1170

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Accelerating Reinforcement Learning via Predictive
Policy Transfer in 6G RAN Slicing

Ahmad M. Nagib™, Graduate Student Member, IEEE, Hatem Abou-Zeid, Member, IEEE,

and Hossam S. Hassanein

Abstract—Reinforcement Learning (RL) algorithms have
recently been proposed to solve dynamic radio resource man-
agement (RRM) problems in beyond 5G networks. However,
RL-based solutions are still not widely adopted in commercial
cellular networks. One of the primary reasons for this is the
slow convergence of RL agents when they are deployed in a
live network and when the network’s context changes signifi-
cantly. Concurrently, the open radio access network (O-RAN)
paradigm promises to give mobile network operators (MNOs)
more control over their networks, furthering the need for intelli-
gent and RL-based network management. O-RAN’s standardized
interfaces will allow MNOs to make real-time custom changes to
intelligently control various RRM functionalities. We consider a
RAN slicing scenario in which MNOs can modify the weights
of the RL reward function. This enables MNOs to change the
priorities of fulfilling the service level agreements of the slices.
However, this results in a practical challenge since the RL agent
needs to adapt promptly to the changes made by the MNO.
This challenge is addressed in this paper, where we first present
and discuss the results from an exhaustive experiment to exam-
ine the efficiency of using transfer learning (TL) to accelerate
the convergence of RL-based RAN slicing in the considered sce-
nario. We then propose a novel predictive approach to enhance
the TL-based acceleration by selecting the best-saved policy for
reuse. By adopting the proposed policy transfer approach, RL
agents are able to converge up to 14000 learning steps faster
than their non-accelerated counterparts. The proposed machine
learning (ML)-based predictive approach also shows up to a
96.5% accuracy in selecting the best expert policy to reuse for
acceleration.

Index Terms—O-RAN, RAN slicing, resource allocation,
predictive transfer learning, accelerated reinforcement learn-
ing, 6G.

I. INTRODUCTION

EXT-GENERATION wireless networks will have to deal
with growth and heterogeneity on many levels. This

Manuscript received 1 May 2022; revised 17 October 2022 and 7 February
2023; accepted 14 February 2023. Date of publication 17 March 2023; date
of current version 6 July 2023. This research was supported by the Natural
Sciences and Engineering Research Council of Canada (NSERC) under
Grant RGPIN-2019-05667 and Grant RGPIN-2021-04050. The associate edi-
tor coordinating the review of this article and approving it for publication was
N. Zincir-Heywood. (Corresponding author: Ahmad M. Nagib.)

Ahmad M. Nagib is with the School of Computing, Queen’s University,
Kingston, ON K7L 2N8, Canada, and also with the Faculty of Computers and
Artificial Intelligence, Cairo University, Giza 12613, Egypt (e-mail: ahmad @
cs.queensu.ca).

Hatem Abou-Zeid is with the Department of Electrical and Software
Engineering, University of Calgary, Calgary, AB T2N IN4, Canada
(e-mail: hatem.abouzeid @ucalgary.ca).

Hossam S. Hassanein is with the School of Computing, Queen’s University,
Kingston, ON K7L 2N8, Canada (e-mail: hossam @cs.queensu.ca).

Digital Object Identifier 10.1109/TNSM.2023.3258692

, Fellow, IEEE

includes growth in mobile data traffic and a higher den-
sity of mobile users. This also involves a variety of radio
access technologies, services, and applications. As a result,
various objectives, such as low latency, high reliability, and
throughput need to be fulfilled simultaneously based on
the service used. Moreover, resource allocation should be
dynamically optimized based on the changing network condi-
tions. Nevertheless, given the inherent uncertainty of wireless
network environments, conventional approaches for resource
management that require perfect knowledge of the network are
inefficient [1]. Machine learning (ML), and specifically rein-
forcement learning (RL)-empowered next-generation wireless
networks are vital due to the following reasons [2], [3]:

o Network Complexity: Next-generation networks (NGNs)
will be more complicated due to the aforementioned rea-
sons. In such complex deployment scenarios, estimating
the optimal performance is computationally infeasible
given its many-sided heterogeneous nature. ML, how-
ever, can address the network complexity while providing
competitive performances.

e Model Deficiency: Modern cellular networks have been
designed with many assumptions to approximate the
end-to-end system behaviour using simple modelling
approaches. ML-based approaches can be employed to
capture the underlying unknown dynamic networks’ non-
linearities.

o Algorithm Deficiency: The optimal algorithms are too
complex to be practically implemented in some network
scenarios. This result in system designs that most likely
rely on heuristics based on simple rules. ML can strike
the right balance between acceptable system performance
and complexity in such cases.

RL algorithms have recently gained wide attention in
the wireless networks domain [4]. They are considered
promising approaches to solving dynamic Radio Resource
Management (RRM) problems in NGNs. RL algorithms can
deal with the multifaceted complexities of wireless network
environments given their capabilities to build an approximate
and continuously updated model of such environments. The
open radio access network (O-RAN) paradigm will allow
the network to be more customizable. It will also enable
data-driven network management [5]. With O-RAN, NGNs
will include generic modules and interfaces for data collec-
tion, distribution, and processing [6]. This way, the mobile
network operators (MNOs) will have more control over the
network.

1932-4537 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9193-9755
https://orcid.org/0000-0003-0260-8979

NAGIB et al.: ACCELERATING RL VIA PREDICTIVE POLICY TRANSFER IN 6G RAN SLICING

In this paper, we consider a radio access network (RAN)
slicing scenario in which MNOs can change the priorities of
fulfilling the service level agreements (SLAs) of the avail-
able slices [7]. This can be done by tuning the weights of
the corresponding KPIs in the RL reward function for each
slice. Different deployments and operators may have differ-
ent preferences that change over time. However, changing the
reward function weights can drastically change the system’s
performance. This raises a practical challenge as the RL agent
needs to adapt quickly to such changes. In such cases, MNOs
need an efficient way to accelerate the RL agent to quickly
converge back to a good policy avoiding extreme instabilities
and drops in performance for a long time [8]. This RL-related
challenge is rarely tackled in research studies developing RL-
based RRM solutions. Even when it is tackled, the proposed
approaches are not thoroughly investigated to understand the
resulting potential positive convergence behaviour.

Transfer learning (TL) is one of the commonly used
approaches to accelerate RL convergence in the wireless
networks’ domain [9]. One of the main categories of TL is
policy transfer. In policy transfer, the policy of a previously
trained RL agent, namely an expert agent, is used to guide the
exploration phase of a learner agent instead of learning from
scratch. The work presented in this paper is related, but quite
different from our previous work in [10]. In our previous work,
we only investigated the viability of employing TL to address
slow convergence in deep reinforcement learning (DRL)-based
RAN slicing. In this study, we focus on analyzing and enhanc-
ing the RL convergence acceleration behaviour when using the
policy transfer approach of TL in a specific O-RAN scenario.

The main contributions of this paper can be summarized as
follows:

e We present an O-RAN slicing scenario in which MNOs
can change the weights of the RL reward function,
and consequently, the priorities of fulfilling the slices’
SLAs. Given such a scenario, we present an evaluation
methodology to examine the convergence behaviour of
the accelerated RL algorithms when policy transfer is
applied.

o We perform a thorough analysis of around 3400 simula-
tion runs to study the efficiency of using policy transfer
to accelerate RL-based RAN slicing. This includes ana-
lyzing the RL convergence speed gains when using a
policy reuse approach. This also considers the effect of
the distance between the reward function weight vectors
of expert and learner agents on the reward convergence
error of the accelerated learner agents.

e We propose a novel predictive approach to enhance pol-
icy transfer acceleration in RL-based RAN slicing. We
specifically propose to save the policies of several expert
RL agents that are trained using different network slic-
ing reward weights. When a new reward function weight
combination is set by the MNO, an ML-based approach
is used to select the expert policy with the least expected
reward convergence error. This is vital to efficiently
accelerate a learner agent when an MNO changes the
reward function weight vector that reflects the priority of
the various slices’ SLAs fulfillment. We train multilayer

1171

perception (MLP) and extremely randomized trees (extra-
trees) regressor models and compare their performance
with a Euclidean distance metric.

To the best of our knowledge, this is the first study to
1) identify the need, and propose TL, to mitigate convergence
problems of RL-based O-RAN slicing when MNOs change
the reward function weights for different network slices, and
2) propose a mechanism to efficiently accelerate RL for this
purpose by using a novel form of predictive TL. The rest
of the paper is organized as follows. In Section II, we give
an overview of the problem. Section III discusses the related
work. The system model, the acceleration approach, and the
experimental setup are described in Section I'V. In Section V,
we propose an approach to enhance policy transfer accel-
eration of RL-based RAN slicing. Section VI provides the
reader with a thorough analysis of the results. Lastly, our
work is concluded, and some future directions are presented
in Section VII.

II. BACKGROUND
A. Radio Access Network Slicing

Both radio access and core networks are considered parts
of the end-to-end network slicing, each with a slightly differ-
ent optimization goal [11]. Network slicing’s objective is to
share the physical infrastructure among several services. In this
paper, we mainly focus on the RAN part of network slicing.
RAN slicing is mainly concerned with two RRM function-
alities, slice admission control, and resource allocation. Slice
admission control allows an infrastructure provider to accept
or deny a service provider’s slice request. While slice resource
allocation is concerned with assigning the available physical
resource block (PRBs) to the slices approved by the admis-
sion control function. An overview of RAN slicing and its
main functionalities are depicted in Fig. 1.

The available resources at a given time are significantly
affected by the stochastic channel quality. Moreover, they
are affected by the time-varying user demands for the pro-
vided services. The traffic demand for each type of service
is dynamic and cannot be easily predicted, particularly in the
short term. At the beginning of a slicing window, the avail-
able limited resources are assigned among the admitted slices.
These allocated resources are expected to enable the services
provided by the admitted slices to comply with their differ-
ent QoS requirements given the dynamic network conditions.
The exact requirements are defined by the SLAs and should
not be violated by the infrastructure provider, otherwise mon-
etary penalties may be enforced. Hence, RAN slicing cannot
tolerate the long RL exploration phase and this poses many
challenges for RL-based RAN slicing solutions.

B. Reinforcement Learning-Based Slicing

6G networks are expected to have ubiquitous intelli-
gence. They are also expected to adopt an open architecture.
This allows a customizable Al-native RAN slicing [12].
Accordingly, various ML-based approaches have been recently
proposed to solve RAN slicing-related problems [13]. The
most important feature that distinguishes RL from the other

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

1172

NGNs Radio Access Network

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Spectrum Allocation Among Cells

Carriers allocated to Cell 1

Carriers allocated to Cell N

r_Cell 1 R r_Cell N B
| I I
| (DY RAN Slicing | (@R RAN Slicing |
| Slice Admission Slice Resource | Slice Admission Slice Resource |
Control Allocation Control Allocation
| I |
I PRBs allocated | PRBs allocated - - - PRBs allocated I | PRBs allocated | PRBs allocated - - - PRBs allocated |
I to slice 1 to slice 2 to slice N I | to slice 1 to slice 2 to slice N |
| I I
| I [
I Packet Scheduling within each Slice - - - I | Packet Scheduling within each Slice - - - |
| [|
I Il I
. - - _ _ - __ J - - - - T - o . T - J

Fig. 1. Overview of RAN slicing.

NGNs RAN System

Collect slice resource
allocation-related
observations

Calculate reward based on
relevant RAN slicing KPIs

State (St+1)

= Action (Ay)
State (sy)

Reward (R¢+1)

DRL-based Intelligent RAN Slicing Controller

Select action with

Update value function
exploration probability () P

Fig. 2. RL-based slicing controller-environment interaction.

types of ML is that it evaluates the actions taken rather than
specifying correct actions [14]. RL does not require complete
knowledge of the RAN system or prior knowledge of the
network. Both requirements are inefficient and infeasible for
stochastic environments such as RANs in NGNs. Thus, RL is
an attractive approach to solve the resource allocation problem
in RAN slicing [15], [16].

An RL-based RAN slicing controller typically interacts with
the RAN environment bidirectionally as seen in Fig. 2. At any
given slicing time step, an RL agent observes the RAN system
state and chooses an action to take, i.e., resource allocation for
each slice. The action taken changes the RAN environment in
a way and the RL agent receives feedback in terms of a reward
value that represents the system performance.

The RL agent aims at maximizing the reward feedback that
it gets from its interaction with the NGNs RAN system. The
reward function is designed by network experts to guide the
RL agent’s search for the optimal policy, 7*. It is often repre-
sented in terms of a weighted sum of the relevant network’s key
performance indicators (KPIs). This way, the RL-based RAN
slicing controller indicates how good the action taken was.

This is estimated based on the agent’s sampled experience
from interacting with the RAN environment in a real-time
and dynamic-open control fashion. In this study, we design a
sigmoid-based reward function to control the effect of get-
ting closer to the minimum acceptable threshold of each
slice’s SLAs.

C. Transfer Learning-Accelerated RL-Based RAN Slicing

Slow convergence of RL algorithms is a challenge that
relates to the number of learning steps needed to find a
good set of radio resource allocation configurations given
the various system states. This can happen while training,
when the agents are newly deployed in a live network, and
when the network’s context changes significantly [8]. The RL
agent needs to observe a representative variety of the RAN
system’s possible states several times. The learning happens
by iteratively updating a value function until convergence. This
process is referred to as the exploration phase. The value func-
tion gives an estimate of the expected return if the agent starts
in a given state or state-action pair, and then acts according
to a particular policy.

TL expedites the learning of new target tasks by exploiting
knowledge from related source tasks [17]. This can shorten
the learning time of ML algorithms and enhance their robust-
ness to changes in wireless environments. TL is widely used in
image object classification, where pre-trained top-performing
models are used as the basis for image recognition and related
computer vision tasks. This includes but is not limited to,
initializing an artificial neural network (ANN) with the archi-
tecture and weights from such pre-trained models. This is
done to accelerate the training of an object classifier using
a local dataset that might include a different set of objects.
TL techniques have recently emerged as potential solutions to
RL practical challenges such as the long exploration phase in
the constantly changing wireless environments [9].

TL in RL is further categorized based on the knowledge being
transferred, and when and how to transfer such knowledge.

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

NAGIB et al.: ACCELERATING RL VIA PREDICTIVE POLICY TRANSFER IN 6G RAN SLICING

(1) DRL Agent Training at Expert BS
(« mF)
I

NGNs RAN System

(2) TL-Accelerated DRL Agent Training at Learner BS

Policy Initialization: o
-r[Leamer BS(T=0) = -r[Expen BS(T=N) ‘F

Initialized Policy

DRL Hyper-parameter Setting

'

NGNs RAN System

State (su1)
Y. State (511)

Action (A) Reward (Ri1)

Action (A) Reward (Ru1)

Update value function

T
Policy after N training iterations
Y

Staté (s) Y-
State (s)

Y
Select action with
exploration probability (£)

Policy after N tré\ining iterations
2

Select action with

lorati babil
exploration probability (¢) Update value function

l T[EXP'“ BS(T-N) I l T[Learner BS(T=N) l
Coo———————————————————_ - —————————————————-——= 3]
Fig. 3. Example of policy reuse to accelerate RL-based RAN slicing.
TABLE I
LIST OF SYMBOLS
Symbol Definition
T RL agent’s policy
N Number of RL agent’s learning iterations until convergence
S Number of slices sharing the available bandwidth
B Available bandwidth shared among slices
z(a) An instance of slicing PRB allocation configuration
X Possible slicing PRB allocation configuration
L Inverse form of latency of the available slices
« Importance of the latency for each slice
0(t) System state at time ¢
b; Bandwidth allocated to slice %
d Contribution to traffic load within a time window for each slice
E() Expectation of the argument
w; Reward function weight for slice 7
r2 Coefficient of determination
S Sresidual | Residual sum of squares

S Stotal Total sum of squares associated with the outcome variable
Ui Predicted values

Yi Ground truth values

n Number of observations in supervised learning training

Policy transfer is a class of TL in which a source policy is
transferred to an agent with a similar target task [9]. In policy
reuse, one of the policy transfer sub-categories, a source policy
that is learned by an expert agent is directly reused to guide
the target policy of a learner agent [9]. The expert RL agent
learns until converging to a good policy, while the learner RL
agent reuses the expert policy, Trypert to tackle the practical
challenge of RL slow convergence. This can be configured
in different ways. As shown in Fig. 3, this could be done by
initializing the target policy at a learner base station (BS) with
the learned source policy from an expert BS as follows [10]:

Iy carner BS(t = O) = HExpert BS(t = N) (1)

where N is the number of learning iterations carried out by
the RL agent at an expert BS until convergence as defined
in Table L.

III. RELATED WORK

TL has been gradually used in the wireless networks domain.
This includes but is not limited to, BSs switching, indoor local-
ization, and intrusion detection [17]. However, most of these
studies mainly use the supervised setting of TL. More recently,
some wireless network researchers started to employ TL to
accelerate the learning process in their RL-based solutions

1173

[8], [9]. The authors of [18] proposed two Q-learning-based
techniques to address interference mitigation in an mm-Wave
network with beamforming and NOMA. One of these tech-
niques employs TL to speed up RL convergence. The expert
agent is trained to solve a user-cell association problem. Then,
a learner agent uses such knowledge to solve joint user-cell
association and selection of number of beams problem to cover
the associated users. Furthermore, the work in [19] applies TL
to make the system more prone to variation in network status
and topology and to improve the training process efficiency.
The authors employ generative adversarial networks (GANs) to
capture unchanging features in different network environments
and utilize them to accelerate the training process.

Moreover, the work presented in [20] proposed deep transfer
RL-based joint radio and cache resource allocation. The authors
reported that the proposed approach resulted in better network
performance and faster convergence speeds. Furthermore, the
authors of [21] developed a TL mechanism to enable aerial
vehicles (AVs) to exploit valuable experiences. This helps
in accelerating the training process when the AVs move to
a previously unseen environment. Additionally, the authors
of [22] discuss the idea of changing the parameters of a reward
function to balance the QoS requirements of users and system
energy consumption. The authors combine relational DRL with
TL to address the insufficient generalization ability and the slow
recovery when exposed to new conditions. Finally, it is worth
noting that other researchers address the issue of RL slow
convergence using approaches such as heuristics and meta-
learning [23], [24], [25], [26]. However, the focus of this paper
is the efficient use of TL as it is one of the commonly used
approaches in the wireless networks’ domain [9].

The reviewed studies mainly use TL to accelerate the
learning process of RL-based RRM-related solutions without
paying attention to the efficiency of the acceleration process.
Unlike these studies, we focus on analyzing and enhancing the
efficiency of the TL-based acceleration of RL convergence in
RAN slicing. We propose a novel predictive approach that
selects the best-saved policy out of several stored policies
for more efficient TL-based acceleration. We also consider
a vital deployment scenario of the O-RAN paradigm where
MNOs can change the priorities of fulfilling the available
slices’ SLAs. These priorities are mostly assumed as con-
stants when considered in other studies [27]. To the best of
our knowledge, this is the first research study to address the
abovementioned aspects in the context of RAN slicing in next-
generation wireless networks. The authors of the reviewed
studies can, for instance, revisit their work using our proposed
modules to account for efficient TL-based acceleration and to
enable reward function weight change by MNOs.

IV. PoLICY TRANSFER FOR ACCELERATING RL-BASED
6G RAN SLICING

A. System Model

As mentioned in Section II-A, resource management for
network slicing can be considered from several perspec-
tives [11]. In this paper, we focus on the downlink case of
the radio access part, and more specifically the RAN slicing

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

1174

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

TABLE II
SIMULATION PARAMETERS AND RL AGENT DESIGN DETAILS

(a) RAN Slicing Simulation Parameter Settings

Video

‘ VoLTE URLLC

Scheduling Algorithm Round Robin

Bandwidth Allocation Window Size 40 scheduling time slots

Packet Interarrival Time Distribution

(Expert and Learner Agents) Truncated Pareto (Mean = 6 ms,

Max = 12.5 ms)

Uniform (Min = 0, Max = 160
ms)

Exponential (Mean = 180 ms)

Packet Size Distribution
(Expert and Learner Agents)

Truncated Pareto (Mean 100

Byte, Max = 250 Byte)

Constant (40 Byte) Truncated Lognormal (Mean = 2
MB, Standard Deviation = 0.722

MB, Max = 5 MB)

(b) RAN Slic

ng RL Design

The contribution to traffic load within a specific time window for each slice

State
(dvoLTE, dURLLC, Dvideo)

Action Bandwidth allocated to each slice (15 allocation configurations)
(bvoLTE; BURLLC bVideo), S:t- DVoLTE + burLLC + Dvideo = B

Reward A weighted sum of an inverse form of latency experienced in a slicing

window by the various slices

RL Algorithms

Q-Learning and SARSA

Total Number of Time Steps

20,000 per simulation run

RL Parameters Number of Expert Agents

16 reward function weight combinations

Number of Learner Agents

3392 (106 weight combinations, each accelerated using all expert policies)

Epsilon

Expert Agent: 1, Learner Agent: 0.1

Epsilon Decay

Expert Agent: 0.9, Learner Agent: 0.5 (every 100 steps)

Learning Rate (alpha)

Expert Agent: 0.1, Learner Agent: 0.5

resource allocation problem. The main goal is to allocate the
limited PRBs to the available slices, maintaining an acceptable
spectral efficiency (SE) while keeping an acceptable delay, and
generally, quality of experience (QoE) satisfaction. Given the
list of symbols in Table I, the slice resource allocation problem
can be mathematically formulated as follows [10], [28].
There exists a set of S slices that share the available band-
width B. A parameter that controls the number of PRBs
allocated to each slice needs to be optimized for each slice.
This can be described by the vector x € RS. At a given
instance, a RAN slicing controller decides to choose a spe-
cific slicing PRB allocation configuration, i.e., z(a), out of
the X possible configurations, where a = 1,2,3,..., X. Based
on such a decision, the system performance is affected. For
the purpose of this paper, the system performance is repre-
sented in terms of the latency of the admitted slices and can
be represented by a single value as follows:
f(2(a),0(t)) = aL € R, @)
where L is a function that represents an inverse form of the
latency of the available slices, while « represents the impor-
tance of the latency for each slice. Moreover, 6(¢) is the
system state at time ¢. This function is unknown to the con-
troller, therefore it can not explicitly relate input to output
and can only observe the function’s outcome. The system
state can be represented by the traffic load, the channel
quality, or other external factors that might affect the RAN
system performance. The majority of these variables evolve
in a way that is hard to infer theoretically, especially in
time scales of seconds or shorter. The RAN slicing controller
explores different slice allocation configurations and observes
the corresponding system performance in search of the optimal
configuration that maximizes the performance, i.e.,

3)

& = argmax f(z)
T

B. Mapping to Reinforcement Learning

Based on the model defined in Section IV-A, an RL agent
would take an action at the beginning of each slicing window
to decide the PRB allocation for each slice; b = (b1, ..., bg),
subject to by + - -+ 4+ bg = B. Such action is taken based on
the observed system state, defined in this paper as the contri-
bution to traffic load within a specific time window for each
slice, d = (dy,...,dg). We define the reward function as
the weighted sum of an inverse form of latency as detailed in
Section IV-E1b. The goal is to maximize the long-term reward
expectation,

E{f(z(a),0())}, ©)

where the notation E(-) is the expectation of the argument,
that is,

argmax E{f(z(a),0(t))} arg;nax E{aL(z(a),0(t))}

argmax E{R(b, d)} 5)
b

This allows the agent to learn a policy, m, that takes a
state d as input and outputs an action, b = 7w(d) € A4, to
maximize reward, R. The key challenge to solve (5) lies in
the time-varying demand in terms of traffic models and the
number of users for each service type. The optimal solution
for the problem can be precisely calculated by carrying out
an exhaustive search. In such a case, all the possible alloca-
tions should be considered at the beginning of every slicing
window and the corresponding system performance should be
noted. This approach, however, is computationally expensive
and practically infeasible. Hence, RL is a good alternative to
solve the problem. The RAN slicing RL design parameters are
highlighted in Table II-(b).

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

NAGIB et al.: ACCELERATING RL VIA PREDICTIVE POLICY TRANSFER IN 6G RAN SLICING

1175

TABLE III
REWARD FUNCTION WEIGHT COMBINATIONS OF EXPERT AND LEARNER AGENTS

Format: [wvoLTE, WURLLC, WVideo]

0.1, 0.5, 0.4], [0.1, 0.4, 0.5
4,0.1, 0.5], 0.4, 0.2, 0.4

Expert Agents Reward

Function Weights [0.4, 0.3, 0.3]

[0.1, 0.8, 0.1], [0.1, 0.1, 0.81, [0.1, 0.45, 0.45], [0.1, 0.7, 0.2], [0.1, 0.2, 0.7], [0.1, 0.6, 0.31, [0.1, 0.3, 0.6],
[0.3333, 0.3333, 0.3333], [0.8, 0.1, 0.1], [0.4, 0.5, 0.1], [0.4, 0.4, 0.2],

1 1
1, 1,
1, 0.1, 0.8], [0.1, 0.8, 0.1], [0.8, 0.1,
3, 0.3, 04], [0.2, 0.4, 0.4],

7, 0.2, 0.1], [0.7, 0.1, 0.2],

2, 0.3, 0.5], 1,
,041,0.5] 1,
, 0.25, 0.15

02,05, 03
0.4, 0.5, 0.1

0.7, 0.15, 0.15
0.2, 0.35, 0.45

Learner Agents Reward
Function Weights

0.1, 0.35, 0.55], [0.1,
0.85, 0.1, 0.05
0.25, 0.4, 0.35

0.65, 0.1, 0.25
0.15, 0.4, 0.45

0.1], [0.6, 0.2, 0.2], [0.2, 0.6, 0.2], [0.2, 0.2, 0.6], [0.4, 0.3, 0.3],

[[

[0. [

[0. [1, []
(0. [[0.4, 0.2, 0.4], [0.4, 0.4, 0.2], [0.1, 0.2, 0.7], [0.1, 0.7, 0.2], [0.2, 0.1, 0.7],
(0. [[0.1, 0.3, 0.6], [0.1, 0.6, 0.3], [0.3, 0.1, 0.6], [0.3, 0.6, 0.1], []
(0. [[0.3, 0.2, 0.5], [0.3, 0.5, 0.2], [0.5, 0.3, 0.2], [0.5, 0.2, 0.3],

0. [[0.5, 0.4, 0.1], [0.5, 0.1, 0.4], [0.1, 0.15, 0.75], [0.1, 0.85, 0.05], [0.8, 0.15, 0.05],
[0.6 1, [0.2, 0.55, 0.251], [0.2, 0.25, 0.55], [0.4, 0.35, 0.25], [0.3, 0.45, 0.25], [0.3, 0.35, 0.35],
[0.4. 0.25. 0.35], [0.4. 0.45. 0.15, [0.1. 0.25, 0.65]. [0.1, 0.75, 0.15]. [0.2, 0.15, 0.65],

[1 0.65, 0.25], [0.3, 0.15, 0.55], [0.3, 0.65, 0.05],
[1, [0.2, 0.55, 0.25], [0.3, 0.25, 0.45], [0.3, 0.55, 0.15], [0.5, 0.25, 0.15],
[0.1, 0.55, 0.35], [0.4, 0.15, 0.45], [0.4, 0.55, 0.05], [0.5, 0.45, 0.05], [0.5, 0.15, 0.35], [0.15, 0.1, 0.75],
[1,

[I

[]

[1,

[1,

0.45, 0.2, 0.35], [0.45, 0.4, 0.15], [0.15, 0.2, 0.65], [0.15, 0.7, 0.15],
0.75, 0.2, 0.05], [0.75, 0.1, 0.15], [0.15, 0.3, 0.55], [0.15, 0.6, 0.25], [0.35, 0.1, 0.55], [0.35, 0.6, 0.05],
0.25, 0.3, 0.45], [0.25, 0.5, 0.25], [0.35, 0.2, 0.45], [0.35, 0.5, 0.15],

[1]
[1]
[1 1
[] 1
[0.65, 0.2, 0.15], [0.25, 0.5, 0.25], [0.25, 0.2, 0.55], [0.45, 0.3, 0.25], [0.35, 0.4, 0.25],
[1 1
[]]
[1 1
[0.15, 0.5, 0.35], [0.45, 0.1, 0.45], [0.45, 0.5, 0.05], [0.55, 0.4, 0.05],]

0.3, 0.4, 0.3],
0.2, 0.7, 0.1],
0.6, 0.1, 0.3],
0.1, 0.5, 0.4],

0.6, 0.3, 0.1],
[0.1, 0.4, 0.5],

0.2, 0.45, 0.35],
0.7, 0.25, 0.05],

1

[0.2, 0.75, 0.05],]
0.6, 0.15, 0.25],
1

]

[
[
[0.6, 0.35, 0.05], [
[0.5, 0.25, 0.25], [0.1, 0.45, 0.45],
[0.15, 0.8, 0.05],
[0.35, 0.3, 0.35],
[0.25, 0.1, 0.65], [0.25, 0.7, 0.05],
[0.65, 0.3, 0.05],
[0.55, 0.2, 0.15], [0.55, 0.2, 0.25],

[0.55, 0.1, 0.35

C. Simulation Environment

Reproducing an existing RL-based RAN slicing solution is
not straightforward due to the lack of RL-based RRM bench-
mark environments that can be easily integrated and reused out
of the box. Hence, the algorithms and environment implemen-
tations will vary. We improved the OpenAl GYM-compatible
RL environment that was initially implemented in our previous
research study, [10]. The improved implementation of the envi-
ronment is available on GitHub.! This allows further analysis
and comparison of the various RL convergence acceleration
approaches in RAN slicing.

The simulation environment was changed to support
interfaces that enable the MNOs to change the SLA fulfillment
priorities of the available slices. This was done by allowing
the change of reward function weights. Such interfaces also
enable the consultation of supervised models to select the best
policy to load given a certain reward function weight vector.
With the rise of the O-RAN paradigm, this is a vital scenario
that will be more feasible in 6G networks. We also made
the following changes:

e We changed the environment state representation to reflect
the slices’ contribution to the overall traffic load within a
previous time window instead of the number of packets.

e We updated the scheduling algorithm to support schedul-
ing multiple transmissions per transmission time interval
(TTD) if resources were available (i.e., PRBs).

o A user priority mode was added as a scheduling setting so
that if on, the transmissions belonging to one user are given
priority within the same TTI if resources were available.

e We updated the environment so that the unsatisfied users
who have multiple unfulfilled transmission requests leave
the system.

e The reward function was updated to reflect more con-
trol over the effect of getting closer to the minimum
acceptable threshold of each slice’s SLAs.

D. Transfer Learning Evaluation Setup

We conducted an exhaustive experiment to investigate the
transferability of various expert policies when accelerating

! Available at http://www.github.com/ahmadnagib/TL4RL.

RL-based RAN slicing via policy reuse. We mainly focused on
the scenario when an MNO needs to change the priorities of
the various slices, and hence, the weights of the reward func-
tion. To do so, we followed a similar acceleration approach
to the one mentioned in Section II-C but to extensively study
the reward convergence behaviour of the accelerated learner
agents. This constitutes a step towards a more efficient way for
acceleration when the context changes. It provides insights into
how to choose an expert policy to use for acceleration when
an MNO decides to change the slices’ priorities. We started
with training and saving 16 basic models, namely the expert
models, using a limited number of reward function weight-
combinations as seen in Table IIl. The policies of each of
these trained models are then reused to initialize the policies
of 106 learner agents reflecting 106 different reward function
weight combinations as defined in the table. The evaluation
process includes accelerating 3392 RL learner agents in total
via policy reuse. We used two RL algorithms, and hence, we
employed policy transfer to accelerate 1696 agents per RL
algorithm.

We use settings that are known to be used in slicing-related
studies for better interpretability of TL efficiency results.
Moreover, we run a large number of simulations to be con-
fident about the generality of our analysis and approach as
described in the next sections. The round-robin algorithm is
one of the common scheduling algorithms that ensure fair-
ness [16]. We used it as the scheduling algorithm per slice
similar to the case in [29]. We simulated a scenario with three
types of services; voice over LTE (VoLTE), video, and ultra-
reliable low-latency communications (URLLC). The prevalent
4G networks mainly classify services into voice and best
effort, hence it is hard to have access to live network traces
of the services addressed in this paper. Therefore, we decided
to use traffic that follows known mathematical models similar
to those in [29].

User requests are generated based on the distributions shown
in Table II-(a). In such cases, URLLC users generate the
largest, but the least frequent packets compared with users of
the other services. VOLTE users generate the smallest packets,
while video packets are the most frequently generated ones.
Users belonging to the same slice share bandwidth equally.

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

1176

More specifically, the round-robin scheduler is used within
each slice at the granularity of 0.5 ms. Moreover, the slicing
window size is 40 scheduling time slots. In other words, the
RL agent takes an action to adjust the PRB allocation to each
slice every 20 ms. We summarize the parameters used to create
the environment and train various RL agents in Table II-(b).

We used two RL algorithms to train and accelerate the
RL-based RAN slicing agents, namely Q-Learning and state-
action-reward-state-action (SARSA). The implementation of
both is available on GitHub.? The implementation was adopted
and modified to accommodate the acceleration process using
the policy reuse approach of TL. The trained expert policy
is loaded to initialize the learner agent’s policy. Moreover, a
decaying epsilon greedy is incorporated to better control the
exploration-exploitation behaviour of the RL agent. Finally,
the code was modified to log the various learning steps’ rele-
vant information for better tracing and debugging. The two
aforementioned RL algorithms are used to decide the per-
centage of PRBs to be allocated to each slice. Afterward,
round-robin scheduling is followed within each slice. The non-
accelerated agents were compared against their accelerated
counterparts having the same reward function weights. The
accelerated agents were guided by policies from the 16 saved
basic models. Each one of these basic expert models has a
different reward function weight vector.

E. Reinforcement Learning for Network Slicing

We use the RL mapping defined in Section IV-B for both
the expert and learner agents. The objectives of both the expert
and the learner agents are the same. As seen in Table II-(b),
we use 106 reward function weight combinations to simulate a
wide range of possible MNO configurations of the slices’ pri-
orities. This enables us to observe the reward function weight
vectors of the saved expert policies and study their effect on
the learner agents’ reward convergence, and hence, accelera-
tion. The 3392 simulation runs executed allowed us to assess
our proposed approach’s capacity for generalization.

It is expected that the reward distribution of the learner
agents will vary from the expert agents as the reward func-
tion weights are changed intentionally by the MNO. This can
happen when a new RL agent is deployed from scratch at a
BS. This can also happen when the MNO decides to change
the slices’ priorities by changing the reward function weights
after following another set of weights for a given time. In this
paper, we present a RAN slicing scenario in which the MNO
reconfigures the weights of the RL reward function. This sce-
nario happens after deploying the RL agent in a live network.
After reconfiguring the reward function weights, the policy
that has been followed by the RL agent can lead to non-optimal
resource allocation actions. Hence, if the RL agent does not
recover quickly to an optimal or a near-optimal policy, this
will lead to taking non-optimal actions for a long duration.

In this study, we give more weight to latency in deciding the
system’s performance, and hence the reward function is purely
represented in terms of latency for better TL efficiency results’
interpretability. As a result, such non-optimal actions taken

2 Available at https://github.com/dennybritz/reinforcement-learning.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

by the agent will lead to non-optimal latency performance.
Therefore, the RL agent’s recovery to an optimal policy after
the changes made by an MNO needs to be as fast as pos-
sible. It is worth noting that the issue of slow convergence
of RL agents is not directly related to the latency defined in
the reward function. However, the agent’s convergence to the
optimal solution will lead to the best performance in terms of
slices’ latency. Accordingly, the faster the agent’s convergence,
the better the slices’ latency performance. We also assume that
the policies learned by the expert agents are saved and can be
loaded by a learner agent before the latter starts the exploration
process.

1) Expert and Learner Agents Settings:

a) Reinforcement learning agents: We decided to employ
the policy learned by the expert agents to be later transferred
to initialize all the learner agents’ policies. In the case of
Q-Learning and SARSA, this means initializing the Q-tables
of the learner agents. Q-learning and its variants are among
the most popular RL algorithms that have shown impressive
results in RL-based RRM-related studies [4]. It gained popu-
larity as it allowed the development of an off-policy temporal
difference (TD) algorithm. It is sample efficient, and any pol-
icy can be used to generate experience. However, Q-learning
variants still lack convergence guarantees for non-linear func-
tion approximators. Hence there is still room for improving
the convergence performance using approaches such as policy
transfer. Our framework supports any other RL algorithms via
OpenAl Gym standardized interfaces [30]. For instance, we
also used SARSA as it has a different value function update
procedure. This allowed us to examine the effect of using a
different algorithm on the acceleration process.

We mainly focus on analyzing and enhancing the acceler-
ation process when using different reward function weights.
Hence, when we configured the RL settings, we intended to
have a configuration that converges to the optimal solution for
all the non-accelerated agents. The expert and learner agents
hyperparameters are shown in Table II. We used smaller val-
ues for the exploration rate (epsilon), and larger values for the
learning rate when accelerating the learner agents. This setting
is used to accelerate the deployed learner agents’ adaptation to
the new context taking advantage of the knowledge captured
by the expert policies.

b) Reward function: We used the reward function stated
in Table II. Based on the system performance function defined
in Section IV-A, the reward function was improved to reflect
more control over the effect of getting closer to the minimum
acceptable threshold of each slice’s SLAs as follows:

151l

1 .
R — Z Wg * m,that 18,
s=1
R 1
= *
WVoLTE 1+ eClvorre*(I—c2voLTR)
1
+ WURLLC * 1 + eclurLLo*(I—c2urLLc)
1
+ Wyideo * ©

1 + eclvideo*(I—2video)

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

NAGIB et al.: ACCELERATING RL VIA PREDICTIVE POLICY TRANSFER IN 6G RAN SLICING

We designed sigmoid function-based [31] rewards to fulfill
that purpose. In this study, we focus on the delay require-
ments, so we used latency as a variable. Such a reward function
penalizes actions that come close to violating slices’ latency
requirements. Two parameters, ¢l and c¢2, are configured to
tune the shape of the function. c1 reflects the point from where
the slope of the sigmoid function begins to change for the
first time. This defines when to start penalizing the agent’s
actions. While c2 represents the inflection point, i.e., the low-
est acceptable delay performance for each slice based on the
slice’s SLAs. We use different, but constant, c1 and ¢2 values
for each slice type.

The weights of the reward function are adjustable to allow
the MNOs to prioritize some slices over others. This will lead
to a change in context and the actions taken based on the
policy at hand may lead to extreme performance drops. We
explore the effect of accelerating the agent with knowledge
from already trained agents, namely expert agents, having dif-
ferent slice delay weight combinations in their reward function
when trained. Table III lists the base weights used in the expert
agents’ reward functions and those of the learner agents to be
accelerated by the expert policies.

c) Traffic load model: We generated one traffic model per
service for the expert and the learner agents as seen in Table II-
(a). It is represented in terms of inter-arrival times, and packet
sizes.

V. PREDICTIVE POLICY TRANSFER FOR ACCELERATING
RL-BASED RAN SLICING

A. Network Slicing SLAs and Weights of RL Reward
Function

It is practically vital for an MNO to have the ability to tune
the weights of an RL agent’s reward function. This enables the
MNO to change the priority of fulfilling the SLAs of the admit-
ted network slices. This is important as different services might
have similar traffic patterns but significantly different network
requirements. For instance, two massive machine-type com-
munications (mMTC) deployments may have the same traffic
pattern. However, each of them can have a significantly dif-
ferent latency tolerance depending on the exact application.
If both slices are treated equally as generic mMTC slices in
the RL reward function, this will lead to unnecessary over-
provisioning of resources to the more delay-tolerant slice. This
would also lead to SLA violations in the less delay-tolerant
slice when resources are scarce. Enabling MNOs to modify
the slices’ weights in the reward function allows for more
efficient use of the available spectrum and results in fewer
SLA violations and consequently fewer monetary penalties.
However, changing such weights can drastically change the
system’s performance. Hence, MNOs need an efficient way to
accelerate the RL agent so that it quickly recovers to a good
policy.

B. Proposed Approach

Based on the analysis results, we propose a data-driven
novel approach to select the expert policy with the least
expected reward convergence error to be used to accelerate a

1177

learner agent. We specifically build ML models based on the
expert and learner agents’ weight vectors and compare their
performance to that of a distance metric. These trained models
predict the expected convergence error of accelerating a given
learner agent using a certain expert policy when the context
changes. Having such a model will allow the MNOs to esti-
mate the expected convergence error when reusing each of the
saved expert policies. Hence, they can choose the one with the
minimum expected error to load for guiding the learner agent
of interest, allowing more efficient policy reuse acceleration.
We specifically propose the following procedure:

1) First, an MNO chooses a group of expert policies that
have the minimum relative convergence error and store
them.

2) Before the MNO decides to change the slices’ weights,
in other words, slices’ delay SLAs fulfillment priorities,
the switch to the new reward function weights should
be scheduled.

3) Scheduling such a change should trigger an automated
process. Such a process should employ an ML-based
model previously trained using data collected via O-
RAN interfaces. The model predicts the expected con-
vergence error of using all the stored expert models
to accelerate a learner agent that includes the provided
scheduled weights in its reward function.

4) Based on the predicted errors, the stored expert policy
with the least error will be chosen.

5) At the scheduled weight change time, the chosen expert
policy should be loaded to initialize the policy of the
learner agent and guide the exploration phase as soon
as the context changes.

6) Concept drift [32] can happen if the network conditions
are significantly different from those experienced when
training the prediction model. Hence, it is important to
update the model whenever any drifts are detected. The
performance of the various expert policies concerning
guiding the learner agents should be regularly logged.
This info should serve as feedback to be used to update
the ML-based models for up-to-date reward convergence
error predictions.

C. Models and Evaluation Metrics

As part of this paper, we propose an approach to choose
the policy to load when an MNO changes the reward function
weight vector. To do so, we explore three different types of
models. The first uses a simple metric, the second is based on
a traditional ML approach, and the third is based on a deep
learning approach. This allows us to analyze how a representa-
tive sample from each of these three categories performs. This
also enables us to observe whether a simple metric can get a
performance that is comparable to the more sophisticated ML
approaches.

In the first model, we use a simple Euclidean distance mea-
sure as a baseline. In such a case, the distances between the
weight vectors of the learner agent of interest and all the stored
expert policies are calculated, and hence, the one with the least
distance is chosen. We then investigate whether we can get a

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

1178

relatively higher accuracy for choosing the best-saved policy.
Thus, we proposed to leverage the embedded intelligence of
the O-RAN and make use of ML approaches to predict the
expert policies’ convergence errors and choose the best policy.

For that purpose, we propose the extremely randomized
trees (extra-trees) regressor as the traditional ML method.
Extra-trees regressor is based on the commonly used, and
flexible, decision trees. It is an ensemble learning method
that is faster to train than methods such as random for-
est while maintaining comparable accuracy [33]. We also
employ automated machine learning (AutoML) [34] to search
for a good-performing traditional ML approach. We used an
AutoML tool called H20 [35]. Such a tool trains several model
types, and several hyperparameter settings for each model
type. Extra-trees regressor was among the well-performing
models trained by H20. Thus, H20 allowed us to further
optimize the extra-trees regressor model with the goal of
minimizing the regression error.

Finally, we propose to train a multilayer perceptron (MLP)
model to reflect one of the potential deep learning architec-
tures. MLP is one of the common data-driven approaches
used in supervised learning tasks given multi-attribute network
data [36]. Our implemented framework supports the adop-
tion of and comparison against other approaches. This can
be other deep learning approaches such as convolutional neu-
ral networks (CNNs), other traditional ML approaches, or
even non-ML approaches. Using other ML approaches and
other hyperparameter settings will lead to a different prediction
performance in terms of regression error for instance. Since
we propose to load the policy with the least expected error, this
will affect the accuracy of our proposed ML-based predictive
policy transfer approach. Hence, a model that combines a low
root mean squared error (RMSE), and a high coefficient of
determination (r2 score), as defined later in this section, is
expected to have the highest expert policy prediction accu-
racy. Such a model should always be selected to be used for
reward convergence error prediction. Exhaustively comparing
the various ML-based methods for predicting the convergence
error is an interesting area to explore. However, it is not the
focus of this paper. We specified multiple values for the differ-
ent parameters of the trained MLP and applied a grid search
through them. The best hyperparameter settings among the
ones tested are shown in Table IV.

The following metrics are used to evaluate the performance
of the built ML models [37]. The test split of the dataset is used
to compare the model’s predictions against the ground truth to
calculate both the 72 scores and the RMSE. Additionally, the
accuracy of choosing the expert policy with the least reward

convergence error is also evaluated.

1) Coefficient of Determination: 2 score indicates the pro-

portion of the variance in convergence error that is explained
by the model. It is normally a number between zero and one.
The closer the value to one, the better the performance of the
regression model. 72 score can be calculated as follows:

SS 1

2 residual

r‘=1—- ——— @)
SStotal

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

TABLE IV
MULTILAYER PERCEPTRON HYPERPARAMETERS

Multilayer Perceptron (MLP)

2 dense hidden layers

First hidden layer: 6, Second hidden layer: 3
Mean Squared Error (MSE)

Number of Layers
Number of Units
Loss Function

Optimizer Adam
Activation Function Hidden layers: ReLU, Output layer: Linear
Learning Rate 0.001

Batch Size 25

Number of Epochs 300 for each run

Pre-processing Standardization

Validation Split 20% of the training data

Test Split 10% of the dataset, 10-fold cross validation

where SS;esidual 18 the residual sum of squares, and SS;qt,1 18
the total sum of squares associated with the outcome variable.

2) Root Mean Square Error (RMSE): RMSE is a measure
of accuracy used to compare prediction errors of different
regression models for a particular dataset. RMSE represents
the quadratic mean of the differences between predicted val-
ues and observed values. In general, a lower RMSE is better,
and it can be calculated as follows:

n

RMSE = (i) > (@i -

i=1

yi)? (8)

where y; represents the predicted values, while y; represents
the ground truth values, and 7 is the number of observations.

3) Expert Policy Prediction Accuracy: The built models are
then used to predict the reward convergence error for the stored
expert policies given a certain learner agent’s reward function
weight vector. Hence, the expert policy with the least predicted
convergence error is selected for acceleration via policy reuse.
The accuracy of such selection is the main concern of our
work. It constitutes a significant step towards having more
efficient acceleration. We also compare the accuracy of the
ML-based models to that of the simpler Euclidean distance
baseline.

All the experiments carried out in this study including
the ones for building the ML models were carried out on a
Linux machine having 8 CPUs, 64 GB of RAM, and NVIDIA
GeForce RTX 2080Ti GPU. Keras, with TensorFlow as the
backend, and sklearn are the Python packages used to imple-
ment the deep learning models and the extra-tree regressors
respectively.

VI. RESULTS
A. Reward Convergence Behaviour

We first explored the reward convergence behaviour of the
learner agents when policy transfer is employed to initialize
the policy of a learner agent using the saved expert policies.
Fig. 4 shows such behaviour for 4 samples out of the 106
learner agent contexts when accelerated using all the expert
policies. All the sub-figures also show convergence behaviour
when the learner agent is left to learn from scratch without any
guidance from the expert policies. It is evident from the figures
and the statistics compiled in Table V that the non-accelerated
versions of the learner agents need more learning steps to

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

NAGIB et al.: ACCELERATING RL VIA PREDICTIVE POLICY TRANSFER IN 6G RAN SLICING

60 -

55- non_accelerated
+ Accelerated by 0.1 0.5 0.4
A Accelerated by 0.1 0.2 0.7
¢ Accelerated by 0.3333 0.3333 0.3333
Accelerated by 0.1 0.6 0.3
Accelerated by 0.4 0.5 0.1
Accelerated by 0.4 0.2 0.4
- A Accelerated by 0.1 0.45 0.45
- Accelerated by 0.4 0.3 0.3
Accelerated by 0.4 0.4 0.2
Accelerated by 0.1 0.8 0.1
Accelerated by 0.4 0.1 0.5
Accelerated by 0.1 0.4 0.5
Accelerated by 0.1 0.3 0.6
~# - Accelerated by 0.8 0.1 0.1
A~ Accelerated by 0.1 0.1 0.8
30- Accelerated by 0.1 0.7 0.2

50-

45-

e e s

40-

Cumulative Reward

35-

7500 10000 12500 15000 17500 20000

Learning step

0 2500 5000
(a) wvorte = 0.1, wurLrLc = 0.55, Wvideo = 0.35

80-

non_accelerated

Accelerated by 0.4 0.4 0.2

Accelerated by 0.1 0.3 0.6

Accelerated by 0.1 0.4 0.5

Accelerated by 0.1 0.1 0.8

Accelerated by 0.1 0.45 0.45

Accelerated by 0.4 0.5 0.1

Accelerated by 0.8 0.1 0.1

-#-- Accelerated by 0.3333 0.3333 0.3333

[Accelerated by 0.1 0.2 0.7

50- | Accelerated by 0.1 0.6 0.3
Accelerated by 0.1 0.7 0.2
Accelerated by 0.4 0.3 0.3
Accelerated by 0.4 0.1 0.5

-# - Accelerated by 0.4 0.2 0.4

4 Accelerated by 0.1 0.8 0.1

Accelerated by 0.1 0.5 0.4

70- : ﬂ 3

-

oot

60 -

~—
T =t
>

Cumulative Reward

40-

7500 10000 12500 15000 17500 20000

Learning step

0 2500 5000

(c) wvoLte = 0.25, wurLLe = 0.7, Wvideo = 0.05

1179

o0 ‘,-«’~—'~‘A',\;/'\'r\'/~wvw A4

non_accelerated
Accelerated by 0.4 0.3 0.3
70- | Accelerated by 0.4 0.2 0.4
¢+ Accelerated by 0.1 0.6 0.3
Accelerated by 0.3333 0,333 0.3333
Accelerated by 0.1 0.45 0.45
Accelerated by 0.1 0.1 0.8
4 Accelerated by 0.4 0.5 0.1
+ Accelerated by 0.8 0.1 0.1
Accelerated by 0.1 0.2 0.7
Accelerated by 0.1 0.5 0.4
Accelerated by 0.4 0.4 0.2
Accelerated by 0.1 0.3 0.6
Accelerated by 0.1 0.8 0.1
=~ Accelerated by 0.4 0.1 0.5
4 Accelerated by 0.1 0.4 0.5
Accelerated by 0.1 0.7 0.2

60 -

50-

Cumulative Reward

40-

7500 10000 12500 15000 17500 20000

Learning step

0 2500 5000

(b) wvoLte = 0.15, wurLLe = 0.8, Wvideo = 0.05

72.5-

70.0-

non_accelerated
«- Accelerated by 0.1 0.3 0.6
Accelerated by 0.1 0.45 0.45
+ Accelerated by 0.1 0.1 0.8
65.0- ¢ Accelerated by 0.4 0.2 0.4
Accelerated by 0.1 0.2 0.7
62.5- & Accelerated by 0.1 0.7 0.2
Accelerated by 0.3333 0.3333 0.3333
+ Accelerated by 0.4 0.5 0.1
60.0- Accelerated by 0.4 0.4 0.2
i - Accelerated by 0.8 0.1 0.1
e e g et e e e Accelerated by 0.1 0.5 0.4
57.5- Accelerated by 0.1 0.6 0.3
Accelerated by 0.4 0.1 0.5
55.0- =~ Accelerated by 0.4 0.3 0.3
4. Accelerated by 0.1 0.4 0.5
Accelerated by 0.1 0.8 0.1

7500 10000 12500 15000 17500
Learning step

67.5-

Cumulative Reward
‘>

-

0 2500 5000 20000

(d) wvorte = 0.5, wurLLe = 0.4, Wvigeo = 0.1

Fig. 4. Cumulative reward over 100 learning steps for 4 different contexts, i.e., different slice weight combinations.

TABLE V
TRANSFER LEARNING ACCELERATION STATISTICS

Max Min Mean Median
Number of expert models | 16 1 7 7

that resulted in better conver-
gence per leaner agent (out of
16 expert models)

Number of learner agents im- | 76 24 47 49
proved by a certain expert
model (out of 106 learner
agents)

Number of learning steps re-
duced

14000 | 4500 7377 6900

converge compared with their accelerated counterparts. The
non-accelerated version, visualized in solid lines in all four
figures, takes an average of 7377 learning steps more than
its accelerated counterparts to converge to the optimal reward.
Some of the accelerated versions can take up to 14000 steps
less than their non-accelerated counterparts to converge.
Moreover, the statistics suggest that at least one of the 16
expert models improved convergence when used to accelerate
the 106 learner agents compared with the non-accelerated ver-
sions. This is mainly due to two reasons, the first is that the
accelerated versions make use of the existing knowledge of the
expert agents. The second is that the accelerated versions are
configured to minimize exploration. This is necessary, as the
context of the network changes, to avoid any rapid drops and

instabilities in the system performance. However, as shown
in Fig. 4, and mainly due to such restriction on exploration,
several accelerated learner agents could not converge to the
optimal reward. The error in the reward convergence value
can reach 30 as seen in Fig. 4c where the agent accelerated
by the expert policy of weights: wyorTE = 0.1, WyRLLC =
0.2, wyideo = 0.7 converged to a local maximum of almost
50 instead of 80.

We meant to use the same initial RL configurations for
all the trained agents to highlight the importance of the RL
hyperparameter tuning. This includes the learning rate, the
exploration rate, the exploration decay factor, and others. The
results indicate the sensitivity and importance of hyperparam-
eter optimization in accelerating and stabilizing the agents’
learning process. The process of hyperparameter setting is
time-consuming. Even the automation of such a process is
not straightforward and is computationally expensive. This
requires an efficient way to choose the best policy to guide any
given learner agent when the context, such as the slices’ pri-
orities, changes without having to deal with the costly online
hyperparameter tuning process. More interestingly, Table V
suggests that every expert policy out of the 16 saved ones
failed to improve the acceleration of, at least, 30 of the learner
agents. This is also evident in Fig. 4 when compared with
their non-accelerated counterparts. The results reemphasize
the importance of having an accurate expert model selection
approach to guarantee a better RL exploration performance.

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

1180

It can be noticed from Fig. 4a, 4b, 4c, and 4d that the
difference between the weight vectors of the learner and the
expert agents may have an impact on the accelerated agent’s
reward convergence behaviour. For instance, in Fig. 4c, the
learner agent accelerated by the expert policy having weight
vector of wyorTE = 0.1, wyrpLc = 0.2, Wyideo = 0.7 has a
poor convergence performance. Nonetheless, the learner agent
accelerated using expert policy having a weight vector of
wyorTE = 0.1, wyrLLc = 0.7, wyideo = 0.2 has a very
good convergence performance. The two expert policies were
used to guide the same learner agent having a weight vector
of wyorTE = 0.25, wyrLLc = 0.7, Wyideo = 0.05. The main
difference, that can be noticed here, is the distance between
the weight vectors. The second expert agent’s weight vector
is much closer to the weight vector of the learner agent. We
continue to analyze the correlation between such distance and
convergence performance in the next section.

B. Error and Distance Correlation

We also compiled the simulation data and calculated the
distance between the weight vectors of the learner and expert
agent for each run. We measured the Euclidean distance
between two weight vectors as follows:

§(wl, w2) = \/Z(wli — w2;)?)

where 1 is VOLTE, URLLC, and video,

and » (wl; — w2)* = (wlyoLTE — W2VoLTE)
;

2 2
+ (wlyrrne — w2urLLe)” + (Wlvideo — W2Video)

We also compared the reward convergence of the accelerated
and the non-accelerated agents of each run to calculate the
error in reward convergence. This allows us to explore TL’s
potential to guide the learner agents when the context changes.
The error is measured as follows:

§ = maz(Nearner) — max(rexpert) (10)

where ¢ is the error in the convergence reward value,
maz(Mearner) 18 the optimal convergence reward value of
the non-accelerated learner agent, while max (7yezpert) is the
optimal convergence reward value of the agent accelerated
using an expert policy. Both values are calculated over 100
learning steps.

The error is correlated to the distance as seen in Fig. 5.
The figure shows a scatter plot of the reward convergence
error plotted against the distance between the reward function
weight vectors of the learner and the expert agents. Each point
represents one simulation run where one of the base expert
policies is used to initialize the policy of the leaner agent
instead of learning from scratch. This is done using both Q-
learning and SARSA algorithms. However, the correlation is
not linear. Regression estimates are also plotted in the figure
for both the Q-learning and SARSA data points. Such an esti-
mate will still lead to large prediction errors if it is purely
used to predict the expected error, and hence, deciding which

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Q-learning
30 x SARSA

25

Reward convergence error

0.0 0.2 0.4 0.6 0.8 1.0
Euclidean distance between reward function weight vectors

Fig. 5. Scatter plot of reward convergence error and the distance between
the weight vectors of expert and learner agents’ reward functions.

expert policy to reuse, i.e., to maximize the learner agent’s
reward and minimize the convergence error.

In Fig. 6, we show two-dimensional heat maps of reward
convergence error of 4 different saved expert models when
used to accelerate a subset of the learner agents. We focus
on the last two weights in the weight vectors, in other
words, wyrLLc and wyideo- It is still evident that the
distance between the learner and expert agents’ weight vec-
tors affects the convergence error of the learner agents. For
instance, Fig. 6a shows the error when the expert model hav-
ing wyrLLc = 0.1, wyideo = 0.8 is used. The learner agent
trained using the same reward weight vector is represented by
the bottom right square of the heat map. Its colour reflects
a small error. Similarly, all the heat map squares close to it
seem to have small error values. On the other hand, the square
on the top left, i.e. wyrrLc = 0.8, Wyideo = 0.1, furthest
from the wyrr,c = 0.1, wyideo = 0.8 square has the highest
error. The other figures show similar behaviour concerning the
expert and learner agents’ location on the heat map grid.

This distance-error correlation is mainly due to the influ-
ence of the reward function weights on the performance of the
network system and hence the rewards that will be received
by the agents. Therefore, with a slight difference in the weight
vector, the reward distribution will not be very different. This
will allow the learner agent to converge in a few learning steps
without having to explore much. However, when the weight
difference is big, the Q-tables will be different and exploration
is much needed for the learner agent. Given that the learner
agents’ exploration is restricted to avoid sudden drops in the
system performance, they will probably converge to a local
maximum in this case.

C. ML-Based Predictive Policy Transfer Performance
Discussion

We trained the models mentioned in Section V-C to solve
the regression problem of predicting the reward convergence
error. We then applied the predictive policy transfer procedure

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

NAGIB et al.: ACCELERATING RL VIA PREDICTIVE POLICY TRANSFER IN 6G RAN SLICING

c
S
2
9]
c
=]
2
e
©
2
]
e
(]
<
=1
=
>
[9)
c
9]
=
©
]
=
w
Q
pur]
]
o
)
.
)
=
c
=4
E

25

20
15
10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Weight of Video slice latency in the reward function

0.8

0.7

©

0

0.5

0.4

0.3
8]

0.2

=)

0.1

(a) wurLLe = 0.1, Wvideo = 0.8

v

Weight of URLLC slice latency in the reward function
=)

g 20
15
10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Weight of Video slice latency in the reward function

(¢) wurLLe = 0.7, Wvideo = 0.2

1181

©
<}

0.7

0.6
©

0.5
o

0.3 0.4
] IS

0.2

=)

0.1

12
10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Weight of Video slice latency in the reward function

c
<]
2
]
c
=]
2
e
©
2
]
e
]
<
=1
=
>
[9)
c
9]
=
©
(]
=
w
Q
pur]
)
o
]
.
)
=
c
A=
2

(b) wurLLe = 0.5, Wvideo = 0.4

o

Weight of URLLC slice latency in the reward function
o

d 20
15
10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Weight of Video slice latency in the reward function

(d) wurLLe = 0.8, Wvigeo = 0.1

Fig. 6. Heat maps of reward convergence error of different saved expert models used to accelerate learner agents when the context changes, i.e., the MNO
changes the slice priority configurations. Each sub-figure reflects a specific expert weight vector.

TABLE VI
ML-BASED MODELS PERFORMANCE EVALUATION

MLP Extra-trees regressor | Distance

Average RMSE 3.87 3.62 N/A
Average 12 score 0.35 0.48 N/A
Expert policy average | o, o5 | o) 149, 78.59%
prediction accuracy

Expert policy minimum |, 500 | ¢4 550, 64.70%
prediction accuracy

Expert policy maximum| o) o001 o6 550, 83.90%
prediction accuracy

proposed in Section V-B to efficiently accelerate RL-based
RAN slicing by picking the least error expert policy. Although
they are related, we are more concerned with the expert
policy prediction accuracy out of the metrics mentioned in
Section V-C. This is the main metric that will decide whether
a good policy will be reused to guide a learner agent when an
MNO changes the weight vector of the reward function.

We followed a 10-fold cross-validation approach and calcu-
lated the performance metrics listed in Table VI using both the
MLP and the extra-trees regressor models. We also show the
accuracy when we purely use the Euclidean distance to decide
the best expert policy to load. The distance metric, conforming
to our analysis, can still get a very close performance to

the other two more complex models. However, we can get
a very good accuracy using the extra-trees regressor that
mainly fits several randomized decision trees. The MLP had an
intermediate performance and needs more expensive hyperpa-
rameter tuning to get close to the performance of the extra-tree
regressors. In Fig 7, we show the performance of one of the
built deep learning models. The plot affirms the relatively
lower 72 values of the trained MLP regression models com-
pared with the extra-tree regressor models as Table VI depicts.
Although the high convergence error data points are scarce,
the trained models still managed to have a very promising
end-to-end expert policy prediction performance.

VII. CONCLUSION AND FUTURE WORK

The work in this paper addresses one of the key practi-
cal challenges that are faced when deploying RL-based RRM
solutions in dynamic wireless network environments. We con-
duct an exhaustive experiment to analyze the performance of
accelerating RL agents using policy transfer. We mainly con-
sider an O-RAN scenario in which MNOs change the SLAs’
fulfillment priorities of the available network slices. It is evi-
dent that the distance between the reward function weight
vectors of the learner and the expert agents has a signifi-
cant effect on the reward convergence behaviour. Our analysis

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

1182

Predicted values

True values

Fig. 7. MLP: actual values vs. predicted values.

shows a high, though non-linear, correlation between the
reward convergence error and the Euclidean distance between
the weight vectors. We then propose an ML-based mecha-
nism to enhance the acceleration performance of RL-based
RAN slicing agents using a novel form of predictive TL. This
constitutes a key step toward robust intelligent resource man-
agement in O-RAN. We argue that it is inevitable to enhance
the TL-based acceleration approaches for RL to find its way
to RRM commercial solutions.

We plan to acquire and use data traces, and models, to reflect
real 6G services traffic such as VR gaming and the metaverse.
This will reflect more complex scenarios and more dynamic
behaviour. Hence, more sophisticated DRL algorithms may
be required while examining the transferability of the trained
expert policies. Controlling the inflection point of latency vio-
lation in the sigmoid-based reward function and its effect
on reward convergence performance is another point to be
explored.

REFERENCES

[1] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L.-C. Wang,
“Deep reinforcement learning for mobile 5G and beyond: Fundamentals,
applications, and challenges,” IEEE Veh. Technol. Mag., vol. 14, no. 2,
pp. 44-52, Jun. 2019.

[2] R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C. Zhang,
“Artificial intelligence-enabled cellular networks: A critical path to
beyond-5G and 6G,” IEEE Wireless Commun., vol. 27, no. 2,
pp. 212-217, Apr. 2020.

[3] P. H. Masur, J. H. Reed, and N. K. Tripathi, “Artificial intelligence in
open-radio access network,” IEEE Aerosp. Electron. Syst. Mag., vol. 37,
no. 9, pp. 615, Sep. 2022.

[4] A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement
learning for Al-enabled wireless networks: A tutorial,” IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1226-1252, 2nd Quart., 2021.

[5] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia,
“Intelligence and learning in O-RAN for data-driven NextG cellular
networks,” IEEE Commun. Mag., vol. 59, no. 10, pp. 21-27, Oct. 2021.

[6] A.S. Abdalla, P. S. Upadhyaya, V. K. Shah, and V. Marojevic, “Toward
next generation open radio access networks: What O-RAN can and
cannot do!” IEEE Netw., vol. 36, no. 6, pp. 206-213, Nov./Dec. 2022.

[7]1 H. Chergui et al., “Zero-touch Al-driven distributed management for
energy-efficient 6G massive network slicing,” IEEE Netw., vol. 35, no. 6,
pp. 43-49, Nov./Dec. 2021.

[8] A. M. Nagib, H. Abou-Zeid, and H. S. Hassanein, “Toward safe
and accelerated deep reinforcement learning for next-generation
wireless networks,” IEEE Netw., early access, Sep. 26, 2022,
doi: 10.1109/MNET.106.2100578.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

C. T. Nguyen et al., “Transfer learning for wireless networks: A
comprehensive survey,” Proc. IEEE, vol. 110, no. 8, pp. 1073-1115,
Aug. 2022.

A. M. Nagib, H. Abou-Zeid, and H. S. Hassanein, “Transfer learning-
based accelerated deep reinforcement learning for 5G RAN slicing,” in
Proc. IEEE 46th Conf. Local Comput. Netw. (LCN), 2021, pp. 249-256.
O. Sallent, J. Perez-Romero, R. Ferrus, and R. Agusti, “On radio access
network slicing from a radio resource management perspective,” I[EEE
Wireless Commun., vol. 24, no. 5, pp. 166—174, Oct. 2017.

W. Wu et al.,, “Al-native network slicing for 6G networks,” [EEE
Wireless Commun., vol. 29, no. 1, pp. 96-103, Feb. 2022.

Y. Azimi, S. Yousefi, H. Kalbkhani, and T. Kunz, “Applications of
machine learning in resource management for RAN-slicing in 5G and
beyond networks: A survey,” IEEE Access, vol. 10, pp. 106581-106612,
2022.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

J. A. H. Sanchez, K. Casilimas, and O. M. C. Rendon, “Deep reinforce-
ment learning for resource management on network slicing: A survey,”
Sensors, vol. 22, no. 8, p. 3031, 2022. [Online]. Available: https://www.
mdpi.com/1424-8220/22/8/3031

C. Ssengonzi, O. P. Kogeda, and T. O. Olwal, “A survey of deep
reinforcement learning application in 5G and beyond network slic-
ing and virtualization,” Array, vol. 14, Jul. 2022, Art. no. 100142.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
$2590005622000133

M. Wang, Y. Lin, Q. Tian, and G. Si, “Transfer learning promotes 6G
wireless communications: Recent advances and future challenges,” IEEE
Trans. Rel., vol. 70, no. 2, pp. 790-807, Jun. 2021.

M. Elsayed, M. Erol-Kantarci, and H. Yanikomeroglu, “Transfer rein-
forcement learning for 5G new radio mmWave networks,” IEEE Trans.
Wireless Commun., vol. 20, no. 5, pp. 2838-2849, May 2021.

T. Dong et al., “Generative adversarial network-based transfer reinforce-
ment learning for routing with prior knowledge,” IEEE Trans. Netw.
Service Manag., vol. 18, no. 2, pp. 1673-1689, Jun. 2021.

H. Zhou, M. Erol-Kantarci, and H. V. Poor, “Learning from peers: Deep
transfer reinforcement learning for joint radio and cache resource allo-
cation in 5G RAN slicing,” IEEE Trans. Cogn. Commun. Netw., vol. 8,
no. 4, pp. 1925-1941, Dec. 2022.

N. Q. Hieu, D. T. Hoang, D. Niyato, P. Wang, D. I. Kim, and C. Yuen,
“Transferable deep reinforcement learning framework for autonomous
vehicles with joint radar-data communications,” IEEE Trans. Commun.,
vol. 70, no. 8, pp. 5164-5180, Aug. 2022.

G. Sun, D. Ayepah-Mensah, R. Xu, V. K. Agbesi, G. Liu, and W. Jiang,
“Transfer learning for autonomous cell activation based on relational
reinforcement learning with adaptive reward,” IEEE Syst. J., vol. 16,
no. 1, pp. 1044-1055, Mar. 2022.

J.J. A. Esteves, A. Boubendir, F. Guillemin, and P. Sens, “A heuristically
assisted deep reinforcement learning approach for network slice place-
ment,” IEEE Trans. Netw. Service Manag., vol. 19, no. 4, pp. 4794-4806,
Dec. 2022.

L. Wang, C. Yang, X. Wang, J. Li, Y. Wang, and Y. Wang, “Integrated
resource scheduling for user experience enhancement: A heuristically
accelerated DRL,” in Proc. IEEE 11th Int. Conf. Wireless Commun.
Signal Process. (WCSP), 2019, pp. 1-6.

Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, “Distributed
multi-agent meta learning for trajectory design in wireless drone
networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 3177-3192,
Oct. 2021.

Y. Yuan, G. Zheng, K.-K. Wong, B. Ottersten, and Z.-Q. Luo, “Transfer
learning and meta learning-based fast downlink beamforming adapta-
tion,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1742-1755,
Mar. 2021.

M. K. Motalleb, V. Shah-Mansouri, S. Parsaeefard, and O. L. A. Lépez,
“Resource allocation in an open RAN system using network slic-
ing,” IEEE Trans. Netw. Service Manag., vol. 20, no. 1, pp. 471485,
Mar. 2023.

L. Maggi, A. Valcarce, and J. Hoydis, “Bayesian optimization for radio
resource management: Open loop power control,” IEEE J. Sel. Areas
Commun., vol. 39, no. 7, pp. 1858-1871, Jul. 2021.

R. Li et al., “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, vol. 6, pp. 74429-74441, 2018.

P. Gawtowicz and A. Zubow, “Ns-3 meets OpenAl Gym: The play-
ground for machine learning in networking research,” in Proc. 22nd
Int. ACM Conf. Model. Anal. Simul. Wireless Mobile Syst., 2019,
pp- 113-120.

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/MNET.106.2100578

NAGIB et al.: ACCELERATING RL VIA PREDICTIVE POLICY TRANSFER IN 6G RAN SLICING

[31] T. Leibovich-Raveh, D. J. Lewis, S. A.-R. Kadhim, and D. Ansari,
“A new method for calculating individual subitizing ranges,” J. Numer:
Cogn., vol. 4, no. 2, pp. 429-447, Sep. 2018.

[32] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 12,
pp. 2346-2363, Dec. 2019.

[33] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Mach. Learn., vol. 63, pp. 3—42, Mar. 2006.

[34] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learning:
Methods, Systems, Challenges. Cham, Switzerland: Springer Nat., 2019.

[35] E. LeDell and S. Poirier, “H20 AutoML: Scalable automatic machine

1183

Hatem Abou-Zeid (Member, IEEE) received the
Ph.D. degree from Queen’s University in 2014. He
is an Assistant Professor with the University of
Calgary. Prior to that, he was with Ericsson leading
5G Radio Access Research and IP in RAN intel-
ligence, low-latency communications, and spectrum
sharing. Several wireless access and traffic engineer-
ing techniques that he co-invented and co-developed
are deployed in mobile networks and data centers
worldwide. His work has resulted in 19 patent fil-
ings and 50 journal and conference publications in

learning,” in Proc. AutoML Workshop ICML, 2020, pp. 1-16. several IEEE flagship venues. His research interests are broadly in 5G/6G
[36] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and networks, extended reality communications, and robust machine learning.

wireless networking: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 3, pp. 2224-2287, 3rd Quart., 2019.

[37] A. M. Nagib, H. Abou-Zeid, H. S. Hassanein, A. B. Sediq, and
G. Boudreau, “Deep learning-based forecasting of cellular network uti-
lization at millisecond resolutions,” in Proc. IEEE Int. Conf. Commun.
(ICC), 2021, pp. 1-6.

Ahmad M. Nagib (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees from
the Faculty of Computers and Artificial Intelligence,
Cairo University. He is currently pursuing the Ph.D.
degree with the School of Computing, Queen’s
University, where he is a Graduate Research Fellow.

He also works as an Assistant Lecturer with Cairo
University and as a Machine Learning Ph.D. co-op in
the area of Cloud RAN with Ericsson, Canada. His
research mainly addresses the practical challenges
of applying machine learning, and specifically, rein-
forcement learning, in next-generation wireless networks.

Mr. Nagib served as a Reviewer and a TPC Member in several
IEEE flagship venues, such as IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS, IEEE TRANSACTIONS ON MOBILE COMPUTING,

Hossam S. Hassanein (Fellow, IEEE) is a Leading
Authority in the areas of broadband, wireless and
mobile networks architecture, protocols, control and
performance evaluation. His record spans more than
600 publications in journals, conferences and book
chapters, in addition to numerous keynotes and ple-
nary talks in flagship venues. He has received several
recognition and best paper awards at top interna-
tional conferences. He is the Former Chair of the
IEEE Communication Society Technical Committee
on IoT, AdHoc, and Sensor Networks. He is an IEEE

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, Communications Society Distinguished Speaker (Distinguished Lecturer from

GLOBECOM, ICC, and LCN. 2008 to 2010).

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

