
Adaptive Access Control Policies for IoT
Deployments

1st Ashraf Alkhresheh
School of computing
Queen’s University

Kingston, ON, Canada
khashraf@cs.queensu.ca

2nd Khalid Elgazzar
Department of Electrical, Computer and Software Engineering

University of Ontario Institute of Technology)
Oshawa, ON, Canada

Khalid.Elgazzar@uoit.ca

3rd Hossam S. Hassanein
School of computing
Queen’s University

Kingston, ON, Canada
hossam@cs.queensu.ca

Abstract—In the era of the Internet of Things (IoT), it
has become possible for a set of smart devices to collaborate
autonomously and communicate seamlessly to achieve complex
tasks that require a high degree of intelligence. Unlike traditional
internet devices, a compromised IoT device can cause real-world
damages. The severity of these damages increases dangerously
in sensitive contexts especially when these devices are controlled
by system insiders. Detecting abnormal access behaviors in such
environments is quite challenging, due to frequent changes in
the access contexts under which the IoT device can be accessed.
In this paper, we propose an adaptive access control policy
framework that dynamically refines the system access policies
in response to changes in the device-to-device access behavior.
We apply supervised machine learning to model and classify
the device access behavior based on a real-life data set. We
provide a use case scenario of a door locking system to validate
our work. Results show that our framework provides improved
security, dynamic adaptability and sufficient scalability to the
target application domain.

Index Terms—

I. INTRODUCTION

Since the term was first coined by Kevin Ashton in 1999,
IoT has received a considerable attention from the research
community and industry [1]. IoT is a communication paradigm
which connects ’things’ to the Internet and enables them
to communicate and share data to achieve complex tasks.
Things can be any object such as TVs, refrigerators, light
controls, security systems, baby monitors and automobiles.
The autonomous interaction among these things creates what
is called ‘smart spaces’ commonly known as smart homes,
smart cars, smart cities; the essential constituents of IoT
environments.

IoT opens the door for a wide range of smart applications
and services such as traffic monitoring, remote medical care
and management of supply chains. A recent study conducted
by GrowthEnabler [2] shows that the global IoT market will
grow from $157 billions to $457 between the years 2016 and
2020, and that the top three sub-sectors that dominate the
market share are Smart Cities (26%), Industrial IoT (24%)
and Connected Health (20%).

However, recent studies on IoT security show that a high
percentage of connected IoT devices can be easily attacked due
to many security vulnerabilities associated with these devices.
For example, HP IoT [3] tested 10 of the most commonly used

home security IoT devices and found that 70% of these devices
are vulnerable to attacks. The omnipresence of IoT devices in
individuals’ surroundings allows for the collection of a very
sensitive information and hence serious privacy violations.
Therefore, it has become evident that security and privacy
are major concerns that impede the widespread adoption of
the IoT technology, and that access to IoT devices must be
tightly controlled to prevent unauthorized accesses, preserve
individuals’ privacy and use the IoT technology to its fullest
potential.

Existing access control models such RBAC [4], ABAC [5]
and TBAC [6] rely on access control policies to regulate
access to protected resources. The main issue in these access
policies is that, oftentimes, they assign more access privileges
than that actually needed by the requesting entity, which
exposes systems’ resources to insider attacks [7]. In addition,
these access policies are manually specified and maintained,
assuming operation in closed environments with infrequent
changes in interaction conditions. The highly dynamic nature
of IoT environments creates access contexts in which pre-
defined access control policies can not meet the security
and privacy objectives of the policy administrator. In IoT
context, access control policies become obsolete quickly due to
frequent changes in security and privacy requirements, which
increases the risk of insider attacks and makes the policy
management and maintenance a tedious and error-prone task.
Therefore, there is a need for an adaptive access control
mechanism that can react instantly to changes in IoT context
and refine the access control policies at run time with minimal
or no human intervention.

In this paper, we present a generic adaptive access control
framework for IoT deployments. The framework uses machine
learning techniques to detect abnormal behaviors of IoT de-
vices accessing system’s resources and refine the system’s
access control policies at run time to cope with behavioral
changes. The framework introduces restrictions to access con-
trol policies based on behavioral features that significantly
contribute to abnormal behaviors, and provides access policy
refinements as recommendations to the policy administrator
for final approval. With this, we aim to prevent users of
IoT devices from abusing their access privileges or exploiting
obsolete access control policies to gain unauthorized access,

978-1-7281-3129-0/20/$31.00 ©2020 IEEE 377

Authorized licensed use limited to: Queen's University. Downloaded on August 04,2020 at 18:27:56 UTC from IEEE Xplore.  Restrictions apply. 



and simplify the management of access control policies. To the
best of our knowledge, this work is the first to apply machine
learning techniques to refine access control policies at run time
based on a real-life data set.

II. BACKGROUND AND RELATED WORK

Access control is a combination of three security concepts
[8], [9]: (1) authentication that is the process by which a
system verifies the identity of an entity (e.g., user, application,
IoT device, etc.); (2) authorization determines whether an
accessing entity has sufficient privileges to access system re-
sources and what operations are allowed or prohibited for this
specific entity on the resources of interest; (3) accountability
ensures that the actions of an entity can be solely traced back
to this entity. It guarantees that all operations carried out by
individuals, systems or processes can be identified and that the
trace to the entity and the operation is maintained.

The main objective of the access control is to enforce the
system security and privacy requirements on protected services
and resources [8]. The level of authorization an entity can be
assigned is determined by evaluating its associated properties
(e.g., identity, roles, proximity, access history) against a set of
predefined access control policies.

Recently, detection and prevention of insider threats has
attracted the interest of researchers in the IoT security field.
In IoT context, insider threats come from current or former
connected IoT devices which have or had access privileges
on the protected resources, and the users in control of these
devices, hereinafter referred to as (IoT users), intentionally
abuse these access privileges in a manner that negatively
affect the security and privacy objectives of the resource’s
administrator.

Traditional access control approaches such as [10]–[12] do
not cope with insider threats and usually provide exessive
access privileges to IoT users. In these approaches, researchers
focus on improving access control policies by considering
more factors (e.g., time, location and environmental condi-
tions) in access decision-making to narrow down the access
permissions assigned to IoT users on protected resources,
the literature refers to these factors collectively as context.
However, these approaches can still allow unauthorized access
because they do not consider changes in the access behavior
of IoT users while resources are in use.

A number of solutions have been proposed to approach
the insider threats in IoT environments based on behavioral
models and anomaly detection techniques. Meidan et al. [13]
use deep autoencoders [14] to detect anomalous network
traffics generated by compromised IoT devices. In their exper-
iments, they trained one autoencoder to construct the normal
traffic behavior for each IoT device. If the autoencoder fails
to reconstruct the normal behavior on a new traffic sample
generated by the corresponding device, it indicates that the
observed behavior is anomalous and all subsequent traffic from
this device is blocked. Hafeez et al. [15] use semi-supervised
machine learning to detect malicious device-to-device commu-
nications in IoT. They use the Fuzzy C-Mean (FCM) algorithm

to perform clustering of the network activities and determine
the degree of maliciousness; thus handling different types of
malicious traffic. Although these approaches do not focus on
the adaptation of the access control policies, they give great
insights for insider threat detection in IoT environments.

In this paper, we leverage the experience from the field of
anomaly detection to build an adaptive and accurate policy
refinement framework. The framework classifies the device
access behaviors based on proactive measures and uses the
knowledge it acquires from detected abnormal accesses to
generate policy refinements at run time.

III. ADAPTIVE ACCESS CONTROL FRAMEWORK

Fig. 1. Adaptive access control framework architecture.

Figure 1 depicts the architecture of the access control
framework. The framework consists of:

1) A standard ABAC authorization server based on
XACML access control infrastructure described in [16].

2) A policy management module which implements the
access policy adaptation functionalities including the
access behavior classifier and the policy refinement
components.

3) A context monitor, which provides the access the con-
textual information required for the authorization server
to evaluate access requests, and the policy refinement
component to generate context-aware policy controls.

The framework encompasses four phases: (1) the offline train-
ing, during which the classifier models the access behaviors
based on the historical access information (i.e., user access
logs). (2) the access authorization phase, during which an ac-
cess request is evaluated following the standard ABAC policy
evaluation framework (steps 1-8); (3) the access behavior
classification phase, during which the classifier component
classifies ongoing access sessions and reports abnormal access
behaviors to the policy refinement component (steps 9-10);
(4) the policy refinement phase, in which the policy refine-
ment component analyzes the anomalous access behaviors,
recommends proper policy controls based on the proactively
monitored contextual features (e.g., number of denials) and
sends these recommendations to the policy administrator for
final approval (steps 11-13).

The context monitor continuously feeds the policy refine-
ment component with the contextual information required to

378

Authorized licensed use limited to: Queen's University. Downloaded on August 04,2020 at 18:27:56 UTC from IEEE Xplore.  Restrictions apply. 



keep pace with changes in the normal access behavior. For
example, if the rate of access denials increases significantly,
this indicates that either the system is being attacked or the
classifier model becomes obsolete due to emergent of new but
normal access behaviors. In both cases, the policy refinement
component notifies the policy administrator to restart the
learning process and update the statistics of the classification
model. In case of system attack, the policy administrator can
simply ignore the alert. Otherwise, the policy administrator
needs to label the emergent access behaviors as normal ones
and feed the classifier with the new data to update.

A. Access behavior model

An access behavior represents how users utilize the system
resources. We define the access behavior as the sequence of
access requests submitted by the user to the authorization
server within a predefined time window. Formally, we define
the access sequence, denoted by AB, as follows:

AB = {ARt−k, ARt−k+1, . . . , ARt} (1)

where ARt−k is the first access request in the access sequence
AB in a time window k. Each access request in the sequence
is represented by the set of attributes that characterize the ele-
ments of the access request (i.e., user, resource and operation)
and the context information that describes the environment in
which the access request takes place (e.g., time and location).
Formally, we define the access request, denoted by AR, as
follows:

AR = {ATu, ATr, ATo, ATc} (2)

where ATu = {atu1 , ...., atux} is the set of user attributes, ATr =

{atr1, ...., atry} is the resource attributes, ATo = {ato1, ...., atoz} is
the operation attributes, and ATc = {atc1, ...., atcw} is the context
information. An attribute is expressed as at = name op value,
where op is a relational operator (e.g.,=, 6=,<) between the
attribute name and a value from the range of possible values
of this attribute.

B. Access behavior classification

The task of the classifier component is to classify the current
access sequence into one of two behavioral classes: normal or
abnormal given the historical access sequences submitted to
the system (i.e., training data).

One approach to implement the classifier component is to
use standard classification algorithms. In this regards, data
science provides a plethora of classification algorithms such
as Naive Bayes Classifier (NBC), Support Vector Machine
(SVM) [16], and decision trees (DT) [17]. But near the top of
the classifier hierarchy is the Random Forest classifier (RF)
[18]. RF is an addition to the DT; it creates multiple decision
trees and merges them together to obtain a more stable and
accurate prediction. In general, the more trees in the forest,
the more robust the prediction would be and thus higher
accuracy. However, the complexity of the random forest grows
significantly as the size of the data set increases because more
decision trees need to be built in order to maintain stability

and accuracy of the prediction. In addition, the RF classifier
makes predictions based on the correlation between the input
and output variables as well as among input variables within
individual data points (i.e., one access request in our case),
it does not consider correlations across data points nor their
time order.

Another approach for the classification task is to use artifi-
cial neural networks such as Multilayer Perceptrons (MLPs),
Convolutional Neural Networks (CNNs) [19]. These classes
of neural networks provide a lot of flexibility and have proven
usefulness and reliability in a wide range of problems. In
particular, Recurrent Neural Networks (RNNs) [20] were de-
signed to work with sequence prediction problems. Sequence
prediction problems come in many forms including:

• Many-to-One: A sequence of multiple steps as input
mapped to a class or quantity prediction.

• One-to-Many: An observation as input mapped to a
sequence with multiple steps as an output.

• Many-to-Many: A sequence of multiple steps as input
mapped to a sequence with multiple steps as output.

Our classification problem belongs to the first category.
We want our classifier to take a sequence of multiple access
requests as input and map it to one behavioral class as output.
However, we want the classifier to predict the next access
behavior every time a new access denial is recorded. Therefore,
the length of the input sequence is variable in our case. This
requires careful engineering of the RNN input layer.

C. Access policy refinement

Once the classifier model is built, we need to apply the
knowledge it acquires during the training phase to refine the
access control policies. Listing 1 shows the access policy
refinement algorithm.

Listing 1: Access policy refinement algorithm.
input : Abnormal Access Sequence AS
output: Access Control Refinements ACR

1 begin
2 ACR← {} // initialize
3 for all ar ∈ AS
4 for all features ∈ ar
5 if P (ar.denied|ar.feature) ≥ threshold
6 predicate← ¬(features =

ar.feature.value)
7 ACR← ACR ∪ {predicate}
8 end
9 end

10 end
11 Return ACR
12 end

The refinement algorithm takes the abnormal access se-
quence reported by the classifier as input, and returns a set
of access policy refinements in a form of negation predicates.
The algorithm performs two steps:

1) It extracts the access attributes and contextual features
(i.e., user, resource, operation, location and time) of each
request in the abnormal access sequence, and for each
individual feature, it calculates the likelihood probability

379

Authorized licensed use limited to: Queen's University. Downloaded on August 04,2020 at 18:27:56 UTC from IEEE Xplore.  Restrictions apply. 



of access denial given that the feature is present in the
access request, lines 3-5.

2) It generates new policy controls, lines 6 and 7, in
a form of negation predicates. The negation predicate
is defined on the feature(s) that contribute most to the
abnormal behavior.

We calculate the conditional probability, line 5, as follow:

Pr(D|F ) =
Pr(F ∩D)

Pr(F )
(3)

Where:
Pr(D) is the probability of access denial in the access

sequence, defined as follow:

Pr(D) =
# of denied requests

sequence length
(4)

Pr(F ) is the probability of feature presence in the access
sequence, defined as follow:

Pr(F ) =
# of feature presences

sequence length
(5)

Pr(F ∩D) is the probability of feature F to present in the
a denied access in the sequence, defined as follow:

Pr(F ∩D) =
#of feature presences in denied requests

sequence length
(6)

The refinement threshold is a predefined value that is set
by the policy administrator. Setting the refinement threshold
to small value increases the probability for the refinement
component to pose more restrictions on the access policies.
For example, If the probability of the feature (subject:”Bob”)
to present in a denied access in an abnormal access sequence
is greater than the refinement threshold, the refinement compo-
nent will recommend to update all applicable policies (i.e., all
policies whose subject is Bob) with the following predicate:

predicate← ¬(user, ”Bob”)

Therefore, all access permissions that Bob has on the system
resources will be revoked. In fact, a negation predicate can
be defined to restrict access per user, operation, resource,
attribute, context or any combination of them.

IV. USE CASE: DOOR LOCKING SYSTEM (DLS)

We use the School of Computing door locking system
(DLS) at Queen’s university as our use case to demonstrate the
utility and usability of the proposed adaptive access control
framework. DLS controls a total of 30 doors located in a
seven story building at the University main campus. Figure 2
depicts the architecture of DLS. The architecture encompasses
the following entities: humans (i.e., the policy administrator
and users); Authorization Server (AS) which makes the access
decisions; Gateways (G), which are Raspberry PI [21] and Ar-
duino [22] microcomputers. These microcomputers intercept
the access requests that come from the door controllers and
forward them with other information (e.g., time and location)
to the AS. In addition, they also serve as backup for the
AS during power outage should it occurs; Door Controllers
(DC), which read users’ information stored in their Ibutton

Fig. 2. DLS architecture.

microchips [23] (i.e., a form of access key), and lock/unlock
the doors based on the system’s access control policy. There
are four types of doors in the school building: Exterior Doors
(ED), Floor Doors (FD), Lab Doors(LD) and Office Room
Doors (OD).

A. DLS access control policy

DLS uses the XACML framework as its access control
infrastructure. It employs a Policy Decision Point (PDP) to
make access decisions (i.e., AS), a Policy Enforcement Point
(PEP) to enforce the decision (i.e., door locks), and a Policy
Information Point (PIP) to manage the collection of attributes
and context information required for that decision (i.e., gate-
way). At the most basic level, a user makes an access request
by touching his/her key to the Ibutton probe located on each
door’s frame. The Ibutton prob is connected to the gateway via
1-wire communication protocol [24]. The gateway timestamps
the access request and sends it in a form of authorization
request to the AS. The AS evaluates the request against
preconfigured ABAC policies, makes the access decision, and
returns the decision through the gateway to the door lock.
The door lock in turns, permits or denies access. The access
to the building, floors and rooms is determined by evaluating
different attributes of the access request against the system’s
policies. These attributes are: the user attributes (e.g., role:
faculty member); the door attributes (e.g.,lab and office door)
and the contextual information (e.g., door time schedule and
controller IP address).

B. Motivating access scenario

Assume Bob, a graduate student at the school of computing,
goes to the school in the late evening hours on weekdays. Bob
uses the main entrance to enter the school building, takes the
elevator up to the sixth floor, opens the floor main entrance
and heads towards his lab room. The following is an example
of existing access control policies in DLS:
policy: policy 1 { deny-unless-permit
rule rule1 ( permit
target:
equal(subject/role,"Grad student")
&& equal(subject/depart,"Computing")
&& equal(operation,"Unlock")
&& equal(resource,"LD")
&& equal(time,"Any")

380

Authorized licensed use limited to: Queen's University. Downloaded on August 04,2020 at 18:27:56 UTC from IEEE Xplore.  Restrictions apply. 



&& equal(location,"6th floor"))}
Policy 1 allows graduate students of the school of computing

a 24 hours access to all lab rooms in the sixth floor. Let us
assume that while in the sixth floor, Bob attempts to access
lab room 601. The following request will be submitted to the
AS :

request:
(subject/role,"grad student")
(subject/depart,"computing")
(operation,"Unlock")
(resource,"room 601")
(time,"20:00")
(location, "601 door controller IP")

We can easily tell that the attributes and contexts of Bob’s
access request match the policy target, and satisfy all condi-
tions of policy 1. Therefore, Bob’s access request is granted.
It worth mentioning that the access request is only evaluated
against the access policies whose targets match the parameters
of the access request, where the target is the set of user
attributes, resource attributes and contextual information upon
which conditions of access policies are defined.

Suppose that Bob, either accidentally or intentionally, at-
tempts to access an OD without plausible reasons. Although,
policy 1 would deny Bob’s access request, this scenario may
indicate that Bob is either abusing his access privileges for
personal benefits or Bob’s Ibutton is being used by an attacker.

Existing access control approaches cannot prevent such kind
of insider attacks. They lack the ability to detect abnormal
access behaviors and adapt the access control policies to
prevent these behaviors. Therefore, we equip our adaptive
access control framework with a learning mechanism that
models the normal access behaviors of the IoT devices (e.g.,
Ibutton), and use this knowledge to detect abnormal access
behaviors and refine the access policies accordingly.

For example, if DLS monitors the access behavior based on
the number of denied accesses, and observes that the majority
of graduate students have been denied access to school doors
no more than three times. Our system can use this information
to refine access policy 1 as follow:
policy: policy 2 { deny-unless-permit
rule rule1 (permit
target:

equal (subject/role,"grad student")
&& equal (subject/depart,"computing")
&& equal (operation,"Unlock")
&& equal ( of access denials ,"<3"))}

In policy 2, the predicate in bold is the restriction our system
imposes on policy 1 based on the newly acquired knowledge.
According to policy 2, graduate students whose access history
(i.e., access logs) contains three access denials, will be denied
access to all lab rooms, including those doors they were
authorized to, until further review/auditing is conducted.

In the previous access scenario, we only looked into the
number of access denials to refine the access policies regard-
less of the access context. However, it is applicable that the
access control system applies more complex measures such
as the correlation of abnormal access behaviors with sensitive

contexts (e.g., weekends). In such contexts, our system can
pose more restrictive conditions to the access policies, for
instance, lowering the number of allowed access denials in
weekend days, all applied by the policy administrator. Another
interesting feature that the proposed system supports is the
detection of abnormal access sequences. For example, if Bob
chooses to change the doors he usually uses to get to the
lab room, for instance, if Bob takes the elevator up to the
fifth floor, then takes the stairs to get to the sixth floor. Our
system can detect such change in access behavior and classify
it as abnormal access sequence. Many other scenarios are also
possible.

V. DATASET AND FEATURE SELECTION

Our dataset consists of 180,000 access logs collected over
the time period from December 2016 to April 2019. Each
access log contains the following parameters: user ID (i.e.,
key ID), door ID, user attributes, door attributes, access time
and access value. First, we selected the top five users based on
the total number of accesses. This cuts down the data size to
13,296 access logs. All parameters in the access logs do not
provide quantitative information. Therefore, we categorized
these parameters and used the one hot encoder to perform
“binarization” of each category and include it as a feature to
train the classifiers.

Next, we defined 27 input variables as follows: 5 categories
for the users, 3 categories for user attributes (i.e., faculty
member, staff member, graduate student and undergraduate
student), 2 categories for the day of access (i.e., weekday
and weekend), 4 categories to represent the access hour
(i.e., morning, afternoon, evening and night), 13 categories to
represent the door ID which also represents the door location,
and 1 category for the access value. We constructed an output
label ”Abnormal/Normal” behavior to the data set, where 1
represent abnormal and 0 represent normal. The default value
to this column is 0 to all access logs. We set the value to
1 (abnormal behavior) in two cases: (1) if the user is denied
access three times in a row with normal access context (i.e.,
weekdays and/or during morning, afternoon and evening times
of day), (2) if the user is denied access two times in a row in
sensitive context settings (i.e., weekends and/or during night
time of the day). Otherwise, the output label is always set to
0 to denote normal access.

VI. EVALUATION AND RESULTS

We use the Python libraries Scikit-learn [25] and Keras
[26] to implement the RF and RNN classifiers. For the RNN
approach, we use Long Short-Term Memory (LSTM) [27]
network. LSTM overcomes the training problem associated
with the RNN and in turn has been used in a wide range of
applications that involve large data sets.

We chose the Receiver Operating Characteristic (ROC)
curve as our evaluation metric. ROC does not depend on the
class distribution, which makes it useful for evaluating classi-
fiers predicting rare events such as abnormal access behavior
in our case. In contrast, evaluating performance using accuracy

381

Authorized licensed use limited to: Queen's University. Downloaded on August 04,2020 at 18:27:56 UTC from IEEE Xplore.  Restrictions apply. 



would favor classifiers that always predict a negative outcome
(i.e. normal access behaviors) over rare positive outcome (i.e.,
abnormal access behaviors). To compare different classifiers, it
is useful to summarize the performance of each classifier into a
single measure. One common approach is to calculate the area
under the ROC curve, which is abbreviated to AUC. AUC is
equivalent to the probability that a randomly chosen positive
instance is ranked higher than a randomly chosen negative
instance.

To evaluate the performance of the RF and LSTM clas-
sifiers. We conduct two experiments on two different data
sizes: 6000 and 10000 access logs. For both experiments we
performed the following steps: First, we split the data set
into training and testing sets with the percentages 80 and
20, respectively. For the RF classifier, we fed the training
data without modifications. For the LSTM classifier, however,
we group the access logs between each subsequent abnormal
behaviors into one access sequence. The resultant access
sequences have different lengths, therefore, we calculate the
length of the longest sequence and pad the short sequences
with zeros. Next, we optimized the hyper-parameters for
both models on the testing data. Then, we generate synthetic
data that has different distribution (e.g., uniform) from that
of the original data, and re-evaluate the two classifiers on
the synthetic data. Figure 3 shows the performance of the
two classifiers when trained and tested on small number of
access logs. Approximately, the two classifiers score the same
AUC over variable values of decision thresholds. The AUCs
achieved show that both classifiers poorly distinguish one
normal behavior from one abnormal behavior.

Fig. 3. The performance of LSTM VS RF, training data = 500 logs

Figure 4 shows the performance of the two classifiers when
applied to data of different distribution. The RF outperforms
the LSTM because there is less chance for short training data
to contain long access sequences.

Figure 5 shows the performance of the two classifiers when
trained and tested on relatively large number of access logs.
Again, the two classifiers score comparable AUCs. However,
The AUC results show that both classifiers can distinguish
the two access behaviors with high accuracy. The LSTM
outperforms the RF because of the increased chance for the
LSTM classifier to learn from longer access sequences in
larger training data. Therefore, we conclude that the LSTM
classifier can scale better to IoT environments; it classifies the

Fig. 4. The performance of LSTM VS RF, validation data = 150 logs.

Fig. 5. The performance of LSTM VS RF, training data = 8000 logs.

access behaviors irrespective of the number of users, attributes,
and access contexts. Figure 6 shows the performance of the
two classifiers when applied to data of different distribution. To

Fig. 6. The performance of LSTM VS RF, validation data = 3000 logs

evaluate the results of the policy refinement component, we run
the LSTM classifier on the entire data set (i.e., 458 users). The
classifier successfully reports 466 abnormal access sequences
out of 495 actual ones. We set the refinement threshold to
the minimum value (0.024), which is the maximum allowable
number of access denials for a user (3 in our case) divided
by the maximum sequence length (124 access requests). With
this threshold we allow the policy refinement component to
generate the largest number of possible recommendations.
Table 1 summarizes the results of the policy refinement.
We only present the type and number of distinct predicates
generated by the policy refinement component. A total of 279
negation predicates are generated based on the userID only,
21 predicates for users on specific doors and 115 predicates

382

Authorized licensed use limited to: Queen's University. Downloaded on August 04,2020 at 18:27:56 UTC from IEEE Xplore.  Restrictions apply. 



for users in specific time of the day distributed as follows:
26, 127, 163, 50 predicates for night, morning, afternoon and
evening times respectively.

TABLE I
POLICY REFINEMENTS

Feature userID DoorID UserID&DoorID UserID &Time
predicates 279 301 21 115

For simpler analysis, we make a list of the predicates that
associate two features in one predicate (i.e., userID&DoorID
and userID &Time). We present the list to the policy adminis-
trator for analysis. The following is the feedback points from
the policy administrator:

• 18 of (userID&DoorID) predicates are labeled ”nec-
essary”. The rest of predicates require more analysis
because the permissions of some users were escalated to
access more doors, while others were replaced lost keys.

• 97 of UserID&Time predicates are labeled ”unneces-
sary”. Among the accepted 18 predicates, there are 15
that recommend restricting access on afternoon times.
One possible justification is that there is an increased
possibility that people go for launch around noon time,
which increases the chances for accidental or intentional
use of wrong doors.

VII. CONCLUSIONS

In this work, we introduced an adaptive access control pol-
icy framework for IoT deployments. The framework dynami-
cally refines the access policies based on access behaviors of
the IoT devices. We implemented and evaluated two machine
learning classification approaches on a real life data set. The
results show that both approaches perform well on small and
unbalanced data sets, and provided accurate policy refinements
at run time. However, LSTM shows improved performance
on large data sets because of the increased chances for the
LSTM classifier to learn from longer access sequences. For
future work, we plan to build a user friendly interface to
visualize the policy refinement recommendations. In addition,
We plan to extend our framework with an anomaly detection
component to detect changes in normal access behaviors (i.e.,
unseen behaviors) to maintain accurate and up-to-date access
control policies.

REFERENCES

[1] K. Ashton, “That ’internet of things’ thing,” RFID journal, vol. 22, no. 7,
pp. 97–114, 2009.

[2] “Market Pulse Report,IOT - UK.” [Online]. Available:
https://growthenabler.com/reports/IOT.html

[3] “HP News - HP Study Reveals 70 Percent of Internet
of Things Devices Vulnerable to Attack.” [Online]. Available:
https://www8.hp.com/us/en/hp-news/press-release.html?id=1744676

[4] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[5] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo, “Attribute-based access
control,” Computer, vol. 48, no. 2, pp. 85–88, 2015.

[6] J.-B. Deng and F. Hong, “Task-based access control model,” Journal of
software, vol. 14, no. 1, pp. 76–82, 2003.

[7] “What is an Insider Attack? - Definition from Techopedia.” [Online].
Available: http://www.techopedia.com/definition/26217/insider-attack

[8] M. Benantar, Access control systems: security, identity management and
trust models. Springer Science & Business Media, 2005.

[9] N. R. Council, S. S. S. Committee et al., Computers at risk: safe
computing in the information age. National Academies Press, 1990.

[10] M. J. Moyer and M. Abamad, “Generalized role-based access control,” in
21st International Conference on Distributed Computing Systems, Apr.
2001, pp. 391–398.

[11] B. Anggorojati, P. N. Mahalle, N. R. Prasad, and R. Prasad, “Capability-
based access control delegation model on the federated iot network,”
in Wireless Personal Multimedia Communications (WPMC), 2012 15th
International Symposium on. IEEE, 2012, pp. 604–608. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/6398784

[12] P. N. Mahalle, B. Anggorojati, N. R. Prasad, R. Prasad et al., “Identity
authentication and capability based access control (iacac) for the internet
of things,” Journal of Cyber Security and Mobility, vol. 1, no. 4, pp.
309–348, 2013.

[13] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breiten-
bacher, and Y. Elovici, “N-baiot—network-based detection of iot botnet
attacks using deep autoencoders,” IEEE Pervasive Computing, vol. 17,
no. 3, pp. 12–22, 2018.

[14] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[15] I. Hafeez, A. Y. Ding, M. Antikainen, and S. Tarkoma, “Toward secure
edge networks taming device to device (d2d) communication in iot,”
arXiv preprint arXiv:1712.05958, 2017.

[16] B. Scholkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2001.

[17] W. A. Belson, “Matching and prediction on the principle of biological
classification,” Journal of the Royal Statistical Society: Series C (Applied
Statistics), vol. 8, no. 2, pp. 65–75, 1959.

[18] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[19] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning
representations by back-propagating errors,” Cognitive modeling, vol. 5,
no. 3, p. 1, 1988.

[20] “Raspberry Pi Documentation.” [Online]. Available:
https://www.raspberrypi.org/documentation/

[21] “Arduino - Home.” [Online]. Available: https://www.arduino.cc/
[22] “What is iButton? - Definition from WhatIs.com.” [Online]. Available:

https://whatis.techtarget.com/definition/iButton
[23] S. Godik and T. Moses, “Oasis extensible access control markup lan-

guage (xacml),” OASIS Committee Secification cs-xacml-specification-
1.0, 2002.

[24] “1-Wire Communication with a Microchip PICmicro Micro-
controller - Application Note - Maxim.” [Online]. Available:
https://www.maximintegrated.com/en/app-notes/index.mvp/id/2420

[25] “scikit-learn: machine learning in Python — scikit-learn 0.21.2
documentation.” [Online]. Available: https://scikit-learn.org/stable/

[26] “Home - Keras Documentation.” [Online]. Available: https://keras.io/
[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, pp. 1735–80, 12 1997.

383

Authorized licensed use limited to: Queen's University. Downloaded on August 04,2020 at 18:27:56 UTC from IEEE Xplore.  Restrictions apply. 


