
joint task planning and resource
allocation in mobile edge learning

systems

By

amr abutuleb

A thesis submitted to the Graduate Program in Department of Electrical and Computer

Engineering in conformity with the requirements for the Degree of Master of Applied

Science

Queen’s University

Kingston, Ontario, Canada

August, 2021

Copyright © Amr Abutuleb, 2021

Dedication

for the sake of allah

to my parents

i

Abstract

Mobile Edge Learning (MEL) has recently emerged as a paradigm to enable distributed

parallelized learning (PL) and federated learning (FL) on resource-constrained wireless edge

devices. The development of distributed learning is a result of the fact that the number of

devices connected to IP networks is increasing exponentially. Though the individual com-

puting powers of these devices may be limited, their collective power is potentially unlimited.

This unlimited yet under-utilized computing power coupled with MEL is the future technol-

ogy for application and host serving. In this work, we aim to jointly optimize the planning

of the learning process and tasks and the allocation of physical resources for mobile edge

learning scenarios with global training time constraints. The term emlearning task planning

refers to the number of local iterations in each of these global cycles and the number of data

samples to be used for training by each device within each local iteration. The allocation

of physical resources involves the determination of the computing speeds of each device and

its communications resources to the MEL orchestrator. We discuss the problem of jointly

optimizing the learning task planning and physical resources with two different objectives.

In objective 1, we provide a solution to maximize the number of local training cycles each

device executes within a given time constraint, which was shown to achieve a faster conver-

gence to the desired learning accuracy. In objective 2, we provide a solution to minimize the

global loss function of the training process by the end of the global training time constraint.

Where we propose two novel algorithms, the dynamic and the static algorithm to solve the

problem. We finally show the performance of each objective compared to the results of

optimizing the Task Planning (TP). Where we optimize the planning parameters and the

allocation of tasks across the system and Equal Data Allocation (EDA), where we optimize

the planning parameters and the physical resources allocation across the system.

ii

Acknowledgments

First, I would like to thank my Lord gratefully, I would never accomplish this work without

his endless blessings. I would like to express my gratitude to Prof. Hossam Hassanein and

Dr. Sameh Sorour for their unrelenting support, supervision, mentorship, and guidance in

teaching me the intricacies of research. I would like to thank Prof. Hossam Hassanein for

offering me the chance to come to Queen’s University as an intern in my undergraduate years

before giving me the chance to come as a full time MASc student. I would also like to thank

Dr. Sameh Sorour specifically for keeping up with my mistakes and always guiding me to

the right direction whenever i was on the wrong track.

Dr. Magdy Abutaleb and Dr. Amany Negm, my role models in everything I do in my

life. You are my parents, my friends and my teachers. Thank you for teaching me everything

I know in life, for keeping up with my mistakes and always encouraging me to be a better

person and for always having my back whether you are in the room next to me or thousand

of miles away. Thank you for making me the man I’m today.

My brother, Ahmed Aboutaleb. Thank you for having my back in the last two years, for

helping me in my masters journey and for encouraging me whenever I was stressed out or

disappointed. Thank you for all the lovely meals that you cooked throughout the last two

years whenever I was too busy, sick or frustrated to cook (I will forever love your Bamya).

Could not have asked for a better brother/flatmate.

My Fiancé, Norhan Amgad. Thank you for being there through the rough sailing before

being there in the calm waters, thank you for your support, assistance and your encour-

agement through this journey.Your presence in my life has always been a great blessing

(Alhamdullah), Love you Coco.

My friends, Mohamed Ibrahim and Mohamed Waly for their continuous support and

lovely phone calls throughout the last two years.

I would also like to thank all my TRL colleagues for making my academic experience

iii

awesome. Special thanks to Sherif Azmy for his help in bouncing ideas, always having a

solution to my LaTeX problems and for the long beautiful walks by the lake. I also wish

to thank Basia Palmer for her patient and accurate review of this thesis and her useful

suggestions.

iv

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents v

List of Tables viii

List of Figures ix

List of Abbreviations xi

List of Symbols xiii

1 Introduction 1

1.1 Overview and Motivation . 1

1.2 MEL Learning Problem . 2

1.3 Challenges . 3

1.4 Objectives and Contributions . 4

1.5 Thesis Outline . 5

2 Mobile Edge Learning: System Model, Entities, and Literature Review 6

2.1 MEL System Model . 6

2.1.1 Machine Learning . 6

2.1.2 Distributed Learning . 9

2.1.3 MEL Description . 10

2.2 MEL Entities . 12

v

2.3 Literature Review . 13

3 Objective 1: Maximizing the Number of Local Iterations 17

3.1 System Settings . 17

3.1.1 Learning and Data Model . 17

3.1.2 Mobile Edge Settings . 19

3.2 Problem Formulation . 20

3.3 Proposed Solution . 22

3.4 Simulation Results . 23

4 Objective 2: Minimizing the Global Loss Function 29

4.1 System Model and Parameters . 29

4.1.1 Model Training Preliminaries . 29

4.1.2 Learning and Data Model . 30

4.1.3 Network Model . 33

4.1.4 MEL Settings . 34

4.2 Problem Formulation . 35

4.2.1 Basic Formulation . 35

4.2.2 Formulation Using Convergence Bound 37

4.3 Proposed Solution . 39

4.3.1 Initial Subcarrier Allocation and Bit Loading 40

4.3.2 Simplifications of the Main Problem 42

4.3.3 Special Case of Simplified Problem in FL 44

4.3.4 Rate Re-adjustment Algorithm . 51

4.3.5 Proposed Algorithms . 51

4.4 Simulation Results . 54

4.4.1 Physical Simulation Environment . 54

4.4.2 Dataset and Learning Settings . 55

vi

4.4.3 Simulation Results for PL . 55

4.4.4 Simulation Results for FL . 60

5 Conclusions 64

5.1 Summary and Conclusion . 64

5.2 Future Work and Recommendations . 65

References 67

vii

List of Tables

3.1 Simulation parameters . 24

4.1 Simulation parameters . 54

viii

List of Figures

1.1 The architecture of a MEL system in the two different sub-paradigms 2

2.1 The difference between FL and PL. 11

2.2 The architecture of the PL and FL algorithms that is executed over a wireless

network in iteration l . 13

3.1 Number of local cycles for all schemes against K for T = 30 and 60s. 25

3.2 Number of local cycles for all schemes against T for K = 10 and 20. 26

3.3 Learning accuracy achieved at the end of each global cycle for T=30s and K

= 10 and 20. 27

3.4 Learning accuracy achieved at the end of each global cycle for K=20 and T

= 12s and 30s. 28

4.1 Relation Between C and f(C). 49

4.2 Total number of iterations achieved by different numbers of learners for T = 60 s. 56

4.3 Total number of iterations achieved at different global time constraints for

K = 20. 57

4.4 Temporal progression of global cycles achieved by the different algorithms for

T = 60 s and K = 20. 58

4.5 Terminal loss function and accuracy performance of the static joint, TP, and

EDA algorithms for K = 20. 59

4.6 Terminal loss function and accuracy performance of the dynamic joint, TP,

and EDA algorithms for K = 20. 60

4.7 Total no. of iterations achieved in FL using the static and dynamic joint

algorithms for K = 20. 61

ix

4.8 Terminal loss function and accuracy achieved in FL using the static and dy-

namic joint algorithms for K = 20. 62

x

List of Abbreviations

4G Fourth Generation Communication Technology

5G Fifth Generation Communication Technology

BS Base Station

CPU Central Processing Unit

DL Distributed Learning

DNN Deep Neural Networks

DP Data Parallelism

EDA Equal Data Allocation

FL Federated Learning

GD Gradient Descent

GPR Ground Penetrating Radar

ILPQC Integer Linear Program with Quadratic Constraints

IoT Internet of Things

KKT Karush-Kuhn-Tucker

LTE Long-Term Evolution

MEL Mobile Edge Learning

ML Machine Learning

MNIST Modified National Institute of Standards and Technology

xi

MP Model Parallelism

NLCLP Linear Integer Program with Nonlinear Constraints

NN Neural Networks

NP Non-deterministic Polynomial-time

OFDMA Orthogonal Frequency Division Multiple Access

OPTI Optimization Interface

PARTEL Partitioned Edge Learning

PL Parallelized Learning

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TP Task Planning

Wi-Fi Wireless Fidelity

xii

List of Symbols

K Number of Learners

D Total number of samples available

xj Number of features in sample j

yj Target value for sample j

f(xj, yj, w) Loss function of sample j

dk Number of samples used by learner k

F Feature vector size of sample j

Pd Number of bits representing each feature

Sd Number of data-size dependent model parameters

Sm Number of data-size independent model parameters

Pm Number of bits representing each parameter

τ Number of iterations performed in one global cycle

L Total iterations performed in the learning process

ω Parameter used to apply the convergence bounds

w(l) Local model parameter vector after the lth iteration

Cm Number of processor flops consumed per iteration

N Number of subcarriers in the system

n Number of subcarriers allocated to learner k

xiii

ck,n Number of bits needs to be delivered on subcarrier n

BER Target bit error rate

No Noise power spectral density

hk,n Channel gain between the orchestrator and learner k

Ts OFDMA symbol duration

fk CPU flop speed of learner k

G Total number of global cycles performed

η Learning rate of the model

ε Lower bound on F (w[L])− F (w∗)

ρ Meta parameter related to ρ-Lipschitz assumption

β Meta parameter related to β-smoothness assumption

xiv

1.1 Overview and Motivation

Chapter 1

Introduction

1.1 Overview and Motivation

The Cisco annual internet report [1] projects that the number of devices connected to

IP networks (e.g., sensors and wearable devices) will be more than three times the global

population, growing from 22 billion in 2020 to 29.3 billion by 2023. Though the individ-

ual computing powers of these devices may be limited, their collective power is potentially

unlimited, in most cases, highly under-utilized. On the other hand, these devices typically

produce large amounts of data [2], a large portion of which is private not to shared thus ex-

posing it to a barrage of privacy breaches [3]. Even for non-private data, the cost of sending

them to cloud data centers for analytics is prohibitive bandwidth and delay wise standpoint.

As a result, it is estimated that over 90% of this data will be stored and processed among

these devices themselves. These facts motivated the emergence of several novel mobile edge

learning (MEL) paradigms at the network edge.

The idea behind MEL is the distribution of the learning process over multiple mobile edge

nodes (a.k.a. as learners), by training a common model on these learners and aggregating the

model parameters obtained from them at one master node (a.k.a. orchestrator) to compute

the final aggregated model. MEL is thus clearly the solution to enable learning across devices

baring private datasets without sharing these datasets with other nodes, thus maintaining

their privacy. This defines the sub-paradigm of MEL known as federated learning (FL). On

the other hand, MEL is also most suited for resource-constrained devices to offload their

non-private data to neighboring devices (or even private date to trusted neighboring nodes)

to parallelize the learning over multiple of these resource-constrained nodes, thus speeding up

the learning process and reducing their consumed resources in it. This introduces the other

sub-paradigm of MEL known as parallelized learning (PL). Though being clearly different

in nature and purpose, it can be inferred that FL can be procedure-wise viewed as a special

1

1.2 MEL Learning Problem

case of PL in which datasets are already hosted at the learners, and need not be conveyed

to these learners along with the common learning model (as in PL). Otherwise, the learning

procedure is very similar.

Figure 1 illustrates the two sub-paradigms and shows the differences between the PL and

FL systems.

Figure 1.1: The architecture of a MEL system in the two different sub-paradigms

1.2 MEL Learning Problem

MEL can be viewed as a distributed learning (DL) system that has been moved to the

heterogeneous wireless and mobile edge setting. First, the orchestrator initiates the learning

process by distributing the machine learning (ML) model on a set of learners (distributes

ML model and data in PL). Next, each learner runs a number of local training iterations

(which we will refer to local iterations for short), in each of which it applies the gradient

descent approach to their local model using a number of data samples (whether sent by

the orchestrator in PL or taken from the stored data points at the learner in FL). After a

certain duration and/or number of local iterations, each learner sends that model back to

the orchestrator to compute the aggregated model. These aforementioned steps constitute

2

1.3 Challenges

one global cycle. These global cycles is repeated until the time constraint is met or until

the desired accuracy/desired loss function target is achieved. The time needed to send the

model and receive the weights is known as the transmission time, while the time needed to

apply the gradient descent approach is known as the execution time.

The total size of tasks allocated to each learner is usually preset by the orchestrator

based on it’s computational capabilities, the desired accuracy/loss function target and the

time constraint of the training/learning process. The total number of local iterations and

global cycles (a.k.a planning parameters) performed by all the learners, and the number

of data samples each learner will use in its training per global cycle (a.k.a task allocation)

will impact both the computation time and the transmission time. On the other hand, the

communication bandwidth and compute power (a.k.a resource allocation) will impact the

transmission time. The MEL learning problem is defined as the problem of evaluating the

planning parameters and the allocation of tasks and resources to achieve the desired accuracy

or to minimize the global loss function.

1.3 Challenges

MEL comes with a wide range of challenges, most of these challenges are shared between

MEL and edge computing. We next describe three core challenges associated with MEL,

including bottleneck, heterogeneity, and privacy.

1. Costly Communication: Communication is a critical bottleneck in MEL networks

especially in federated learning. Where networks consists of a massive number of

devices, this causes sluggishness in the communication and also makes it slower than

local computation by many orders of magnitude [4]. In order to successfully fit a

machine learning model to data on these devices, it would be efficient to have model

updates or small messages sent throughout the learning process. Also, in parallelized

learning concerns regarding the cost of sending a complete batch of the allocated data

across the network to every learner arise.

3

1.4 Objectives and Contributions

2. Systems Heterogeneity: In a practical MEL system, heterogeneity is a challenge

due to the variability in every aspect of the network. For example, each device would

have differences in hardware, power needs and consumption, and connectivity causing

incompatibility. Heterogeneity rise up as a problem when trying to allocate the tasks

across the learners, this means that each learner needs to get the exact number of

tasks that they can process in a given time constraint. Additionally, allocation of

resources is important and also depends on the learners heterogeneity. Availability of

the connected devices is another aspect to consider, for example hundreds of active

devices in a million-device network [5]. Therefore, these aspects must be taken into

consideration when designing a fully functional MEL system.

3. Privacy Concerns: Moving around sensitive data to run a centralized learning pro-

cess has always been one of the challenges facing MEL. Privacy issues are of major

concern in edge learning, with parallelized learning this issue becomes even greater as

raw data is sent from the orchestrator to the learners across the system. On the other

hand, federated learning mitigates this issue by sending only model updates across the

networks, as in gradient information and model parameters [6, 7].

1.4 Objectives and Contributions

This work aims to solve the MEL learning problem by optimizing the planning of the

learning process and tasks, and the allocation of physical resources for mobile edge learning in

both FL and PL. We will compare the joint optimization performance with the performance

of optimizing the task planning (TP), where we optimize the planning parameters and the

allocation of tasks across the system and equal data allocation (EDA), where we optimize

the planning parameters and the physical resources allocation across the system respectively.

Our two main objectives are summarized below.

Objective 1: We consider the problem of joint task and resource allocation for both PL

and FL, where we set a time constraint on the time of one global cycle. The aim of these

4

1.5 Thesis Outline

adaptive allocations is to maximize the number of local updates within the constrained

duration of a global cycle, which was shown to achieve a faster convergence to the desired

learning accuracy. We evaluate our solution’s performance with the TP or EDA solutions of

the same problem, for the MNIST dataset.

Objective 2: Given a global training time constraint, we consider the problem of jointly

optimizing the planning of the learning tasks and the allocation of physical resources over

a network of MEL devices using a multicarrier scheme (e.g., OFDMA) for multiple access.

We chose OFDMA because of its dominance as a multiple access scheme in the majority of

current wireless communication networks (e.g., 5G, Wi-Fi 6). With the aim of minimizing

the overall loss function within this global time constraint, the planning of the learning task

involves the determination of the number of global learning cycles within the constrained

global training time, the number of local iterations in each of these global cycles, and the

number of data samples to be used for training by each device in each of these local iterations.

On the other hand, the allocation of physical resources involves the determination of the

computing speeds of each device and its allocated OFDMA subcarriers and bit loading on

them. We evaluate the performance of our solution through simulations covering the MNIST

dataset, various machine learning models, and different system configurations with varied

numbers of learners. We also show that the proposed joint algorithms outperform the TP

or EDA solutions of the same problem.

1.5 Thesis Outline

The thesis is organized as follows: Chapter 2 provides a comprehensive literature review

of MEL, in particular the MEL system model and architecture. Chapter 3 provides our

system model, problem formulation, proposed solution and simulation results for objective 1.

Chapter 4 provides our system model, problem formulation, proposed solution and simulation

results for objective 2. Chapter 5 concludes and sheds light on future work.

5

2.1 Machine Learning

Chapter 2

Mobile Edge Learning: System Model, Entities, and

Literature Review

In this section we present the MEL system model, describe the different entities of a

MEL system and review the current literature on MEL and it’s limitations.

2.1 MEL System Model

In this subsection, we elaborate on the system model of MEL. Firstly, we talk briefly about

machine learning (ML). Secondly, we extend the ML discussion to distributed learning (DL)

and lastly, we elaborate on how DL when moved to the edge settings is known as MEL.

2.1.1 Machine Learning

Machine learning (ML) algorithms are designed to automatically solve a problem, based

on having been already trained on an available data set. There are three types of problems

that ML can solve, which can be described as:

1. Supervised Learning: Supervised learning is learning a function where there is a

set of inputs that relates to a set of outputs [8–10]. Supervised learning algorithms

receive a dataset with a labeled feature column, where each sample in the dataset has

a corresponding label or ground truth. Supervised learning can be further divided into

classification and regression:

• Classification: Classification models approximate a mapping from the input

variables to a discrete output variable [11–13]. A classification model classifies

the inputs into one of two or more classes. The performance of the model is often

measured by classification accuracy.

6

2.1 Machine Learning

• Regression: Regression models approximate a mapping from the input variables

to a continuous output variable [14–16]. The model’s performance is measured in

terms of errors made in the model’s predictions.

2. Unsupervised Learning: Unsupervised learning algorithms receive a set of input

variables with no output variable or label [17–19]. The objective of unsupervised

learning is to learn the underlying structure of the data and find an efficient represen-

tation of the data. Two unsupervised learning tasks are clustering and dimensionality

reduction:

• Clustering: The task of clustering is the collection of datapoints that share sim-

ilar features into one cluster [20–22]. This learning task also helps in identifying

and matching a new datapoint to a cluster.

• Dimensionality Reduction: The idea of dimensionality reduction is to project

samples from a high-dimensional space onto a lower-dimensional space without

losing more than 10% of the projected information [23–25], reducing the complex-

ity of the data while retaining its structure.

3. Reinforcement Learning: Reinforcement learning is a class of machine learning

where an agent interacts with the environment [26–28]. The goal of reinforcement

learning is to train the agent to choose the optimum action for a given environmental

state, that yields the highest reward

In general, every supervised learning task consists of a training phase, validation phase

and a testing phase.

At the beginning of a ML learning process, the data is usually distributed as 70% for

training, 15% for validation and 15% for testing. For training, the ML model parameters

keep being updated using an iterative procedure to minimize the loss function. Before the

testing phase, there is usually a validation phase. In this phase, part of the training dataset

is hidden from the model while training. The hidden part is given to the model after it has

7

2.1 Machine Learning

finalized its training. How well the model performs in the validation phase, is generally a

good indicator of how well this model will perform with unseen data. Usually a threshold

is set for the validation accuracy, if the model does not achieve that threshold, the model

retrains and test again until it’s validation accuracy is above the desired accuracy. Finally, in

the testing phase, the model is given the test dataset and the output of the model is compared

to the actual targets(The true value of each data sample). The model’s performance in the

testing phase is gauged by the level of accuracy or the F1-Score.

In a typical ML process, the model will be trained on a data set comprised of D samples.

Each sample will have its own set of features, which acts as an input to the ML model. In a

typical ML process, the model will be trained on each data sample dn for n = 1, ..., D, where

each sample will have its own set of F features that can be denoted by xj where j = 1, ..., F .

The set of features that belong to each sample n can be denoted as xn = {x1, ..., xj, ..., xF}.

In ML, the objective can be summarized as using a set of parameters w to find a relation

between xn and the target value yn such that the loss function F (xn, yn, w) or Fn(w) is

minimized. From this, the total loss over the entire dataset can be defined as:

F (w) =
1

D

D∑
n=1

Fn(w) (2.1)

It’s often difficult to find an analytical solution to the loss equation. Therefore, an iterative

gradient descent approach is used so that the model parameter set at any discrete time-step

l, for l = 1, ..., L relates to the previous time-step and the gradient of the loss as:

w[l] = w[l − 1]− η∇F (w[l − 1]) (2.2)

The learning rate represented by η is usually set on the interval (0, 1) and influences the

convergence rate and the final accuracy. Typically, the ML model will pass over the entire

dataset and this complete pass is known as an epoch.

The output of the ML algorithm differs depending on the application, it may be a real

8

2.1 Distributed Learning

number, a set of integers, or a binary number. In binary classification, the output is 0 or 1

(zero or one), which tells us whether a data sample belongs to a category or class. In multi-

class classification, the output may be an integer representing the class label or a set of real

numbers representing the probability of a data sample belonging to a class. In regression,

curve fitting or time-series prediction, the output is simply a real number. Typically, a loss

function is used to quantify the difference between the actual target and the ML model

output.

2.1.2 Distributed Learning

Many ML techniques, including regression, support vector machine (SVM) and neural

networks (NN) built on gradient-based learning. Because iterative approachs can be com-

putationally intensive for a single device, especially if it has low computation power, DL has

been introduced. Training an ML model on a large dataset in a distributed manner where

subsets of the data are located across multiple learners or data parallelism (DP) is one plau-

sible scenario for DL. Another scenario is, model parallelism (MP) which is training very

large models in a distributed manner on one dataset co-located at each learner. Although

both options apply to the wireless edge, most of the discussions focus on the DP scenario

In DL, there is usually one centralized controller or orchestrator that has a specific prob-

lem that it solves (e.g. classification, prediction, image segmentation). First, the orchestrator

distributes the ML model on a set of learners K = {1, .., k, ..., K}, where each learner k may

have a locally owned dataset of size dk or it may be supplied by the orchestrator. Next, the

orchestrator initiates the learning process, sending a global model w to each learner k. Each

learner then applies the gradient descent approach to their local model wk, then sends that

model back to the orchestrator to start the aggregation process. One such cycle is known as

a global cycle.

wk[l] = wk[l − 1]− η∇Fk(wk[l − 1]) (2.3)

9

2.1 MEL Description

The local model parameter set at learner k is given by wk, the local loss is given by

Fk, and η is the learning rate. At time-step l, the local model wk[l] depends on the model

wk[l − 1] at the previous time-step l, the gradient of the local loss ∇Fk(w) ∀k ∈ K can be

calculated using the local dataset of size dk as [29]:

Fk(wk) =
1

dk

dk∑
n=1

Fn(wk) (2.4)

The global model parameters will only be visible to learners after a global aggregation

is performed, this can happen at any arbitrary time-step l. For that particular time-step,

wk = w∀k ∈ K. There are two scenarios for aggregation, the synchronous case where all

learners return their model parameters after τ time-steps, and the asynchronous case where

the global aggregation will occur after different τk for each learner k. Our work focuses on

the synchronous case as it has been proven that it usually yields the better results [30].

The global optimal model for both scenarios can be obtained by applying the following

aggregation mechanism [29]:

w[l] =
1

D

K∑
k=1

dkwk[l] (2.5)

The orchestrator can perform multiple global cycles until the objective is reached, whether

it is a specific loss function value or a pre-set accuracy threshold or even if it keeps on working

until the resources such as multi-core processors are no longer available.

2.1.3 MEL Description

Motivated by having a highly computational job on a low computational device and

privacy concerns among data owners, the concept of MEL was introduced which refer to

the transitioning of the DL setting to the heterogeneous device setting. This transition will

be performed by defining the parameters related to the heterogeneity of the computing and

communication capacities of wireless edge nodes (a.k.a. learners), and how they relate to

10

2.1 MEL Description

the steps of the global update clock duration. Two scenarios for DL’s data parallelism are

Federated Learning (FL) and parallelized learning (PL).

• Federated Learning: Different datasets are already stored at the different learners.

This scenario is motivated by the high cost and privacy risks of moving data across

the network [31].

• Parallelized Learning: The orchestrator initially possesses the entire dataset and

decides to distribute fragments of it to learners for learning purposes. This scenario is

motivated by the limited computational capabilities of edge IoT devices that need to

learn from own collected data. This limitation drives them to parallelize their learning

jobs on multiple near-by and usually trusted learners (e.g., a home local network).

Figure 2 illustrates PL and FL and shows the difference between them [32].

Figure 2.1: The difference between FL and PL.

Though being different in nature and purpose, it can be inferred that FL can be procedure-

wise viewed as a special case of PL in which datasets are already hosted at the learners, and

need not be conveyed to these learners along with the common learning model (as in PL).

Otherwise, the learning procedure is very similar. Therefore, we will be considering PL in

our work and mentioning the variations in the model if FL was the paradigm chosen.

Consider a MEL system comprising of K learners, where each learner trains its local

learning model to minimize the loss function on a batch size of dk samples. The total size of

11

2.2 MEL Entities

all batches is D =
∑K

k=1 dk, which is usually preset by the orchestrator based on it’s compu-

tational capabilities, the desired accuracy and the time constraint of the training/learning

process. Number of local iterations performed by all the learners in the synchronous system

is equivalent. There are many variables that can impact the time and may also impact the

accuracy:

• The number of local updates will directly impact the execution time

• The dataset size will impact both the execution time and the transmission time

• The resource allocation will impact the transmission time.

To summarize, the global update process in MEL occurs in periodic cycles, that we will

refer to as the global update cycles. This process should include the following steps:

1. Transmission of the global model to each learner k ∈ K

2. Computation of τ local update cycles at each learner k and sending back their locall

model to the orchestrator

3. Global aggregation at the orchestrator.

The orchestrator will typically demand the results within a pre-set duration in which

all three steps are completed. To this end, in the following two subsections we discuss the

entities of a typical MEL system and discuss some of the previous work done on MEL and

its limitations.

2.2 MEL Entities

MEL systems for both FL and PL consists of the same entities which is MEL orchestrator

and MEL learner, both of which are defined as:

1. MEL Orchestrator: The MEL orchestrator is responsible for assigning tasks and

physical resources to the MEL learners. Also, retrieving and aggregating the model

12

2.3 Literature Review

parameters produced by each MEL learner, and finally, sending back the aggregated

model to the MEL learners to continue the MEL learning process.

2. MEL Learner: The MEL learner is responsible for running a machine learning model

on it’s assigned datapoints. It’s usually a device registered as a MEL learner on the

system and has it’s own set of data in FL or receives the data that it needs to work on

from the MEL Orchestrator in PL.

Revisiting Figure 1, figure 3 illustrates the two entities and also shows the differences between

the PL and FL systems.

Figure 2.2: The architecture of the PL and FL algorithms that is executed over a wireless
network in iteration l

2.3 Literature Review

Though distributed learning has been widely investigated in wired and non-heterogeneous

computing and communication environments [33,34], recently attention has shifted towards

leveraging distributed learning in wireless, heterogeneous, edge communication and comput-

ing environments. This led to the emergence of FL, PL, and MEL. In [35], comprehensive

surveys discussed the design of FL algorithms and introduced various solutions to enhance

13

2.3 Literature Review

FL effectiveness. Yet, these works did not optimize the distribution of learning tasks nor

have they addressed the relationship between the computing/communication resources and

learning accuracy.

The work in [36] introduced partitioned edge learning (PARTEL), an MEL paradigm

that partitions the learning global model into local models, is sent to different learners while

considering their computing and communication heterogeneities. Yet, this model partitioning

approach is limited only to learning models with decomposable loss functions (e.g., logistic

regression), and is not easily applicable to models lacking such property (e.g., convolutional

neural networks).

Another interesting study [37] focused on client scheduling and resource block allocation,

where this problem was formulated to minimize the training loss and the channel state

information uncertainties. They resorted to GPR-based channel prediction methods and

derived an upper bound for the loss of accuracy in FL which minimized the loss. However,

the analysis does not investigate whether training times are affected by different channel

statistics.

The authors in [38] propose a federated learning-based optimization model design and

analysis for the wireless network. they considered the sum learning and transmission energy

minimization problem for FL, for a case in which all users transmit learning results to the

BS. However, their solution requires all users to upload their learning model synchronously

and also they did not provide any convergence analysis for FL.

In [39], to maximize the data rates of users authors used FL algorithms for traffic es-

timation. While interesting, they assumed that wireless networks can readily integrate FL

algorithms. However, in practice, wireless channels and wireless resources are not always

available where we not only can encounter training errors due to the wireless links, but also

wireless resource limitations arises (e.g., in terms of bandwidth and power).

The global aggregation frequency varied dynamically in a networked system which was

presented in [40]. Therefore, the authors tried to minimize the network traffic by doing

14

2.3 Literature Review

the aggregation step only when the model parameters changed beyond an empirically cho-

sen threshold. However, there is no theoretical analysis performed to understand how the

threshold values affects the learning. this approach only aims at reducing the network traffic,

which is insufficient in MEL systems where the computation resource is also limited.

The work in [41] focused on the number of local iterations in resource-constrained edge

environments to maximize the accuracy. This work was the first to jointly optimize the

number of local iterations and global update cycles made in the learning process. They

started by formulating a problem to minimize the loss function, where it was generally

impossible to find an exact analytical expression to relate τ which is the number of local

iterations in one global cycle and T which is the total time available for the learning process

with F (w(T)) because it depends on the convergence property of gradient descent. Although

it is generally difficult, they were able to analyze the convergence rate upper bound of the

gradient descent by making the following assumptions:

1. Fi(w) is convex

2. Fi(w) is ρ-Lipschitz, i.e., ‖Fk(w)− F (w)‖ ≤ ρ‖w − w′‖ for any w,w′

3. Fi(w) is β-smooth i.e., ‖δFk(w)− δF (w)‖ ≤ β‖w − w′‖ for any w,w′

These assumptions facilitated their solution, and they were able to get a closed form

expression for the problem. However, they overlooked the heterogeneities in the system and

assumed having an identical learner system, this is never the case in MEL as heterogeneity

is one of the core challenges that this paradigm faces.

The works in [42,43], aimed at jointly optimizing the learning and communication param-

eters to minimize the training completion time and the energy consumed in [42] and the loss

function for the learning process in [43]. Convergence time minimization was also investi-

gated in [44] for FL in wireless edge environments. Nonetheless, all these works focused only

on FL and assumed that each learner must use all its stored data samples to train its model.

They did not adapt the number of data samples used for training by the different learners

15

2.3 Literature Review

according to their physical capabilities, which may be of critical importance especially in

learning tasks with local or global training time deadlines. They also did not adopt realistic

physical layer settings of modern wireless networks (e.g., OFDMA systems).

Another thread of research considering the adaptation component, mentioned above as

part of task planning for both FL and PL, was presented in [45]. This work aimed to

maximize the number of local iterations and adapt the number of samples used for training

in each time-constrained global cycle. The work in [46] extended the work in [45] to a

more general global training time-constrained setting, to optimize task planning (including

data size adaptation) to minimize the training loss function. Details of both works can be

presented as:

• In [45], the authors were able to formulate an integer linear program with quadratic

constraints (ILPQC), which is well known to be NP-hard. They were able to calculate

an upper bound on the relaxed problem using KKT conditions by calculating the

Lagrangian function of the relaxed problem. They were able to prove their solution to

the problem matches the original problem through extensive simulations.

• In [46], the authors proved that their problem was convex by using the convergence

bounds derived in [41] and applying those convergence bounds to their problem, this

solved the problem using basic numerical solvers. Furthermore, they were able to

dynamically update their allocation by relating the loss function to the NN model

updated after each global cycle.

Although these works [45,46] addressed the heterogeneity of the learners while allocating

their tasks, they were limited in the sense that they adapted to only the task planning of

the learners and did not try to jointly optimize the physical resources alongside the task

planning.

16

3.1 Learning and Data Model

Chapter 3

Objective 1: Maximizing the Number of Local

Iterations

In this work, we consider the joint task and resource allocation problem for both time-

constrained PL and FL to maximize the number of local updates τ within the constrained

duration of a global aggregation cycle. To this end, we first study the system settings,

problem formulation and then present our proposed solution. Finally, we illustrate our

simulation results and compare them to our baselines TP and EDA.

3.1 System Settings

This work considers a system consisting of one orchestrator and K learners that perform

one FL or PL job in a mobile edge environment. We will first start by describing the

learning and data settings and parameters and then discuss the parameters and implications

of executing this learning job in the considered mobile edge environment.

3.1.1 Learning and Data Model

The learning setting considered in this work consists of any arbitrary DL model (e.g.,

linear regression, support vector machine, K-means, deep neural network) that can employ

a stochastic gradient descent (SGD) approach to train the K local models deployed by the

orchestrator on the network’s K learners. Unlike Gradient Descent (GD) approaches that

require exhaustive iteration on all stored data samples to do one single update of the learners’

parameter (a.k.a. weight) vectors, SGD enables cycles of training using randomly selected

samples from the training set to update these vectors in each of these cycles [47]. SGD

is more suitable to both FL and PL as it allows the adaptation of allocated tasks to the

learners according to their capabilities and resources. It also fits the PL concept as the

orchestrator can distribute randomly selected sets of data samples to each learner in each

17

3.1 Learning and Data Model

cycle. Luckily, it has been proven that SGD often converges much faster than GD, though

the error function may not be as well minimized as in the case of GD. However, the close

approximation obtained using SGD for the parameter values is usually enough in most cases,

particularly in mobile edge environments where speed is typically more critical than absolute

accuracy [48].

The learning process for each global aggregation cycle occurs in three steps:

Step 1: The orchestrator conveys the global learning model parameters to the learners.

For PL, this step also involves sending a set of dk data samples to each learner k ∈ {1, . . . , K}.

Defining F as the number of features in the data set, and Pd as the precision of each data

feature (i.e., the number of bits representing each feature), the total number of sent data

bits in PL can be expressed as:

Bdata
k = dkFPd (3.1)

note that in FL, these bits are not sent by the orchestrator, but rather each learner k selects

a random set of dk data samples from its own stored data set to use them in the training

process explained in Step 2. Each data sample i assigned/selected by learner k is defined by

the input-output pair {xki , yki }
dk
i=1, k ∈ {1, . . . , K}. In addition, defining Sd and Sm as the

data-size dependent and data-size independent model parameters, and Pm as the precision

of the learning model (i.e., number of bits representing each parameter/weight), the total

number of sent bits to convey the employed FL or PL model is:

Bmodel
k = Pm(dkSd + Sm) (3.2)

Step 2: Each learner starts training the received model with the dk received (in PL) or

selected (in FL) data samples for τ local cycles. The goal of the training is to minimize the

global loss function of the model expressed as:

Lglobal =
K∑
k=1

dk∑
i=1

f
(
wk, x

k
i , y

k
i

)
(3.3)

18

3.1 Mobile Edge Settings

where wk ∈ RB
model
k is the local model parameter vector and f(.) is a loss function in building

the relationship between an xki and yki through wk. To achieve this target, each learner needs

to Cm flops to execute the training calculations per data sample in each local cycle, resulting

in a total of:

Xk = dkCm (3.4)

flop computations per local cycle. In a typical SGD algorithm, it has been shown that Lglobal

is a decreasing function of τ , i.e., minimizing the loss function can be efficiently achieved

by maximizing the number of learning iterations [49], which translates in our setting to

maximize the number of local cycles.

Step 3: At the end of each global cycle of duration T , the orchestrator collects the local

model parameter vectors from all learners and aggregates them to build the global model

parameter vector. One popular method for such aggregation is the weighted averaging

approach expressed as:

w =

∑K
k=1 dkwk
D

(3.5)

where D =
∑K

k=1 dk defines the total number of samples that need to be analyzed in each

global cycle, this is usually imposed by the orchestrator given the considered learning job.

Once these three steps are completed, the orchestrator chooses to stop the process, typ-

ically, if it converged to the desired level of accuracy, or start another cycle. Interested

readers in the local/global loss function minimization and local parameter aggregations are

referred to [50] for more details.

3.1.2 Mobile Edge Settings

From the mobile edge environment viewpoint, the three learning steps and settings must

be performed by wireless/mobile edge devices. These steps physically translates into three

different time epochs to complete the above three steps of each global update cycle. The first

epoch represents the time needed to send the model and data (in PL) to each learner given

19

3.2 Problem Formulation

their channel characteristics. If learner k is assigned forward bandwidth BF
k and transmit

power P F
k . This expression is for PL. For FL, the value of dk in the first term of the numerator

is set to zero. This epoch will take:

tSk =
dkFPd + Pm(dkSd + Sm)

BF
k log2(1 +

PF
k hk
No

)
(3.6)

for learner k, where hk is the power gain of the channel between the orchestrator and learner

k. The second epoch represents the duration taken by each learner k to finish all its assigned

computations to generate wk. If learner k has a CPU flop speed of fk, this duration is equal

to:

tCk =
τXk

fk
=
τdkCm
fk

(3.7)

the third and final epoch represents the time needed for each learner to send back its wk to

the orchestrator. If the assigned reverse bandwidth and power to learner k are BR
k and PR

k ,

the duration of this epoch is:

tRk =
Pm(dkSd + Sm)

BR
k log2(1 +

PR
k hk
No

)
(3.8)

3.2 Problem Formulation

This work aims is to minimize the global loss function in each global cycle by maximizing

the number of local cycles in each global aggregation cycle, which should result in the

maximum possible learning accuracy at the end of this global cycle [49]. This goal will

be achieved by jointly optimizing the tasks allocated to each learner (i.e., dk ∀ k) and its

assigned physical resources (i.e., fk, B
F
k , B

R
k , P

F
k , P

R
k ∀ k) to maximize τ . Thus, the general

form of this optimization problem can be expressed as follows:

max
τ,dk,fk,B

F
k ,B

R
k ,

PF
k ,P

R
k , ∀ k

τ (3.9)

20

3.3 Proposed Solution

s.t. tSk + tCk + tRk ≤ T, ∀ k (3.9a)

K∑
k=1

dk = D (3.9b)

K∑
k=1

BF
k ≤ B (3.9c)

K∑
k=1

P F
k ≤ P (3.9d)

0 ≤ fk ≤ fmaxk , ∀ k (3.9e)

0 ≤ BR
k ≤ BR,max

k , ∀ k (3.9f)

0 ≤ PR
k ≤ PR,max

k , ∀ k (3.9g)

The constraints in (3.9a) guarantee that the total time of the three process steps will not

exceed the preset global cycle duration T for any of the learners. Constraint (3.9b) ensures

that the total no. of samples analyzed by all learners conforms with the bound D set by

the orchestrator for each global cycle. Constraints (3.9c) and (3.9d) assures that the total

forward bandwidths and powers used by the orchestrator to complete Step 1 do not exceed

its total bandwidth B and power budgets (denoted by B and P , respectively). Finally, the K

constraints in (3.9e) ensure that each learner does not exceed its maximum flop speed given

its computational capabilities or allowance given its other loads. Similarly, the constraints in

(3.9f) and (3.9g) ensure that each learner does not exceed its maximum reverse bandwidth

nor transmit power, respectively, when returning its local model parameter vector to the

orchestrator.

As per the above description, the considered problem is a linear integer program with

nonlinear constraints (NLCLP), which is well known to be NP-Hard [51]. Therefore, solving

this optimization problem is challenging, even when using numerical solvers, some simplifi-

cation or reduction of variables is required.

21

3.3 Proposed Solution

3.3 Proposed Solution

As in several prior works [43,52], the optimal values of several of the optimization param-

eters can be directly obtained from the formulation. For instance, maximizing τ is directly

impacted by setting any variable to minimize each time expression tSk , tCk , and tRk in Con-

straints (3.9b). This simple fact can result in the following determinations of the optimal

values of some variables, thus eliminating them and their constraints from the problem:

• By examining the expression of tCk in (3.7), we can see that it is minimized for every

learner k by setting its fk to its maximum possible value. By looking at the constraints

in (3.9e), we can conclude that the optimal value for fk is to set it to fmaxk ∀ k.

• By examining the expression of tRk in (3.8), it can be inferred that it is minimized for

every Learner k by setting its BR
k and PR

k to the maximum possible values, which are

defined in Constraints (3.9f) and (3.9g) to be BR,max
k and PR,max

k , respectively.

The above facts enable the removal of the parameters from the set of optimization variables

(3.9) and the set of constraints (3.9e), (3.9f), and (3.9g); decreasing the size of the problem

as follows:

max
τ,dk,B

F
k ,

PF
k ∀ k

τ (3.10)

s.t. tSk + tCk + tRk ≤ T, ∀k (3.10a)

K∑
k=1

dk = D (3.10b)

K∑
k=1

BF
k ≤ B (3.10c)

K∑
k=1

P F
k ≤ P (3.10d)

clearly, Problem (3.10) represents the joint optimization of allocated tasks to learners and

22

3.4 Simulation Results

their assigned resources from the orchestrator to achieve the maximum possible τ . Con-

straints (3.9a), (3.9b), (3.9c), and (3.9d) are the immediate equivalent to those in (3.10a),

(3.10b), (3.10c), and (3.10d), respectively.

Though this problem is simpler than the one in (3.9), it is still very combinatorial. Finding

closed-form expressions or approximate methods was not feasible for a simpler version of the

problem in which only resources were optimized [42]. Thus, we use a numerical solver, namely

the OPTI solver [53], to find the solution for the problem and identify its gains compared to

the two related works TP and EDA.

3.4 Simulation Results

In this section, we present the simulation results of our joint task and resource allocation

solution. We also compare our solution’s performance against two recent optimizations

proposed in the literature.

• Task Planning (TP): This scheme optimizes task planning only (i.e., optimizes τ

and dk ∀ k) given that each learner has a fixed heterogeneous physical resource.

• Equal Data Allocation (EDA): In this scheme, it assumed that all learners will

analyze the same number of data samples (i.e., dk = d ∀ k). Given this setting,

the scheme still optimizes the other task planning parameters (i.e., τ) along with the

physical resources.

The two figures of merit that we use in our comparisons are the maximum achievable number

of local cycles per global aggregation cycle (i.e., τ) and the achieved model accuracy at the

end of each global aggregation cycle.

The dataset chosen to test our proposed scenarios is the MNIST [54] dataset which

consists of 60,000 images where each image consists of 784 features. The employed neural

network consists of three hidden layers with the following configuration [784, 300, 124, 60,

10] For this network, the model size was calculated to be 8,974,080 bits and the required

23

3.4 Simulation Results

Table 3.1: Simulation parameters

Parameter Value
System Bandwidth B 100 MHz
Node Bandwidth BR

k 5 Mhz
Maximum BF

k 5K Mhz
Device Proximity 50 m

Node Power 23 dBm
Maximum P F

k 23K dBm
Noise Power Density No -174 dBm/Hz

Attenuation Model 7+2.1log(R)dB[]
Computation Capability fk 2.4 GHz and 700 MHz

MNIST dataset size D 60,000 images
MNIST dataset Features F 784 features

floating-points operations were 1,123,736. To ensure a fair comparison between all three

schemes, the neural network was constructed from scratch in the simulation environment

without using any predefined functions. This guarantees our ability to control different

parameters and obtain the most accurate results for each of the three schemes without any

impact from any hidden settings or variables.

From the physical perspective, the edge learners were divided into two groups, one simu-

lating the computational capabilities of portable computing devices and the other simulating

those of commercial micro-controllers. In addition, random distances (with a maximum dis-

tance of 50m) and fading conditions were generated for each learner with respect to the

orchestrator. The employed channel model was chosen to emulate 802.11 links between the

learners and the orchestrator. Table I summarizes the simulation parameters for both the

physical resources/setup and the employed data set.

In Fig 3.1, τ is tested at different values of K for T=30s and T=60s. We observe that

both sub-figures show that the gain between the three schemes remains almost the same as

K increases. For instance, at K=10, T=30s the joint scheme performs five updates, the TP

scheme performs three updates, and the EDA scheme performs two updates, resulting in a

gain of 166% and 250%, respectively for the joint scheme over the TP and EDA schemes.

When K was increased to 20, the gains remained in the range of 150% and 225%, respectively.

24

3.4 Simulation Results

Figure 3.1: Number of local cycles for all schemes against K for T = 30 and 60s.

Same gain ranges were also obtained for T=60s. These results show the consistency of the

gains of our joint scheme for different values for K. Another interesting observation is that

the performance of the joint scheme at K=20 and T=30s exceeds the performance for the

resource scheme at K=20 and T=60s, which means that the joint scheme can achieve better

performance at less duration than the EDA scheme.

In Fig 3.2, τ is tested at different values of T for K=10 and K=20. Similar to Fig 3.1, the

gains between the different schemes is almost the same as T increases. One key observation

is that at K=10 and T=10, the resource-only scheme was not able to perform even one local

update, while the other two schemes were able to perform the same number of updates.

However, the joint scheme outperforms the task-only scheme as T increases.

In Fig 3.3, the progression of learning accuracy achieved by all three schemes at the end of

25

3.4 Simulation Results

Figure 3.2: Number of local cycles for all schemes against T for K = 10 and 20.

each global cycle are plotted for T=30s and K = 10 and 20. The figure shows higher accuracy

for the joint scheme, especially for low global cycle indices. As the learning progresses, the

accuracy of all the schemes starts to be equivalent when K=20, but not K= 10. Yet, even

for K = 20, the joint, TP, and EDA schemes reach 98% accuracy after three, four, and seven

global cycles, thus, achieving a reduction of 25% (i.e., 30s) and 58% (i.e., 120s) as opposed

to the other two schemes, respectively.

Finally, Fig 3.4 depicts the same progression of learning accuracy for K=20 and T =

12s and 30s. Again, the joint scheme achieves better accuracy than the other schemes at

low global indices for both cycle durations. It also converges to 98% faster than the other

two schemes. For T=12s, the joint, TP, and EDA schemes exceeded 98% accuracy after

four, seven, and nine cycles, resulting in a reduction of 43% (i.e., 36s) and 56% (i.e., 60s) for

26

3.4 Simulation Results

Figure 3.3: Learning accuracy achieved at the end of each global cycle for T=30s and K =
10 and 20.

the joint scheme over the TP and EDA schemes, respectively. More interestingly, the joint

scheme needed 4 T=12s cycles to reach 98% accuracy, whereas the TP and EDA schemes

needed four and seven T=30s cycles to reach the same accuracy. Thus, the joint scheme is

more practical when the amount of available time for the learning is restricted.

27

3.4 Simulation Results

Figure 3.4: Learning accuracy achieved at the end of each global cycle for K=20 and T =
12s and 30s.

28

4.1 Model Training Preliminaries

Chapter 4

Objective 2: Minimizing the Global Loss Function

This work considers jointly optimizing the planning of the learning tasks and allocating

physical resources over a network of MEL devices using a multicarrier scheme for multiple

access within a global training time constraint. We chose OFDMA as the multicarrier scheme

because of its dominance as a multiple access scheme in current wireless communication

networks (e.g., 5G, Wi-Fi 6). To minimize the overall loss function within a global time

constraint, we begin by discussing the system model, formulating our problem, and proposing

a solution. Next, we illustrate our simulation results and compare them to the two baselines

TP and EDA. Lastly, we focus on the joint scheme in FL, comparing its performance using

our proposed algorithms.

4.1 System Model and Parameters

The considered system consists of one edge orchestrator that aims to train a learning

model in a distributed manner with the help of K heterogeneous and resource-constrained

mobile edge learners. Due to the time critically of edge applications and the limited con-

nectivity time between edge nodes (due to their high mobility), the available time to train

this model is assumed to be constrained by a global learning time T . The training is done

on distributed subsets of data. These subsets are either already collected and stored at the

different learners, or distributed to them by the orchestrator to help it in the training. These

two scenarios delineate the boundary between the two considered MEL approaches, namely

FL and PL, respectively.

4.1.1 Model Training Preliminaries

A learning model usually consists of parameters (a.k.a. weights) that are calculated

through a recursive training process. In each recursion, dataset samples are inserted into the

model, and are used with the model parameters to compute an output (e.g., classification

29

4.1 Learning and Data Model

of objects or prediction of future values in a time series). The resulting error margin (a.k.a.

the loss function) between this output and the ground-truth of the data samples (e.g., actual

object classes or actual future values in the time series) is then used to update the model

parameters before starting the next recursion. The training recursions are typically stopped

whenever a target value of the loss function or (in our case) a global training time is reached.

Most recently, machine learning models, especially in edge environments, resorted to

employing the more practical stochastic gradient descent (SGD) methods [55]. SGD enables

the use of randomly selected samples from the dataset for training in each of these parameter

update rounds. SGD is thus more suitable to MEL (for both FL and PL) as SGD allows

the adaptation of the allocated tasks to the learners according to their capabilities and

resources [47]. Consequently, many distributed learning machine learning models at the

edge (e.g., linear regression, support vector machine, K-means, deep neural network) employ

a stochastic gradient descent (SGD). Our work in this thesis thus can apply to all edge

models.

The loss function is one of the most important merit metrics in machine learning, as

it is used to determine how well the model is trained or more precisely how far it is from

accurately identifying the target values of the dataset. For example, consider a dataset

consisting of D samples that can be used to train a machine learning model, where each

sample j, j = 1, ..., D, has a set of features denoted by xj and a target value yj. Throughout

the learning process, the set of parameters w are updated to minimize the loss function,

denoted by f(xj, yj, w) or f(w) for short.

4.1.2 Learning and Data Model

In this section, we use the same distributed learning process used in Chapter 3 to train

the system’s desired model. The utilized model has a few adjustments to adapt itself to our

second objective, that is why we present the three steps and discuss the relevant changes.

Step 1: The orchestrator transmits the (initial or current) global learning model pa-

30

4.1 Learning and Data Model

rameters to the K learners. In PL, a new set of dk randomly selected data samples from

the complete dataset are also sent to learner k ∈ {1, . . . , K} along with the learning model.

Define F as the feature vector size of xj where j = 1, ..., d, and Pd as the precision of each

data feature (i.e., the number of bits representing each feature). In addition, let Sd and

Sm be the number of data-size dependent and data-size independent model parameters, and

Pm as the precision of the learning model (i.e. number of bits representing each weight).

Consequently, the number of bits sent to express the data and the model can be expressed

as:

Bdata
k = dkFPd (4.1)

Bmodel
k = Pm(dkSd + Sm) (4.2)

In FL, the datasets are already hosted at the learners, and thus Equation (1) becomes

Bdata
k = 0. Yet, each learner can choose dk random sample from its hosted dataset for each

global cycle, as advised by the task allocated to it by the orchestrator. Note that Equation

(2) is the same for both PL and FL.

Step 2: After receiving the global model parameters (and data samples in PL), each

learner executes τ local training iterations to parameterstrain these parameters initially or

further on its local model. In each of these iterations, the model parameters are trained

using all the dk received or selected data samples in PL or FL, respectively, to minimize the

local loss function by the end of this iteration, which is expressed as follows:

Fk(w[l]) =

dk∑
j=1

f (w[l], xj, yj) (4.3)

where w[l] ∈ RB
model
k is the local model parameter vector after the l-th iteration and f(.) is the

loss function based on one feature. It is important to note here that, in most state-of-the-art

MEL and FL works, the following assumptions are made about Fk(w[l]) with respect to l, to

31

4.1 Learning and Data Model

facilitate the analysis where l and l′ are any two different training iteration indices. [41–43]:

• Fk(w[l]) is convex

• Fk(w[l]) is ρ-Lipschitz, that is, ‖Fk(w[l])− Fk(w[l′])‖ ≤ ρ‖ w[l]− w[l′] ‖

• Fk(w[l]) is β-smooth, that is, ‖∇Fk(w[l])−∇Fk(w[l′])‖ ≤ β‖ w[l]− w[l′] ‖

These assumptions hold for smooth-SVM and linear regression, which are ML models with

a convex loss function. We show that these assumptions also hold for neural networks with

ReLU activation, which is a model that has a non-convex loss function.

For a learner to minimize f(.) in each iteration, it needs to perform training calculations

per data samples, which consumes Cm flops of its processor per iteration. Consequently, the

resulting total number of flops at learner k per iteration can be expressed as:

Xk = dkCm (4.4)

Step 3: At the end of each global cycle, the learners send back their updated model

parameters to the orchestrator, which are then aggregated by the latter to update the global

model. There are several approaches to aggregate the received model parameters into the

global parameters [56, 57]. We consider the weighted averaging approach, which can be

expressed as:

w[l] =

∑K
k=1 dkwk[l]

D
(4.5)

where l is the index of the last iteration performed by each learner in the global cycle,

and D =
∑K

k=1 dk defines the total number of samples considered in the training across all

learners in each global cycle, D can be set as the size of either the entire dataset or, more

generally, a subset of its samples whose size is pre-defined by the orchestrator given the

stringency of the global time constraint. Afterwards, the orchestrator calculates the global

32

4.1 Network Model

loss function, which can also be expressed as:

F (w[l]) =
K∑
k=1

dk∑
n=1

f
(
wk[l], x

k
j , y

k
j

)
=

∑K
k=1 dkFk(w[l])

D
(4.6)

After the end of the three steps of each global cycle, the orchestrator can start a new

global cycle, by resuming Step 1. This process continues until the global training time T

is reached, at this moment the orchestrator ends the training process. Let L be the total

number of training iterations each learner performed from start to end of the entire training

process (i.e., across all global cycles within the duration T).

All learners belong to the set K = {1, . . . , k, . . . , K}.

4.1.3 Network Model

We assume OFDMA-based communications between the orchestrator and the learners.

The N subcarriers of this OFDMA system must be partitioned between the different learners

so that each learner receives the model (plus the data in PL) in Step 1 and deliver its param-

eters in Step 3 of each global cycle. The allocation indicator of subcarrier n ∈ {1, . . . , N} to

learner k n ∈ {1, . . . , N} is defined as:

αk,n =

1 If n is allocated to k

0 Otherwise

(4.7)

When subcarrier n is allocated to learner k, the orchestrator in Step 1 and learner k in

Step 3 load ck,n bits of the information they need to deliver one another on this subcarrier.

The power used at the sending party to transmit these ck,n bits on this subcarrier must

be determined to achieve a target received bit error rate (BER) at the receiving party. If

only square constellations are used for bit loading on this subcarrier (e.g., QPSK, 16-QAM,

64-QAM), this transmit power on subcarrier n by the orchestrator or learner k to achieve a

33

4.1 MEL Settings

target BER can be expressed as [?]:

p(ck,n) =
N0

3

[
Q−1(

BER

4
)

]2
(2ck,n − 1) (4.8)

where N0 is the noise power spectral density, and hk,n is the channel gain of the nth between

the orchestrator and learner k. The total power used for the communication between the

orchestrator and learner k is:

Pk =
N∑
n=1

p(ck,n)

hk,n
αk,n (4.9)

and the total bit rate for this communication is:

rk =
1

Ts

N∑
n=1

ck,nαk,n (4.10)

where Ts is the OFDMA symbol duration. Assuming channel reciprocity, the same allocated

subcarriers and bit loading levels will be used for all transmissions from the orchestrator

to each learner k and vice versa, thus the transmission rate rk will be identical in both

transmission directions.

4.1.4 MEL Settings

This section, examines the joint implication of both the learning and network settings in

terms of time. For every learner k, the time needed to execute the three steps of the global

cycle consists of three main epochs each corresponding to one of the three steps.

Epoch 1 tSk encompasses the time needed for the orchestrator to send the model param-

eters, plus the new dk randomly selected data samples in PL to each learner k. This time

epoch can thus be expressed for PL as:

tSk =
dkFPd + Pm(dkSd + Sm)

rk
(4.11)

Note that, for FL, the value of dk in the first term of the numerator is set to zero.

34

4.2 Basic Formulation

Epoch 2 tCk represents the duration taken by each learner k to finish all its assigned

computations across all the τ local iterations of one global cycle in order to update its model

parameters. If learner k has a CPU flop speed of fk, this time epoch is equal to:

tCk =
τXk

fk
=
τdkCm
fk

(4.12)

Epoch 3 tRk is the amount of time required for each learner to send back its trained

model parameters to the orchestrator after completing its local iterations. This epoch can

be represented as:

tRk =
Pm(dkSd + Sm)

rk
(4.13)

4.2 Problem Formulation

4.2.1 Basic Formulation

As mentioned earlier, we aim to minimize the final loss function of MEL training, thus

leading to higher accuracy, given a constraint on the global training time T . This goal is

achieved by jointly optimizing both the planning parameters of the learning tasks, namely

L, τ , and dk ∀ k ∈ {1, . . . , K}, and the parameters allocating resources to these learners,

namely fk, αk,n, and ck,n ∀ k ∈ {1, . . . , K} and n ∈ {1, . . . , N}.

Let G = L/τ be the total number of global cycles performed in the learning process in

the duration T . To simplify the analysis, let us assume that L is an integer multiple of τ ,

which means that G is an integer. The case where L deviates from being an integer multiple

of τ and the case of time-varying computation and communication parameters is considered

in our proposed algorithms. Furthermore, to simplify the problem formulation, we assume

that the computation and communication-related parameters do not change throughout the

learning process. Consequently, the times tCk , tSk and tRk ∀ k does not change along the

duration T , thus the time needed for each learner k to perform all its training cycles within

35

4.2 Basic Formulation

the global time constraint is:

tk =
L

τ

(
tSk + tCk + tRk

)
(4.14)

One important constraint of our considered problem is to have max(tk) ≤ T , which can

be guaranteed when tk ≤ T , ∀ k. Given these assumptions, the basic form of our optimization

problem of interest can be expressed as:

min
L,τ,dk,fk,ck,n
αk,n ∀ k

F (w[L]) (4.15)

s.t.
L

τ

(
tSk + tCk + tRk

)
≤ T, ∀ k (4.15a)

K∑
k=1

dk = D (4.15b)

K∑
n=1

αk,n = 1, ∀ n (4.15c)

K∑
k=1

N∑
n=1

αk,n = N (4.15d)

K∑
k=1

N∑
n=1

p(ck,n)

hk,n
αk,n ≤ Pmax (4.15e)

0 ≤ fk ≤ fmaxk , ∀ k (4.15f)

τ ∈ Z+ (4.15g)

L ∈ Z+ (4.15h)

dk ∈ Z+, ∀ k (4.15i)

αk,n ∈ {0, 1}, ∀ k, n (4.15j)

ck,n ∈ Q, ∀ k, n (4.15k)

where F (w[L]) is the loss function of the model after evaluating its parameters after the

L training cycles. Constraint (4.15a) guarantees that the total time taken for the learning

process does not exceed the total available time T . Constraint (4.15b) guarantees that the

sum of the distributed data samples must be equal to the total number D of considered data

36

4.2 Formulation Using Convergence Bound

samples for training across all learners in each of the global cycles. Constraints (4.15c) and

(4.15d) are subcarrier allocation constraints, where the former (4.15c) guarantees that one

subcarrier can be allocated to only one learner. Whereas the latter (4.15d) ensures that the

total number of allocated subcarriers is equal to the number N of available subcarriers in the

system. Constraint (4.15e) assures that the sum of the power used for transmission from the

orchestrator to the different learners does not exceed its maximum total transmission power.

Since the same subcarrier allocation and bit loading is used on the reverse communication

(i.e., from the learners to the orchestra tors), this guarantees that their maximum transmit

power is not exceeded either. Constraint (4.15f) represents the bounds on each learner’s

computation frequency. Constraints (4.15g), (4.15h), and (4.15i) are non-negativity and

integer constraints for τ , L, and dk ∀ k respectively, whereas Constraint (4.15j) imposes

binary constraints on all subcarrier allocation indicators. Finally, Constraint (4.15k) ensures

that the number of bits loaded on any subcarrier must be from among the set Q of bit/carrier

values corresponding to the allowed square constellations in the system.

Unfortunately, it is not possible to derive an exact expression for the objective function

of problem (4.15) for most machine learning models. Therefore, we will reformulate this

objective function in the following subsection to express it as a function of the “convergence

bound” [41].

4.2.2 Formulation Using Convergence Bound

It has been shown in [41] that, with an imposed global number L of iterations (which

is in our case in direct relation to the global time constraint), a more suitable objective

function to optimize for many machine learning models is the deviation of their global loss

function after these L iterations (denoted by F (w[L])) from the loss function corresponding

to the optimal model (denoted by F (w∗)). With some manipulation of the different learning

parameters to fit the imposed global number of iterations, it can be shown that this deviation

37

4.2 Formulation Using Convergence Bound

is upper bounded by the following convergence bound [41]:

F (w[L])− F (w∗) ≤ 1

L
(
ωη(1− βη

2
)− ρh(τ)

ε2τ

) (4.16)

where η denotes the learning rate of the model, ρ and β are meta-parameters related to the

ρ-Lipschitz and β-smoothness assumptions on Fk(w) illustrated in Section 2.2 respectively,

ε is defined as the lower bound on F (w[L])−F (w∗), ω is a parameter that inversely depends

on the deviation of the distributed learning parameter vector from an auxiliary parameter

vector that follows a centralized gradient descent, and h(τ) is defined as:

h(τ) =
δ

β
[(ηβ + 1)τ − 1]− ηδτ, (4.17)

where

δ =

∑K
k=1 dkδk
D

(4.18)

such that δk is the upper bound on the divergence of the loss function of learner k compared

to the global learning model (i.e., ‖ Fk(w)− F (w) ‖≤ δk).

Given the above convergence bound, our optimization problem can be re-formulated as:

min
L,τ,dk,fk,ck,n
αk,n ∀ k

1

L
(
ωη(1− βη

2
)− ρh(τ)

ε2τ

) (4.19)

s.t.
L

τ

(
tSk + tCk + tRk

)
≤ T, ∀ k (4.19a)

K∑
k=1

dk = D (4.19b)

K∑
n=1

αk,n = 1, ∀ n (4.19c)

K∑
k=1

N∑
n=1

αk,n = N (4.19d)

K∑
k=1

N∑
n=1

p(ck,n)

hk,n
αk,n ≤ Pmax (4.19e)

38

4.3 Proposed Solution

0 ≤ fk ≤ fmaxk , ∀ k (4.19f)

τ ∈ Z+ (4.19g)

L ∈ Z+ (4.19h)

dk ∈ Z+, ∀ k (4.19i)

αk,n ∈ {0, 1}, ∀ k, n (4.19j)

ck,n ∈ Q, ∀ k, n (4.19k)

Constraints (4.19a)-(4.19k) are identical to constraints (4.15a)-(4.15k), respectively. As can

be seen from the above formulation, the problem is an integer non-linear problem with linear

and non-linear constraints. It is well known that solving such a problem is NP-hard.

In the next section, we use decomposition approach to solve the problem efficiently. One

important insight that drives several actions in the proposed decomposition solution is that

the objective function of (4.19) is a decreasing function of L. This decreasing function

suggests that the larger the number of total iterations performed by the learners within the

global time constraint, the smaller the convergence bound on the loss function. Consequently,

all measures on any problem parameters that maximize L would be exploited in our path

towards simplifying the problem and deriving our proposed solutions.

4.3 Proposed Solution

The proposed solution is based on decomposing the optimization problem into three

steps and designing efficient algorithms to solve these steps. The philosophy behind this

decomposition stems from the observation that the only non-linear constraint is related to

the subcarrier allocation process. It also follows the trend used in recent related works

(e.g., [43], [52]) in terms of separating the optimization of the physical parameters while

reflecting their impact on optimizing the learning parameters.

Given the above, a decomposition of the problem into three steps is proposed to simplify

39

4.3 Initial Subcarrier Allocation and Bit Loading

and solve it:

1. Separately solve the subcarrier allocation and bit loading problem among the learners

to maximize their total sum rate from the orchestrator. The idea behind this step is to

derive the maximum possible rate that the orchestrator can communicate the model

parameters and data samples in PL, given its power constraint. Using a maximum

rate will reduce delivery time these data blocks, thus giving more time for executing

a larger number L of iterations within the short time imposed by the global training

time constraint, which was shown to minimize our problem’s objective function.

2. Modify and solve the main optimization of the problem in (4.19) by changing the

subcarrier allocation and bit loading variables of every learner by a rate allocation

variable, whose sum across all learners is bounded by the maximum rate derived from

Step 1. We show that this change of variables simplifies the problem significantly. We

also show that, for FL, such simplification yields a strictly convex problem.

3. Re-adjust the sub-carrier allocation and bit loading parameters of the learners obtained

in Step 1 so as to match or get the closest possible to the derived optimal rates from

Step 2 while preserving the maximum power constraint.

The details of these three steps and the proposed algorithms implementing them to solve

the main problem will be illustrated in the reminder of this section.

4.3.1 Initial Subcarrier Allocation and Bit Loading

The subcarrier allocation and bit loading problem for rate maximization given a power

constraint in OFDMA systems is a well-investigated problem. In our solution, we will con-

sider the approach presented in [58–60] while making some changes to simplify the solution

and adapt it our problem. This rate maximization problem can be expressed as:

40

4.3 Initial Subcarrier Allocation and Bit Loading

max
ck,n,αk,n

K∑
k=1

N∑
n=1

ck,nαk,n (4.20)

s.t.
K∑
n=1

αk,n = 1, ∀ n (4.20a)

K∑
k=1

N∑
n=1

αk,n = N (4.20b)

K∑
k=1

N∑
n=1

p(ck,n)

hk,n
αk,n ≤ Pmax (4.20c)

αk,n ∈ {0, 1}, ∀ k, n (4.20d)

ck,n ∈ Q, ∀ k, n (4.20e)

The problem remains a non-linear problem due to both the product of the objective variables

in the objective function and the expression of p(ck,n) defined in Equation (4.8). Yet, this

problem can be converted into a linear optimization problem by exploiting the fact that ck,n

can only take a value from a small set Q of integers as defined in constraint (4.20e).

To do so, let c ∈ Q be an arbitrary bit loading value. Consequently, the power pk(c)

allocated to any subcarrier using the bit loading value c can be easily pre-calculated using

4.8. Due to the small size of Q, all the values pk(c) ∀ c ∈ Q can be pre-calculated. Now,

let’s define a new indicator variable γk,n,c as follows:

γk,n,c =

1 αk,n = 1 AND ck,n = c

0 , Otherwise

(4.21)

In other words, γk,n,c is a joint subcarrier allocation and bit loading indicator that is only

set to one when subcarrier n is assigned to learner k to transmit c bits on it.

Using this new indicator, the problem in (4.20) can be re-written as an integer linear

41

4.3 Simplifications of the Main Problem

problem as follows:

max
γk,n,c

K∑
k=1

N∑
n=1

∑
c∈Q

c γk,n,c (4.22)

s.t.
K∑
n=1

∑
c∈Q

γk,n,c = 1, ∀ n (4.22a)

K∑
k=1

N∑
n=1

∑
c∈Q

γk,n,c = N (4.22b)

K∑
k=1

N∑
n=1

∑
c∈Q

pk(c)

hk,n
γk,n,c ≤ Pmax (4.22c)

γk,n,c ∈ {0, 1}, ∀ k, n, c (4.22d)

It can thus be solved using many efficient solvers or can simply be relaxed to its non-

integer version and solved using linear programming and greedy rounding. Once the solution

is found, we can easily derive the initial rate rik of each learner and the maximum rate Rmax

from the orchestrator as:

rik =
N∑
n=1

∑
c∈Q

c γ∗k,n,c (4.23)

Rmax =
K∑
k=1

N∑
n=1

∑
c∈Q

c γ∗k,n,c (4.24)

where γ∗k,n,c is the optimal solution for the problem in (4.22).

4.3.2 Simplifications of the Main Problem

In this section, we simplify our main problem interest in (4.19) by both introducing

some modifications based on insights from prior works (e.g., [43], [52]), and leveraging the

maximum rate expression derived in (4.24).

Below are three modifications we will apply to the problem in (4.19):

1. It can be easily shown that minimizing our main problem’s objective function will

42

4.3 Simplifications of the Main Problem

be achieved when the computation frequency fk of every learner k is set to its maxi-

mum value fmaxk (i.e., f ∗k = fmaxk ∀ k. Indeed, setting f ∗k to fmaxk ∀ k will enable all

learners to train their models using a larger total number L of iterations within the

constrained global training time, which directly translates into a lower convergence

bound on the loss function. This above determination of f ∗k removes these variables

from the optimization problem in (4.19) as well as the constraints in (4.19f)

2. We perform a change of the ck,n and αk,n variables, expressing the allocated commu-

nication resources to each learner k, by a rate variable rk. This rk variable directly

relates to ck,n and αk,n as expressed in (4.10), and directly impacts both tSk and tRk as

defined (4.11) and (4.13), respectively. Unlike αk,n and ck,n, the new rk variables are

real, which would reduce the complexity of the problem significantly. To guarantee

the restoration of the main variables αk,n and ck,n in Step 3 from the rk values ob-

tained in Step 2, given the constraints on the network’s physical resources, we impose

the constraint
∑K

k=1 rk = Rmax to the simplified problem in Step 2, where Rmax is

the value obtained in (4.22). The proposed change of variable will thus simplify the

expressions in Constraint (4.19a), will replace constraints (4.19c), (4.19d), and (4.19e)

by the above constraint on the sum rates by Rmax, and will finally replace the integer

constraints in (4.19j) and (4.19k) by simple linear non-negativity constraints on rk ∀ k.

3. To further simplify the problem, we relax the integer constraints on the variables τ ,

L, and dk ∀k in (4.19g), (4.19h), and (4.19i), respectively, by assuming that they can

take real positive values. This is a common practice to simply integer optimization

problems. Once the simplified problem is solved, the integer values of τ L, and dk can

be restored by simple rounding approaches that satisfy the main problem’s constraints.

By applying the above changes on the optimization problem in (4.19), the simplified

43

4.3 Special Case of Simplified Problem in FL

problem we consider in this step can be expressed as follows:

min
L,τ,dk,rk ∀ k

1

L
(
ωη(1− βη

2
)− ρh(τ)

ε2τ

) (4.25)

s.t.
L

τ

(
tSk + tCk + tRk

)
≤ T, ∀ k (4.25a)

K∑
k=1

dk = D (4.25b)

K∑
k=1

rk ≤ Rmax (4.25c)

τ > 0 (4.25d)

L > 0 (4.25e)

dk > 0, ∀ k (4.25f)

rk > 0, ∀ k (4.25e)

Although (4.25) is indeed simpler than (4.19), finding a closed-form expression for its

solution is still not possible as the problem is still combinatorial in nature [51].

4.3.3 Special Case of Simplified Problem in FL

As discussed earlier, FL is a special case of the above general and simplified formulation

considered in (4.19) and (4.25), in which the value of dk in the first term of tSk ∀ k (expanded

in (4.11) are set to zero. From this fact, it can be seen from (4.11) and (4.13) that tSk = tRk

∀ k in FL. This plays an important role in simplifying Constraints (4.25a) (as well as (4.19a)

but we focus now on the simplified problem), as it can be re-written as:

L

τ

(
tSk + tCk + tRk

)
=
L

τ

(
Cmdkτ

fmaxk

+
2PmSm
rk

)
≤ T, ∀ k (4.26)

44

4.3 Special Case of Simplified Problem in FL

Re-arranging (4.26) to separate L, and applying the fact that our main problem’s objective

function will be minimized if L is set to its maximum possible value, we must have:

L =
Tτ

Cmdkτ
fmax
k

+ 2PmSm

rk

, ∀ k (4.27)

The above expression of L is a set of K equations, each of which being a function of the real

values of τ , dk, rk ∀ k ∈ {1, . . . , K}, such that the value of L is equal to the right-hand side

for all K equations.

Afterwards, we can involve the equality constraint in (4.25b) to further simplify this set

of equations. By re-arranging (4.27) to separate dk, we get:

dk =
fmaxk

Cm

(
T

L
− 2PmSm

τrk

)
∀ k (4.28)

By summing both sides over all values of k ∈ {1, . . . , K}, the left-hand side of this summation

will yield the constant D as per Constraint (4.25b). Re-arranging the resulting equation after

this summation to separate L on the left-hand side, we get

L(τ, rk) =
T
∑K

k=1 ak

d+ 1
τ

∑K
k=1 bk

(4.29)

where

ak =
fmaxk

Cm
(4.30)

bk =
2PmSmf

max
k

τrkCm
(4.31)

Finally, by defining P (τ) as:

P (τ) =
1

ωη(1− βη
2

)− ρ
ε2
h(τ)
τ

(4.32)

45

4.3 Special Case of Simplified Problem in FL

which is a function of τ only, we can re-write the objective function of (4.25) for the FL case

as:

O(τ, rk) =
P (τ)

L(τ, rk)
(4.33)

Theorem 1 O(τ, rk) is strictly convex in the domain τ > 0 and rk > 0

Given that the objective function in the FL case is strictly convex, the optimal τ and

rk ∀ k can be obtained by solving the following problem:

min
τ,rk ∀ k

O(τ, rk) (4.34)

s.t.
K∑
k=1

rk ≤ Rmax (4.34a)

τ > 0 (4.34b)

The purpose of this part is to prove the convexity of the FL case in Objective 2. To

this end, our objective function O(τ, rk) = P (τ)
L(τ,rk)

can be divided into two terms O(τ, rk) =

P (τ)× 1
L(τ,rk)

=, where the reciprocal of L(τ, rk) can be defined as M(τ, rk) and the reciprocal

of P (τ) can be defined as Q(τ) as follows:

M(τ, rk) =
d

T
∑K

k=1 ak
+

∑K
k=1 bk

Tτ
∑K

k=1 ak
(4.35)

Q(τ) = A−BC
τ − 1− (C − 1)τ

τ
(4.36)

Let us recall that ak =
fmax
k

Cm
and bk =

2PmSmfmax
k

τrkCm
, while also defining A = ωη(1 − βη

2
),

B = δ
β
ρ
ε2

, and C = ηβ + 1. Note that B can be re-written as B = δ
β
B0, where B0 = ρ

ε2
> 0

is a control parameter that can be set empirically. In the reminder of the proof, we will

designate O(τ, rk), M(τ, rk), N(τ) = 1
Q(τ)

, and Q(τ) , as O, M , N and Q for simplicity of

the notation.

To prove that the objective function is strictly convex, we must derive the Hessian matrix,

46

4.3 Special Case of Simplified Problem in FL

defined as:

H =

∂2O
∂τ2

∂2O
∂τ∂r1

. . . ∂2O
∂τ∂rk

. . . ∂2O
∂τ∂rK

∂2O
∂r1∂τ

∂2O
∂r21

. . . ∂2O
∂r1∂rk

. . . ∂2O
∂r1∂rK

...
...

. . .
...

. . .
...

∂2O
∂rk∂τ

∂2O
∂rk∂r1

. . . ∂2O
∂r2k

. . . ∂2O
∂rk∂rK

...
...

. . .
...

. . .
...

∂2O
∂rK∂τ

∂2O
∂rK∂r1

. . . ∂2O
∂rK∂rk

. . . ∂2O
∂r2K

, (4.37)

and show that it is positive definite. This means that we first have to prove that all the

elements in the matrix are positive elements. There are three different combinations for

taking the second derivative of O = MN , which can be described as follows:

∂2O

∂τ 2
=
∂2M

∂τ 2
N + 2

∂M

∂τ

∂N

∂τ
+M

∂2N

∂τ 2
(4.38)

∂2O

∂rk∂τ
=

∂2O

∂τ∂rk
=

∂2M

∂rk∂τ
N +

∂M

∂rk

∂N

∂τ
(4.39)

∂2O

∂r2k
=
∂2M

∂r2k
N (4.40)

(54-56) is defined ∀ k ∈ K. For simplicity let us define ∂Q
∂τ

and ∂2Q
∂τ2

as Q′ and Q′′ respectively,

we thus need to prove that ∂2M
∂τ2

, ∂2M
∂rk∂τ

, ∂
2M
∂r2k

and ∂2N
∂τ2

are positive, while also proving that

∂M
∂τ
, ∂M
∂rk

and ∂N
∂τ

are all either positive or negative. This will guarantee that the Hessian

matrix contains only positive elements. These partial derivatives can be calculated as follows:

∂M

∂τ
= −

∑K
k=1

bk
ak

τ 2
(4.41)

∂M

∂rk
= −

∑K
k=1 dk

τ
∑K

k=1 r
2
kak

(4.42)

47

4.3 Special Case of Simplified Problem in FL

∂N

∂τ
= −Q

′

Q2
(4.43)

∂2M

∂τ 2
=

2
∑K

k=1
bk
ak

τ 3
(4.44)

∂2M

∂r2k
=

2
∑K

k=1 dk

τ
∑K

k=1 r
3
kak

(4.45)

∂2M

∂rk∂τ
=

∑K
k=1 dk

τ 2
∑K

k=1 r
2
kak

(4.46)

∂2N

∂τ 2
=

1

Q2

[
2(Q′)2

Q
−Q′′

]
(4.47)

(57, 58, 60-62) are defined ∀ k ∈ K. Since all the variables and constants in the right-hand

side expressions are all positive, it can be easily shown that ∂2M
∂τ2

, ∂2M
∂rk∂τ

, ∂
2M
∂r2k

are all positive,

whereas ∂M
∂τ

and ∂M
∂rk

are negative. Thus, we need to show that ∂N
∂τ

is negative and ∂2N
∂τ2

is

positive. It can be shown with the denominator of (59) being Q2, it’s sufficient to prove that

Q′ > 0 to show that ∂N
∂τ

> 0.

Q′ =
B

τ 2

[
Cτ
[
1− (lnC)τ

]
− 1

]
(4.48)

It is clear that B
τ2
> 0 and therefore, to ensure Q′ > 0, we need to satisfy Cτ [1−(lnC)τ] >

1. From the Bernoulli inequality, we know that Cτ ≥ (C− 1)τ + 1. Assuming the worst case

where the equality holds, the expression can be written as [(C − 1)τ + 1][1 − (lnC)τ] > 1.

By expanding the expression we get:

τ [(lnC)τ − C(lnC)− 1 + C] > 0 (4.49)

We know that a feasible τ ∗ is always greater than 0. We thus examine the term enclosed in

48

4.3 Special Case of Simplified Problem in FL

the square brackets. By re-arranging (65) to express τ as an inequality in C, we get:

τ >
C(lnC) + 1− C

lnC
(4.50)

Recall that C = ηβ + 1 where η is chosen such that ηβ ≤ 1, and η, β > 0. Hence, it follows

that 1 < ηβ + 1 ≤ 2. If we plot f(C) = C(lnC)+1−C
lnC

against the domain of C, it can be easily

shown that when τ > 0, ∂N
∂τ

is strictly negative. As we can see in Fig. 4.1, 0 < f(C) < 1,

and because a feasible τ ∈ {1, 2, 3, . . .}, this inequality will always hold when a feasible τ

exists.

Figure 4.1: Relation Between C and f(C).

let us define S = Cτ [1− (lnC)τ]− 1, ∂S
∂τ

= S ′ and Q′ = B S
τ2

. This means that Q′′ can be

49

4.3 Rate Re-adjustment Algorithm

defined as follows:

Q′′ =
B

τ 4

[
τ 2S ′ − 2τS

]
(4.51)

It is clear that B
τ4
> 0 and 2τS is a negative term, which means that it will be sufficient

to prove that S ′ < 0 to prove that Q′′ < 0. Thus we calculate S ′ as:

S ′ = −(lnC)2τCτ (4.52)

As shown before, all the terms in (68) are positive, where τ ∈ {1, 2, 3, . . .} and C being

always positive guarantees that the terms are positive and greater than zero. thus, (68) will

always be negative. This satisfies Q′′ < 0 and concludes our proof that all the elements of

H are positive elements.

Defining x as:

x =

τ

r1

r2

...

rk

...

rK

, (4.53)

the Hessian matrix H is considered strictly convex if xTHx > 0 for all elements in x. Since

our work is in the domain of τ > 0 and 0 < rk < rmax, this condition is always true for the

calculated Hessian matrix H. After obtaining the optimal values of τ and rk’s, L can be

calculated using (4.29) and then all the dk’s can be calculated using (4.28).

50

4.3 Proposed Algorithms

4.3.4 Rate Re-adjustment Algorithm

Solving the problems in (4.25) and (4.34) will provide a set of rates r∗k ∀ k between

the orchestrator and learners, which could be different than the set of initial rates rik ∀ k

computed in (4.23). The final step of our proposed three-step solution is to minimize the

rate gaps defined by:

ek = r∗k − rik ∀ k (4.54)

while respecting the maximum power constraint of the orchestrator. In the considered

OFDMA-based system, this can be achieved by subcarrier reallocation and bit reloading

between the different learners while making sure the maximum power constraint is not ex-

ceeded. This can done by formulating a new problem that minimizes the above gaps given

the maximum power constraint. Yet, for the sake of simplicity, we will employ a simple

greedy subcarrier reallocation and bit reloading algorithm, such as the ones used in several

OFDMA resource allocation works (e.g,. [61]).

This greedy algorithm simply sorts the rate gaps in ascending order and moving the least

loaded subcarrier from the learner at the bottom to list to the one the top of the list, and

load bits for the latter learner on this new reallocated subcarrier as long as the total power

constraint is still maintained. Next, the new rates and rate gaps for these two learners are

recomputed, the rate gaps are re-sorted, and the above step is repeated. This continues until

no more subcarriers can move from one learner to the other without violating the maximum

power constraint. To ensure convergence, the subcarrier reallocated from one learner to

another in a step cannot be reallocated in subsequent steps, thus setting an O(N) bound on

the total number of subcarrier reallocations.

4.3.5 Proposed Algorithms

In this section, we propose two algorithms, namely the static and dynamic algorithms,

to implement our full three-step solution to solve the problem in (4.19).

51

4.3 Proposed Algorithms

Algorithm 1 Static Algorithm

Require: T , D, K, N , Q, Pmax, ρ, ε, ω
Ensure: w[L]

Initialize l = 0, τ ← 1, dk ← D
K

Set w[0] as a random vector
1: Solve (4.20)
2: Calculate rik ∀ k and Rmax from (4.23) and (4.24)
3: Send w[l] and (for PL) dk samples to each learner k at a rate rik
4: After one local iteration, collect wk[0] and estimate w, β and δ as in [41]
5: T ← T −maxk{tk}
6: Solve (4.25) or (4.34) for PL or FL, respectively, to find the optimized values of L, τ dk,

and rk ∀ k.
7: Re-adjust rates as described in Section 4.3.4
8: while T > 0 do
9: Send w[l] and (for PL) dk samples to each learner k with adjusted rates rk ∀ k
10: Set T ← T −maxk{tk}
11: if T < 0 then
12: Reduce τ to maximum value ≥ 0 such that T ≥ 0
13: Set T ← 0
14: end if
15: l← l + τ
16: Each learner k trains its model for τ local iteration using dk data samples
17: Orchestrator collects wk[l] from all learners and estimate w[l], β and δ as in [?]
18: end while
19: return w[L]

Static Algorithm: The static algorithm, detailed in Algorithm 1, solves the optimiza-

tion problem only once at the beginning of the learning process. As shown, the algorithm

starts by Step 1 of the algorithm in Lines 1-2. It then runs a dummy local iteration to

determine initial learning parameters (Lines 3-4), and removes the consumed time in this

step from the total time constraint (Line 5). It then executes Steps 2 and 3 in Lines 6 and 7,

respectively. For PL, a numerical solver, namely OPTI [53], is used in Step 2 to calculated

the optimized values of the problem variables. For FL, since the problem in (4.34) is shown

to be convex, any convex solver can be used to calculate the optimized values of the problem

variables. Finally, the algorithm executes the actual PL or FL algorithm in Lines 8-17, until

the final model parameters w[L] is obtained at the orchestrator. Note that Lines 11-14 in

Algorithm 1 handle the case of having less time in the very last global cycle to execute τ

52

4.4 Simulation Results

local iterations. This situation may arise due the disturbances in the relation of L and T

as a result of the simplifications and relaxations done in Step 2 of our proposed three-step

solution, as well as the remaining deviations of the employed rates from the optimized rates

after rate adjustments in Step 3. The algorithm thus utilizes the remaining time to execute

this last global cycle with less number of local iterations than τ to consume the remaining

time.

Algorithm 2 Dynamic Algorithm

Require: T , D, K, N , Q, Pmax, ρ, ε, ω
Ensure: w[L]

Initialize l = 0, τ ← 1, dk ← D
K

Set w[0] as a random vector
1: Execute Steps 1-5 of Algorithm 1
2: while T 6= 0 do
3: Solve (4.25) or (4.34) for PL or FL, respectively, to find the optimized values of L, τ

dk, and rk ∀ k.
4: Re-adjust rates as described in Section 4.3.4
5: Execute Steps 9-17 of Algorithm 1
6: end while
7: return w[L]

Dynamic Algorithm: Unlike the static algorithm, the dynamic algorithm re-optimizes

all the problem parameters after every global cycle. The motivation behind this algorithm is

that the learning parameters, such as δ, β, are not static, and their most updated values can

be extracted from the global learning model at the orchestrator. In addition, the channel

conditions between the orchestrator and the learners can typically change during each global

cycle, which is not accounted for when our three-step optimization is computed once in

the very beginning. Consequently, these updated learning and physical values may change

the optimal number of remaining local and total iterations. Such updated values can be

obtained by running our three-step optimization with the new values of the aforementioned

parameters to produce a more optimized solution.

Algorithm 2 explains the steps of the dynamic algorithm in details. It can be easily shown

that the only difference of this algorithm compared to Algorithm 1 is that the optimization

process is repeated after each τ local iterations (i.e after each global cycle) using updated

53

4.4 Dataset and Learning Settings

Table 4.1: Simulation parameters

Parameter Value
Number of Subcarriers N 64

Target BER 10−4

Symbol Time Ts 122µs
Device Proximity(DP) 500 m

Node Power 23 dBm
Noise Power Density No -174 dBm/Hz

Attenuation Model 128+37.1log(DP)dB
Computation Capability fk 2.4 GHz and 1.2 GHz

MNIST dataset size D 54,000 images
MNIST dataset Features F 784 features

channel conditions and learning parameters extracted from the global learning model.

4.4 Simulation Results

In this section, we illustrate the simulation results for the joint task and resource allo-

cation problem of interest in heterogeneous mobile edge environments. We also compare its

performance to that of our two baseline schemes TP and EDA.

4.4.1 Physical Simulation Environment

From the physical perspective, the edge learners were divided into two groups, simulating

both the computational capabilities of a portable computing devices and a commercial micro-

controller. In addition, random distances (with a maximum distance of 500 m) and fading

conditions were generated for each of the learners with respect to the orchestrator. In

all simulations, we chose to emulate 802.11 links and channels between the learners and

the orchestrator. Yet, our proposed solution can be implemented over any multicarrier

communication (e.g., LTE or 5G using either side links or the base station playing the role

of the orchestrator).

54

4.4 Simulation Results for PL

4.4.2 Dataset and Learning Settings

The MNIST [54] dataset was chosen to test our proposed scenarios. This dataset consists

of 54, 000 images for training and 6, 000 images for validation, where each of these images

includes 784 features. The employed neural network consists of one input, three hidden,

and one output layers with [784, 300, 124, 60, 10] learning elements in each layer. For this

network, the model size is calculated to be 8, 974, 080 bits, and the required floating-points

operations are 1, 123, 736. Table 2 summarizes the simulation parameters for both the phys-

ical resources/setup and the employed dataset.

Different numbers of learners are used in our simulations to train the above neural network

using the MNIST dataset for different total training times T = [60, 80, 100, 120, 140]. The

learning rate η is set 0.9 as it was shown to provide the optimum performance for the

aforementioned neural network.

4.4.3 Simulation Results for PL

In this section, we present our simulation results for the PL setting and show the per-

formance of the proposed algorithms in comparison to the aforementioned TP and EDA

schemes.

Fig. 4.2 and 4.3 illustrate the total number of iterations L achieved by both the static

and dynamic algorithms when implementing the joint, TP, and EDA schemes. Fig. 4.2 plots

the results against the number of learners for a total training time of 60 seconds, whereas

Fig. 4.3 plots the results against the total training time for 20 learners.

55

4.4 Simulation Results for PL

Figure 4.2: Total number of iterations achieved by different numbers of learners for T = 60
s.

The first observation from both figures is that our joint task planning and resource allo-

cation approach achieves a higher number of iterations than both the TP and EDA schemes,

for both the static and dynamic algorithms. We can also see that the TP scheme achieves

a much better performance than the EDA scheme. For a total training time constraint of

60 seconds and 20 learners, the dynamic EDA, TP, and joint schemes achieve 12, 22, and

23 total iterations, which results in 91.67% and 4.54% more training iterations for the joint

scheme over the EDA and TP schemes, respectively. The performed number of iterations

between the joint dynamic and static algorithms at the same setting differs by only two

iterations, a gain of 7.69%. As the total training time increases to 140 seconds, the static

and dynamic joint algorithms can complete 55 and 61 learning iterations, respectively, thus

56

4.4 Simulation Results for PL

achieving a gain of 10.9% for the latter over the former. A final interesting observation from

these two figures is that the dynamic TP scheme outperforms the static joint scheme, which

exhibits the merits of the dynamic algorithm even for a less optimized scheme.

Figure 4.3: Total number of iterations achieved at different global time constraints for K =
20.

Zooming out from the iterations to the global cycles level, Fig. 4.4 depicts the timings

and number of global cycles performed by the static and dynamic joint, TP, and EDA

algorithms as training time progress to a maximum of 60 seconds and for 20 learners. We

can first clearly observe that the dynamic algorithms always finish the learning global cycles

before their same-scheme static algorithms. This helps the dynamic algorithms to run for

more total learning iterations and, when the training time increases, the dynamic algorithms

are able to complete more global cycles than their static counterparts. In addition, we can

57

4.4 Simulation Results for PL

observe from the figure that the joint, TP, and EDA schemes complete five, four, and two

global cycles, a 25% and 50% increase in the number of cycles for the joint scheme over the

TP and EDA schemes, respectively. This promotes for an improved performance for the

joint scheme compared to the two other schemes.

Figure 4.4: Temporal progression of global cycles achieved by the different algorithms for
T = 60 s and K = 20.

Now moving on to the performance of the trained models, Fig. 4.5 illustrates the terminal

loss functions of the trained models by 20 learners using the static joint, TP, and EDA

algorithms at the end of total training times ranging between 60 and 140 seconds. For the

same settings, the figure also depicts the validation accuracy of the trained models using these

algorithms. We can see from both sub-figures that the joint scheme outperforms both the

TP and the EDA schemes for any given total training time. In addition, we can observe that

58

4.4 Simulation Results for PL

the joint and TP schemes require a total training time of 100 and 120 seconds, respectively,

to achieve an above-96% accuracy.

Figure 4.5: Terminal loss function and accuracy performance of the static joint, TP, and
EDA algorithms for K = 20.

This means that our proposed joint scheme can save up to 16.67% in training time

compared to the TP scheme to reach this target accuracy. We can also see that the joint

scheme at T = 60 seconds achieves a higher accuracy of 94.07% compared to the 93.9%

accuracy achieved by the EDA scheme at T = 120 seconds. Yet, we can also observe that,

as the total training time increases, the gap between the performance of the three schemes

decreases.

Fig. 4.6 depicts the same comparison of Fig. 4.5 but for the dynamic algorithms. It

can again seen that the joint scheme outperforms the other two schemes at any given total

59

4.4 Simulation Results for FL

training time. Moreover, an accuracy above 96% is achieved at total training times of 80,

100, and 140 seconds for the joint, TP, and EDA scheme, respectively. This is equivalent to

up to 20% and 42.9% savings in the total training time for the joint scheme compared to the

TP and EDA schemes, respectively.

Figure 4.6: Terminal loss function and accuracy performance of the dynamic joint, TP, and
EDA algorithms for K = 20.

4.4.4 Simulation Results for FL

In this section, we illustrate the performance of the dynamic and static algorithms, while

focusing only on our new joint scheme for FL.

In Fig. 4.7, the total number of iterations achieved by both the FL dynamic and static

joint algorithms are depicted for total training times ranging between 60 and 140 seconds

60

4.4 Simulation Results for FL

and for 20 learners . As expected, the FL dynamic algorithm is able to achieve more total

iterations than the FL static one, as the dynamic algorithm optimizes the performance of FL

after each global cycle. For a total training time of 120 seconds, the FL dynamic and static

joint algorithms achieve 63 and 51 total iterations, respectively, which results in 23.53% more

training iterations for the former over the latter.

Figure 4.7: Total no. of iterations achieved in FL using the static and dynamic joint algo-
rithms for K = 20.

Another interesting observation can be noticed when looking at the number of iterations

achieved by these algorithms in PL and FL settings in Fig. 4.3 and Fig. 4.7, respectively.

First, we can observe that the FL dynamic and static joint algorithms always run more

training iterations their corresponding counterparts in PL settings. This is quite anticipated

as, unlike PL, no data is sent along with the model in FL, which saves more time for

61

4.4 Simulation Results for FL

computations and thus training iterations in the latter. Yet, we can also observe that, at

T = 140s, the PL dynamic joint algorithm achieves 61 total iterations while the FL static

joint algorithm achieves 58 total iterations, proving again the merits of the dynamic algorithm

in adapting the task planning within the course of the training period, thus achieving a better

performance.

Figure 4.8: Terminal loss function and accuracy achieved in FL using the static and dynamic
joint algorithms for K = 20.

In Fig. 4.8, the terminal loss function and validation accuracy of the trained models

using both the FL dynamic and static joint algorithms is plotted against total training times

ranging between 60 and 140 seconds. Again, the FL dynamic algorithm can be observed

to be the top-performing algorithm at any given total training time. For instance, this

algorithm achieved 97.1% accuracy at T = 90 s, while the static algorithm achieved 96.61%.

62

4.4 Simulation Results for FL

At T = 140 s, the dynamic algorithm was able to cross the 97.5% mark, while the static

algorithm being 0.5% below. Comparing the curves in Fig. 4.8 with those in Fig. 4.5 and 4.6

for the dynamic and static joint algorithms, we can again see that they can achieve higher

accuracy in FL than in PL for the same total training time, which is again anticipated due to

the aforementioned reasons. Yet, we can observe that the dynamic algorithm in PL settings

achieves almost the same accuracy as that of static algorithm in FL settings, demonstrating

the importance of in-training adaptation of the task planning.

63

5.1 Summary and Conclusion

Chapter 5

Conclusions

5.1 Summary and Conclusion

In this work, we focused on finding a solution to the MEL problem of how to improve the

overall aggregated model efficiency for both FL and PL, which is the problem of evaluating

the planning parameters and the allocation of tasks and resources to achieve a desired accu-

racy or to minimize the global loss function. This was investigated by jointly optimizing the

planning of learning tasks and physical resource allocation with the two objectives in mind.

1. Maximizing the number of local iterations in each time-constrained global cycle

2. Minimizing the terminal loss function of the trained model given a global training time

constraint

We began by exploring how the number of local iterations affects the aggregated model in

both FL and PL and formulated our problem with the intention of maximizing the number

of local iterations within each time-constrained global cycle time.. The general joint problem

was formulated as a nonlinear constrained integer-linear problem, which was then simplified

by finding the trivial optimal solutions for several variables. Being still complex, we solved the

problem numerically and quantified its gains in maximizing the number of local iterations and

converging to a given accuracy compared to the TP and EDA schemes. Through extensive

experimenting, the joint scheme was proven to outperform both schemes by achieving the

same accuracy in less time with a smaller number of learners.

We then moved on to investigating the problem of jointly planning learning tasks and

allocating physical resources for MEL, both in PL and FL settings with a global training

time constraint, over networks of nodes employing OFDMA for physical communications.

Our problem is formulated with the goal of minimizing the terminal loss function of the

trained model, by optimizing the task planning and physical resource parameters. Being a

64

5.2 Future Work and Recommendations

complicated problem to solve, we put forward a three-step approach to simplify and solve it.

We were also able to prove that the second and most critical step of our proposed solution

for FL settings involves solving a strictly convex problem, which makes it easier to solve.

We then developed a static and dynamic algorithm to implement the three-steps solution

for both PL and FL. Our simulation results showed obvious dominance in performance for

our proposed algorithms when compared to the TP and EDA schemes, especially for the

shorter total training times that are typically available in mobile and ad-hoc edge learning

environments. Lastly, our results consistently confirmed the merits of the proposed dynamic

algorithm compared to the static algorithm.

5.2 Future Work and Recommendations

In this section, we discuss our recommendations based on the various challenges we faced

throughout our work. We also propose future research initiatives that would improve the

overall performance of the MEL system.

• As MEL is an emerging field, now is the optimum point in time to standardize the

nature of the developments made in this area ensuring they are grounded in real-world

settings, assumptions, and datasets. It is critical for new research to use and expand

on the existing implementations and benchmarking tools, such as LEAF [62] rather

than starting back from zero.

• It is important to note that the work discussed thus far has been developed with the

task of supervised learning in mind. Although this work is applicable to other learning

models, in practice we would need to perform some exploratory data analysis, deter-

mine aggregate statistics, or run a more complex task such as reinforcement learning.

Tackling problems beyond supervised learning in MEL networks will likely require

addressing similar challenges of scalability, heterogeneity, and privacy

• We plan to extend our studies to scenarios with multiple simultaneous PL and FL

65

5.2 Future Work and Recommendations

tasks. In these scenarios, we will seek to optimize the associations of learners to

different learning tasks alongside with the planning of these tasks and the allocation

of physical resources to each involved learner.

• In practical scenarios the set of learners does not necessarily need to be benevolent,

which is an assumption that we made before starting our learning process. Finding

ways to not only identify malicious users but also eliminate them from being part of

the set of learners for the system is an extremely important direction that will bring

this research even closer to real and practical scenarios.

66

References

References

[1] “Cisco annual internet report,” vol. 2018-2023, White Paper, Cisco, San Jose, CA, USA

2020. Available from: https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual-internet-report/white-paper-c11-741490.html.

[2] M. Chiang and T. Zhang, “Fog and iot: An overview of research opportunities,” IEEE

Internet of Things Journal, vol. 3, no. 6, pp. 854–864, 2016.

[3] D. A. Gupta and A. Dhami, “Measuring the impact of security, trust and privacy in

information sharing: A study on social networking sites,” Direct, vol. 17, 2015.

[4] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and O. Spatscheck,

“An in-depth study of lte: Effect of network protocol and application behavior on

performance,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, p. 363–374, 2013.

[5] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,

J. Konečný, S. Mazzocchi, H. B. McMahan, T. V. Overveldt, D. Petrou, D. Ramage,

and J. Roselander, “Towards federated learning at scale: System design,” 2019.

[6] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating

and testing unintended memorization in neural networks,” 28th Security Symposium,

pp. 267–284, 2019.

[7] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Privacy aware learning,” Journal of

the ACM (JACM), vol. 61, no. 6, pp. 1–57, 2014.

[8] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,” 2002.

[9] M. I. Jordan and D. E. Rumelhart, “Internal world models and supervised learning,”

Machine Learning Proceedings, pp. 70–74, 1991.

67

References

[10] Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National science

review, vol. 5, no. 1, pp. 44–53, 2018.

[11] E. Alpaydin, Introduction to machine learning. MIT press, 2010.

[12] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review

of classification techniques,” Emerging artificial intelligence applications in computer

engineering, vol. 160, no. 1, pp. 3–24, 2007.

[13] F. Osisanwo, J. Akinsola, O. Awodele, J. Hinmikaiye, O. Olakanmi, and J. Akinjobi,

“Supervised machine learning algorithms: classification and comparison,” International

Journal of Computer Trends and Technology (IJCTT), vol. 48, no. 3, pp. 128–138, 2017.

[14] K. A. BOLLEN and R. W. JACKMAN, “Regression diagnostics: An expository treat-

ment of outliers and influential cases,” Sociological Methods & Research, vol. 13, no. 4,

pp. 510–542, 1985.

[15] A. Dasgupta, Y. V. Sun, I. R. König, J. E. Bailey-Wilson, and J. D. Malley, “Brief

review of regression-based and machine learning methods in genetic epidemiology: the

genetic analysis workshop 17 experience,” Genetic epidemiology, vol. 35, no. S1, pp.

S5–S11, 2011.

[16] Z.-H. Zhou and M. Li, “Semi-supervised regression with co-training.” International

Joint Conference on Artificial Intelligence (IJCAI), vol. 5, pp. 908–913, 2005.

[17] E. Oja, “Finding clusters and components by unsupervised learning,” Joint IAPR Inter-

national Workshops on Statistical Techniques in Pattern Recognition (SPR) and Struc-

tural and Syntactic Pattern Recognition (SSPR), pp. 1–15, 2004.

[18] M. Usama, J. Qadir, A. Raza, H. Arif, K.-L. A. Yau, Y. Elkhatib, A. Hussain, and A. Al-

Fuqaha, “Unsupervised machine learning for networking: Techniques, applications and

research challenges,” IEEE Access, vol. 7, pp. 65 579–65 615, 2019.

68

References

[19] R. Gentleman and V. J. Carey, “Unsupervised machine learning,” Bioconductor case

studies, pp. 137–157, 2008.

[20] M. Z. Rodriguez, C. H. Comin, D. Casanova, O. M. Bruno, D. R. Amancio, L. d. F.

Costa, and F. A. Rodrigues, “Clustering algorithms: A comparative approach,” PLOS

ONE, vol. 14, no. 1, pp. 1–34, 2019.

[21] J. Cui, Z. Ding, P. Fan, and N. Al-Dhahir, “Unsupervised machine learning-based user

clustering in millimeter-wave-noma systems,” IEEE Transactions on Wireless Commu-

nications, vol. 17, no. 11, pp. 7425–7440, 2018.

[22] A. Kassambara, “Practical guide to cluster analysis in r: Unsupervised machine learn-

ing,” vol. 1, 2017.

[23] K. Thangavel and A. Pethalakshmi, “Dimensionality reduction based on rough set the-

ory: A review,” Applied Soft Computing, vol. 9, no. 1, pp. 1–12, 2009.

[24] O. Kramer, Dimensionality reduction with unsupervised nearest neighbors. Springer,

2013.

[25] M. Dash, H. Liu, and J. Yao, “Dimensionality reduction of unsupervised data,” Proceed-

ings ninth ieee international conference on tools with artificial intelligence, pp. 532–539,

1997.

[26] P. Dayan and Y. Niv, “Reinforcement learning: the good, the bad and the ugly,” Current

opinion in neurobiology, vol. 18, no. 2, pp. 185–196, 2008.

[27] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.

[28] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”

Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

69

References

[29] S. Wang, T. Tuor, T. Salonidis, K. Leung, C. Makaya, T. He, and K. Chan, “Adaptive

federated learning in resource constrained edge computing systems,” IEEE Journal on

Selected Areas in Communications, vol. PP, pp. 1–1, 2019.

[30] M. M. Shahabadi and M. Uplane, “Synchronous and asynchronous e-learning styles

and academic performance of e-learners,” Procedia - Social and Behavioral Sciences,

vol. 176, pp. 129–138, 2015.

[31] M. Ashouri, F. Lorig, P. Davidsson, R. Spalazzese, and S. Svorobej, “Analyzing dis-

tributed deep neural network deployment on edge and cloud nodes in iot systems,” pp.

59–66, 2020.

[32] U. Mohammad, S. Sorour, and M. Hefeida, “Task allocation for asynchronous mobile

edge learning with delay and energy constraints,” 2020.

[33] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. a. Ranzato, A. Senior,

P. Tucker, K. Yang, Q. Le, and A. Ng, “Large scale distributed deep networks,” Advances

in Neural Information Processing Systems, vol. 25, 2012.

[34] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-aware async-sgd for distributed

deep learning,” 2016.

[35] T. Li, A. K. Sahu, A. S. Talwalkar, and V. Smith, “Federated learning: Challenges,

methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, pp. 50–60,

2020.

[36] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola, “Parameter

server for distributed machine learning,” Big Learning NIPS Workshop, vol. 6, p. 2,

2013.

70

References

[37] M. M. Wadu, S. Samarakoon, and M. Bennis, “Federated learning under channel un-

certainty: Joint client scheduling and resource allocation,” 2020 IEEE Wireless Com-

munications and Networking Conference (WCNC), pp. 1–6, 2020.

[38] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong, “Federated learning

over wireless networks: Optimization model design and analysis,” IEEE Conference on

Computer Communications, pp. 1387–1395, 2019.

[39] O. Habachi, M.-A. Adjif, and J.-P. Cances, “Fast uplink grant for noma: a federated

learning based approach,” 2019.

[40] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B. Gibbons, and

O. Mutlu, “Gaia: Geo-distributed machine learning approaching lan speeds,” Proceed-

ings of the 14th USENIX Conference on Networked Systems Design and Implementation,

p. 629–647, 2017.

[41] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan, “When

edge meets learning: Adaptive control for resource-constrained distributed machine

learning,” IEEE Conference on Computer Communications, pp. 63–71, 2018.

[42] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy efficient feder-

ated learning over wireless communication networks,” IEEE Transactions on Wireless

Communications, vol. 20, no. 3, pp. 1935–1949, 2021.

[43] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning and

communications framework for federated learning over wireless networks,” IEEE Trans-

actions on Wireless Communications, vol. 20, no. 1, pp. 269–283, 2021.

[44] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time optimization for feder-

ated learning over wireless networks,” IEEE Transactions on Wireless Communications,

vol. 20, no. 4, pp. 2457–2471, 2021.

71

References

[45] U. Mohammad and S. Sorour, “Adaptive task allocation for mobile edge learning,” IEEE

Wireless Communications and Networking Conference Workshop (WCNCW), pp. 1–6,

2019.

[46] U. Mohammad, S. Sorour, and M. Hefeida, “Optimal task allocation for mobile edge

learning with global training time constraints,” 18th Annual Consumer Communications

Networking Conference (CCNC), pp. 1–4, 2021.

[47] J. Konecny, J. Liu, P. Richtarik, and M. Takac, “Mini-batch semi-stochastic gradient

descent in the proximal setting,” IEEE Journal of Selected Topics in Signal Processing,

vol. 10, no. 2, p. 242–255, 2016.

[48] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep learning for iot big

data and streaming analytics: A survey,” IEEE Communications Surveys Tutorials,

vol. 20, no. 4, pp. 2923–2960, 2018.

[49] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. a. Ranzato, A. Senior,

P. Tucker, K. Yang, Q. Le, and A. Ng, “Large scale distributed deep networks,” Advances

in Neural Information Processing Systems, vol. 25, 2012.

[50] T. Tuor, S. Wang, T. Salonidis, B. J. Ko, and K. K. Leung, “Demo abstract: Distributed

machine learning at resource-limited edge nodes,” IEEE Conference on Computer Com-

munications Workshops (INFOCOM WKSHPS), pp. 1–2, 2018.

[51] A. Del Pia, S. Dey, and M. Molinaro, “Mixed-integer quadratic programming is in np,”

Mathematical Programming, vol. 162, 2014.

[52] X. Cai, X. Mo, J. Chen, and J. Xu, “D2d-enabled data sharing for distributed machine

learning at wireless network edge,” IEEE Wireless Communications Letters, vol. 9,

no. 9, pp. 1457–1461, 2020.

72

References

[53] J. Currie and D. Wilson, “Opti: Lowering the barrier between open source optimizers

and the industrial matlab user,” 2012.

[54] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[55] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” Proceedings

of COMPSTAT, pp. 177–186, 2010.

[56] J. Ji, X. Chen, Q. Wang, L. Yu, and P. Li, “Learning to learn gradient aggregation by

gradient descent,” Proceedings of the Twenty-Eighth International Joint Conference on

Artificial Intelligence, IJCAI-19, pp. 2614–2620, 2019.

[57] I. Czarnowski, “Prototype selection algorithms for distributed learning,” Pattern Recog-

nition, vol. 43, pp. 2292–2300, 2010.

[58] I. Kim, H. L. Lee, B. Kim, and Y. Lee, “On the use of linear programming for dynamic

subchannel and bit allocation in multiuser ofdm,” IEEE Global Telecommunications

Conference (GLOBECOM), vol. 6, pp. 3648–3652 vol.6, 2001.

[59] Y. J. Zhang and K. Letaief, “Multiuser adaptive subcarrier-and-bit allocation with adap-

tive cell selection for ofdm systems,” IEEE Transactions on Wireless Communications,

vol. 3, no. 5, pp. 1566–1575, 2004.

[60] G. Zhang, “Subcarrier and bit allocation for real-time services in multiuser ofdm sys-

tems,” IEEE International Conference on Communications, vol. 5, pp. 2985–2989 Vol.5,

2004.

[61] C. Y. Wong, C. Tsui, R. Cheng, and K. Letaief, “A real-time sub-carrier allocation

scheme for multiple access downlink ofdm transmission,” IEEE VTS 50th Vehicular

Technology Conference, vol. 2, pp. 1124–1128 vol.2, 1999.

73

References

[62] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and

A. Talwalkar, “Leaf: A benchmark for federated settings,” 2019.

74

