model is fit on the features and target variable from the training set and then the fitted 

model is used to predict the target variable for the features in the test set. The test set should be large enough 

to produce statistically meaningful results and should be representative of the entire dataset.  

The dataset split ratio depends on two factors the number of samples in the dataset and the type of model 

that is being trained, as some models require a large amount of data to train on. 

There are three main methods for performing cross-validation: the holdout method, the k-fold cross-

validation and the leave-one-out cross-validation. 

Holdout Method: The method of this approach is to remove a subset of the dataset and then use the subset 

or the dataset to evaluate a model trained on the rest of the data [80]. The error is an indication of how well 
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the model is going to perform on the test set. A common split ratio is 70%-30%, where the training set 

consists of 70% of the dataset and test set consists of 30% of the dataset. 

K-Fold Cross-Validation: In this approach, the dataset is divided into k subsets. Next, the model is trained 

on all subsets except for one, and then the model is evaluated on that one subset that was not used in training. 

This process is repeated k times, where each time a different subset is used for evaluation [81]. Thus, k-

fold cross-validation performs the holdout method k times. This approach is commonly used in small 

datasets to prevent overfitting, as it improves the generalization power of the model. 

Leave-One-Out Cross-Validation: This approach is a special version of k-fold cross-validation. In leave-

one-out cross-validation, the number of folds is equal to the dataset samples [82]. Furthermore, the model 

is trained repeatedly, where each time one sample is selected as a test set, and all the other samples are 

selected as a training set.  

We trained and evaluated the models using the Holdout Method validation method with various data split 

ratios and reached the best performance with a split ratio of 80% training set and 20% test set. 

4.6 Evaluation Metrics 

We evaluate the performance of the models using two well-known metrics: the 𝑅2 score and the root mean 

square error (RMSE). In the following subsections, these two metrics are described. 

4.6.1 𝑹𝟐 score  

Also called the coefficient of determination, the 𝑅2 score is a goodness-of-fit measure for regression 

models. It indicates the percentage of the variance in the dependent variable that can be explained by the 

independent variables [80]. The 𝑅2 score measures the strength of the relationship between the model and 

the dependent variable on a convenient 0 – 100% scale.  

 

The 𝑅2 score is computed by: 
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𝑹𝟐 = 𝟏 −
∑ (𝒚𝒊−𝒚̂𝒊)𝟐𝑵

𝒊=𝟏

∑ (𝒚𝒊−𝒚̅𝒊)𝟐𝑵
𝒊=𝟏

                                                (4.14) 

where y is the actual value, 𝑦̂ is the predicted value and 𝑦̅ is the mean of all y values. The 𝑅2 has a range 

from 0-1 , where 0 indicates that the model does not explain any of variability of the response data around 

its mean, and 1 indicates that the model explains all the variability of the response data around its mean... 

Accordingly, a higher 𝑅2 score specifies that the model fits the data better. 

4.6.2 Root Mean Square Error (RMSE)  

The RMSE is the standard deviation of the prediction errors, also called residuals. In Figure 4-5, we can 

see an example of a fitted linear model, where the residuals are the vertical lines showing the difference 

between the actual data values and values predicted by the model. 

 

 

Figure 4-5: Residuals in a linear model 

 

The RMSE is used to measure how the residuals are dispersed. Moreover, it can be used to compare the 

prediction errors of different models to determine the model with the highest performance on the data. 

The RMSE can be calculated by the following equation: 
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𝑹𝑴𝑺𝑬 = √∑ (𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅𝒊−𝑨𝒄𝒕𝒖𝒂𝒍𝒊)𝟐𝑵
𝒊=𝟏

𝑵
                                      (4.15) 

where 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 corresponds to the model predictions, 𝐴𝑐𝑡𝑢𝑎𝑙𝑖 corresponds to the actual values of the 

data samples, and N is the number of samples. Lower RMSE values indicate that the model fits the data 

better. 

4.6.3 Mean Absolute Error (MAE)  

We also used the MAE as our performance evaluation metric, this was calculated by the following equation: 

 

                                                      𝑴𝑨𝑬 =
𝟏

𝑵
 ∑ |𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅𝒊 − 𝑨𝒄𝒕𝒖𝒂𝒍𝒊|𝑵

𝒊=𝟏                                         (4.16) 

 

4.7 Summary 

In this chapter, we described the preprocessing steps and explained how we performed feature scaling. We 

discussed the machine learning models that we have trained and the hyperparameters tuning methods that 

we have explored. Furthermore, we talked about the evaluation metrics that we used to evaluate the 

performance of our models. In the next chapter, we will present the results of training and testing the models 

for QoE prediction and compare them based on the evaluation metrics that we mentioned in this chapter. 
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Chapter 5 

Results and Discussion 

We presented in Chapter 3 the data preparation and feature extraction methods that were applied to the 

Waterloo dataset in order to extract the quality features needed for the prediction process. In Chapter 4, we 

discussed the machine learning prediction models that will be trained to carry out the QoE prediction. In 

this chapter, we present the results of training different machine learning regression models using the 

proposed enhanced set of features for QoE prediction. In Section 5.1, we describe the results produced with 

machine learning regression models, we also illustrate the performance of each regression model and the 

metrics used to measure the performance. In Section 5.2, we present performance of each regression model 

on feature subsets. Moreover, we perform a comparative analysis between the different trained models.  

5.1 Results of Machine Learning Models 

As mentioned in the Chapter 4, we trained several machine learning models on the collected data for QoE 

prediction. We performed a comparative analysis between the different models to determine the best 

predictor for our problem. The test results for each model are presented in the following subsections. 

We trained several regression models on the Waterloo III Video QoE Database, by creating two separate 

video sequence sets one for training and one for testing. Within each set, training or testing, all video 

sequences were used for training or testing, it is a common approach used to account for content 

dependencies.  

The tested regression models are linear models (Ridge and Lasso regression), K-nearest neighbors, Support 

Vector Regression (SVR) using an RBF kernel and one ensemble method, Random Forests (RF). We 

preprocessed the features for all regression models by mean subtraction and scaling to unit variance. Note 

that we computed the data mean and variance in the feature transformation step using only the training data. 

For each of the regression models, we determined the best parameters using 10-fold cross validation on the 

training set. This process was repeated on all possible train/test splits. 
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First we trained each of the regression models, next we applied regression on the test set to make QoE 

predictions. We computed the correlation between the predicted QoE values which resulted after regression 

and the true MOS scores in the test set, using the Spearman Rank Order Correlation Coefficients (SRCC) 

and the Pearson Linear Correlation Coefficients (PLCC). We also assessed the learning model performance 

using all evaluation metrics mentioned in Chapter 4, the 𝑅2 score and the root mean square error (RMSE), 

the mean absolute error (MAE) and model train time. 

We conducted 100 different runs, each using a random 80% train and 20% test split of the video content. 

The calculations of all previously mentioned evaluation metrics were repeated on each of the runs yielding 

a set of SRCC and PLCC, R2 score, and RMSE values for all possible train/test content combinations. Then 

the median value for each set is calculated to generate a single number describing the performance level of 

our model.  

For preprocessing the data and training the machine learning models, we used a Lenovo computer, INTEL® 

CORE™ i5-7200U Processor and a 4 GB RAM. Moreover, we used Python 3 on a Linux operating system. 

Scikit-Learn [83], Numpy [84], Pandas [85] and Matplotlib [86] libraries in Python comprise the machine 

learning framework. 

Tables 5.1 show the regression results using only the quality features namely, init_buf_time, reb_perc, 

av_sw_mag, time_hig_layer, stall_dur, sw_count without using any VQA metric. while the results of using 

all features with different VQA metrics added are shown in Tables 5.2 -5. 6.. The table columns list the 

metrics used, the R2 score, along with the model train_time, the RMSE and the MAE. All results are 

reported on 100 runs of 80% train and 20% test splits. 

Table 5-1 Result of regression on quality features 

Before R2 Train_time RMSE MAE 

Ridge 0.272 0.140 12.004 9.379 

Lasso 0.324 0.135 8.450 6.123 

SVR 0.345 9.424 11.622 8.755 

RF 0.498 10.842 9.837 6.918 

KNN 0.402 1.098 11.509 8.941 
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Table 5-2 Results of Regression on all features when Using VMAF as VQA metric 

After R2 Train_time RMSE MAE 

Ridge 0.705 0.124 8.935 7.376 

Lasso 0.710 0.139 8.883 7.248 

SVR 0.691 10.353 8.349 6.621 

RF 0.730 7.420 8.044 5.839 

KNN 0.649 0.979 8.980 6.968 

 

 

Table 5-3 Results of Regression on all features when Using VQM as VQA metric 
 

After R2 Train_time RMSE MAE 

Ridge 0.654 0.223 8.920 6.888 

Lasso 0.692 0.204 9.252 7.460 

SVR 0.732 9.925 7.783 6.435 

RF 0.688 11.549 7.625 6.095 

KNN 0.682 0.9762 9.006 6.961 

 

 

Table 5-4 Results of Regression on all features when Using SSIMplus as VQA metric 

After R2 Train_time RMSE MAE 

Ridge 0.6537 0.142 9.730 7.758 

Lasso 0.701 0.1480 8.449 6.801 

SVR 0.738 9.780 8.372 6.054 

RF 0.752 11.473 8.162 6.088 

KNN 0.7306 0.9718 7.767 9.760 

 

Table 5-5 Results of Regression on all features when Using STRRED as VQA metric 

 

 

 

 

 

 

 

 

 

After R2 Train_time RMSE MAE 

Ridge 0.424 0.134 11.711 8.980 

Lasso 0.454 0.155 10.522 8.507 

SVR 0.513 9.599 9.653 7.429 

RF 0.690 7.384 9.309 7.424 

KNN 0.546 1.027 8.814 6.661 
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Table 5-6 Results of Regression on all features when Using PSNR as VQA metric 

After R2 Train_time RMSE MAE 

Ridge 0.465 0.131 11.230 8.400 

Lasso 0.418 0.147 11.547 9.580 

SVR 0.636 9.859 7.987 7.883 

RF 0.565 7.312 10.381 7.768 

KNN 0.482 1.144 9.398 6.949 

 

 
It can be noted that the inclusion of different VQA metrics to the features has resulted in an improvement 

in the prediction score of all regression models. Specifically, for the metric, VMAF [57], Random Forest 

regression has reached 0.730%, followed by Lasso with 0.710% and ridge with 0.705%. When using VQM 

[42] as the VQA metric, SVR regression result in 0.73% prediction score (accuracy). Using SSIMplus as 

VQA metric, Random Forest results in the highest prediction score among all models and all metrics which 

is 0.752%followed by SVR at 0.738% and next come KNN with 0.7306% 

Figures 5.1-5.7 demonstrate samples of the scatter plots of the predicted QoE score vs the MOS score once 

with using just the objective quality metrics (up) and when they are combined with all features (down). The 

SRCC and PLCC values in both cases are also shown. Clearly, the predicted QoE significantly improved 

both in terms of the linear relation between variables refereed to as linearity and strength and direction of 

monotonic relationship referred to as monotonicity. 
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Figure 5-2: MOS scores (horizontal axis) against predicted QoE scores (vertical axis) using VMAF and 

Support vector regressors. Up: when using only VMAF to predict the QoE; Down: QoE scores after 

regression when using all features. 
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Figure 5-2: MOS scores (horizontal axis) against predicted QoE scores (vertical axis) using VMAF and 

Ridge regressors. Up: when using only VMAF to predict the QoE; Down: QoE scores after regression 

when using all features 
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Figure 5-3: MOS scores (horizontal axis) against predicted QoE scores (vertical axis) using VMAF and 

Random Forest regressors. Up: when using only VMAF to predict the QoE; Down: QoE scores after 

regression when using all features. 
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Figure 5-4: MOS scores (horizontal axis) against predicted QoE scores (vertical axis) using VQM and 

Random Forest regressors. Up: when using only VMAF to predict the QoE; Down: QoE scores after 

regression when using all features. 
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Figure 5-5 MOS scores (horizontal axis) against predicted QoE scores (vertical axis) using PSNR and 

Random Forest regressors. Up: when using only PSNR to predict the QoE; Down: QoE scores after 

regression when using all features. 
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Figure 5-6: MOS scores (horizontal axis) against predicted QoE scores (vertical axis) using SSIMplus and 

Lasso regressors. Up: when using only SSIMplus to predict the QoE; Down: QoE scores after regression 

when using all features.  
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 Figure 5-7: MOS scores (horizontal axis) against predicted QoE scores (vertical axis) using STRRED 

and Random Forest regressors. Up: when using only STRREDs to predict the QoE; Down: QoE scores 

after regression when using all features. 

 

 

Table 5.7 (a,b) summarizes the results of SRCC , and PLCC respectively,  for the different video quality 

assessment (VQA) algorithms where the median SRCC and PLCC before regression, which is calculated 
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on data set after we split into train/test, and we compute the correlation between VQA metric and MOS 

score before using any regressor and the median SRCC and PLCC values after regression when using 

different objective quality metrics added to the features. All results are reported on 100 runs of 80% train 

and 20% test splits.  

Table 5.7 shows the SRCC and PLCC results on different video quality assessment algorithm 
a) SRCC Results 

VQA VMAF VQM SSIMplus STRRED PSNR 

Before 0.417 0.342 0.535 0.604 0.343 

Ridge 0.795 0.828 0.734 0.690 0.653 

Lasso 0.863 0.817 0.827 0.628 0.578 

SVR 0.768 0.822 0.848 0.692 0.621 

RF 0.851 0.800 0.858 0.747 0.730 

KNN 0.806 0.857 0.850 0.748 0.677 

 

(b) PLCC Results 
VQA VMAF VQM SSIMplus STRRED PSNR 

Before 0.437 0.356 0.546 0.617 0.354 

Ridge 0.845 0.838 0.754 0.693 0.673 

Lasso 0.821 0.834 0.712 0.610 0.579 

SVR 0.829 0.822 0.812 0.692 0.800 

RF 0.847 0.800 0.858 0.747 0.772 

KNN 0.816 0.857 0.859 0.747 0.677 

  

 

Note that the SRCC and PLCC values improve when using the regression scheme for all quality metrics. 

For STRRED and PSNR, the improvements were much less than those obtained with other objective 

metrics. However, the improvements of VQM, VMAF, SSIMplus were remarkably higher for all the 

regression models. SSIMplus using Random Forest and VMAF using SVR yielded the best overall 

performance in terms of SRCC and PLCC.  
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5.2 performance of regression model on feature subsets 

To enhance this study, it is important to analyze the relative feature contribution to the overall prediction 

results. One way to do that is to utilize the tree-based method. First, we picked the best and the worst 

performing quality models before regression, i.e., VMAF and STRRED along with the highest performing 

RF regression model (in terms of SRCC, PLCC). Figure 5.8 shows the feature importance after 100 runs 

on 20% 80% train/test splits.  

 

Figure 5-8 Feature Importance 

The result from feature importance tree-model shown in figure 5.8 suggests that av_sw_mag, reb_perc and 

init_buf_time, time_hig_layer are the four most important features. To further investigate the effects of 

those features on the QoE prediction task, we experimented further by using different feature subsets, and 

recorded the QoE prediction performance of each. First, consider the following feature subsets with their 

indices: as shown in Table 5.8, (1) VQA (2) ,time_hig_layer ,(3) av_sw_mag,, (4) reb_perc+init_buf_time 

(5)VQA+time_hig_layer, (6),VQA+av_sw_mag,, (7) VQA+ time_hig_layer+ init_buf_time ,(8) 

time_hig_layer+ init_buf_time+ reb_perc, (9) time_hig_layer + init_buf_time + reb_perc 

+av_sw_mag,(10) VQA+ av_sw_mag +reb_per + init_buf_time, (11). VQA+ time_hig_layer+ 

reb_perc+init_buf_time, (12) VQA+4 important features. We measured the performance of each feature 

subset using certain VQA metrics in terms of Spearsman correlation score and Pearson linear correlation. 

The upper part of Table 5.8 presents SRCC results and the lower part presents the PLCC results.  
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Features 1 2 3 4 5 6 7 8 9 10 11 12 

Ridge 0.604 0.316 0.021 0.163 0.576 0.670 0.544 0.496 0.508 0.770 0.795 0.795 

Lasso 0.581 0.229 0.0700 0.164 0.59 0.60 0.565 0.487 0.564 0.787 0.790 0.801 

SVR 0.577 0.315 0.264 0.488 0.676 0.610 0.800 0.582 0.625 0.796 0.840 0.866 

RF 0.521 0.330 0.315 0.620 0.600 0.567 0.701 0.535 0.65 0.819 0.829 0.863 

KNN 0.321 0.322 0.034 0.231 0.510 0.45 0.654 0.431 0.501 0.732 0.72 0.755 

SRCC Results  

Features 1 2 3 4 5 6 7 8 9 10 11 12 

Ridge 0.672 0.341 0.083 0.131 0.747 0.793 0.643 0.544 0.539 0.815 0.821 0.845 

Lasso 0.599 0.265 0.097 0.156 0.543 0.665 0.651 0.532 0.543 0.801 0.811 0.823 

SVR 0.783 0.424 0.284 0.550 0.763 0.673 0.661 0.529 0.679 0.810 0.814 0.838 

RF 0.522 0.362 0.290 0.624 0.701 0.646 0.739 0.537 0.65 0.853 0.840 0.870 

KNN 0.325 0.326 0.033 0.321 0.556 0.47 0.657 0.422 0.521 0.734 0.74 0.768 

PLCC Results 

 

Table 5-8: Results on different feature subsets when VMAF was used as the quality metric (VQA) 

 

One can note that the regression performance for the feature subsets using VQA was high for almost all 

regressors. For the different feature combinations and their effect on QoE prediction, when VQA metrics 

were not included with the feature set, the prediction performance decreased considerably. Regarding the 

regression models, Ridge and Lasso gave very similar performances when using fewer feature types, but as 

the number of features grew, the Ridge regression yielded better results. Overall, the combination of all 

feature types gave the best performance over most regression models as we added more features the 

performance improved. As our recommendation that the inclusion of diverse QoE-aware features would 

result in a successful QoE prediction model that help approximate the subjective QoE. 

5.3 Summary 

In this chapter, we presented results of the QoE prediction where we combined VQA features and quality 

influence features using different machine learning models. We presented the results of our first experiment 
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to test performance of regression models that showed using all features with different VQA metrics, the 

prediction score of all regression models was improved.  

Next, we presented the results of our second experiment to test linearity and monotonicity of regression 

models by computing the values of SRCC and PLCC. Using all features with different objective quality 

metrics has significantly improved the two values. 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

The rapid growth of streaming services due to the deployment of higher capacity mobile networks and more 

efficient video compression and streaming techniques required the development of new standard for video 

streaming service where DASH was adopted by service providers. Despite its capability in providing 

adaptive bitrates that match fluctuating bandwidth, DASH results in perceptual quality degradation. This 

makes service providers look for a way to measure the quality of experience of users to provide higher 

quality that meets user experience expectation. Therefore, there has been strong demand for QoE prediction 

models. In this work, we proposed to improve the performance of existing QoE prediction models that still 

suffer from some limitations such as limited size of dataset or using simulated streaming scenarios. The 

features that most existing database collect is not complete, as there are many key influence factors that 

affect the of quality of streaming video such as the initial delay, the rebuffering time and length and the 

quality switches. Most of existing dataset measures one or two of these factors while ignoring the others. 

In addition, there is not enough work on developing an integrated QoE aware prediction model that 

considers different impairments in a streaming session either during normal or during playback interruption 

such as rebuffering (video freeze), initial delay.  

We used the SQoE-III database, which contains data that measures compression artefacts, in addition to 

initial delay, switching and rebuffering features. The streaming scenarios are realistic.  

We proposed a feature enhancement scheme that integrates/combines features obtained during playback 

interruption or during normal playback. We first did correlation and data analysis to study the effect of both 

set of features on the subjective user QoE measured as MOS. From the result of correlation analysis of 

playback interruption features on MOS, we found out that using these features alone is not enough to predict 

MOS. From the results of the correlation of various VQA models we find higher correlation against MOS. 
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To predict QoE effectively, we combined both sets of features as a single enhanced set applied to different 

machine learning models to predict the QoE value.  

The results of our first experiment, to test the performance of regression models shows that after using all 

the features with different VQA metrics, the prediction score of all regression models was improved. 

Specifically, for  

VMAF [42], Random Forest regression has reached 0.730%, followed by Lasso with 0.710% and ridge 

with 0.705%. When using VQM [42] as our VQA metric, SVR regression resulted in 0.732% prediction 

score (accuracy). Using SSIMplus as VQA metric, Random Forest results in the highest prediction score 

among all models and all metrics which is 0.752% followed by SVR at 0.738% and next came KNN with 

0.730% 

The results of our second experiment to test linearity and monotonicity of regression models shows that the 

effect of using only the VQA metric and then using VQA combined with all features has significantly 

improved the SRCC and PLCC values both in terms of monotonicity and linearity. 

It is worth mentioning that despite the demonstrated contributions provided by our work, there are certain 

limitations: 

- We worked on just one dataset. Including multiple datasets would enable us to reach to more 

definitive conclusions.  

- The number of volunteers that was involved in the study is limited. 

- We were interested in the studies of discrete QoE, where subjects provide a single score describing 

their overall QoE on each presented video sequence. Studies of continuous-time QoE that involve 

real-time measurements of each subject’s instantaneous QoE are needed.  

 

6.2 Future Research Directions 

As future research directions and possible extensions of this work: 
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1. Develop QoE prediction models directly used for continuous time QoE monitoring. Time series 

models can be explored to achieve this objective.  

2. Construct a new database that includes continuous time subjective data that makes it suitable for 

designing continuous time QoE models. 

3. Deploy methods which integrate temporal aspects of user QoE in order to design better strategies 

for the resource allocation problem.  

4. Other influence factors such as user and context (e.g., habits, cultural background, environment, 

etc.) can be also considered to design a robust and holistic QoE models. 

5. Study the complexity of the proposed models in terms of resource allocation (e.g, storage, energy 

consumption, etc.) perspective. 

6. Propose a scheme that uses the QoE information to deliver adequate levels of video to specific 

users.  
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