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Abstract 

Location discovery (i.e., Localization) and sensing coverage services in Wireless Sensor 

Networks (WSNs) have received significant attention from the Internet of Things (IoT) research 

community. The usage of WSNs within IoT mandates taking into account IoT characteristics when 

considering sensing coverage. These characteristics include heterogeneity, large scale, dynamicity, 

and multiple ownership. Anchors are typically used to enable localization in IoT settings. Anchor 

misplacement or errors in anchor location readings can cause significant disruption to location-

based services in IoT. This thesis investigates the anchor misplacement problem, provides an 

analytical study of both localization, and sensing coverage under the presence of anchor 

misplacement.  

We utilize two tools from computational geometry Voronoi Diagram (VD) and Delaunay 

Triangulation (DT) to partition the target region in order to make the problem solvable and easy to 

follow. We also borrow a graph-theoretic tool called Graph History to more closely understand the 

impact of anchor misplacement on sensing coverage. These tools allow us to locally study, analyze, 

and detect the impact of anchor misplacement in its vicinity. We analyze the problem of anchor 

misplacement, its impact on localization and sensing coverage, and we also identify new types of 

sensing coverage holes. We also present heuristics to mitigate the impact of anchor misplacement 

and improve the reliability and accuracy of WSN services. Our research approach and solution for 

the anchor misplacement problem can be utilized in a multiplicity of localization and sensing 

coverage applications regardless of the sensors or deployment types including IoT. Results show 

that our proposed algorithms are far more conducive to IoT context. They provide higher detection 

rates of misplaced anchors and sensing coverage holes, and more effective mitigation which result 

in higher enhancement of IoT services. 

 



iii 

 

Acknowledgements 

All thanks go to Almighty Allah, the most gracious, the most merciful, for giving me 

determination, strength and patience to complete this work.  

I would like to express my sincere gratitude to my advisors Dr. Hossam S. Hassanien and Dr. 

Nidal Nasser for their support, guidance, and patience. Their continuous guidance and motivation 

were reinforcing the knowledge of my PhD research. I appreciate the consistently excellent 

mentoring of my supervisors. They have exceptional skills in dealing with their students; I have 

ever had the pleasure and knowledge together before dealing with both of them. They guide their 

students to be methodical and scientists of the future. In four years of being their PhD student, I am 

confident that they are among the best representatives of outstanding supervisors at Queen’s 

University. 

Besides my advisors, I would like to thank the rest of my supervisory committee: Dr. Kai 

Salomaa, and Dr. Robin Dawes for their detailed comments and insightful feedback. Their 

questions expanded my knowledge from different perspectives.  

I would like also to thank Basia Palmer, our research assistant at TRL, for her comments and 

endless support. You efforts to support me even prior my arrival to Canada are much appreciated. 

I thank my wonderful lab mates for the brainstorming discussions, hard working together 

before deadlines, and for all jokes and fun we have had at TRL. 

My sincere thanks goes to my family: my parents, brothers, and sisters for their continuous 

support and encouragement. You were and will always be a huge inspiration in my life. 

Last but not least, I would like to thank my lovely wife, Sabah. Her love, encouragement, and 

dedication light the path throughout my PhD.  Without the support and patience of my wife and my 

children, Ammar and Mona, I would never have completed my PhD. Although they had to endure 

my absence, they rarely complained. I hope the completion of my PhD will be a source of joy and 

happiness for them. 



iv 

 

Statement of Originality 

I hereby certify that all of the work described within this thesis is the original work of the 

author.  Any published (or unpublished) ideas and/or techniques from the work of others are fully 

acknowledged in accordance with the standard referencing practices. 

 

Yaser Al Mtawa 

April, 2017 



v 

 

List of Acronyms 

 

ADC Analogue to Digital Convertor 

AoA  Angle of Arrival 

APIT Approximate Point in Triangulation 

BS(s) Base Station(s) 

CHRAT Coverage Hole: Ratio And Type 

DAnD Distributed Anchor Detection  

DT Delaunay Triangulation  

DV Distance Vector 

DV-hop Distance Vector based on hops 

GPS  Global Positioning System 

ITC Intra-triangle Coverage  

IoT Internet of Things 

IR Infra-Red 

IRAT Identify Ratio And Type 

LANDMARC  Location Identification based on Dynamic Active RFID Calibration  

LoS Line of Sight 

LS-WSN(s)  Large-Scale Wireless Sensor Network(s) 

LUB Lower and Upper Bounds  

MMSE Minimum Mean Square Estimate 

NLoS Non-Line of Sight 

PIaT Point in a Triangle 

RF  Radio Frequency 



vi 

 

RFID  Radio Frequency Identification 

RGG Random Geometric Graph 

RMSD Root Mean Square Distance 

RN(s) Relay Node(s) 

RSS  Received Signal Strength 

RSSI  Received Signal Strength Indicator 

SN(s) Sensor Node(s) 

SS Signal Strength 

TDoA  Time Difference of Arrival 

ToA  Time of Arrival 

TVSR Testing Validity of the Sensing Report 

UWB  Ultra-Wide Band 

VD Voronoi Diagram  

WSN(s) Wireless Sensor Network(s) 



vii 

 

Co-Authorship 

[1] Y. Al Mtawa, H. Hassanein, and N. Nasser, “ Localization of IoT Sensors under Anchor 

Misplacement,” IEEE Sensors Journal  (Submitted) 

[2] Y. Al Mtawa, H. Hassanein, and N. Nasser, “Sensing Coverage in IoT Deployment under 

the Presence of Anchor Misplacement,” IEEE Internet of Things Journal (Submitted) 

[3] Y. Al Mtawa, H. Hassanein, and N. Nasser, “Measuring the Validity of Sensing Coverage 

in the Presence of Anchor Misplacement,” IEEE International Conference on 

Communications (ICC), May 2017. (Accepted) 

[4] Y. Al Mtawa, H. Hassanein, and N. Nasser, “The Impact of Anchor Misplacement on 

Sensing Coverage,” IEEE Wireless Communications and Networking Conference 

(WCNC), September 2016. 

[5] Y. Al Mtawa, H. Hassanein, and N. Nasser, “Identifying Bounds on Sensing Coverage 

Holes in IoT Deployments,” IEEE Global Communications Conference (GLOBECOM), 

December 2015. 

[6] Y. Al Mtawa, N. Nasser, and H. Hassanein, “Mitigating Anchor Misplacement Errors in 

Wireless Sensor Networks,” IEEE International Wireless Communications and Mobile 

Computing Conference (IWCMC), August 2015. 



viii 

 

Table of Contents 

Abstract ............................................................................................................................................ ii 

Acknowledgements ......................................................................................................................... iii 

Statement of Originality .................................................................................................................. iv 

List of Acronyms ............................................................................................................................. v 

Co-Authorship ............................................................................................................................... vii 

List of Figures ................................................................................................................................. xi 

List of Tables ................................................................................................................................ xiii 

 Introduction ..................................................................................................................... 1 

1.1 Motivations ............................................................................................................................ 2 

1.2 Thesis contribution................................................................................................................. 3 

1.3 Document outline ................................................................................................................... 5 

 Background ..................................................................................................................... 6 

2.1 Wireless sensor networks ....................................................................................................... 6 

2.1.1 Communication in WSNs ............................................................................................... 7 

2.1.2 Constraints and Challenges ............................................................................................. 8 

2.2 Localization in WSNs ............................................................................................................ 9 

2.2.1 Overview ....................................................................................................................... 10 

2.2.2 Existing Localization Approaches ................................................................................ 10 

2.2.3 Range-based Localization in WSNs ............................................................................. 11 

2.2.3.1 Measuring Phase .................................................................................................... 12 

2.2.3.2 Distance-based techniques ..................................................................................... 12 

2.2.3.3 Angle-based technique ........................................................................................... 13 

2.2.3.4 Summary of the Measuring Techniques ................................................................ 13 

2.2.3.5 Positioning Phase ................................................................................................... 14 

2.2.3.6 Summary of Localization in Range-based Systems ............................................... 17 

2.2.4 Range-free Localization in WSNs ................................................................................ 18 

2.2.4.1 Connectivity-based Technique ............................................................................... 19 

2.2.4.2 Fingerprint-based Technique ................................................................................. 19 

2.2.4.3 Summary of Localization in Range-free Systems .................................................. 19 

2.3 Sensing Services using WSNs ............................................................................................. 21 

2.3.1 Sensing Coverage Problem ........................................................................................... 21 

2.3.2 Sensing Coverage Holes ............................................................................................... 22 



ix 

 

2.3.3 Sensing Models ............................................................................................................. 23 

2.3.3.1 Binary Disc Model ................................................................................................. 23 

2.3.3.2 Probabilistic Sensing Model .................................................................................. 23 

2.3.4 Sensing Coverage Deployment Methods ...................................................................... 24 

2.3.4.1 Deterministic Deployment ..................................................................................... 24 

2.3.4.2 Random Deployment ............................................................................................. 24 

 Identifying Bounds on Sensing Coverage Holes in IoT Deployments .......................... 26 

3.1 Motivations and Contributions ............................................................................................ 26 

3.2 System Model and Problem Definition ................................................................................ 27 

3.3 Towards Efficient Sensing Coverage ................................................................................... 28 

3.4 Intra-triangle Coverage ........................................................................................................ 32 

3.4.1 Discovering Coverage Holes ........................................................................................ 33 

3.4.2 Lower and Upper Bounds (LUB) Algorithm ................................................................ 35 

3.5 Experimental Results ........................................................................................................... 36 

3.6 Summary .............................................................................................................................. 38 

 The Impact of Anchor Misplacement on Localization IoT Deployments ..................... 40 

4.1 Motivations and Contributions ............................................................................................ 42 

4.2 Related Work ....................................................................................................................... 44 

4.3 Problem Definition and System Model ................................................................................ 46 

4.4 The Effects of Anchor Misplacement  ................................................................................. 46 

4.5 Mitigating the Impact of Anchor Misplacement .................................................................. 48 

4.5.1 Detecting the Misplaced Anchor Nodes ....................................................................... 48 

4.5.2 Dealing with the Detected Misplaced Anchor Nodes ................................................... 50 

4.6 Performance Evaluation ....................................................................................................... 50 

4.7 Summary .............................................................................................................................. 58 

 The Impact of Anchor Misplacement on Sensing Coverage ......................................... 60 

5.1 Related Work and Motivation .............................................................................................. 60 

5.2 Preliminaries ........................................................................................................................ 62 

5.3 System Model and Problem Definition ................................................................................ 64 

5.4 The Effect of Anchor Misplacement on Sensing Coverage ................................................. 65 

5.4.1 Anchor Misplacement as a Graph Operator .................................................................. 67 

5.4.2 Coverage Holes with Anchor Misplacement ................................................................ 69 

5.5 Coverage Hole: Ratio and Type Algorithm ......................................................................... 71 

5.6 Numerical Results and Discussion ....................................................................................... 74 



x 

 

5.7 Summary .............................................................................................................................. 77 

 Measuring the Validity of Sensing Coverage Reporting in a Presence of Anchor 

Misplacement ................................................................................................................................. 79 

6.1 Motivations and Contributions ............................................................................................ 80 

6.2 Problem Definition............................................................................................................... 82 

6.3 Model of Sensing Area ........................................................................................................ 83 

6.3.1 Modeling a Non-uniform Sensing Area ........................................................................ 83 

6.3.2 The Impact of Error Components on Sensing Validity ................................................. 84 

6.3.3 Intra-triangle Boundary Testing .................................................................................... 87 

6.4 Testing the Validity of the Sensing Report .......................................................................... 89 

6.5 Experimental Results ........................................................................................................... 90 

6.6 Summary .............................................................................................................................. 96 

 Summary and Conclusions ............................................................................................ 98 

7.1 Summary .............................................................................................................................. 98 

7.2 Conclusion ........................................................................................................................... 99 

7.3 Future Work ....................................................................................................................... 100 

Bibliography ................................................................................................................................ 102 

  

  



xi 

 

List of Figures 

 

Figure 1.1: Multiple IoT sensing providers. .................................................................................... 2 

Figure 2.1: Example of how a Typical WSN works. ....................................................................... 7 

Figure 2.2: (a) Single-hop  (b) Multi-hop communication in WSNs. .............................................. 8 

Figure 2.3: Sensor node and its components. ................................................................................... 9 

Figure 2.4: Special classification of localization schemes ............................................................. 11 

Figure 2.5: Trilateration method in ideal case. .............................................................................. 15 

Figure 2.6: Trilateration method in real case. ................................................................................ 16 

Figure 2.7: AoA measurements. .................................................................................................... 17 

Figure 2.8:  Localization process in a single-hop range-based system. ......................................... 18 

Figure 2.9:  Localization process in a range-free system. .............................................................. 20 

Figure 2.10:  Sensing coverage. ..................................................................................................... 22 

Figure 3.1: Disc model of overlapped IoT sensing providers with coverage holes. ...................... 28 

Figure 3.2: VD partitions sensing field into convex cells. ............................................................. 29 

Figure 3.3: Coverage percentage vs. sensor density. ..................................................................... 36 

Figure 3.4: Lower and upper bound of uncovered area with different sensing range values. ....... 37 

Figure 3.5: The impact of average IoT sensing range on LUB. ..................................................... 38 

Figure 4.1: Trilateration method with misplacement error. ........................................................... 42 

Figure 4.2:  Localization error vs displacement value. .................................................................. 43 

Figure 4.3: The effect of number of misplaced anchor nodes. ....................................................... 54 

Figure 4.4:  The effects of the transmission range. ........................................................................ 55 

Figure 4.5: The effects of the threshold. ........................................................................................ 57 

Figure 5.1: Multiple sensing coverage providers. .......................................................................... 61 

Figure 5.2: Perceived hole can be identified by triangulation in the vicinity of the affected sensing 

node 𝒔𝟏. ......................................................................................................................................... 63 

Figure 5.3: Actual unreported coverage hole can be identified by investigating the triangles in the 

vicinity of the affected sensor 𝒔𝟏. .................................................................................................. 64 

Figure 5.4: An example of structural change on DT due to correcting the location of 𝒔𝟐′ to 𝒔𝟐. . 66 

Figure 5.5: A partial snapshot of T(𝒔𝟐) and its history.................................................................. 68 

Figure 5.6: Unreported coverage hole with center x. ..................................................................... 69 

Figure 5.7: Number of misplaced anchors vs. percentage of miss-reported objects. ..................... 75 



xii 

 

Figure 5.8: Number of misplaced anchors vs. perceived coverage and RMSD............................. 76 

Figure 5.9: Number of misplaced anchors vs. the percentage of the area of sensing coverage holes 

and the number of holes. ................................................................................................................ 77 

Figure 6.1: Non-uniform sensing region with multiple sensing providers. ................................... 81 

Figure 6.2: A Possible inner polygon with a triangulation as a model of a non-uniform sensing 

area. ................................................................................................................................................ 84 

Figure 6.3: Contributed errors of measurement and misplacement components in total resultant 

error. ............................................................................................................................................... 86 

Figure 6.4: The impact of the four different settings on RMSD (fixed displacement is set to 10m, 

random displacement follows N(0,10), RMSD is averaged over 14 misplaced anchor nodes). .... 87 

Figure 6.5: Test a point in a triangle by cross-product method. .................................................... 89 

Figure 6.6: Warehouse model with six non-uniform sensing areas with 14 numbered anchor nodes 

placed in the corners. ..................................................................................................................... 92 

Figure 6.7: The impact of measurement error on the sensing validity. .......................................... 93 

Figure 6.8: The impact of anchor misplacement on sensing validity under OM-FD with different 

values of SNR. (a) SNR=10db, (b) SNR=20db, (c) SNR=30db. ................................................... 94 

Figure 6.9: The impact of anchor misplacement on sensing validity under SNR 10db. ................ 95 

Figure 6.10: The impact of different settings on sensing validity. ................................................. 96 

 



xiii 

 

List of Tables 

 

Table 2.1: Advantages and disadvantages of the range-based localization techniques. ................ 13 

Table 2.2: Advantages and disadvantages of the range-free localization techniques. ................... 21 

 



1 

 

 

Introduction 

The Internet of Things (IoT) is a large-scale network of many physical objects that can be 

equipped with sensors, software, and connectivity to enable these “sensing objects”1 which may 

belong to multiple operators/owners to communicate and exchange data with each other [1]. There 

are several components and enabling technologies of the IoT. Among which are Wireless Sensor 

Networks (WSNs), Infra-Red (IR), Radio Frequency Identification (RFID), Bluetooth and cellular 

networks. The services provided by a WSN such as sensing coverage and location discovery have 

received significant attention from the IoT research community [2]–[5]. The efficient utilization of 

these services under the umbrella of IoT mandates taking IoT characteristics into consideration. 

These characteristics include large scale, heterogeneity, dynamicity and multiple ownerships. 

Inaccurate location reporting resulting from localization errors affects the quality of services of 

WSNs.  Localization errors also results in poor sensing coverage of objects. The gaps in sensing 

coverage between objects degrades the sensing quality. These two services are strongly affected by 

anchor misplacement. Anchor nodes are nodes in the network with known locations. They are 

usually equipped with Global Positioning System (GPS) [6] or placed in known position 

coordinates in the target field. Therefore, most of the studies assume accurate locations of anchor 

nodes, which is not always the case.  For instance, environmental factors such as the wind, rain, 

water current, soil erosion, besides natural factors such as wildlife disturbing the terrain are all 

causes of anchor misplacement. Furthermore, there is always an inherent uncertainty in anchor 

node’s location even with GPS-equipped anchor nodes due to erroneous measurements and 

                                                      

1 In this thesis, we use the terms “sensor node,” and “sensing object” interchangeably. 
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calculations. Therefore, both IoT location discovery and sensing coverage services are affected by 

anchor misplacement. 

1.1 Motivations 

The vision behind IoT is to construct a large-scale, coherent, unified framework from different 

building technology blocks. It is predicted that IoT will consist between 15-20 billion smart objects 

by 2020 [7]. 

WSN is one of the main enabling technologies for IoT. Therefore, enhancing the location and 

coverage services of WSNs has a direct impact on the realization of IoT. Anchor misplacement is 

a problem that needs to be investigated to have reliable WSNs services. For example, consider 

heterogeneous temperature sensors that are deployed in a region and belong to three different 

sensing providers as shown in Figure 1.1. These collective sensors can be viewed as shared 

resources, and their cooperation can provide a better quality of service. Usage of such shared 

resources can be further enhanced with participatory sensors (as in smartphones). The main 

challenge in such IoT setting is determining sensing coverage, and detecting coverage holes if any. 

Non-deterministic sensing node deployment often makes coverage holes inevitable even in a high-

density network. Studying this problem with the above provided IoT settings (see Figure 1.1) and 

under anchor misplacement is needed for the research community to obtain more solid foundation 

about the essence of this new type of error. This allows us to enhance the results and make them 

more reliable. 

 

Figure 1.1: Multiple IoT sensing providers. 
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1.2 Thesis contribution 

This thesis provides more insight about error theory in the field of IoT; it answers the following 

research questions: 

1) Can we design a distributed scheme to discover sensing coverage holes in WSNs?  

2) How does anchor misplacement affect localization in WSNs?  

3) Does anchor misplacement affect sensing coverage in WSNs?  

 How to determine the actual coverage holes that have been undetected because of anchor 

misplacement? 

 How to determine the perceived coverage holes that have been generated by anchor 

misplacement? 

4) How to measure the validity of sensing coverage reporting in the presence of anchor 

misplacement? 

Our approach to answering the aforementioned research questions is as follows: 

 Considering IoT characteristics (i.e., heterogeneity, random distribution, multiple owners), we 

identify each coverage hole and provide upper and lower bounds for its size. We utilize 

Delaunay Triangulation (DT) to partition the target sensing region into triangles. The vertices 

of these triangles are IoT objects. Since intra-triangle coverage holes are not uniform, our goal 

is to locally detect each hole and provide its bounds. The intra-triangle coverage (ITC) 

procedure is distributed and requires only the vertices of each triangle to involve in the 

calculation which makes ITC procedure scalable and efficient in terms of power consumption. 

We provide a theoretical analysis of IoT sensing coverage holes, and develop an efficient 

algorithm to detect coverage holes. We then provide the bounds based on the size of the 

identified coverage holes, and test the validity of the bounds empirically. The results show that 

the bounds become sharp as the sensing nodes increases. Furthermore, our findings are 
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significantly sound for many IoT coverage applications to either tolerate the coverage holes 

or call a healing procedure to cover the gaps. 

 Calculate the effects of the anchor misplacement on localization accuracy. Then we propose a 

distributed scheme to detect the misplaced anchor objects. In light of the results, a novel 

localization framework is constructed to reflect the effect of anchor misplacement on 

localization. The performance evaluation of our proposed algorithm outperforms the other 

competitive algorithm in terms of successful detection ratio of misplaced anchor nodes, 

mistaken anchor ratio, and localization accuracy. 

 Analyze the effects of anchor misplacement on sensing coverage. In this research, we address 

the sensing coverage problem and the different types of coverage holes. Our research approach 

focuses only in the locality of the affected sensing objects. The first type of coverage holes is 

actual coverage holes that have been falsely hidden, and unreported. The second is perceived 

coverage holes that have been falsely generated by anchor misplacement. Our results show 

that around 25% more perceived coverage holes will be generated on average as a result of 

misplacing 30% of anchor nodes which randomly deployed in the target field. This shows the 

significance of mitigating the impact of anchor misplacement on IoT sensing coverage. 

 Calculate the true/false sensing reporting of sensing objects. This leads to measure whether or 

not a sensing object still reports from its original area even after anchor misplacement takes 

place. Our distributed scheme measures the validity of sensing coverage reporting.  The 

scheme applies the validity criteria on each affected sensing objects and differentiates between 

their true positive and true negative reports. The findings of our study show that the 

randomness of anchor misplacement and displacement value mitigates the impact of anchor 

misplacement and gets higher true positive rate of the sensing report. The outcomes of our 

study have a wide range of applications that depend on reliability of sensing reports such as 

smart vehicles, leakage of pipelines, and smart buildings.  
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1.3 Document outline 

This thesis is arranged as follows. Chapter 2 overviews the background and the material related 

to this research. It includes a detailed background of WSN and its two major services localization, 

and sensing coverage. Chapter 3 covers the bounds of sensing coverage holes. This includes 

identifying the upper and lower bounds of coverage holes in IoT deployment. The impact of anchor 

misplacement on localization accuracy and how to mitigate it will be detailed in Chapter 4. Chapter 

5 extends our study in Chapter 4 to include studying the impact of anchor misplacement on sensing 

coverage. Chapter 6 presents a study to assess the validity of sensing coverage of sensor nodes 

under the presence of anchor misplacement. This includes providing a distributed scheme to 

measure whether the sensing report is “valid,” or “invalid”. Finally, we conclude with Chapter 7 in 

which the summary and future research problems are provided. 
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Background and Literature Review 

This chapter presents the background and existing research related to the work in this thesis. 

The chapter begins with an introduction about WSNs: characteristics and constraints. Also, it 

provides a detailed overview about localization and sensing coverage. 

2.1 Wireless sensor networks 

A WSN is composed of sensor nodes (SNs) which have sensing functionalities to monitor 

physical properties such as pressure, humidity, and temperature, as well as moving objects. Each 

sensor has a small processing unit, a battery as a power unit, memory, and a short-range wireless 

transceiver unit [8] [9]. The sensed information is normally propagated towards the Base Station 

(BS) possibly through intermediate nodes [10] [11]. Figure 2.1 shows the flow of sensed data 

starting from the SNs until reaching the end user. WSNs have distinguishing features that are 

different from the traditional multi-hop networks. These features are [12]: 

 Sensors are densely deployed and cooperate to monitor/detect events. 

 Sensors are prone to failure.  

 Unlike traditional wireless networks which use peer-to-peer communication, WSNs usually 

use broadcast communication approach. 

 Sensor nodes (SNs) are limited in resources such as power, processing capabilities, and 

memory. 

 The topology of WSNs changes dramatically due to many reasons such as signal attenuation 

and sensor failure. 

 WSNs are oriented to detect and/or estimate some events (not just provide communication). 

In this regard, data aggregation can be improved by using data fusion from multiple sensors.  
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Figure 2.1: Example of how a Typical WSN works. 

2.1.1 Communication in WSNs 

There are two kinds of communication in WSNs single-hop or multi-hop [13] [14]. In the 

former, the network has a star shape as shown in Figure 2.2 (a), where the BS can communicate 

directly with any SN in the network. However, it is not always true that each SN has direct 

communication with BS (i.e., single-hop communication) especially in a non-deterministic 

deployment of thousands of sensors in a vast geographical region. Even in the deterministic 

scenario, having single-hop communication requires denser deployments for BSs due to the short 

communication range of SNs causing the cost to be very high. Multi-hop communication has a 

form of a mesh network, as shown in Figure 2.2 (b), and the communication between sensors and 

BSs located far away occurs via multiple intermediate hops. The SN is not only transmitting its own 

data, but it acts as a relay for other nodes, collaborating to propagate the data towards the BS. The 

existence of many paths to deliver the same data to one BS poses a routing problem to find the best 

possible path to propagate the data and eliminate the redundancy of transmitted data. It should be 

mentioned here that even multi-hop communication has limitations related to energy consumption.  
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The more a sensor has relaying data transmitted through it the more energy that sensor will consume.

 

Figure 2.2: (a) Single-hop  (b) Multi-hop communication in WSNs. 

2.1.2 Constraints and Challenges 

Technological advancements have resulted in the development of inexpensive, low-power, 

wireless micro-sensor networks. Figure 2.3 shows the components of the sensor node. Each sensor 

consists of four main components, the power unit which is usually a small battery, a sensing unit 

which made up of the sensor and the analogue to digital convertor (ADC), the processing unit which 

has two subunits: the processor and the memory, and a communication unit which is the antenna in 

a wireless sensor that keeps the sensor connected to the network. These units have severe resource 

limitations especially in their power supply, processing power, memory, and bandwidth [8]. 

Additional components can be added to the sensor’s structure according to the application needs. 

For example, the localization system component (shown in the dashed box) can be added to meet 

the localization requirements of some applications. 

WSNs usually use multi-hop communication to deliver data from sensors to BSs. This will 

impose a routing problem [15]. An efficient routing protocol for WSNs should consider the  limited 

budget of resources in such networks. Energy can be saved if WSNs rely on distributed 

communication to arrange the processing power among all nodes not only on a specific node(s) as 
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in the cluster head, and coordinators in the traditional wireless networks [16]. The protocols used 

in WSNs should be light in power consumption and have low computational complexity; otherwise, 

the battery will be depleted quickly, and the network will start disconnecting [17] [18]. Security is 

also a major issue here in the sense that the network should be robust against security attacks and 

that data integrity should be preserved. 

 

Figure 2.3: Sensor node and its components. 

2.2 Localization in WSNs 

This section covers a detailed overview of localization in WSNs, possible approaches to deal 

with localization in WSNs such as range-based and range-free. Furthermore, we also address the 

phases of range-based localization in single-hop WSNs. We deal specifically with the measuring 

phase and positioning phase. Measuring phase uses either distance-based or angle-based 
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techniques; while positioning phase derives the SN’s location by using the measuring estimates 

generated from the first phase, and then applies methods such as lateration, multilateration, and 

angulation. Range-free localization which uses methods such as connectivity and fingerprint to 

estimate the locations of SNs in WSNs will also be covered.  

2.2.1 Overview  

Many of the aforementioned applications in WSNs require knowledge of the exact positions of 

sensing objects, and a node in a WSN has to be aware of its location in the physical world. 

Localization of sensors can be achieved by one of the following three ways [19] [10] :  

1) Manually configuring a location into each node, which may not be practical for many uses 

such as a harsh environment where monitoring inherently depends on undeterministic 

deployment. Furthermore, it is impractical in the case of mobile sensing objects.  

2) Equipping every node with a GPS receiver. This, however, increases the cost of the sensor. In 

fact, the current capabilities of processing and power of most sensors cannot fit a GPS receiver. 

Another deployment limitation is that the GPS does not work indoors properly [19] [20].  

3) Designing algorithms to locate the sensing nodes [21]. 

2.2.2 Existing Localization Approaches  

Localization techniques in the literature are classified in many ways depending on a set of 

features related to the deployment environment (indoor, or outdoor), how the scheme is executed 

(centralized, or distributed), mobility of anchors used (static, or mobile), the way of communication 

between nodes of the network (single-hop or multi-hop) [13].  
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Figure 2.4: Special classification of localization schemes 

Most localization schemes and systems depend on the communication between sensing nodes 

and anchor nodes. Communication in WSNs is either single-hop or multi-hop as illustrated in 

Section 2.1.1. Single-hop localization uses single-hop communication between the SNs and 

anchors; multi-hop localization uses multi-hop communication. Multi-hop localization suffers from 

error propagation where the error accumulates as the hopping is continuous [13] [22]. That is why 

range-based schemes and systems, that seek good accuracy, use single-hop localization. The range-

free localization schemes can be either single-hop or multi-hop [23]. Connectivity-based systems 

usually use multi-hop localization such as in Distance Vector based on hops scheme (DV-hop) [24] 

[25], while other range-free fingerprint systems are inherently single-hop systems such as RADAR 

[26] or LANDMARC [27] as explained in Section 2.2.4. In this section, we provid a classification 

that depends on range-based versus range-free approaches as shown in Figure 2.4. Further 

explanation for these two approaches will be presented in the sections following. 

2.2.3 Range-based Localization in WSNs 

In range-based techniques, two main phases are usually involved to localize SNs in WSNs [13] 

[28]  the measurement estimation phase, and the positioning derivation phase. We address the 

measuring phase and its related issues first. 
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2.2.3.1 Measuring Phase  

This phase is concerned with utilizing the exchanged data between the SNs and anchor nodes 

to estimate the distances or angles according to the technology used. For example, Time of Arrival 

(ToA) [29], Time Difference of Arrival (TDoA) [30] [30], and Received Signal Strength Indicator 

(RSSI) are used for distance estimates [31], where Angle of Arrival (AoA) is used to estimate the 

angle between  sensing and  anchor objects [32]. The next sub-section deals with the techniques 

that are usually used to estimate the distance measurements. 

2.2.3.2 Distance-based techniques  

In the distance estimation phase, a node estimates its distance to other nodes in its vicinity. 

Distance estimation between two SNs (sender and receiver) is estimated by using measurements 

taken from some characteristics of the signals exchanged between these sensing nodes, including 

[33] [21] [34] signal speed, the elapsed time between sending and receiving the signal (time of 

flight), signal orientation, or signal strength. The distance estimation phase typically utilizes one or 

more of the following techniques:  

1) Time of Arrival (ToA) [35] capitalizes on the relationship between signal speed, time of flight, 

and distance.  This technique is widely used due to its simplicity since there is no need for 

additional hardware. However, it faces a difficulty in accurate calculation of the propagation 

time due to the high signal speed comparing to the distance2. Also, it requires highly 

synchronized clocks between the sender and the receiver.  

2) Time Difference of Arrival (TDoA) [36]follows  the same concept of ToA, however, it uses 

two different types of signals such as radio and acoustic. There is no need to synchronize the 

clocks of the two sensing nodes. TDoA requires additional hardware viz. microphones and 

speakers.  

                                                      

2 The speed of radio signals, in a vacuum, is 3x108 metres per second. e.g., 30 ns are required to travel a 

distance of 10m. 
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3) Received Signal Strength Indicator (RSSI) [37]: depending on the power of the transmission 

signal and the strength of the received signal, these values are compared to a specific model, 

such as the path loss model and then derives the estimated distance. This technique does not 

require additional overhead since it takes place anyway between the sender and the receiver. 

However, it suffers from multipath fading, and shadowing.  

The following sub-Section addresses the technique to estimate the angle between the sender 

and the receiver nodes in WSNs. 

2.2.3.3 Angle-based technique  

Angle of Arrival (AoA) [38]: it estimates the two angles between two anchors and the unknown 

sensing nodes, and to estimate the distance between the anchor nodes. This technique is impractical 

for LS-WSNs for the following reasons: 

 It needs additional equipment such as an array of antennas, directional antennas or microphones 

which adds significantly to the size and the cost of the sensors.  

 Accuracy is constrained by shadowing, multipath reflections. Therefore, each element of the 

antenna array should be calibrated, and stable to get reasonable accuracy since any small 

deviation in angle estimation results in a very large error in position estimation. 

 This hardware consumes high power, making it energy inefficient.  

2.2.3.4 Summary of the Measuring Techniques 

We provide the advantages and disadvantages of all techniques of distance and angle estimation 

in Table 2.1. 
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Table 2.1: Advantages and disadvantages of the range-based localization techniques. 

Localization 

Technique 
Advantages Disadvantages 

ToA 

 No need for additional hardware 

 low cost 

 Requires highly accurate 

synchronization of the sender and 

receiver clocks.   Adding to the 

cost and complexity of a sensor 

network. 

 Difficulty in accurately measuring 

the time of the flight. 

TDoA 

 No need for synchronization of 

the clocks of the sender and 

receiver. 

 Can obtain very accurate 

measurements and, hence, 

accurate localization. 

 Requires additional hardware like a 

microphone and speaker for the 

given example. 

 

RSSI 

 No additional hardware is 

necessary. 

 Distance estimates can even be 

derived without additional 

overhead from communication 

that is taking place anyway. 

 

 RSSI values are not constant but 

can heavily oscillate, even when 

sender and receiver do not move 

(fast fading, mobility of the 

environment, and presence of 

obstacles in combination with 

multipath fading). This affects the 

localization accuracy. 

AoA 

 No need for synchronization of 

the sender and receiver clocks. 

 

 The accuracy of AoA 

measurements is limited by the 

directivity of the antenna, by 

shadowing and by multipath 

reflections. 

 Additional hardware can obtain 

more accuracy, but add 

significantly to the size and cost of 

SNs.  

 

 

2.2.3.5 Positioning Phase  

In the positioning phase, the distance or angle measuring estimates collected in phase one are 

respectively used by lateration or angulation methods, to compute the position of the blind sensing 

objects [39] [40] [41]. Next, we start by lateration method 
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2.2.3.5.1 Lateration Method 

In general, the lateration method requires (n+1) distance measurements from the unknown node 

to the anchor node to estimate the blind node’s location in (n) dimensions [42]. Trilateration 

depends on three distance measurements to be calculated, then the position (in 2D) of the unknown 

node is the intersection coordinates of the three circles centered in the anchors with distance 

measurements as radii [43] [44]. Trilateration is an essential geometric method which is involved 

in many localization systems such as GPS [45]. In the following example, 
1 2 3,  ,and r r r  are three 

range measurements between the unknown node, u, and the three anchor nodes A, B, and C located 

at      1 1 2 2 3 3, ,  ,  ,  and ,x y x y x y , respectively. In ideal case where no errors are imposed to 

the localization, the estimated position  ,  u ux y  for SN u is the intersection of the three circles as 

shown in Figure 2.5.  

ur1

A
r2

r3

B

C

 

Figure 2.5: Trilateration method in ideal case. 

The estimated position of 𝑢 (𝑥𝑢, 𝑦𝑢) can be then calculated algebraically by solving the 

following non-homogeneous system. 

2 [
𝑥3 − 𝑥1 𝑦3 − 𝑦1

𝑥3 − 𝑥2 𝑦3 − 𝑦2
] [

𝑥𝑢

𝑦𝑢
] = [

(𝑟1
2 − 𝑟3

2) − (𝑥1
2 − 𝑥3

2) − (𝑦1
2 − 𝑦3

2)

(𝑟2
2 − 𝑟3

2) − (𝑥2
2 − 𝑥3

2) − (𝑦2
2 − 𝑦3

2)
] 
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This system of equations has the form 𝐴𝑥 = 𝑏 where 1
2
𝐴 is the leftmost matrix, x is the unknown 

vertical vector [
𝑥𝑢

𝑦𝑢
], 𝑏 is the rightmost vector.  

Next, we address multilateration method which is similar to trilateration, with one difference, 

that multilateration can use more than three anchor nodes to locate the unknown SN. 

2.2.3.5.2 Multilateration Method 

To avoid ambiguity and determine uniquely the location of a point in a plane using trilateration, 

the three positions of the anchor nodes should be non-collinear. Furthermore, the measurement 

techniques such as ToA, TDoA, RSSI, and AoA are biased estimators which means that there is a 

difference between the actual value of the distance (or angle) measurement and the estimated one. 

Thus, the measurements are erroneous which may result in the three corresponding circles (in 

trilateration method) not intersecting in a point; instead their intersection is an enclosed region as 

shown in Figure 2.6. The smaller this region is the less error affecting the localization resulting in 

better accuracy. 

u

A

B

C

 

Figure 2.6: Trilateration method in real case. 

Multilateration method [46] [17] is a generalization of trilateration method and requires more 

than three anchor nodes for localization. Multilateration, along with mean square error technique 

achieves the best estimation of the unknown vector x such that 
2

Ax b is minimum. Note that 
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if the anchor is mobile, then more than three non-collinear positions for this anchor node are 

required for multilateration. 

In next sub-Section, we deal with angulation method that utilizes the angle estimation to derive 

the position of the SN. 

2.2.3.5.3 Angulation Method 

Angulation utilizes the AoA measurements to apply the trigonometric fact that if two angles 

and the side between them are known then the position of the third point can be calculated as the 

intersection of the other remaining sides [47] [48]. For example, in Figure 2.7, A and B are two 

anchor nodes with known positions; while u is unknown sensing node. 
1  and 

2 are the 

measurements of AoA technique. The distance between A and B can be calculated; then the 

angulation method is applied to estimate the position of u. 

 

 

 

 

 

 

 

 

Figure 2.7: AoA measurements. 

2.2.3.6 Summary of Localization in Range-based Systems 

Figure 2.8 shows a procedure that summarizes the localization process in single-hop range-

based systems.   

  u                    

ᶿ1 

 

ᶿ2 

 
A (x1 , y1)       

 

B (x2 , y2)       
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Figure 2.8:  Localization process in a single-hop range-based system. 

The flowchart above shows a three-phase process to localize sensing nodes. The first phase is 

the beaconing phase which is a default stage as it occurs by a spontaneous signaling and packet 

exchange between SNs and anchor nodes. The second phase is the measuring phase where the 

distance or angle measurements are estimated by using the measuring techniques such as ToA, 

TDoA, RSSI, or AoA. The output of the second phase (i.e., measurements) is entered as an input 

to the third phase (i.e., positioning phase) where the location is derived by using the positioning 

methods such as lateration or angulation.  

2.2.4 Range-free Localization in WSNs  

Range-free technique provides coarse-grained localization since it does not depend on 

calculating distances between the unknown sensing objects  and the anchor objects; instead it 

estimates implicitly the ranges and then the location in a broad manner [49] [23] to overcome the 

drawbacks of range-based techniques (i.e., cost and energy consumption). Range-free schemes and 

systems can be classified to either connectivity-based or fingerprint-based. The former depends on 

the topology of the networks, where the latter depends on storing information of some locations 

(prints) for retrieving and utilizing at a later time. In both cases, the implicit estimation of the range 

and location is erroneous and does not fully reflect the actual distance and location. However, 
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range-free techniques provide a cost-effective alternative to the expensive range-based techniques 

and, hence, they are very prominent in IoT.  This class of techniques is particularly oriented to the 

applications that do not require high accuracy in localization. 

2.2.4.1 Connectivity-based Approach  

Connectivity-based schemes depend on graph topology of the network  [50]–[52]. Some 

techniques such as DV-hop [24] utilize the minimum hop count (i.e., shortest path) between the 

sensing and anchor objects to estimate the distances first and then the location. Other connectivity-

based techniques depend on polygons in which the vertices are anchor nodes. For example, the 

APIT scheme [23] utilizes the triangle of three anchors and decides whether the unknown SN is 

inside this triangle or not. Using this information, a SN’s location can be estimated by intersecting 

all triangles containing this SN and then taking the centroid of this intersected region. 

2.2.4.2 Fingerprint-based Approach 

 Fingerprint or scene analysis depends on two phases. The first phase constructs the offline data 

base by recording RSSI at different locations with respect to different anchor nodes from which an 

RF map is constructed. The second phase (i.e., online phase) matches a set of observed RSSI values 

with the recorded RSSI values in the database created by the offline phase [53]–[56]. Clearly, this 

approach is time consuming and impractical for IoT applications. RADAR [26] and LANDMARC 

[27] are examples of such fingerprint systems. 

2.2.4.3 Summary of Localization in Range-free Systems 

Figure 2.9 shows a procedure that provides the localization process in range-free systems. 



20 

 

 

Figure 2.9:  Localization process in a range-free system. 

Like Figure 2.8, Figure 2.9 shows a three-phase process to localize sensing objects in WSNs. 

The first phase is the same in both figures with a slight change in Figure 2.9 where mapping can be 

used a priori in range-free fingerprint systems. The second phase is different since range-free 

system has no measurement estimates; instead it approximates the distance by other means such as 

number of hops, ranging-in that checks whether the SN is in range or not, anchor location, or 

fingerprint techniques. The third phase is the positioning phase. It takes the measurement 

approximation as input and applies a positioning method such as: lateration, angulation, mapping, 

intersection, or statistical models to derive the SN’s location.  

The advantages and disadvantages of the range-free schemes and systems are listed in 

Table 2.2. 
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Table 2.2: Advantages and disadvantages of the range-free localization techniques. 

Localization 

Technique 
Advantages Disadvantages 

Connectivity 

 No need for additional hardware  

low cost 

 

 Provides coarse-grained 

localization  not accurate. 

 

Fingerprint 

 No need for additional hardware  

low cost 

 

 Provides coarse-grained 

localization  not accurate. 

 

 More effort and time are needed 

to build the offline database.  

Not practical for large-scale 

WSNs. 

 

 More suitable for indoor 

applications. 

 

The next section deals with sensing coverage which is another important WSN-based service in 

IoT. 

2.3 Sensing Services using WSNs 

Sensing services is a fundamental goal of WSNs and sensing coverage is its leverage to provide 

a reliable service. Sensing coverage measures to what extent the sensing reports reflect the true 

physical surroundings in the target sensing field. This means without a good coverage the sensing 

service would be unreliable or even obsolete. 

2.3.1 Sensing Coverage Problem 

One of the main reasons that degrade the quality of sensing service is the presence of coverage 

holes in WSNs. Coverage hole exists if there are some points in the sensing field are not covered 

by any sensing object. However, there are some applications require at least k sensing objects to 

cover any point in S. This type of coverage is called k-coverage and it is used to allow more fault 

tolerance in some critical applications such as nuclear reactor’s leakage [57]. The following is a 

definition of sensing coverage. 
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Definition 2.1: Let S denotes the target sensing field. Let  𝑁 = {si: si is a sensing object; 1 ≤

  i ≤   n, where n is the number of sensing objects }, be a set of sensing objects with unknown 

location (xi, yi) in a plane. Each sensor si has estimated its location (xi’, yi’) and a sensing range 𝑅𝑠𝑖. 

Let p be a point in S, then p is covered if there is at least one si such that p is within distance of 𝑅𝑠𝑖 

from si. In other words,{∃ s𝑖|𝑑(p, s𝑖)  ≤   𝑅𝑠𝑖, 1 ≤   i ≤   n}, where 𝑑(𝑎, 𝑏)is the Euclidean 

distance between a and b. 

Applications vary in their sensing coverage requirements. Some of them require single-sensing 

coverage, which means any point in the target region should be monitored by at least one sensing 

node; while other applications require high coverage and, hence, require more than one to monitor 

each point in the target region. 

2.3.2 Sensing Coverage Holes 

Coverage holes exist when there are some points in the sensing field that are not covered by 

any sensing objects as shown in Figure 2.10.  

 

(a) Full coverage                                                      (b) Coverage hole 

Figure 2.10:  Sensing coverage. 
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2.3.3 Sensing Models 

Many sensing models can be constructed according to the application and surrounding 

environment. However, most of these models agree on that sensing fades out as distance increases. 

The following formula reflects this observation [58]: 

𝑆(𝑠𝑖, 𝑝) =
𝜆

(𝑑(𝑠𝑖, 𝑝))𝐾
 

(2.1) 

Where S denotes the sensibility between sensing nodes si and point p, 𝑑(𝑠𝑖, 𝑝) is the Eucledean 

distance, and both 𝜆 and K are positive constants related to the sensor’s technology. 

There are different types of sensing models such as binary disc model and probabilistic sensing 

model. 

2.3.3.1 Binary Disc Model 

 In the binary disc model, a sensing node is assumed to do 360° monitoring. Therefore, a point 

in sensing field is covered if it is within the circular sensing range of at least one sensing node. 

Otherwise, it is not covered, as given in the following equation: 

C(𝑝) =  {
1    𝑖𝑓 𝑑(𝑠𝑖, 𝑝) ≤  𝑅𝑠𝑖

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
 

(2.2) 

Where  𝑅𝑠𝑖
 is the sensing range of 𝑠𝑖. Thus the binary disc model abstracts the sensing coverage of 

𝑠𝑖 by a disc of radius 𝑅𝑠𝑖
. 

2.3.3.2 Probabilistic Sensing Model 

This model depends on uncertainty in sensor detection. Therefore, it utilizes the detection 

probability when the point of sensing field is at distance greater than the value of uncertainty, but 

within the sensing range [59]. 

C(𝑝) =  {
1
0

𝑒−𝛼𝛽𝛾

𝑖𝑓 𝑑(𝑠𝑖, 𝑝) ≤ 𝑅𝑠𝑖 − 𝜖
 𝑖𝑓 𝑑(𝑠𝑖, 𝑝) ≥ 𝑅𝑠𝑖 + 𝜖

                 𝑖𝑓𝑅𝑠𝑖 − 𝜖 < 𝑑(𝑠𝑖, 𝑝) < 𝑅𝑠𝑖 + 𝜖
 

(2.3) 

Where 𝜖 is the uncertainty value in sensor’s detection, 𝛽 = 𝑑(𝑠𝑖, 𝑝) − (𝑅𝑠𝑖 − 𝜖), and both 𝛼 and 𝛾 

are parameters that measure probability of detection when p is at distance greater than 𝜖 but still 
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within a range of 𝑅𝑠𝑖. Different values of these parameters reflect the characteristics of various types 

of sensor and, consequently, different detection probability. 

2.3.4 Sensing Coverage Deployment Methods 

The deployment strategies vary according to the application, the size of target area, the 

available information about the density and locations of sensors, and whether or not the target 

region is accessible. 

2.3.4.1 Deterministic Deployment 

This type of deployment depends on predefined parameters such as the shape of the network, 

sensing node’s location, distance between sensing nodes, and density. Deterministic deployment 

of sensors allows more control on constrained resources of sensors such as energy consumption. 

Most of the schemes dealing with deterministic deployment choose energy consumption as the 

most important metric to optimize [60]. Example of this type of deployment is grid-based 

deployment: hexagon, square, and equilateral triangle. Equilateral triangle grid-based deployment 

guarantees complete coverage and requires a minimum number of sensing nodes [61]. Art Gallery 

problem [62] is also a traditional problem of this type of deployment. In this problem, one seeks to 

place a minimum number of sensor cameras such that every point in the gallery is monitored by at 

least one sensor camera. 

2.3.4.2 Random Deployment 

Unlike deterministic deployment, random deployment has no available information about the 

shape of the network and the location of the sensors. This type of deployment is ideal for a large 

scale network such as the IoT, harsh inaccessible areas such as forests, mountains, dangerous areas, 

war zones, and hazardous areas, such as chemical plant explosions, and nuclear plant accidents. 

However, random deployment results in accumulating sensing nodes in some parts of the target 

fields. Thus the coverage is not full. Keeping all sensing nodes active simultaneously results in 
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quicker energy depletion and, consequently, the network disconnects. This means that no more data 

gathering will be reported from certain areas. That is  why many sensing coverage schemes in large-

scale networks includes a sleep schedule that controls the active sensing nodes [63] to prolong the 

lifespan of the network. 
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Identifying Bounds on Sensing Coverage Holes  

WSN is a fundamental IoT enabling technology [64]. A successful integration of WSN in IoT 

requires merging WSN’s resources in a larger IoT pool of resources [65]–[67]. For instance, 

sensing coverage is a main service of WSN. For more reliable sensing coverage, several owners of 

heterogeneous sensing networks can collaborate to provide better service for end users as Figure 1.1 

illustrates. Collaborative wireless sensor network becomes a significant method to overcome the 

limited resources of each sensing node [68]. 

This chapter is organized as follows. Motivations and contributions are presented in Section 

3.1. Section 3.2 presents the problem formulation, and assumptions of our research. Analysis using 

Voronoi Diagram (VD) [69] and Delaunay Triangulation (DT) [70] toward efficient coverage are 

given in Section 3.3. Section 3.4 is devoted to study in detail the Intra-triangle coverage, and the 

algorithm to detect and bound coverage holes. Section 3.5 presents experimental results to validate 

our proposed algorithm. Section 3.6 concludes the chapter. 

3.1 Motivations and Contributions 

Existing work on sensing coverage in WSN assume sensing nodes are homogeneous and 

belong to only one sensing service provider. Most of the research addresses deterministic sensor 

placement and deployment planning to achieve greater coverage and/or to extend the network 

lifetime [71] [72]. Our research, on the other hand, investigates IoT sensing coverage where sensing 

nodes are a) heterogeneous as they have different functionalities and capabilities, b) randomly 

deployed which is normal in IoT, and c) belong to different sensing service providers.  

We identify the coverage holes and provide upper and lower bounds for these coverage holes. We 

utilize DT to partition the target sensing region into triangles. The vertices of these triangles are 
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sensing nodes. Since intra-triangle coverage holes are not uniform, our goal is to locally detect each 

hole and provide its bounds. intra-triangle coverage (ITC) procedure is distributed and requires 

only the vertices of each triangle to involve in the calculation which makes ITC procedure scalable 

and efficient in terms of power consumption. We provide theoretical analysis of IoT sensing 

coverage holes, and develop an efficient algorithm to detect coverage holes. We then provide upper 

and lower bounds of the identified coverage holes, and test the validity of these bounds empirically. 

This research contributes towards the realization of a sensing cooperative IoT, in which the 

available sensing resources (from overlapped and overlaid sensors) are used to achieve a given 

coverage. As such, applications can determine whether to tolerate some coverage holes or whether 

to initiate a healing procedure to mitigate some coverage holes in the network. To the best of our 

knowledge, this is the only research that investigates IoT sensing coverage: identifying the 

coverage holes locally, and providing upper and lower bounds on each sensing coverage holes. 

3.2 Problem Definition and System Model  

Given a dynamic and random deployment of sensing nodes, we are interested in detecting the 

coverage holes and providing upper and lower bounds on coverage holes in a distributed manner. 

The analysis exploits powerful structures in computational geometry such as the VD and DT. Our 

approach to detect and bound coverage holes depends only on the locality of each convex polygon 

of the computational structure that represents the sensing field. We make the following 

assumptions: 

1) Sensing nodes can send/receive packets to/from their neighbors. This assumption is important 

to exchange the sensing nodes’ information locally through, most likely, multi-hop 

communication in order to build our computational structure in a distributed way.  

2) Sensing nodes know their location. 

3) No three Sensing nodes are collinear. This assumption enables constructing the Delaunay 

Triangulation. 
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4) The sensing target field is bounded. This is the case for most IoT applications. 

Random deployment refers to the case where the placement of groups of sensing nodes 

(belonging to different providers) in the target field is independent from other groups. Let 𝑁 =

{𝑠𝑖: 𝑠𝑖 is an sensing node; 1 ≤   𝑖 ≤   𝑛}, be the collective set of IoT sensing nodes with location 

of sensor 𝑠𝑖 being (xi, yi). We define 𝑁𝐻(𝑠𝑖) to denote the neighborhood of  𝑠𝑖, that is, 𝑁𝐻(𝑠𝑖) =

{𝑠𝑗|𝑑(𝑠𝑖, 𝑠𝑗)  ≤   𝑅𝑡,𝑠𝑖  𝑎𝑛𝑑 𝑑(𝑠𝑖, 𝑠𝑗)  ≤   𝑅𝑡,𝑠𝑗  , 𝑠𝑖  ≠  𝑠𝑗, 𝑠𝑗  ∈  𝑁}, where 𝑑(𝑠𝑖, 𝑠𝑗)is the Euclidean 

distance between 𝑠𝑖 and 𝑠𝑗, and 𝑅𝑡,𝑠𝑘
 is the transmission range of IoT 𝑠𝑘. Each sensing node that 

receives this information is able to estimate its distance from the emitting sensor. 

In this research, we adopt the binary disc model. Figure 3.1 shows the disk model representation 

of the overlapped region in Figure 1.1. 

 

Figure 3.1: Disc model of overlapped IoT sensing providers with coverage holes. 

3.3 Towards Efficient Sensing Coverage Detection 

We now investigate the full coverage of target sensing field S. Initially, we address the 

randomness of sensing nodes, but with equal values of sensing range, denoted as 𝑅𝑠. We use the 

definition of the coverage problem presented in Section 2.3.1. 

Let p be a point in S. We call  s𝑖 a dominant sensor of point p if s𝑖 has the shortest distance to 

p among all other sensing nodes in S. That is 𝑑𝑜𝑚(𝑝) =

{s𝑖|𝑑(𝑝, s𝑖) = Min(𝑑(𝑝, s𝑗), 1 ≤   j ≤   n)}, where s𝑖, s𝑗 ∈ S. Let MaxMin(𝑆) =
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Max
𝑝𝑗∈𝐴

 (𝑑 (𝑝𝑗 , 𝑑𝑜𝑚(𝑝𝑗)) , j ∈ [1, ∞)) , 𝑝𝑗 ∈ 𝑆. Note that if MaxMin(S) ≤ 𝑅𝑠 then S is fully 

covered. However, it is not feasible to obtain MaxMin(S) among infinite number of points 𝑝𝑗 in S. 

To overcome this problem, we utilize VD to cluster the sensing field S into adjacent convex 

polygons, called cells and denoted by Vor(𝑠1), Vor(𝑠2), ….., Vor(𝑠𝑛). Each cell Vor(𝑠𝑖) is 

associated with only one sensor s𝑖, 1 ≤   𝑖 ≤   𝑛 as shown in Figure 3.2. For two sensors 𝑠𝑖 and 

𝑠𝑗,  in the plane field, the perpendicular bisector of the line segment of 𝑠𝑖 and 𝑠𝑗 splits the plane into 

two half-planes. Let ℎ(𝑠𝑖, 𝑠𝑗) denote the half plane that contains 𝑠𝑖, while ℎ(𝑠𝑗, 𝑠𝑖) denote the half 

plane that contains 𝑠𝑗.  Note that a point 𝑝 ∈ ℎ(𝑠𝑖, 𝑠𝑗) if and only if  𝑑(𝑝, 𝑠𝑖) <  𝑑(𝑝, 𝑠𝑗). Thus 

Vor(𝑠𝑖) is the intersection of all half-planes generated by the perpendicular bisectors of the line 

segments of 𝑠𝑖 and each sensor in 𝑁𝐻(𝑠𝑖).  . Each bisector line segment is called an edge and the 

endpoints of this edge are called vertices. For any point 𝑝 in 𝑉𝑜𝑟( s𝑖), 1 ≤   𝑖 ≤   𝑛, then s𝑖 the 

closest sensor to  𝑝. Note that if 𝑝 is on a common edge of two neighbouring polygons, then it is 

equidistant from the two sensors associated with these polygons [69]. The following lemma 

provides the necessary and sufficient conditions to have full coverage in VD. 

 

Figure 3.2: VD partitions sensing field into convex cells. 

Lemma 3.1: 

Sensing field S is fully covered if and only if all vertices in its corresponding Voronoi Diagram 

have a distance less or equal to 𝑅𝑠 to their associated sensors. 

Proof. 
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Proving the “only if” part is straight forward. We focus on the “if” part. Voronoi Diagram partitions 

a sensing field into convex cells. The farthest point in any convex polygon from its associated 

sensor is one of its vertices. Let u be a vertex in Vor(s) with  

𝑑(𝑢, 𝑠) =  
Max

𝑗 ∈[1,𝑛]

 𝑘 ∈[1,|𝑉(Vor(𝑠𝑗))|]

𝑑(𝑣𝑘 , 𝑠𝑗), 𝑣𝑘 ∈ 𝑉(Vor(𝑠𝑗))  (3.1) 

and 𝑉(Vor(𝑠𝑗))3 is the set of all vertices in Vor(𝑠𝑗). This means MaxMin(S) = 𝑑(𝑢, 𝑠). Therefore, 

for any point 𝑥 ∈ 𝑉𝑜𝑟(𝑠𝑖), 𝑑(𝑥, 𝑠𝑖) ≤ MaxMin(S) ≤ 𝑅𝑠.                             □ 

The coverage problem of sensing field S is now converted, by Lemma 3.1, from checking an 

infinite set of points in S into testing a finite set4 of points that represent the cell’s vertices of VD. 

This lowers the computational cost, adding to the feasibility of the solution. If we could 

maintain MaxMin(S) ≤ 𝑅𝑠, we guarantee the full coverage of S. Therefore, VD is a powerful tool 

to show the existence of coverage holes rather than to quantify the coverage of WSN [73]. This is 

because Voronoi polygons have different convex shapes with various numbers of edges and have 

a non-unit-circular model. Therefore, VD does not provide much information about the location 

and the size of each coverage hole in the field. Thus, we need to have a more efficient structure to 

control and track the boundary of each coverage hole. So we triangulate the set of sensor points. 

The vertices of the generated triangles are the sensors. Two sensors 𝑠𝑖 and 𝑠𝑗 form a triangle edge 

if Vor(𝑠𝑖) and Vor(𝑠𝑗) have a common Voronoi edge 𝑒. This implies that the triangle edge 𝑠𝑖𝑠𝑗 is a 

segment of the perpendicular bisector line of 𝑒. This triangulation is called DT which provides 

angle-optimal planar triangles such that the circle that circumscribes any triangle, with non-

collinear sensors, is devoid of any other sensors. Note that the strong property of convexity in VD 

is still held in DT as any triangle is the basic convex polygon. Next, we provide a corollary that 

links the coverage problem to the edges of DT. 

                                                      

3 The average number of vertices in any Voronoi cell is less than 6 [69]. 
4 The size of this set is at most 2n-5 [69]. 
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Corollary 3.1: 

Let ℵ be a set of sensor nodes deployed in a bounded field S. Furthermore, let 𝑅𝑡 ≥  2𝑅𝑠. If the 

sensing field S is fully covered, then the length of every Delaunay triangulation edge is at most 

2𝑅𝑠. 

Proof. 

Assume the sensing field S is fully covered, then every point in the field has a maximum distance 

of 𝑅𝑠 from at least one sensor. Let 𝑥 be a point on the bisector line of segment line joining two 

sensors 𝑠1 and 𝑠2. Point x is part of the common Voronoi edge between the Voronoi cells associated 

with 𝑠1 and 𝑠2. This means d(𝑥, 𝑠1)  ≥  d(𝑠1, 𝑠2)/2  and d(𝑥, 𝑠2)  ≥  d(𝑠1, 𝑠2)/2. But d(𝑥, 𝑠1) =

 d(𝑥, 𝑠2) ≤ 𝑅𝑠 which implies that d(𝑥, 𝑠1) +  d(𝑥, 𝑠2) ≤ 2𝑅𝑠. Thus, d(𝑠1, 𝑠2) ≤ 2𝑅𝑠.                                   

□ 

The heterogeneity in IoT means that sensors have different sensing ranges. Let 𝑅𝑠𝑖  denotes the 

sensing range of sensing node 𝑠𝑖 . Let 𝑠𝑖 and 𝑠𝑗 are two triangle vertices that have sensing ranges 

𝑅𝑠𝑖
 and 𝑅𝑠𝑗

, respectively, then the following lemma holds. 

Lemma 3.2: 

 If the triangle ∆ is fully covered, then every pair si and sj of its set of vertices satisfies the 

following condition: 

2𝑟 ≤ 𝑅𝑠𝑖
+ 𝑅𝑠𝑗

, where 𝑟 is the radius of the circumcircle of ∆. 

Proof. Follows from the proofs of Lemma 3.1 and Corollary 3.1.             □                                                            

Note that if L is the longest side of ∆. Then its opposite angle 𝜃 is the largest among the three. It 

follows that  
𝜋

3
≤ 𝜃 ≤ 𝜋

2
. By a well-known sin formula we now have 

2𝑟𝑠𝑖𝑛
𝜋

3
≤ 𝐿 = 2𝑟𝑠𝑖𝑛𝜃 ≤ 2𝑟𝑠𝑖𝑛

𝜋

2
 

√3𝑟 ≤ 𝐿 ≤ 2𝑟 

We next investigate how to detect and define the bounds of each uncovered area in DT. 
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3.4 Intra-triangle Coverage 

The coverage problem is reduced by DT to studying the coverage of each individual triangle 

in DT. Lemma 3.2 shows that if we could find two vertices 𝑠𝑖 and 𝑠𝑗 in ∆ with 𝑅𝑠𝑖
+ 𝑅𝑠𝑗

 less than 

twice of the radius of the circumcircle (i.e., the circumradius), then there is an uncovered area in 

∆. Alternatively, if 𝑅𝑠𝑖
+ 𝑅𝑠𝑗

 is less than the length between 𝑠𝑖 and 𝑠𝑗, then there is a coverage hole 

in ∆.  According to the largest angle 𝜃 in ∆, we differentiate three scenarios of the circumcenter: 

the circumcenter is inside ∆ if 𝜃 <
𝜋

2
 , outside ∆ if 𝜃 >

𝜋

2
, or on the longest side opposite to 𝜃 =

𝜋

2
. 

Although DT provides the best possible optimal-angle planar triangles (angles around 
𝜋

3
), in random 

deployment it is possible to find largest angles greater than 
𝜋

3
 . The following question then arises: 

What is the minimum density of sensors such that DT is well behaved?   

Let 𝑅𝑠 be the minimum sensing range among all sensing nodes that participate in the coverage 

of the target field. In optimal cases, all angles of ∆ are equal to 
𝜋

3
 (i.e., equilateral triangle) and the 

length of triangle’s side is 𝑑 = √3𝑅𝑠 [74]. Thus the area of a triangle is 
3√3

4
𝑅𝑠

2. Furthermore, the 

number of triangles in any triangulation is 2N-2-k, where N is the number of sensors and k is the 

number of which are on the convex hull of N [70]. Assume the sensing field S has a size L x L; the 

area size that should be covered by each triangle is 
𝐿2

2𝑁−2−𝑘
 . Therefore,  

𝐿2

2𝑁 − 2 − 𝑘
<

3√3

4
𝑅𝑠

2 (3.2) 

This gives  

2𝐿2

3√3𝑅𝑠
2

+
2 + 𝑘

2
 < 𝑁 

(3.3) 

 

We assume that the minimum density is achieved.  Let 𝑠𝑖be an sensing node vertex in a triangle 

∆. Then 𝑠𝑖contributes to the intra-triangle sensing coverage of ∆. The coverage contribution of 𝑠𝑖 
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is the size of the angular sector centered at 𝑠𝑖 with radius 𝑅𝑠𝑖
. Calculating the contribution of 𝑠𝑖 in 

∆ requires the angle at 𝑠𝑖. Since the lengths of all edges of ∆ are known, we use the cosine formula 

to extract the angle at each sensor. That is 

𝛼 = 𝑐𝑜𝑠−1 (
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
) (3.4) 

Where a, b and c are the lengths of  ∆’s sides, and 𝛼 is the angle opposite to side of length c. 

Therefore, the coverage contribution of 𝑠𝑖 is  

𝐶𝑁𝑇(𝑠𝑖, ∆) =
𝛼

2
𝑅𝑠𝑖

2 (3.5) 

where 𝛼 is the angle at 𝑠𝑖 in triangle ∆. The following formula gives the  𝐼𝑇𝐶 of ∆, denoted by 

𝐼𝑇𝐶(∆). That is  

𝐼𝑇𝐶(∆) = ∑ 𝐶𝑁𝑇(𝑠𝑖, ∆)

𝑠𝑖∈𝑉(∆)

− 𝐴𝑚𝑢𝑡, 
(3.6) 

where 𝐴𝑚𝑢𝑡 = (𝐴1,2 + 𝐴1,3 + 𝐴2,3) − 𝐴1,2,3, V(∆) is the set of the three vertices of ∆, and 𝐴𝑖𝑗is the 

common area size contributed by both angular sectors centered at vertices 𝑠𝑖 and 𝑠𝑗 and 𝐴1,2,3 is 

the area covered by all three vertices. 

3.4.1 Discovering Coverage Holes 

Assume a random deployment of sensing nodes over a terrain S. Without loss of generality, we 

assume that sensing node network is stationary at the time instance of discovering the coverage 

holes. A low computational cost and distributed algorithm can be used to construct a DT of S such 

as the localized algorithm in [75].  Clearly, the uncovered area will be inside ∆ if the largest angle 

𝜃 <
𝜋

2
 . Otherwise the uncovered area is extended to outside ∆. The latter case will be considered 

by the intra-coverage analysis of the neighbouring triangle that contains the circumcenter of ∆. 

However, it is still possible to find part of the uncovered area inside ∆ in the case where d(si, sj) >



34 

 

𝑅𝑠𝑖
+ 𝑅𝑠𝑗

 for any two vertices𝑠𝑖 and 𝑠𝑗  in ∆. For the first case, the centroid of the coverage hole 

will be computed as well as the boundary of this hole which will be discussed next.  

The intra-triangle uncovered areas have different shapes; however, we model the upper and 

lower bounds of each uncovered area in triangle ∆ as circles. The lower bound circle is a circle 

centered in the centroid of the polygon that strictly contains the uncovered area in ∆; it is the largest 

circle that can be inscribed inside the uncovered area. On the other hand, the upper bound circle is 

the minimum circle that circumscribes the uncovered area of ∆. To compute lower and upper 

bounds for the uncovered area in ∆, we follow the following procedure: first, we find a set 𝑈  of 

intersection points, namely the angular sectors and the edges of ∆, and the intersection points of the 

angular sectors themselves. Let 𝑠𝑖 and 𝑠𝑗 are two vertices in ∆. If 𝑅𝑠𝑖 + 𝑅𝑠𝑗 > 𝑑(𝑠𝑖, 𝑠𝑗) we exclude 

the intersection points between the circles centered in 𝑠𝑖and 𝑠𝑗 and the edge 𝑠𝑖𝑠𝑗. Let 𝑈′ be the new 

set of intersection points. The points of  𝑈′’ form a polygon P. Our goal is to find the minimum/ 

maximum circle that circumscribes/inscribed-in P. To do that, we need to determine the centroid 𝑐 

of this polygon. The coordinates of the centroid is given by the following formula [76]: 

𝑐𝑥 =  
1

6𝐴
∑ (𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

|𝑈′|−1

𝑖=0

 (3.7) 

𝑐𝑦 =  
1

6𝐴
∑ (𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

|𝑈′|−1

𝑖=0

 (3.8) 

where 𝐴 is given by 𝐴 = 1

2
 ∑ (𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

|𝑈′|−1

𝑖=0 , and (𝑥𝑖, 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1) are two 

consecutive points on P’s hull. Let 𝑅𝑙 = 𝑀𝑖𝑛𝑝𝑖∈𝑈′  𝑑(𝑐, 𝑝𝑖)) . The circle centred in c with radius 𝑅𝑙 

represents a lower bound of the uncovered area in ∆. Likewise, let 𝑅𝑢 = 𝑀𝑎𝑥𝑝𝑖∈𝑈′  𝑑(𝑐, 𝑝𝑖)). Then 

𝜋𝑅𝑢
2 represents the size of the minimum circle that circumscribes P and, hence, considers as an 

upper bound of the uncovered area in ∆.Therefore, we have the following bounding formula: 
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 𝜋𝑅𝑙
2 < 𝑈𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝐴𝑟𝑒𝑎 < 𝜋𝑅𝑢

2 where both bounding circles are cantered at the centroid of a 

polygon P that contains the uncovered area. It should be noted here that the use of centroid 𝑐 instead 

of circumcenter of ∆ is more effective for the following reasons: 1) the circumcenter of ∆ does not 

always belong to the uncovered area due to the variation of IoT sensing ranges. 2) The circumcenter 

could be outside ∆ which makes the calculation of 𝐼𝑇𝐶 irrelevant. 3) The bounds using the centroid 

𝑐 are tighter as it represents the uncovered area more fairly. Next, we present the algorithm that 

deals with 𝐼𝑇𝐶 to detect non-uniform uncovered areas and provide a uniform upper and lower 

bound for these areas. 

3.4.2 Lower and Upper Bounds (LUB) Algorithm 

The steps of analytical study to compute lower and upper bounds can be summarized in the 

following algorithm.  

Algorithm 3.1: Lower and Upper Bounds (LUB) 

Input: triangle ∆ 

Output: c, lowerBound, upperBound 

1 if HasCoverageHole(∆) then 

2 P    = findPolygon(∆); 

3 c    =  findCentroid(P); 

4 Rl  = findRadiusLowerBound(P, c); 

5 Ru = findRadiusUpperBound(P, c); 

6 return c, lowerBound, upperBound; 

7 end if 

LUB algorithm assumes that all sensors have been localized and their locations are known. 

While DT is being constructed, each sensor starts to know its neighbours for each triangle ∆ in DT. 

LUB algorithm first check the existence of coverage hole by calling  HasCoverageHole(∆) function 

which simply checks ∆ against the coverage criteria  in Lemma 3.2. If a coverage hole is discovered, 

the function findPolygon(∆) is invoked to find the polygon that strictly circumscribed the uncovered 

region as discussed in this section. findCentroid(P) will apply the equations (3.7) and (3.8) to find 

the centroid of P. The remaining is to call findRaduisLowerBound(P, 𝑐) to calculate the shortest 
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distance between P’s vertices and c which is the radius of the lower bound. Similarly, 

findRaduisUpperBound(P, 𝑐) returns the longest distance between P’s vertices and 𝑐. 

3.5 Experimental Results 

We conduct several experiments where random non-uniform sensing nodes are deployed in the 

target field. These experiments tend to show the validity of our algorithm and its numerical 

computation. We use Visual Studio C++ to implement the algorithm. In all experiments, we set the 

values of the parameters in the following way, unless otherwise stated: the terrain is 300X300 m2, 

the number of sensors N=350, the variance of IoT sensing range is 5m. The results of all conducted 

experiments are the average of 10 runs. We use the implementation of a distributed algorithm in 

[77] to construct the DT that represents the target sensing field. We first study the effect of sensing 

range on coverage. We also investigate the impact of sensing node density on the coverage 

percentage. Figure 3.3 shows that increasing the average of sensing coverage will increase the 

coverage percentage. The results from Figure 3.3 demonstrate the consistency and the validity of 

our approach in a typical setting with well-understood sensing coverage parameters. 

 

Figure 3.3: Coverage percentage vs. average of sensing coverage. 
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We next demonstrate the performance and consistency of the LUB algorithm. To assess 

scalability, we enlarge the target field to be 500x500 m2 with sensing nodes N=600, and the value 

of average sensing range to be 20m (with variance of 5m), unless otherwise stated. Figure 3.4 shows 

that the upper and lower bounds are slightly tighter (closer to the actual size of the coverage hole) 

as the sensing node density increases. This is because adding more sensing nodes will fine tune 

large uncovered areas and, therefore, makes the bounds closer to the actual size of coverage holes. 

Increasing the density maintains the largest angel of any triangle in DT within the range of 

optimality (i.e., 
π

3
), which makes DT well behaved. Note that the lower bound is on average twice 

as much closer to the actual size of coverage hole than the upper bound.  

 

Figure 3.4: Lower and upper bound of uncovered area with different sensing densities. 

Next, we show the impact of the sensing coverage on the derived bounds. We set the variance 

of sensing coverage of all sensing nodes to be 5m around the average sensing coverage. The results 

show that the average IoT sensing range enhances the behaviour of LUB algorithm and the values 

of the bounds becomes closer to the actual size of the coverage hole as shown in Figure 3.5. As the 
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average sensing coverage increases, both bounds converge to the actual size of coverage hole and 

this is expected as the uncovered areas becomes smaller and finer. 

 

Figure 3.5: The impact of average IoT sensing range on LUB. 

3.6 Summary 

The continuing research in sensing coverage is essential for the realization of IoT. This chapter 

investigates the IoT sensing coverage problem where heterogeneous and randomly deployed 

sensing nodes are considered. Computational geometry provides a localized approach that enabled 

us to discover the problem in a distributed manner, by addressing the intra-triangle coverage, 

detecting the coverage holes, and providing lower and upper bounds for coverage holes. Our 

findings are significantly important for many IoT large-scale coverage applications to either 

tolerate or call a healing procedure to gap the coverage loss.   

The results reinforce the importance of cooperative sensing coverage of multiple sensing 

providers. Collective IoT sensing nodes not only improve the percentage sensing coverage, but also 

enhance the identification of the bounds of coverage holes among these networks. This study also 
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shows the possibility that heterogeneous networks which provide cooperative sensing coverage can 

expand their lifespan by preserving energy while maintaining the average sensing range at a desired 

level. 
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The Impact of Anchor Misplacement on Localization 

Localization (i.e., location discovery) in Wireless Sensor Networks (WSNs) has recently 

attracted a great deal of interest in the research community [78]–[81]. Like sensing coverage that 

we addressed in the previous chapter, the interest of localization service is expected to grow since 

localization in WSNs is the cornerstone of many IoT applications, such as smart buildings, smart 

vehicles, smart homes, wildlife and environment monitoring, military, health care, and merchandise 

tracking [82], [83]. Large-scale and dense WSNs pose several challenges to localization systems, 

including robustness, scalability, accuracy, energy consumption, and interoperability. In this 

chapter, we consider two of these challenges, namely accuracy, and scalability. Accuracy cannot 

be achieved without creating an error model that truly reflects the essence of different types of 

errors. These localization errors can be divided into three classes as follows [84]: 1) Setup errors, 

which occur because of the  misplacement of anchor nodes, this may be caused by many reasons 

such as:  errors in manual configuration, network scale in terms of density and size, environmental 

factors such as the wind, rain, water current, and soil erosion and natural factors like wildlife 

disturbing the terrain,  2) Measurement errors, which are induced by environmental parameters 

such as the availability of Line-of-Sight (LoS), obstructions, humidity, and temperature. 

Furthermore, measurement errors can also be caused by the limitations of the sensing and 

communication technologies used such as the antenna in Received Signal Strength Indicator (RSSI) 

techniques which by itself, can be noisy causing error in distance measurement, and 3) Algorithmic 

errors, which are induced by the nature of the localization algorithm used. One example is, 

algorithms that seek to achieve good global localization by getting good local accuracy are most 

likely to have this kind of error. Another example is concerning the limited power in WSNs. This 

may lead to reducing the complexity of the algorithm as a trade-off with localization accuracy. 
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Small margins of error may result in trivial localization error; however, it can reach to significant 

levels as propagated error becomes larger through multi-hop localization. Therefore, having good 

accuracy depends on removing or at least mitigating the effects of the aforementioned three classes 

of errors. In this chapter, we delve into the analysis of setup error. We focus on the effect of anchor 

misplacement on localization of sensing objects in large scale network such as IoT.  

In WSNs, the monetary and deployment costs are significant since such costs hinder the 

expansion of the network.  That is why cooperative WSNs is a very important approach in IoT. In 

this approach, different sensing nodes which belong to multiple owners can cooperate to achieve 

reliable services with a reasonable level of accuracy. It is generally accepted that increasing the 

anchor density will trigger the granularity of the localization region to become finer thus reducing 

localization errors. However, this may not be viable and may even be inadequate in noisy 

environments. On the other hand, it has been shown that having the minimum number of anchors 

(i.e., anchors placement) is a NP-complete problem by using the dominating set problem as a base 

of transformation [85]. This motivates the research for heuristics and integer linear programming 

algorithms to find near-optimal solutions for the problem. Uniform placement of a minimal number 

of anchors typically yields high localization accuracy. However, anchor misplacement results in 

localization errors.  Anchor misplacement refers to the problem where the anchor node B is in a 

specific position, but thinks it is in a different position. The main focus of this chapter is to 

investigate the effects of anchor misplacement on localization accuracy. We provide a distributed 

algorithm to mitigate these effects in WSNs.  

The chapter is organized as follows. We provide the motivations and contributions in Section 

4.1. Section 4.2 overviews the fundamental works related to our research. Section 4.3 presents the 

problem formulation. Section 4.4 is devoted to studying in detail the effects of anchor misplacement 

on localization accuracy. Our proposed detection and mitigation algorithm is explained in Section 
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4.5. Section 4.6 presents simulation results and performance of our proposed algorithm. Section 

4.7 concludes the chapter and discusses future research directions. 

4.1 Motivations and Contributions 

Let 𝑠𝑖  be a sensing node with an unknown location. Localizing 𝑠𝑖 using multilateration requires 

K distance measurements, 𝑑̂𝑖𝑗, to anchor nodes, where 𝐾 ≥  3. This forms 𝐾 circles, 𝐶𝑘, where 

1 ≤ 𝑘 ≤  𝐾  , with anchor nodes as centers and distance measurements as radii. In the ideal case 

where no presence of any type of error, the intersection point of these circles is the estimated 

location of 𝑠𝑖  which is also the actual location. In practice, there are always error components that 

affect the location discovery process. These components cause the multilateration circles not to 

intersect in one point. Instead, the intersection will be an area 𝐴 that is enclosed by these circles. In 

other words, 𝐴 = ⋂ 𝐶𝑘
𝐾
𝑘=1  and in this case, the location of 𝑠𝑖  can be estimated by some methods 

such as least square error to minimize the localization error. Figure 4.1 shows with a misplacement 

of anchor 𝐵2 to a position 𝐵′2, yet it thinks that it is still in the declared position 𝐵2.   

r1

B1

r2

r3

B2

B3

r’2

B’2

si 

 

Figure 4.1: Trilateration method with misplacement error. 

The size of area 𝐴 depends on the magnitude of anchor misplacement. So the larger magnitude 

of misplacement, the larger the area is and, consequently, the bigger localization error. In fact, 

localization may fail to find estimated position if anchor misplacement cause these circles not to 
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intersect at all. Figure 4.2 shows the impact of anchor misplacement where the localization error 

increases proportionally with respect to the displacement value and the number of misplaced anchor 

nodes. In this research, we analyze the problem and provide a distributed scheme that is practical 

in large-scale networks, and we consider also the drawbacks of other schemes. 

 

Figure 4.2:  Localization error vs displacement value. 

In this chapter, we study the effects of anchor misplacement on localization. Our main focus is 

on enhancing localization service by removing the impact of anchor misplacement. This chapter 

focuses on designing a robust scheme that is able to detect and then mitigate the impact of 

uncertainty in the positions of anchor nodes. This would highly improve localization service and 

make it more reliable. We make the following contributions: 1) We investigate the impact of anchor 

misplacement on location discovery processes, and 2) we analyze the problem and provide a 

distributed algorithm to detect misplaced anchor nodes. Subsequently, we conduct simulation 

experiments to evaluate the performance of our proposed algorithm. 
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4.2 Related Work 

Most of the localization research in the field of WSNs has been devoted to studying the 

measurement errors. The measurements, as addressed in Chapter 2, can be obtained using one of 

the following techniques [86]: Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle 

of Arrival (AoA), or Received Signal Strength Indicator (RSSI). Thus, localization research varies 

according to the measurement method used. For instance, [87] focuses on RSSI measurement error 

while  the research in [88], and [89] are dedicated to model ToA measurement error. The RSSI-

based localization is appealing as it does not require any additional hardware and the distance can 

be derived from models such as path loss model. The uncertainty of anchor location has been 

overlooked. It is assumed that anchor nodes have correct positions which is not true. However, very 

few attempts addressed the localization error caused by anchor misplacement. For example, the 

authors in [90] assume that the anchor nodes are deployed with some uncertainty in their locations. 

They propose to localize the misplaced anchor nodes in order to reduce their effect on localization. 

The authors use Cramer-Rao bound to obtain a lower bound for localization error in multi-hop 

topologies under the presence of anchor misplacement. Fan et al. [91] propose an approach to detect 

misplaced anchor nodes and disregard their inputs in localization. They address two issues: ranging 

error resistance and anchor misplacement. They assume that misplaced anchor nodes broadcast 

their old positions. The authors propose an algorithm to classify anchor nodes into “misplaced” and 

“correct”. They use the following threshold inequality: 

|𝑑̂𝑖𝑗 − 𝑑𝑖𝑗|

𝑑̂𝑖𝑗

< 𝜔 (4.1) 

Where 𝑑𝑖𝑗 and 𝑑̂𝑖𝑗 are the declared and measured distances, respectively. For instance, assume two 

anchor nodes 𝐵𝑖 and 𝐵𝑗. 𝑑𝑖𝑗 is based on their original position (where do they think they are), and 

𝑑̂𝑖𝑗  can be estimated by RSSI based on their physical (i.e., current) positions. 𝐵𝑖 and 𝐵𝑗. are both 

“correct” (i.e., not misplaced) if inequality (4.1) holds. Otherwise, at least one of them is 
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“incorrect”. The threshold 𝜔 is a pre-defined value which depends on several parameters such as 

channel noise and the average displacement value. This detection procedure is incremental. It 

connects two anchor nodes 𝐵𝑖 and 𝐵𝑗 if they are correct according to formula (4.1). It starts with 

connected pair of anchor nodes. New anchor node 𝐵𝑡 is added to this construct if it fulfils inequality 

(4.1) with all connected anchor nodes so far. This eventually will grow to construct the largest all-

connected component (5). This algorithm has advantages, but also has critical drawbacks. Most 

notable is that it requires that a new anchor node being added should be linked to all anchor nodes 

of the largest all-connected component that have been formed so far. This condition provides a 

highly accurate filtering of the misplaced anchor nodes; however it also increases mistaken anchor 

nodes as even the correct anchor nodes have differences between their declared distances and 

estimated distance due to the inherent inaccuracy in the measurement techniques such as RSSI.  

Anchor misplacement may cause disconnectivity in the network of anchor nodes. This leaves more 

than one large connected component. The algorithm is not feasible in large-scale network such as 

IoT because it is unrealistic in terms of one-hop communications among every pair of anchor nodes 

in the network.  

In our proposed approach to detect misplaced anchor nodes, similar to Branch and Bound (BB) 

algorithm [92], we allow the all-connected component to branch and connect a new candidate 

anchor node, 𝐵𝑡 , only if 𝐵𝑡 fulfills formula (4.1) with all its neighbours which already part of all-

connected component. Our proposed algorithm is a distributed as the branching occurs in the 

neighbourhood of each candidate anchor node. This should also reduce the energy consumption as 

the overhead communication among anchor nodes will be reduced as well. It decreases the mistaken 

anchor nodes and maintain a good detection of the misplaced anchor nodes.  

                                                      

5 All-connected component is a subset of the anchor nodes, and in which each node is connected to every 

other node using a single-hop communication. 
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4.3 Problem Definition and System Model 

Although the deterministic deployment of SNs, viz. grid deployment, seems to achieve 

minimum number of SNs and a high degree of coverage and connectivity [93] [61], random 

deployment remains most feasible in IoT context.  Random deployment refers to the case where 

each sensor node is deployed uniformly over the terrain and independently from all other SNs. Let 

𝑁 = {𝑠𝑖: 𝑠𝑖 is an sensing node; 1 ≤   𝑖 ≤   𝑛}, be a set of SNs with unknown location (𝑥𝑖 , 𝑦𝑖)   in 

a plane. Assume we have another set  𝑀 = {𝐵𝑗: 𝐵𝑗  𝑖𝑠 𝑎𝑛 𝑎𝑛𝑐ℎ𝑜𝑟 𝑛𝑜𝑑𝑒; 𝑛 +  1 ≤   𝑗 ≤   𝑛 +  𝑚}, 

of anchor nodes in a plane with known location (𝑥𝑖 , 𝑦𝑖).The subscripts i and j in 𝑠𝑗   and 𝐵𝑗   are 

identifiers of each sensor and anchor in the terrain, respectively. Furthermore, assume that each 

anchor node 𝐵𝑗 transmits a signal, which contains its location, to the neighborhood. Let 𝑎 be a node 

(either sensor or anchor node) in the network. We define 𝑁𝐻(𝑎) to denote the neighborhood of a, 

i.e., 𝑁𝐻(𝑎) = {𝑏|𝑑(𝑎, 𝑏) ≤   𝑅𝑡 , 𝑎 ≠  𝑏, 𝑏 ∈  𝑁 ∪ 𝑀}, where 𝑑(𝑎, 𝑏)is the Euclidean distance 

between a and b, and 𝑅𝑡 is the transmission range of a node. Each node that receives this 

information is able to estimate its distance from the emitting node. 

IoT involves a large density of sensing objects most of which are placed randomly. So we adopt 

the random geometric graph (RGG) to represent the random deployment and varying sensor 

densities [94]. Let 𝐺(𝑉, 𝑅) be a RGG, where V is the set of sensor and anchor nodes (i.e., 𝑉 = 𝑁 ∪

𝑀). The common model for RGG is the disc model where two nodes 𝑎 and 𝑏 are connected if they 

are in the range of 𝑅 from each other (i.e., 𝑎 ∈ 𝑁𝐻(𝑏) and 𝑏 ∈ 𝑁𝐻(𝑎)). Anchor misplacement 

can cause error in disc model to connect two nodes while they may actually be disconnected. This 

is described next. 

4.4 The Effects of Anchor Misplacement  

Suppose that anchor node 𝐵𝑗 is misplaced to 𝐵′𝑗 , and let 𝑀′ ⊆ 𝑀 be the set of misplaced anchor 

nodes. The neighbourhood of anchor node 𝐵𝑗 is the set of all anchor nodes that are connected with 
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𝐵𝑗. That is, 𝑁𝐻𝐵(𝐵𝑗) = {𝑊| 𝑊 =  𝑁𝐻(𝐵𝑗)  ∩  𝑀}.  We differentiate the following three classes 

of sensing nodes: 1) Set  𝑆1 = {𝑠𝑖|𝑠𝑖 ∈ 𝑁𝐻(𝐵𝑗)\𝑁𝐻(𝐵′𝑗), 𝑗 ∈ 𝑀′} in which the SNs belong to the 

vicinity of anchor node 𝐵𝑗 only before its misplacement.  For example, in Figure 4.1, 𝑆1 is not 

empty if 𝑟′2 < 𝑟2, 2) Set  𝑆2 = {𝑠𝑖|𝑠𝑖 ∈ 𝑁𝐻(𝐵𝑗) ∩ 𝑁𝐻(𝐵′𝑗), 𝐵𝑗 ∈ 𝑀′}, represents SNs in  the 

vicinity of the anchor node 𝐵𝑗 before and after its misplacement, and 3) Set 𝑆3 =

{𝑠𝑖|𝑠𝑖 ∈ 𝑁𝐻(𝐵′𝑗)\𝑁𝐻(𝐵𝑗), 𝐵𝑗 ∈ 𝑀′} , represents the counterpart of set 𝑆1. In this set, SNs belong 

to vicinity of the anchor node 𝐵𝑗 only after its misplacement. For example, in Figure 4.1, 𝑆3 is not 

empty if 𝑟′2 > 𝑟2 . 

The subsequent localization errors of anchor misplacement can be calculated by averaging the 

localization error of every affected sensor node. Let 𝑝̂𝑖 and 𝑝̂′𝑖 be the estimated positions of 𝑠𝑖 

before and after anchor misplacement occurred, respectively. We study the impact of anchor 

misplacement on localization over the three classes 𝑆1, 𝑆2, and 𝑆3. Sensing nodes that belong to 

class 𝑆1 are misplacement-error-free because they are physically out of the communication range 

of 𝐵𝑗 which mean that 𝐵𝑗 has no impact on their localization. For both classes 𝑆2 and 𝑆3, let 𝑝𝑖 be 

the actual position of  𝑠𝑖 ∈ 𝑆2 ∪ 𝑆3. The localization error of 𝑠𝑖 before anchor misplacment takes 

place is 𝑒𝑖 = |𝑝̂𝑖 − 𝑝𝑖| and the localization error after anchor misplacement occurs is 𝑒′𝑖 =

|𝑝̂′𝑖 − 𝑝𝑖|. Therefore, the impact of anchor misplacement on localization is given by 𝐴𝑏𝑠(𝑒𝑖 − 𝑒′
𝑖) 

(6), where Abs(𝑑) denote the absolute value of 𝑑. To calculate the whole effect on localization 

accuracy, we average the localization error of all SNs in class 𝑆2 ∪ 𝑆3as follows: 𝐸 =

1

|𝑆2∪𝑆3|
√∑ (𝑒𝑖 − 𝑒′𝑖)2

𝑖∈𝑆2∪𝑆3
, where |𝑆2 ∪ 𝑆3| denotes the size of the set 𝑆2 ∪ 𝑆3.  Note that 𝐵𝑗 has 

no impact on localization of 𝑠𝑖 if it is misplaced to any point on the circumference of the circle 

centered in 𝑠𝑖 and has a radius equals to the distance between 𝑠𝑖 and 𝐵𝑗 before the misplacement.  

                                                      

6 This result assumes that the other error components such as environment and channel conditions remain 

unchanged. 
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In this thesis we use multilateration for localization and, usually, uses Minimum Mean Square 

Estimate (MMSE) [40] for fine-tuning the estimated  position.  

Furthermore, we use the root mean square distance (RMSD) to measure the localization error in 

the network. RMSD is given by the following formula: 

𝑅𝑀𝑆𝐷 = √
∑ ((𝑥𝑗 − 𝑥′𝑗)

2
+ (𝑦𝑗 − 𝑦′𝑗)

2
)𝑛

𝑗=1

𝑛
 

(4.2) 

Where (𝑥𝑗 − 𝑦𝑗) and (𝑥′
𝑗, 𝑦′𝑗) respectively are the actual and estimated positions of sensor node j 

and n is the total number of sensor nodes. RMSD is widely used in the literature for the comparison 

of the estimation error in different localization algorithms, e.g., reference [55].  

4.5 Mitigating the Impact of Anchor Misplacement 

In this section, we discuss our approach to detect the misplaced anchor nodes. Then, we propose 

our algorithm to find these anchor nodes. 

4.5.1 Detecting the Misplaced Anchor Nodes 

Assume an anchor node 𝐵𝑗   is displaced from its original position, 𝐵𝑗,𝑑 with coordinates(𝑥𝑗 , 𝑦𝑗), 

to a new position 𝐵𝑗,𝑑′
  with coordinates(𝑥′𝑗, 𝑦′𝑗). However, 𝐵𝑗 it still broadcasts its original 

position. On the other hand, 𝐵𝑗  is still able to communicate with other nodes through, probably, 

multi-hop communication. Let 𝑠𝑖 be an IoT sensor node such that 𝑠𝑖 ∈ 𝑁𝐻(𝐵𝑗) . However, it may 

happen that 𝑠𝑖 ∉ 𝑁𝐻(𝐵𝑗)after the misplacement of 𝐵𝑗. In this scenario, the disc model will 

mistakenly consider 𝐵𝑗 as a candidate to localize 𝑠𝑖 which hinder the accuracy of localization.  

The severe consequences of anchor misplacement necessitates detecting the misplaced anchor 

nodes and prevent them from sending wrong coordinates.  

Next, we provide some auxiliary definitions, then propose our algorithm to detect misplaced 

anchor nodes. The set of anchor nodes along with their connectivity can be represented as RGG 

with 𝐺𝐵 =  (𝑉𝐵, 𝑅𝑡) , where 𝑉𝐵 = 𝑀 is the set of anchor nodes (with their current positions) and 
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𝑅𝑡 is the transmission range. A component 𝐶, of a graph 𝐺𝐵 , is connected if there is a path 

(probably multi-hop) between any two anchor nodes  in 𝐶 .. That is, let 𝐶 = {S = (𝐵1, 𝐵2, … , 𝐵𝑘)}, 

𝐶 is connected if  ∀𝐵𝑖and 𝐵𝑓 ∈ 𝑆, ∃ 𝑝𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑎𝑛𝑐ℎ𝑜𝑟𝑠 𝐵𝑗 , 𝐵𝑗+1, 𝐵𝑗+2, … . , 𝐵𝑗+𝑧: 𝐵𝑖 ∈

𝑁𝐻𝐵(𝐵𝑗) 𝑎𝑛𝑑 𝐵𝑓 ∈ 𝑁𝐻𝐵(𝐵𝑗+𝑧), 𝐵𝑖 ≠ 𝐵𝑗 , 𝑗 + 𝑧 <  𝑚, where 𝑚 is the size of 𝑀. 

Definition 4.1: The neighbourhood of component C is the union of the neighbourhood of all anchor 

nodes in this component. That is, 𝑁𝐻𝐶(𝐶) = {𝐵𝑟 |𝐵𝑟  ∈ ⋃ 𝑁𝐻𝐵(𝐵𝑖)𝐵𝑖∈𝐶 , 𝐵𝑖  ≠  𝐵𝑟, 𝐵𝑟 ∉  C}. 

Definition 4.2: Two anchor nodes 𝐵𝑖 and 𝐵𝑗 are threshold-consistent if 
|𝑑̂𝑖𝑗−𝑑𝑖𝑗|

𝑑̂𝑖𝑗
< 𝜔, where the 

actual distance 𝑑𝑖𝑗, between 𝐵𝑖 and 𝐵𝑗, based on their original positions (where do they think they 

are), and the measured distance d̂ij which can be estimated by RSSI method. 

Definition 4.3: An anchor node 𝐵𝑖 is threshold-consistent with component 𝐶𝑖 if the following 

condition holds: ∀𝐵𝑖 ∈ 𝐶𝑖 , if  𝐵𝑗 ∈  𝑁𝐻𝐵(𝐵𝑖) , then  𝐵𝑖 and 𝐵𝑗 are threshold-consistent. 

We are ready now to present our proposed algorithm. 

Algorithm 4.1: Distributed Anchor Detection (DAnD) Algorithm 

Input: random geometric graph GB = (VB, 𝑅𝑡) of anchor nodes 

Output: largest component of GB that is threshold-consistent 

1 for each anchor node 𝐵𝑖  ∈ 𝑉𝐵  

2       Initialize component 𝐶𝑖 by adding 𝐵𝑖 to it; 

3 end for 

4 for each element 𝐵𝑗  ∈  𝑁𝐻𝐶 (𝐶𝑖)  

5        if 𝐵𝑗 is threshold-consistent with 𝐶𝑖, then  

6 add 𝐵𝑗 to 𝐶𝑖; 

7 end if 

8 end for 

The computational complexity of DAnD algorithm is 𝑂(𝑚𝑧), where 𝑧 is the average number 

of neighbours, and 𝑚 is the number of anchor nodes. The worst case occurs when all anchor nodes 

can communicate with one another (i.e., 𝑧 = 𝑚 − 1); this is unlikely to happen in dense networks 

since the transmission range of the nodes is limited. However, the number of comparisons in the 

above algorithm can be reduced by half if redundancy is avoided. Thus, if 𝐵𝑖 checks the detection 

condition with 𝐵𝑗, then we prevent 𝐵𝑗   to check the condition again with 𝐵𝑖. There is no extra 
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communication overhead involved in executing this algorithm as it utilizes only the location 

information of local anchor nodes. 

4.5.2 Dealing with the Detected Misplaced Anchor Nodes 

The overlooking of misplaced anchor nodes results in poor localization accuracy. Therefore, 

the errors triggered by these anchor nodes should be mitigated. The mitigation process first detects 

the misplaced anchors nodes, then applies one of the following solutions: 1) correct their positions 

by localizing them using correct anchor nodes, 2) discard them from participating in localization 

or, 3) correct some misplaced anchor nodes and discard the others. Choosing which option to follow 

depends on the size of the network, the density of anchor nodes, and the number of misplaced 

anchor nodes. For example, if the ratio of misplaced anchor nodes is high and the target field is 

harsh and inaccessible, then correcting the misplaced anchor nodes, by localizing them, would be 

a practical option in this case.  

4.6 Performance Evaluation 

We use network simulator, NS-3, to study the impact of anchor misplacement on localization 

accuracy. The localization accuracy refers to the average difference between the true position and 

estimated position of the unknown SNs. We are interested in calculating the localization accuracy 

under the presence of anchor misplacement problem. For more realistic deployment, the terrain is 

divided into square grid cells.  Each cell area is set to be 100X100m2. n unknown SNs and m anchor 

nodes are randomly deployed in each cell. In the experiments, unless stated otherwise, we set the 

number of cells to 4 cells and the threshold 𝜔 = 0.01. IoT sensing nodes and anchor nodes per cell 

to be 20 and 5, respectively. The transmission range is set to be 160m to guarantee covering all 

sensing nodes in the cell. Moreover, we conduct all experiments under a fixed value of anchor 

misplacement (i.e., displacement offset) of 7m on both x and y coordinates and the misplacements 

occurred in the same direction. Furthermore, misplaced anchor nodes are randomly selected. 
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In all experiments, we study the effect of the following parameters: 1) number of misplaced 

anchor nodes, 2) transmission range, and 3) error threshold. The performance metrics are: A) the 

successful detection rate of the misplaced anchors, B) the mistaken anchor nodes rate of the correct 

anchor nodes and, C) the localization error. The successful and mistaken detection ratios of the 

misplaced anchor nodes are calculated. Then, we calculate the localization accuracy for two cases: 

before and after applying our proposed algorithm, i.e., DAnD. To calculate the localization error, 

in each run, we compute the average location error. We use multi-lateration-based localization with 

MMSE to estimate sensing nodes’ positions. The results are compared to the performance of the 

algorithm in [91]. For the sake of simplicity, let us name this algorithm Fan’s algorithm according 

to the name of its first author. Fan’s algorithm was chosen because it is one of the fewer algorithms 

that addressed the anchor misplacement in localization of WSNs. It considers also a WSN with 

Gaussian measurement error, which exactly matches our case. Figure 4.3(a) shows the effect of the 

number of misplaced anchor nodes on the performance of DAnD algorithm (i.e., our proposed 

algorithm) versus Fan’s algorithm. The ratio of successful detection of both algorithms remains 

constant when the number of misplaced anchor nodes is less than 7, with almost 100% for DAnD 

and barely 70% for Fan’s algorithm. These values reflect the high capability of DAnD algorithm, 

compared to Fan’s algorithm, to reach all anchor nodes and test them against detection condition. 

As the number of misplaced anchor nodes becomes larger than 7, the successful detection ratio for 

both algorithms starts declining until they reach zero at 11 misplaced anchor nodes. The analysis 

of this is as follows: Both algorithms work on selecting the largest component of anchor nodes 

network that contains only threshold-consistent anchor nodes. If an anchor node belongs to this 

component, then it is considered to be correct. Otherwise, it is considered to be misplaced. 

Therefore, starting from 11 misplaced anchor nodes, which are more than half of the total number 

of anchor nodes, the largest component is the component that includes the 11 misplaced anchors. 

Thus, the successful detection rate is zero. The ratio of mistaken anchor nodes, in Figure 4.3(b), 
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starts very close to zero percentage for DAnD and with approximately 30% on average for Fan’s 

algorithm. The reason behind this result is that, unlike DAnD algorithm, Fan’s algorithm fails to 

test some correct anchor nodes. Both algorithms continue with this rate until it reaches 7 misplaced 

anchor nodes. After this point, the ratio increases until it reaches 100% at 11 misplaced anchor 

nodes for both schemes. This percentage represents the complements of the successful detection 

percentage when more than half of the anchor nodes are misplaced. Figure 4.3(c) shows the effect 

of number of misplaced anchor nodes on RMSD of the whole network before and after applying 

both algorithms. The algorithms start off with zero value of localization error. However, the error 

increases after 5 and 7 misplaced anchor nodes for Fan’s and DAnD algorithms, respectively. The 

RMSD increases sharply in Fan’s algorithm as the successful detection of misplaced anchor nodes 

declines dramatically; however, both algorithms reach the same value of RMSD at 11 misplaced 

anchors. This is the peak value and is equal to 7√2. This result is intuitive as in this case the 

localization of the sensor nodes is calculated only by misplaced anchor nodes, which have been 

missed during the detection. It is interesting to note that when the number of misplaced anchors 

passes a certain limit (8 anchor nodes for Fan’s, and 10 nodes for DAnD), there is no benefit of 

running these algorithms since no further error mitigation can be achieved. Thus, when more than 

half of anchor nods are misplaced, it is better to deploy new anchor nodes and discard all the 

previous ones in order to achieve better accuracy. This is because the ratio of mistaken anchor 

nodes becomes larger than the ratio of correct detection.  
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(a)  The number of successful detection for DAnD algorithm vs Fan’s algorithm 

 

(b) The number of mistaken detection for DAnD algorithm vs Fan’s algorithm 
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(c)  Localization error vs number of misplaced anchors 

Figure 4.3: The effect of number of misplaced anchor nodes. 

 

(a)  The number of successful detection for DAnD algorithm vs Fan’s algorithm 
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(b) The number of mistaken detection for DAnD algorithm vs Fan’s algorithm 

 

(c)  Localization error vs transmission range 

Figure 4.4:  The effects of the transmission range. 
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Figure 4.4 shows the effect of transmission range. Figure 4.4(a) shows that DAnD algorithm 

outperforms Fan’s algorithm due to its ability to successfully detect the four misplaced anchor 

nodes for all presented transmission ranges. The rate of successful detection of Fan’s algorithm 

increases as the transmission range increases but does not exceed 70% in the best case. As expected, 

the rate of mistaken anchor nodes, Figure 4.4(b), decreases as the transmission range increases. In 

worst case, our algorithm has around 10% mistaken anchor nodes; while Fan’s algorithm, has more 

than 50% mistaken nodes. Intuitively, the RMSD of the network decreases as the transmission 

range increases as shown in Figure 4.4(c). It is interesting to see that our algorithm mitigates the 

error with shorter transmission range. In our next experiment we check the effect of different 

threshold values on the successful and mistaken detection rates and consequently on the RMSD. 

 

(a)  The number of successful detection for DAnD algorithm vs Fan’s algorithm 
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(b) The number of mistaken detection for DAnD algorithm vs Fan’s algorithm 

 

(c)  Localization error vs threshold 

Figure 4.5: The effects of the threshold. 
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Two factors affect the selection of the threshold  𝜔  in equation (4.1): the average displacement 

value, and the channel quality. Better estimation of these factors results in better choice of threshold 

value and consequently better detection rate of misplaced anchor nodes.  As can be seen in 

Figure 4.5: The effects of the threshold.(a) when 0.01 ≤  𝜔 ≤ 0.02 , DAnD detects all misplaced 

anchor nodes making no mistaken anchor nodes. It is expected that when 0 <  𝜔 ≤ 0.01 the 

algorithm can detect all the misplaced anchor nodes but will also make some mistaken anchor nodes 

as the threshold becomes smaller, the successful detection becomes more accurate and 

consequently results in fewer missed misplaced anchor nodes. However, the ratio of mistaken 

anchor nodes increases in this case. As shown in Figure 4.5: The effects of the threshold.(a) and 

(b), when 𝜔 > 0.02, the successful detection of both algorithms decreases until it reaches zero at 

some value of threshold that is less than 1. This value depends on the average displacement 

magnitude of the anchor nodes; the larger the displacement magnitude, the larger the required value 

of threshold is.  Figure 4.5: The effects of the threshold.(c) shows the RMSD of the network versus 

the threshold. The RMSD of the network without applying DAnD or Fan’s algorithms is not 

dependent on the threshold value. After applying the algorithms, it can be seen that the lowest 

RMSD belongs to the suitable range [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥]. In this case the suitable range for our 

experiment is 0.01 ≤  𝜔 ≤ 0.02. Clearly, our DAnD algorithm outperforms Fan’s algorithm as it 

mitigates the error for all presented thresholds. In general, the suitable range [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥] varies 

according to the aforementioned factors; however, the same behavior of detection ratio, mistaken 

ratio, and RMSD are expected for both algorithms. 

4.7 Summary 

In this chapter, we investigated the problem of anchor misplacement in WSNs. Mitigating the 

impact of anchor misplacement contributes towards accurate and reliable localization service. We 

address this problem with consideration of more realization of IoT. We propose a distributed 

algorithm to detect the misplaced anchor nodes. The performance evaluation of our proposed 
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algorithm outperforms the algorithm presented in [91] in terms of successful detection ratio,  

mistaken anchor ratio, and localization accuracy. 
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The Impact of Anchor Misplacement on Sensing Coverage 

Recent research considers the placement problem of homogeneous sensing objects to achieve 

longevity and high sensing coverage. However, recovery and detection of coverage hole(s) has 

attracted only a few works [61]. Similar to localization in WSN, sensing coverage in WSN lacks 

the global vision for IoT. For example, the current coverage schemes focus on homogeneous smart 

objects which belong usually to one owner or one service operator. This void in research shows the 

need to tackle these issues in large scale networks such as IoT.  

In Chapter 3, we addressed the sensing coverage in IoT. We identified coverage holes and 

provided lower and upper bounds for each hole. In this chapter, we address the impact of anchor 

misplacement on sensing coverage in the context of IoT.  

In this research we: 1) formulate the problem of actual versus perceived coverage, 2) utilize 

Delaunay Triangulation to provide theoretical analysis for the two types of coverage holes (i.e., 

actual unreported and false perceived coverage holes) that have been formed as a result of anchor 

misplacement, 3) develop an efficient algorithm to detect different types of coverage holes, 4) 

calculate the area ratio of each type of coverage holes to the total area, and 5) implement the 

algorithm and run experiments to show the correctness of our theoretical analysis. To the best of 

our knowledge, this is the only research that considers the impact of anchor misplacement on 

sensing coverage. 

5.1 Related Work and Motivation 

Consider an environmental experiment to measure the air quality in a region as shown in 

Figure 1.1. For this purpose, the experts use heterogeneous sensing nodes that are already deployed 

in that region and belong to three different sensing providers. For convenience, Figure 1.1 is 



61 

 

redrawn here as Figure 5.1. These collective shared resources can provide better results in such 

case and can improve the quality of sensing service.  

 

Figure 5.1: Multiple sensing coverage providers. 

Applications have different sensing coverage requirements. For example, some applications 

require full sensing coverage such as applications of critical plants, viz a nuclear power plant. Other 

applications tolerate some coverage holes such as applications in agriculture and weather 

forecasting. Existing work on sensing coverage in WSNs assumes sensing nodes are homogeneous 

and only belong to one sensing service provider/owner. Most of the research addresses 

deterministic placement and deployment planning of sensing nodes to achieve greater coverage 

and/or to extend the network lifetime [72]. The sensing coverage problem is more pronounced in 

the IoT context due to the critical challenges of scalability, robustness, heterogeneity, and security 

[65]. These challenges are normal consequence of the explosive growth of a number of devices 

with different technologies being introduced globally.  

Addressing WSNs in the context of IoT mandates sensing objects to be: 1) heterogeneous as 

they have different functionalities and capabilities, 2) randomly deployed which is common in IoT, 

and 3) belong to multiple sensing service providers. The challenge in IoT setting is determining 

sensing coverage especially under the presence of sensing coverage holes. Anchor misplacement 

leads to special new types of coverage holes due to inaccurate localization of some sensor nodes. 

The results in Chapter 4 show that anchor misplacement degrades localization accuracy. Sensing 

coverage quality is also affected due to: a) inaccurate data collection as the sensed data may contain 
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inaccurate locations if their corresponding sensing nodes were localized inaccurately using 

misplaced anchor nodes. This results in coverage holes and hence the full coverage is not preserved 

and, b) inefficient energy consumption because anchor misplacement leads routing protocols to 

depend on inaccurate locations. Hence, drains the energy of the sensing nodes. In Chapter 3, we 

investigate the coverage hole problem in IoT context; where we identified each coverage hole, 

found its location, and calculated the lower and upper bounds of its area size. Here we study the 

effect of anchor misplacement and the special types of coverage holes posed by this problem.  

5.2 Preliminaries 

In this section, we introduce some necessary definitions and assumptions. Let S denote the 

target sensing field. We use the definition of sensing coverage presented in Chapter 2. 

We address different types of coverage holes in the vicinity of the sensing nodes that are 

affected by anchor misplacement. Assume that sensing node 𝑠𝑖 is localized under anchor 

misplacement. We call 𝑠𝑖 in this case an affected sensing node. Let 𝑁′ ⊆ 𝑁, be the set of anchor-

misplacement-affected sensor nodes or affected sensor nodes, for simplicity. As in Chapter 4, we 

use the usual cardinality notation |.| to denote the size of the set. For example, |𝑁′| is the cardinality 

of 𝑁′. Further let 𝐶𝑠𝑖
 denotes the actual sensing coverage area that is covered by sensing node 𝑠𝑖. 

Next, we introduce some important auxiliary definitions. 

Definition 5.1: The actual collective sensing coverage (𝐶𝑎𝑐𝑡) of all affected sensing nodes in WSN 

is defined as the union of their physical sensing coverage in the network. That is 𝐶𝑎𝑐𝑡 = ⋃ 𝐶𝑠𝑖

|𝑁′|

𝑖=1 . 

Let 𝑠𝑖
′ be the erroneous estimated location of 𝑠𝑖. 𝑠𝑖 will report sensed data from inaccurate location 

which creates a perceived coverage around 𝑠𝑖
′. Further, let 𝐶′𝑠𝑖

 denotes the perceived sensing 

coverage area that is covered by affected sensor node 𝑠𝑖 as if 𝑠𝑖 in its estimated position. 



63 

 

Definition 5.2: The perceived collective sensing coverage (𝐶𝑝𝑒𝑟) of all affected sensing node s in 

WSN is defined as the union of their perceived sensing coverage in the network. That is            

𝐶𝑝𝑒𝑟 = ⋃ 𝐶′𝑠𝑖

|𝑁′|

𝑖=1 . 

Clearly the larger the intersection between 𝐶𝑎𝑐𝑡 and 𝐶𝑝𝑒𝑟, the less perceived coverage exists and, 

hence, the less impact of anchor misplacement on sensing coverage. The comparison between 

𝐶𝑎𝑐𝑡 and 𝐶𝑝𝑒𝑟  shows new types of coverage holes: 

1) Perceived coverage hole where an area is covered actually by 𝐶𝑠𝑖
 as in Figure 5.2(a), but not 

covered by 𝐶′𝑠𝑖
 as in Figure 5.2 (b) where the hole exists in two triangles 𝑠1

′𝑠2
′𝑠3

′ and 

𝑠1
′𝑠3

′𝑠4
′. In this case,  𝐶𝑎𝑐𝑡 > 𝐶𝑝𝑒𝑟.  

s1 s1'

s2 

s3 

s4 

s2'

s3'

s4'
s5 

s6 

s8 

s6'

s7' 

s5'

 

(a)                                                                (b) 

(a) An ideal case where there is no coverage holes. 

(b) Perceived coverage hole due to anchor misplacement. 

Figure 5.2: Perceived hole can be identified by triangulation in the vicinity of the affected 

sensing node 𝒔𝟏. 

2) Unreported actual coverage hole where an area is not covered by 𝐶𝑠𝑖
 as in Figure 5.3(a) where 

the hole exists in triangles 𝑠1𝑠6𝑠7 and 𝑠1𝑠7𝑠2, but covered by 𝐶′𝑠𝑖
 as in Figure 5.3(b). In this 

case,   𝐶𝑎𝑐𝑡 < 𝐶𝑝𝑒𝑟. 
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In practise, in order to do a comparison between 𝐶𝑠𝑖
  and 𝐶′𝑠𝑖

 and to characterize which 

scenarios lead to each type of sensing coverage holes, we need a computational structure that enable 

us to do the required calculations efficiently. For this purpose, we use Delaunay Triangulation to 

study this problem in the locality of each affected sensor node. 

s6 

s7 
s1 

s6'

s7' 

s2' 

s1' 

s2 

s3 

s4 
s5 

s3'

s4' s5'

   

(a)                                                                                  (b) 

(b) Original deployment with actual coverage hole. 

(c) Actual coverage hole is masked. Thus unreported. 

Figure 5.3: Actual unreported coverage hole can be identified by investigating the triangles 

in the vicinity of the affected sensor 𝒔𝟏. 

5.3 Problem Definition and System Model 

In WSNs, sensing node density must be above a specific threshold to maintain coverage; 

otherwise, coverage holes exist. Anchor misplacement may lead to special types of coverage holes 

due to inaccurate localization of the affected sensor nodes. The results in Chapter 4 show that 

anchor misplacement impacts the accuracy of localization. Similarly, coverage quality would be 

affected due to the inaccurate data collection of the affected sensing nodes since they report sensed 

data from erroneous estimated locations. This results in two special types of coverage holes: Actual-
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unreported, and false perceived coverage holes. In this chapter, we address the impact of anchor 

misplacement on sensing coverage. Given a random deployment of sensor nodes and a localization 

error posed by some anchor misplacement on some sensor nodes, we are interested mainly to 

investigate the new types of coverage holes, and find the size ratio of each type of coverage hole to 

the total area.  

The main assumptions in this chapter are the following: 

1) WSN is connected and deployed in 2-D plane. This means that every object is able to receive 

and send packets to and from any other object. This assumption is important to exchange the 

information locally through multi-hop in order to build our computational structure in a 

distributed manner.  

2) Localization of sensing objects is multi-lateration-based with MMSE for fine-tuning the 

estimated positions. 

3) In order to show its impact on coverage, we assume that anchor misplacement is the most 

critical source of error that leads to localization uncertainty (i.e. disregarding other sources of 

error). 

4) The sensing target field is bounded. This helps constructing DT in a simpler manner. 

We adopt the same network and sensing models as in Chapter 3. That is, the random deployment 

for network model and binary disc as a sensing model. Random deployment refers to the case where 

each IoT object is deployed uniformly over the target field and independently from all other objects. 

On the other hand, binary disc model assumes that a point in a sensing field S is covered if it is 

within the sensing range of at least one sensor. Otherwise, it is not covered. 

5.4 The Effect of Anchor Misplacement on Sensing Coverage 

In Chapter 3, we exploit DT to successfully reduce the problem of sensing coverage of a field 

from testing infinite number of points to discrete ones. Particularly, it is enough to study the 

problem locally using intra-triangle coverage presented in Chapter 3. 
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Let si be a sensor node vertex in a triangle ∆. Intra-triangle coverage of ∆ is given by the 

following equation: 𝐼𝑇𝐶(∆) = ∑ 𝐶𝑁𝑇(𝑠𝑖, ∆)𝑠𝑖∈𝑉(∆) , where V(∆) is the set of three vertices of ∆. 

 𝐶𝑁𝑇(𝑠𝑖, ∆) = 𝛼

2
𝑅𝑠

2 denote the coverage contribution of sensor si where 𝛼 is the angle at si in 

triangle ∆ and is calculated by the following formula: , 𝛼 = 𝑐𝑜𝑠−1 (
𝑎2+𝑏2−𝑐2

2𝑎𝑏
). Assume that some 

anchor nodes are randomly misplaced in sensing field S. These misplaced anchor nodes pose a 

localization error on some sensor nodes. We use the implementation of a distributed algorithm in 

[77] to construct the DT that represents the target sensing field S. Lemma 3.2 shows that if (𝑅𝑠𝑖 +

𝑅𝑠𝑗) is less than 2𝑟 of one triangle ∆ in DT, then there is a hole coverage in ∆. The uncovered area 

inside ∆ can be calculated by subtracting 𝐼𝑇𝐶(∆) from the full area size of ∆. That is 𝐴∆ − 𝐼𝑇𝐶(∆). 

The area size of ∆ can be calculated by the following formula: 𝐴∆ = √𝑑(𝑑 − 𝑎)(𝑑 − 𝑏)(𝑑 − 𝑐), 

where 𝑑 =
𝑎+𝑏+𝑐

2
 and a, b and c are the length of the sides of ∆. Assume that one sensor node say 

s2 in Figure 5.4 was localized by some misplaced anchor nodes. Let 𝑠2
′(𝑥′, 𝑦′) be the erroneous 

location before any correction. Further, let 𝑣⃗ = (∆𝑥, ∆𝑦) be the localization error vector. Then the 

coordinates of the corrected position for s2 is (𝑥′ − ∆𝑥, 𝑦′ − ∆𝑦). 

s3

s’2s1
e

h

x’

s2

x

 

Figure 5.4: An example of structural change on DT due to correcting the location of 𝒔𝟐′ to 

𝒔𝟐. 
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In order to measure the sensing coverage holes posed by anchor misplacement, we need to 

calculate the sensing coverage in two cases: with and without the existence of anchor misplacement. 

That is, for each affected sensing node si, we measure the coverage hole by comparing the sensing 

coverage of si and its neighbours from one hand, and  si
′ and its neighbours on the other hand. This 

means we are interested to compare Csi
  and C′si

 in their vicinities. In Figure 5.2 and Figure 5.3, 

the vicinity of affected sensor 𝑠1 is 𝑠2𝑠3𝑠4𝑠5𝑠6𝑠7 and the vicinity of  𝑠1
′
 is 𝑠2

′𝑠3
′𝑠4

′𝑠5
′𝑠6

′𝑠7
′. The 

triangulation of these vicinities enable us to study the coverage holes in each triangle. 

Next, we utilize the concept of history in graph theory to demonstrate the above description of 

calculating the sensing coverage for each affected sensor node with and without the existence of 

anchor misplacement. 

5.4.1 Anchor Misplacement as a Graph Operator 

Let  D𝑇 be a Delaunay Triangulation of IoT objects in the target terrain. Some of these objects 

have known locations (i.e., anchor nodes) and the rest have initially unknown locations. The anchor 

misplacement of anchor nodes triggers a change in  D𝑇 as they impact the localization accuracy of 

the sensing objects. The change in  D𝑇 could be in the distance metric of edges or in the structure 

as some objects become connected or disconnected. Denote the new triangulation  D𝑇′. Thus anchor 

misplacement works as an operator which maps a given graph (i.e., D𝑇) into a new graph  D𝑇′. 

Furthermore, let 𝑁𝐻(𝑎) denotes the set of sensing objects in which each object has a common 

triangle edge with sensing object a. We utilize the concept of history to approach the Delaunay 

triangulation structure before and after anchor misplacement. The triangulation of  𝑠1  and its 

vicinity (i.e.,  𝑁𝐻( 𝑠1 ) = {𝑠2 , 𝑠3 , 𝑠4 , 𝑠5 , 𝑠6 , 𝑠7 } in Figure 5.2 and Figure 5.3 represents 

the history of the triangulation of 𝑠1
′ and its vicinity. The following is the formal definition of the 

history of a vertex in  D𝑇.  

Definition 5.3: Let T(𝑠𝑖) denotes a triangulation in D𝑇′ that is induced by both si’ and NH(𝑠𝑖
′). That 

is, the Delaunay triangles that have 𝑠𝑖
′ as a common vertex. Similarly, we call T-1(𝑠𝑖) the history of 



68 

 

a vertex 𝑠𝑖
′
 and it denotes a triangulation in D𝑇 that is induced by both 𝑠𝑖 and NH(si), where 𝑠𝑖 is 

the correct position of𝑠𝑖
′. 

Figure 5.5 shows one triangle of T(𝑠2) and its history. The concept of history is not new in 

graph theory and has been used to study the asymptotic characteristics of iterated graphs such as 

line and path graphs [95] [96]. We note that the locations of all vertices in T(si) are localized with 

the presence of anchor misplacement. However, the locations in T-1(si) are corrected as if there is 

no anchor misplacement or the misplacement has been reversed. Clearly the subgraphs T(si) and  

T-1(si) may not be the same as some vertices can be in T(si) but not in T-1(si) or vice versa. The 

location of each object in the terrain is a key point in our study as both subgraphs T(si) and  T-1(si) 

maybe isomorphic7 but yet different in terms of edge lengths. 

s3

s’2s1
e

h

x’

s2

s3

s1

s2

x

 

(a) One triangle of T-1(s2)                (b)  The triangle in T(s2) 

Figure 5.5: A partial snapshot of T(𝒔𝟐) and its history. 

We can construct D𝑇 from D𝑇′ in the following way: Identify the misplaced anchor objects by 

using the algorithm in Chapter 4. Then remove the affected sensing objects si with their linked 

edges, and insert objects si again in their correct positions. Lastly, construct the triangulation in 

their locality. Let deg(𝑠𝑖, G) denotes the number of direct neighbouring objects of object 𝑠𝑖 in graph 

G. That is, deg(𝑠𝑖, 𝐺) = |𝑁𝐻(𝑠𝑖)|. The average deg(𝑠𝑖, D𝑇 ) is at most 6 and, therefore, the average 

                                                      

7 Two graphs are isomorphic if they contain the same objects (i.e., vertices) linked in the same way. 
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number of triangles in both subgraphs T(si) and T-1(si) will not exceed 6 [70]. This shows a low 

computational cost of our approach.  

s3

s’2s1
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h
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(a) Coverage hole in T-1(s2)         (b) The hole is masked in T(s2) 

Figure 5.6: Unreported coverage hole with center x. 

5.4.2 Coverage Holes with Anchor Misplacement 

We study the impact of anchor misplacement on sensing coverage and detect the false coverage 

and actual coverage holes. To achieve this, we are interested in the common triangles of both 

subgraphs, that is the triangles in T(𝑠𝑖) ∩ T−1(𝑠𝑖). The empty intersection indicates that T-1(si) is 

totally new structure and none of NH(si) in T(𝑠𝑖) is triangulated with si’. This happens when the 

error posed by anchor misplacement on localizing si is extremely high such that the estimated 

location si’ is out of the vicinity of si. Any common triangle ∆ in T(si) and T-1(si) falls in one of the 

following categories: 

1) The local full coverage of ∆ is maintained in both T(si) and T-1(si). 

2) The local full coverage of ∆ exists in T-1(si), but not in T(si) (i.e., perceived coverage hole). 

3) There is no local coverage in both T(si) and T-1(si). 

4) The local full coverage of ∆ exists in T(si), but not in T-1(si) (i.e., actual unreported coverage 

hole as in Figure 5.6). 
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Categories 1 and 3 deal with extreme cases where triangle ∆ is either covered in both T(si) and 

its history or not. Category 2 shows the case of perceived unreal coverage hole as ∆ is not covered 

in T(si), but is covered in its history. In contrary of category 2, category 4 demonstrates the actual 

unreported coverage hole.  

The two types of coverage holes (i.e., false perceived, and actual unreported coverage holes) 

can be identified by applying the same strategy followed in Chapter 3. Lemma 3.2 is applied on 

each triangle ∆ in T(𝑠𝑖) ∩ T−1(𝑠𝑖). Once for T(si) and another time for T-1(si). Thus, the coverage 

hole in ∆ is identified according to the above categories. Finding the actual sensing coverage, 𝐶𝑠𝑖
, 

and the perceived counterpart, 𝐶′𝑠𝑖
, in their vicinities requires the calculation of the size of coverage 

hole for each ∆ in T(𝑠𝑖) ∩ T−1(𝑠𝑖). For more readability of this analysis, let ∆′ and ∆ denote the 

same triangle (i.e., have same vertices) in T(𝑠𝑖) and T−1(𝑠𝑖), respectively. 

The coverage ratio in category 1, RC1, can be written as a ratio of the area of ∆′ to the area of 

∆. That is, RC1 =
𝐴∆′

𝐴∆
. On the other hand, the coverage hole ratio in category 3, RC3, can be stated 

as the size of coverage hole in of ∆′ to its corresponding in ∆. For example, the uncovered area of 

∆, denoted by UNC(∆, T(𝑠𝑖)), is equal to 𝐴∆ − 𝐼𝑇𝐶(∆). Thus the ratio is, RC3 =
UNC(∆′,T(𝑠𝑖))

UNC(∆,T−1(𝑠𝑖))
 . 

Note that ∆′ in T(si) and ∆ in T-1(si) have the same vertices, yet may not be similar in terms of edge 

length. In both categories 1 and 3, if the ratio is not equal to 1, then there is clearly inaccurate 

reporting of the sensing coverage of the surroundings of the vertices of ∆ (or alternatively∆′). In 

this case, the actual coverage in the history is either underestimated or overestimated.  

The ratio of perceived coverage hole in category 2 is 𝑅𝐶2 =
UNC(∆′,T(𝑠𝑖))

 𝐴∆′
. Similarly, the ratio 

of actual unreported coverage hole in category 4 is calculated by 𝑅𝐶4 =
UNC(∆,T−1(𝑠𝑖))

 𝐴∆
. 

The aforementioned analysis takes in consideration the case where more than one affected 

objects are neighbours to each other. Assume 𝑠𝑖′ and 𝑠𝑗′ are two neighbours and affected objects in 
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T(𝑠𝑖)  (or alternatively in T(𝑠𝑗)). Then T−1(𝑠𝑖) (or alternatively in T−1(𝑠𝑗)) contains both 𝑠𝑖 and𝑠𝑗. 

Therefore, the effect of anchor misplacement on both si and sj is reflected in all 𝐼𝑇𝐶 that contains 

si or sj, or both. However, there will be a redundant calculation of the 𝐼𝑇𝐶 of the triangle that have 

both contribution of 𝑠𝑖 and 𝑠𝑗 as vertices. This redundancy should be considered when calculating 

the whole 𝐼𝑇𝐶 in T(𝑠𝑖) and its history. 

5.5 Coverage Hole: Ratio and Type Algorithm  

The following algorithms identify the different types of coverage holes posed by anchor 

misplacement and calculate the ratio of each one. The Coverage Hole: Ratio And Type (CHRAT) 

algorithm assumes that all sensing nodes have been localized, with the existence of anchor 

misplacement, and their locations are known. CHRAT uses the DAnD algorithm in Chapter 4 to 

identify the misplaced anchors. Then finds the set of affected sensing nodes that have been localized 

by at least one misplaced anchor. For each sensing node si, CHRAT finds the set of collective 

triangles that have si as a common vertex. It finds the set of triangles for each affected sensing node 

si for both T(𝑠𝑖) and its history T−1(𝑠𝑖) as shown in line 5 and 6. The intersection set of triangles 

between T(𝑠𝑖) and its history T−1(𝑠𝑖) is calculated in line 7.  CHRAT iterates over all triangles in 

the intersection and invoke Identify Ratio And Type (IRAT) algorithm to identify the coverage 

hole and determine its ratio. 
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Algorithm 5.1: Coverage Hole Ratio and Type (CHRAT) 

Input: M, N; //the sets of anchors and sensors, respectively. 

Output: Type_of_coverage_hole, ratio 

1 G = Construct_Graph(M);// construct graph G //from 

anchor set only. 

2 𝑀′ = detect_Misplaced_Anchors(G);//set of misplaced 

anchors 

3 𝑁′ = find_Affected_Sensors(M’); 

4 for each sensor 𝑠𝑖 ∈ 𝑁′ 

5 T(𝑠𝑖)   = findTriangles(𝑠𝑖); 

6 T−1(𝑠𝑖)   = findTrianglesInHistory(𝑠𝑖); 

7 int_set(𝑠𝑖) = T(𝑠𝑖) ∩ T−1(𝑠𝑖);       

8 end for 

9 for each sensor ∆′ ∈ 𝑖𝑛𝑡_𝑠𝑒𝑡(𝑠𝑖)  

10 ∆   = historyOfTriangle(∆′ ); 

11 invoke IRAT(∆′,∆,𝑠𝑖); 

12 end for 

IRAT takes a triangle, its history, and its corresponding sensing node as inputs. In lines 2 and 

6 HasCoverageHole(∆) function checks ∆′ ∈ T(𝑠𝑖) and its history ∆∈ T−1(𝑠𝑖) against the coverage 

criteria  in Lemma 3.2. This gives four combinations each which corresponds to the four categories 

discussed in the previous Section. current_covered and history_covered are two Boolean variables 

which indicate whether that the triangles ∆′ and ∆ , respectively, are covered or not. Once the type 

of coverage hole, if any, is identified, IRAT calculates the ratio of the coverage hole in T(𝑠𝑖) to the 

area of coverage hole in T−1(𝑠𝑖). 
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Algorithm 5.2: Identify Ratio and Type (IRAT) 

Input: triangle ∆, triangle ∆′, affected_sensor si 

Output: Type_of_coverage_hole, ratio 

1 current_covered = history_covered    =  true; 

2 if HasCoverageHole(∆′, T(𝑠𝑖)) then 

3 unc_∆′   = UNC(∆′, T(𝑠𝑖)); 

4 current_covered    =  false; 

5 end if 

6 if HasCoverageHole(∆, T−1(𝑠𝑖)) then 

7 unc_∆   = UNC(∆, T−1(𝑠𝑖)); 

8 history_covered    =  false; 

9 end if 

10 if (current_covered && history_covered) then 

11 Type_of_coverage_hole = Category1; 

12 𝐴∆′ = findTriangleArea(∆′); 

13 𝐴∆ = findTriangleArea (∆); 

14 ratio    = 
𝐴∆′

 𝐴∆
  ; 

15 break; 

16 end if 

17 if (!current_covered && history_covered) then 

18 Type_of_coverage_hole = Category2; 

19 //false perceived coverage hole 

20 𝐴∆′ = findArea(∆′); 

21 ratio    =  
𝑢𝑛𝑐_∆′

 𝐴∆′
 ; 

22 break; 

23 end if 

24 if (!current_covered && !history_covered) then 

25 Type_of_coverage_hole = Category3; 

26 ratio    =  
𝑢𝑛𝑐_∆′

𝑢𝑛𝑐_∆
 ; 

27 break; 

28 end if 

29 if (current_covered && !history_covered) then 

30 Type_of_coverage_hole = Category4; 

31 //unreported actual coverage hole 

32 𝐴∆ = findArea(∆); 

33 ratio    =  
𝑢𝑛𝑐_∆

 𝐴∆
 ; 

34 break; 

35 end if 

36 return Type_of_coverage_hole, ratio; 
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5.6 Numerical Results and Discussion 

We use NS-3 to simulate different scenarios of the conducted experiments. The outputs of the 

simulation step are used as input for a Visual Studio C++ program which includes our 

implementation of the proposed algorithm. The experiments show the effect of the following 

parameters: 1) number of misplaced anchors, 2) sensing ranges, and 3) the localization error e posed 

by anchor misplacement. The parameters of all experiments are set as follows, unless otherwise 

stated. The terrain is divided into four square cells. Each of which is 100 X 100 m2. The number of 

sensor and anchor nodes per cell is 20 and 5, respectively. The transmission range is set to be 142m. 

All experiments are conducted under a displacement value of 7m for each misplaced anchor. 

Furthermore, each misplaced anchor nodes are randomly selected. The average IoT sensing range 

r=5m (with variance of 2 m). The results of all conducted experiments are the average of 10 runs. 

To show the importance of this research, we conduct an experiment that simulates the following a 

real-life scenario: given 40 objects in the terrain such as gas pipes. These pipes are fully covered 

by sensing nodes to monitor gas leakage. Given that an anchor misplacement incurred, we are 

interested in calculating the proportion of the miss-reported objects. In other words, we calculate 

the percentage of the objects that are no longer reported by their original sensing nodes. The results 

are shown in Figure 5.7.  In the literature, it is widely understood that having more sensing nodes 

with short sensing ranges provides the best sensing coverage of a given terrain. However, our 

results show that this is not the case when anchor misplacement occurs. The result show that using 

fewer sensing nodes with larger sensing ranges provides better monitoring for the terrain as the 

percentage of miss-reported objects decreases by increasing the sensing range. For a sensing range 

of 5m, 40 sensing nodes are required to cover the objects, while for larger sensing ranges fewer 

sensing nodes are needed. 
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Figure 5.7: Number of misplaced anchors vs. percentage of miss-reported objects. 

In the second experiment we set the sensing range to 5m (with variance of 2 m) and keep all 

other parameter settings unchanged. This experiment intends to show the relationship between root 

mean square distance (RMSD) of the estimated locations of the sensing nodes, percentage of 

perceived coverage, and the number of anchor nodes. Perceived coverage of an affected sensing 

node s is the size of the area that is mistakenly reported by s. In other words, it is the part of the 

sensing disc around s’ (i.e., estimated location) that does not intersect with the actual sensing disc 

of s. We sum up the perceived coverage for all affected sensing nodes and then calculate its 

percentage to the summation of the actual sensing discs. The result, as shown in Figure 5.8, 

indicates that the percentage of perceived coverage increases proportionally as localization error 

increases. The results also show that when half of the anchor nodes are misplaced, an estimated 

80% of the reported data is inaccurate. 
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Figure 5.8: Number of misplaced anchors vs. perceived coverage and RMSD. 

An interesting evaluation metric is percentage of the area of perceived coverage hole to the 

area of the covered terrain. We are also interested to check on the number of perceived coverage 

holes posed by anchor misplacement. To evaluate these metrics, we use 100 X 100 m2 grid-based 

deployment to ensure the full sensing coverage with sensing radius set to 9m. All other parameters 

are unchanged. The results are shown in Figure 5.9. As the number of misplaced anchor nodes 

increases, the number of coverage holes and their area percentage increase as well. This is because 

more misplaced anchor nodes generate more localization errors and, hence, more perceived 

coverage holes.  
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Figure 5.9: Number of misplaced anchors vs. the percentage of the area of sensing coverage 

holes and the number of holes. 

These results demonstrate the consistency and the validity of our approach in a typical setting with 

well-understood sensing coverage parameters. 

5.7 Summary 

The realization of IoT requires investigating sensing coverage again under the characteristics 

of IoT itself and according to dynamicity of this environment. This research investigates the IoT 

sensing coverage problem with anchor misplacement.  Anchor misplacement leads to new types of 

coverage holes which degrades the quality of sensing coverage. We consider heterogeneous and 

non-deterministic deployment of IoT sensing nodes. We exploit a Delaunay Triangulation tool from 

computational geometry to provide a localized approach to identify the type of coverage hole, and 

determine its ratio to the total area.  

The results show the importance to overcome, rather than overlook, anchor misplacement. The 

perceived coverage is a serious degradation to the quality of sensing coverage. False sensing reports 
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posed by affected sensing objects may lead to life loss in cases such as wildfire and chemical and 

gas leakage. While collective IoT sensing nodes improves the percentage of sensing coverage, 

anchor misplacement increases the perceived coverage and generates new types of coverage holes. 

This study also shows that, unlike common belief, having sensing nodes that have a short sensing 

range can degrade the sensing coverage quality when their locations are inaccurate. Our findings 

suggest that a larger sensing range with fewer sensing nodes makes the impact of anchor 

misplacement less severe. This is also more economic in a very large context such as IoT. These 

findings can be utilized to tune the sensing range to keep the impact of anchor misplacement under 

control. Heterogeneous networks provide cooperative sensing coverage and can expand their 

lifespan by preserving energy while maintaining the average sensing range at a desired level. 
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Measuring the Validity of Sensing Coverage Reporting in the Presence 

of Anchor Misplacement 

The coverage problem is considered an important measurement of the quality of sensor 

network. It measures to what extent the sensor network can monitor the surrounding physical space. 

Sensing coverage in WSNs has attracted much research. The requirements of sensing coverage vary 

according to the application. Some applications require only single-sensing coverage, also referred 

to as 1-coverage, while other applications require k-coverage, where k > 1.  The majority of sensing 

coverage research assumes that the anchor nodes are in correct positions and, therefore, do not pose 

any error on localization of sensing nodes. For example, in [97] the authors propose an approach 

for anchor placement to achieve optimal localization with a minimum number of deployed anchor 

nodes. They assume that the anchor nodes will be placed precisely in the correct position. Taking 

into consideration anchor misplacement, the analytical results of their research will definitely be 

different as the results of  [61] conclude. The authors of [74] provide a closed formula for equilateral 

triangle grid-based deployment that achieves full coverage with a minimum number of sensing 

nodes and tolerates the misplacement of these nodes. Chapter 5 shows the severe impact of anchor 

misplacement sensing coverage. In Chapter 4, we address the mitigation of the impact of anchor 

misplacement on localization accuracy.  Our findings show that the average localization error 

increases as the average of anchor displacement value increases.   

Misplaced anchor nodes pose different error magnitudes on affected sensing nodes according 

to displacement value, and the distance between the misplaced anchor node and the sensing node. 

If some anchor nodes were inaccurately positioned, many of the sensing reports will be invalid. In 

this research, we investigate the sensing validity in the presence of anchor misplacement with and 
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without the existence of measurement errors. Given a set of anchor nodes, if some of them are 

misplaced, can we measure the validity of sensing reports of each sensing node? One interesting 

aspect of this research is that it addresses the validity of sensing reports in the presence of anchor 

misplacement in a non-uniform sensing area which represents either a convex or concave set.  

The chapter is organized as follows. We provide the motivations and contributions in Section 

6.1. Section 6.2 formulates the problem definition. Section 6.3 presents the model of sensing area 

and the impact of error components on sensing validity. Section 6.4 is devoted to testing the sensing 

validity. We design an algorithm to classify the sensing reports to either true positive or true 

negative. Section 6.5 presents simulation results. Section 6.6 concludes the chapter. 

6.1 Motivations and Contributions 

Assume an experiment is being conducted to measure the air temperature and humidity levels 

in a warehouse. The warehouse is divided into small non-uniform areas in which sensing nodes are 

intended to monitor these individual areas as shown in Figure 6.1. For this purpose, heterogeneous 

sensing nodes that are already deployed in all areas will be used. Each sensing node was placed in 

its “residence” area within the warehouse. So the residence area of a sensing node si is the area of 

the warehouse where si supposed to monitor. Several anchor nodes were misplaced or had 

inaccurate locations, the goal is to measure whether or not the sensing nodes are still valid and 

convey accurate reporting. This checks the estimated location of each sensing node whether it is 

within its residence area or not. 
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Figure 6.1: Non-uniform sensing region with multiple sensing providers. 

Applications have different sensing coverage requirements. For example, a nuclear power plant 

requires full sensing coverage. Other applications tolerate some coverage holes such as applications 

in weather forecasting. Most of the existing work on sensing coverage in WSNs consider 

homogeneous sensing nodes, a single service operator, and grid-based deployment for simplicity, 

and to achieve better deterministic coverage, and to prolong the network lifetime. The sensing 

coverage problem becomes challenging in IoT context due to scalability, robustness, heterogeneity, 

and security. Dealing with WSNs in the context of IoT mandates considering the aforementioned 

challenges. Anchor misplacement affects the sensing coverage quality. The sensed data may 

contain erroneous locations if their corresponding sensing nodes have been affected by anchor 

misplacement.  In Chapter 5, we investigate, in more depth, the impact of anchor misplacement on 

sensing coverage in terms of new types of coverage holes. In this chapter, the validity of sensing 

coverage in the presence of anchor misplacement is addressed. Furthermore, we address how to 

measure this validity, if it exists. 

There are many components of an error that will affect the localization and result in validity 

issues in sensing coverage. Measurement error and set up error are examples of such components. 

In this research we: 1) formulate the problem of validity of reporting sensing coverage; 2) utilize 

triangulation tool to provide theoretical analysis for sensing coverage problem that have been 
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formed as a result of anchor misplacement; 3) develop an efficient algorithm to test the validity of 

sensing reporting; and 4) implement the algorithm and run various experiments to show the 

correctness of our theoretical analysis. To the best of our knowledge, this is the first attempt in the 

literature to measure the sensing validity in the presence of anchor misplacement. 

6.2 Problem Definition 

We first introduce the necessary definitions and assumptions.  

Definition 6.1: Let si be a sensing object with an unknown location. Let si belong to a residence 

sensing area Ak. Then sensing report of si is valid (or true positive (TP)) if the estimated location 

of si is still within Ak. Otherwise, it is invalid (or true negative (TN)) as the estimated location of 

si is outside of Ak.  

Given a random deployment of sensing nodes in a non-uniform sensing field, and a localization 

error posed by anchor misplacement and measurement error on some sensing nodes, we are 

interested in investigating and modeling the problem of measuring the validity of sensing reporting 

which depends on the estimated location of the affected sensing nodes. In particular, we are 

interested in classifying the set of sensing nodes into true positive (TP), i.e., “valid”, or true negative 

(TN) i.e., “invalid”, sensing reports.  

The main assumptions are the following: 

1) Localization of sensing objects is based on multi-lateration with minimum mean squared error 

(MMSE) for fine-tuning the estimated positions. 

2)  Anchor misplacement and measurement error are the most critical sources of error that lead 

to localization uncertainty (i.e., disregarding other sources of error). 

3) The sensing target field is a bounded 2-D plane. This ease the construction of triangulations. 

We adopt the same network and sensing models in Chapter 3, with random sensor deployment and 

binary disc sensing model.  
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6.3 Model of Sensing Area 

Grid-based deployment of sensing objects provides straight forward analysis of the problem of 

sensing coverage. For example, [74] provides a closed form of the number of sensing nodes and 

the spaces between them under equilateral-triangle grid deployment. This is not the case in random 

deployments where the sensing region has non-uniform areas.  

Our approach depends on creating a polygon to represent each sensing area as shown in 

Figure 6.2, where the different shapes denote the estimated positions of heterogeneous sensing 

nodes. The region bounded by the grey line represents the sensing area. In order to test the location 

of each sensing node, we triangulate the representative inner polygon. Then we apply a cross 

product technique to assess the presence of a point inside a triangle. Consequently, the sensing node 

si is either a true positive (TP) if it is inside any triangle, or a true negative (TN) otherwise. Next, 

we discuss how to create the inner polygon for each sensing area and we address the level of 

granularity to test the validity of sensing reporting. 

6.3.1 Modeling a Non-Uniform Sensing Area 

The deployment of sensing nodes usually creates a non-uniform sensing area. Measuring 

sensing coverage, in this case, is not a straightforward generalization as in its uniform counterpart. 

We assume that the border of each area that has a sensing node is known. This means we know the 

points on this border. Our goal is to detect whether or not the location of the sensing nodes affected 

by anchor misplacement are still within the residence sensing area. We model each sensing area as 

a simple polygon. We select the polygon to be strictly inscribed inside the sensing area (i.e., inner 

polygon). The question arises here is how do we compute such a polygon? Before we answer this 

question we should first illustrate the granularity related to sensing report. It is intuitive that the 

granularity will be finer if more points are selected from the border of the sensing area to be vertices 

in the computed polygon. Finer granularity of the sensing area provides more accurate decisions 

regarding the validity of sensing coverage.  
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We propose the following strategy to determine the level of granularity based in the number of 

vertices in the polygon.  We differentiate between three levels of granularity according to the 

number of representative points of each edge in the sensing area. Thus, the granularity is: 

 Low, if at most one vertex, in the generated polygon, represents each edge in the sensing area. 

No two consecutive edges without representation..  

 Medium, if exactly one vertex, in the generated polygon, represents each edge in the sensing 

area.  

 High, if more than one vertex, in the generated polygon, represents each edge in the sensing 

area. 

Without loss of generality we assume that the sensing area is a convex set, hence its associated 

polygon is convex as well. Once the level of granularity is determined, we randomly choose the 

vertices that represent the edges of each sensing area. Then we connect these vertices clockwise to 

form an associated polygon.  

 

Figure 6.2: A Possible inner polygon with a triangulation as a model of a non-uniform 

sensing area. 

6.3.2 The Impact of Error Components on Sensing Validity 

In this Section, we study the error components that impact the localization accuracy and, 

consequently, affect the ratio of valid sensing reports. It is logical to address error components such 

as anchor misplacement and measurement error which inherently affects the estimated positions of 

sensing nodes. Unlike measurement error, which impacts the localization accuracy of all sensing 

nodes, anchor misplacement affects only the sensing nodes in the vicinity of misplaced anchor 
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nodes. Therefore, we need to differentiate between the impact of both error components. To achieve 

this, we need to know to what extent anchor misplacement contributed  to the status of the sensing 

report of each affected sensing node. We first provide an overview of measurement error which 

depends on the physical properties of  radio signal and channel quality. The general assumption is 

that the measurement error follows two-mode Normal distribution with a probability density 

function: 

𝑓𝑒(𝑒) = 𝜃 𝑁(0, 𝜎𝐿𝑜𝑆) + (1 − 𝜃)𝑁(𝜇𝑁𝐿𝑜𝑆, 𝜎𝑁𝐿𝑜𝑆) 
(6.1) 

Where 𝜎𝐿𝑜𝑆 and 𝜎𝑁𝐿𝑜𝑆 are the standard deviation in line-of-sight (LoS) and none-line-of-sight 

(NLoS) scenarios. 𝜇𝑁𝐿𝑜𝑆 denotes the mean in NLoS scenario. The random variable e follows the 

LoS with probability 𝜃 and NLoS with probability 1 − 𝜃. We assume there is a measurement error 

model which is not changed through time and can be established prior to network deployment.  In 

this research, we consider two error-force vectors (EFVs), namely measurement and misplacement 

vectors. Let 𝐸𝐹𝑉𝑚𝑒𝑎𝑠(𝑠𝑖) , 𝐸𝐹𝑉𝑚𝑖𝑠𝑝(𝑠𝑖) and 𝐸𝐹𝑉𝑟𝑒𝑠𝑢𝑙𝑡(𝑠𝑖) denote the error-force of mesurement, 

misplacement, and resultant vectors, respectively. 𝐸𝐹𝑉𝑟𝑒𝑠𝑢𝑙𝑡(𝑠𝑖) is the vector sum of 𝐸𝐹𝑉𝑚𝑒𝑎𝑠(𝑠𝑖) 

and 𝐸𝐹𝑉𝑚𝑖𝑠𝑝(𝑠𝑖) exerted during the localization of 𝑠𝑖 as shown in Figure 6.3. Disregarding other 

less important error components, we have the following formula: 

|𝐸𝐹𝑉𝑚𝑒𝑎𝑠(𝑠𝑖) + 𝐸𝐹𝑉𝑚𝑖𝑠𝑝(𝑠𝑖)| = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 (6.2) 

where |.| denotes the magnitude of a vector, (𝑥, 𝑦) and (𝑥𝑖, 𝑦𝑖) are the actual and estimated location 

of sensing node 𝑠𝑖, respectively. Furthermore, let 𝐶𝑚𝑒𝑎𝑠(𝑠𝑖) , 𝐶𝑚𝑖𝑠𝑝(𝑠𝑖)  denote the magnitudes of 

contributed components of measurement and misplacment error, respectively, on the resultant error 

vector of sensing node 𝑠𝑖.  Assume that each sensing node stores the values of 𝐶𝑚𝑒𝑎𝑠(𝑠𝑖) and 

𝐶𝑚𝑖𝑠𝑝(𝑠𝑖). Note that if the two force vectors are in different directions (i.e., the angle between them 

is greater than 𝜋

2
), then the smaller out of 𝐶𝑚𝑒𝑎𝑠(𝑠𝑖) and 𝐶𝑚𝑖𝑠𝑝(𝑠𝑖) should have a negative sign. 



86 

 

si’

si EFVmeas (si )

EF
V m

is
p
 (s

i )

EFV result (
s i )

Cmeas (
s i )

Cmisp (
s i )

a

b

 

Figure 6.3: Contributed errors of measurement and misplacement components in total 

resultant error. 

We next conduct an experiment to show the impact of 𝐶𝑚𝑒𝑎𝑠(𝑠𝑖) and 𝐶𝑚𝑖𝑠𝑝(𝑠𝑖) on Root Mean 

Square Distance (RMSD). Anchor misplacement could be random or ordered. Likewise, anchor 

displacement value could be random or fixed. Therefore, there are four different combinations of 

anchor misplacement and displacement values: 1) ordered anchor misplacement with fixed 

displacement value (OM-FD), 2) random anchor misplacement with fixed displacement value 

(RM-FD), 3) ordered anchor misplacement with random displacement (OM- RD), and 4) random 

anchor misplacement with random displacement value (RM-RD). In Figure 6.4, it is interesting to 

see that the deployment setting of RM-RD provides the least value of average RMSD among all 

other deployment settings. This interesting result supports the results in [98] where the authors 

found that random measurement contributes to high accuracy. Our results provide an extra finding 

that even with no measurement error, RM-RD provides higher localization accuracy. It is intuitive 

to see that RMSD values gets smaller as Signal to Noise Ratio (SNR) values gets bigger because 

the impact of measurement error gets smaller as well. Furthermore, the figure show that the impact 

of 𝐶𝑚𝑖𝑠𝑝(𝑠𝑖) on accuracy becomes less effective as measurement error gets higher. We can 

conclude that RMSD is not so sensitive to anchor misplacement in high measurement-error 

environment because 𝐶𝑚𝑖𝑠𝑝(𝑠𝑖) gets smaller compared to 𝐶𝑚𝑒𝑎𝑠(𝑠𝑖)  as        𝐸𝐹𝑉𝑚𝑒𝑎𝑠(𝑠𝑖)  cancels 

the effect of 𝐸𝐹𝑉𝑚𝑖𝑠𝑝(𝑠𝑖).  



87 

 

 

Figure 6.4: The impact of the four different settings on RMSD (fixed displacement is set to 

10m, random displacement follows N(0,10), RMSD is averaged over 14 misplaced anchor 

nodes). 

Next, we apply triangulation on the representative inner polygon or representative polygon for 

short.  

6.3.3 Intra-Triangle Boundary Testing 

By using the computational geometry tool of triangulation, we triangulate the representative 

polygon. This can be done by adding diagonal from one vertex to all other vertices in the case of 

convex polygon. If the polygon is a non-convex, the polygon should be first partitioned into convex 

pieces and then triangulate them. Another easier and efficient option is to decompose the non-

convex polygon into so-called monotone pieces. A polygon 𝑃 is called monotone with respect to a 

line ℓ, if every line perpendicular to ℓ intersects 𝑃 at most twice. Partition a simple polygon into ℓ-
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monotone polygons takes 𝑂(𝑛 log 𝑛). However, the ℓ-monotone polygons can be triangulated in 

linear time [70]. Suppose there is a set 𝒜 = {A1, A2, … . , A𝑘} of sensing areas. The representative 

polygon of each of these sensing areas will be divided into triangles as shown in Figure 6.2. Then 

we check whether or not the position of a sensing node resides within any of these triangles. This 

is referred to as intra-triangle testing. As a result, there are two possible residence places of an 

estimated position. The first possible place (R1), the estimated position is inside one of the 

polygon’s triangles which means TP sensing node. The second place (R2), the estimated position 

is outside all the polygon’s triangles which means TN sensing node. Note that, when an estimated 

position of a sensing node 𝑠𝑖 resides in R2, this means that the magnitude of 𝐸𝐹𝑉𝑟𝑒𝑠𝑢𝑙𝑡(𝑠𝑖) becomes 

large enough and, hence, localize 𝑠𝑖 outside of its residence sensing area. Consequently, the 

accuracy of the sensing validity becomes lower. On the other hand, if the sensing nodes reside in 

R1, this means that the magnitude of 𝐸𝐹𝑉𝑟𝑒𝑠𝑢𝑙𝑡(𝑠𝑖) has no tangible impact on sensing quality. The 

following definition formalizes our discussion about intra-triangle testing. 

Definition 6.2: Let area 𝐴1 ∈ 𝒜 be a sensing area and 𝑃𝐴1
 be its representative polygon. 

Furthermore, let 𝑆𝐴1 = {s1, s2, … . , s𝑘} be a set of sensing nodes deployed in area 𝐴1, where k is the 

number of sensing nodes in 𝐴1. Moreover, let 𝑇𝐴1 = {T1, T2, … . , T𝑙}  be the set of triangles of 𝑃𝐴1
. 

We denote intra-triangle testing to the test that evaluates whether or not an estimated location of 

sensing node 𝑠𝑖 ∈ 𝑆𝐴1  resides inside any triangle of 𝑇𝐴1. 

To check the inclusion of a point inside a triangle, we follow the cross product method. 

Figure 6.5 shows a triangle ABC and a point 𝑠𝑖′ inside it. Let 𝐴𝐶⃗⃗⃗⃗⃗⃗  denote the vector that starts at 

point A and is directed towards point C. The idea behind cross product method is that the point is 

inside ABC only if 𝑠𝑖′  above vector BC, left to vector AC, and right to vector AB. If any one of 

these conditions fails, the point is outside the triangle. The direction of cross product of AC and 

A𝑠𝑖′ should be in the same direction of the cross product of AC and AB as in Figure 6.5. The 

remaining combinations of vectors can be tested in similar way (see Algorithm 6.1).  
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Algorithm 6.1: Point in a Triangle (PIaT) 

Input: 𝑠𝑖
′, 𝑇𝑖; // point 𝑠𝑖

′ and a triangle  𝑇𝑖 

Output: Boolean value; //return true of a point 𝑠𝑖
′ resides in a 

triangle 𝑇𝑖. Otherwise, return false. 

1 {A,B, C} = get_Vertices(𝑇𝑖);// return 𝑇𝑖′𝑠 vertices 

2 𝐢𝐟( ℎ𝑎𝑠_𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑑𝑖𝑟 ((𝐴𝐶⃗⃗⃗⃗⃗⃗  × 𝐴𝑠𝑖
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), (𝐴𝐶⃗⃗⃗⃗⃗⃗  × 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ )) && 

  ℎ𝑎𝑠_𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑑𝑖𝑟 ((𝐵𝐶⃗⃗⃗⃗⃗⃗  × 𝐵𝑠𝑖
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), (𝐵𝐶⃗⃗⃗⃗⃗⃗  × 𝐵𝐴⃗⃗⃗⃗ ⃗⃗ )) && 

       ℎ𝑎𝑠_𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑑𝑖𝑟 ((𝐴𝐵⃗⃗⃗⃗ ⃗⃗  × 𝐴𝑠𝑖
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), (𝐴𝐵⃗⃗⃗⃗ ⃗⃗  × 𝐴𝐶⃗⃗⃗⃗⃗⃗ ))) then     

3       return true; 

4 end if  

5 else return false; 

The details of the functions in PIaT are as follows: Function get_Vertices(𝑇𝑖) takes a triangle 

as an input and return a set that contains the vertices of 𝑇𝑖 . Function ℎ𝑎𝑠_𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑑𝑖𝑟(𝑣⃗, 𝑢⃗⃗) tests 

whether or not vectors 𝑣⃗ and 𝑢⃗⃗ have the same direction. ℎ𝑎𝑠_𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑑𝑖𝑟 returns true if the dot 

(i.e., inner) product of 𝑣⃗ and 𝑢⃗⃗ is nonnegative. Otherwise, it returns false. 

si 

A

B
C

 

Figure 6.5: Test a point in a triangle by cross-product method. 

Next, we design an algorithm that considers the method above and test the validity of the 

sensing reports. 

6.4 Testing the Validity of the Sensing Report 

The following algorithm tests the validity of sensing reports of the affected sensing node. 
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Algorithm 6.2: Testing Validity of the Sensing Report(TVSR) 

Input: 𝑇𝐴1, 𝑆𝐴1 /*Set of triangles of  a representative polygon of 

area 𝐴1 and a set of sensing nodes in  𝐴1, respectively*/ 

Output: Classified sensing nodes as TP, or TN. 

1 for each triangle 𝑇𝑖 ∈ 𝑇𝐴1 

2 for each sensing node 𝑠𝑖 ∈ 𝑆𝐴1 

3 if (PIaT(𝑠𝑖
′, 𝑇𝑖)) then  

// 𝑠𝑖
′ is the estimated position of 𝑠𝑖 

4 set_Intra-Triangle_sensing(𝑠𝑖
′, 𝑇𝑖)  = 1; 

5 end if  

6    end for 

7 end for 

8 for each sensing node 𝑠𝑖 ∈ 𝑆𝐴1 

9 if (Intra-Triangle_sensing(𝑠𝑖
′)  == 1) then 

10 setValidSensing = setValidSensing ∪ {𝑠𝑖}; 

11 else  

12 setInvalidSensing = setInvalidSensing ∪ {𝑠𝑖}; 

13 end else 

14 end for 

 

TVSR algorithm takes two sets: triangulation set (𝑇𝐴1) of a representative polygon of area 𝐴1 

and a set 𝑆𝐴1 of sensing nodes in  𝐴1. The output is two classes of sensing nodes: TP or TN. In the 

first two loops, the algorithm tests the inclusion of each sensor’s location point in every triangle of 

𝑇𝐴1. If such a triangle is found, the sensing node is added to TP class. The next loop marks as TN 

all the remaining sensing nodes that are not TP. The description of the functions is as follows. 

PIaT(𝑠𝑖
′, 𝑇𝑖) calls PIaT algorithm with two arguments, namely a point and a triangle. It returns true 

if 𝑠𝑖
′  resides inside 𝑇𝑖. Otherwise, it returns false. set_Intra-Triangle_sensing(𝑠𝑖

′, 𝑇𝑖) =1  marks 

point 𝑠𝑖
′ as TP. The rest of the sensing nodes are marked as TN. 

6.5 Experimental Results 

We use NS-3 to simulate different scenarios of the conducted experiments. The outputs of the 

simulation step will be inputs for a Visual Studio C++ program which includes our implementation 

of the proposed algorithm. We also utilize the implementation of a distributed algorithm in [77] to 
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construct a triangulation. The experiments show the effect of the following parameters on the 

percentage of valid and invalid sensing reports: the number of misplaced anchor nodes, and the 

measurement error component (i.e., 𝐸𝐹𝑉𝑚𝑒𝑎𝑠(𝑠𝑖)). We assume that 𝐸𝐹𝑉𝑚𝑒𝑎𝑠(𝑠𝑖) follows a normal 

distribution with mean zero and variance 𝜎𝑖,𝑗
2, where i and j are the identifications of the sensing 

and anchor nodes, respectively. In order to better estimate the distance between the sensing and 

anchor nodes, we follow the formulation in [99] [100] which had adopted the following equation 

for the variance: 𝜎𝑖,𝑗
2 =

𝑑𝑖,𝑗
2

𝑆𝑁𝑅
, where SNR is signal-to-noise ratio.  The parameters of all 

experiments are set as follows, unless otherwise stated. The terrain is a square of 200 X  200 m2.  

The terrain is a warehouse which is divided into six non-uniform sensing areas marked A1-A6, see 

Figure 6.6. However, for the sake of simplicity and to avoid repetition, we only focus on sensing 

area A1. The number of sensing and anchor nodes per sensing area are 30 and 4, respectively. The 

sensing nodes are deployed randomly in each sensing area while the anchor nodes are placed on 

the corners of each sensing area. They are numbered 1-14. For full communication coverage, the 

transmission range is set to be 142m which is equivalent to half of the diameter of the terrain. As 

we illustrated in Section 6.3.2, there are two options for anchor misplacement ordered or random. 

Under ordered misplacement, the anchor nodes begin to be misplaced in order starting from anchor 

node number 1, then anchor node number 2, and so on until the required number of misplaced 

anchor nodes are reached.  Anchor misplacement follows a Uniform random distribution. Similarly, 

the displacement value of misplaced anchor nodes can be either fixed or random. The fixed 

displacement value is set to 10m on both x- and y-coordinates. In the case of random displacement, 

the displacement value follows a normal distribution on both x- and y-coordinates with mean zero 

and variance of 10m. The results of all conducted experiments are calculated based on the average 

of 10 runs. 



92 

 

2

(0,0) (60,0) (200,0)

(200,50)

(200,120)

(200,200)(0,200)

(0,130)

(60,200) (120,200)

(60,130)

(60,50)

(120,50)

(120,120)

4 3

21

65

87

9

10

11

12

13

14

A1
A5

A2

A3

A4

A6

 

Figure 6.6: Warehouse model with six non-uniform sensing areas with 14 numbered anchor 

nodes placed in the corners. 

We first study the impact of measurement error on sensing validity. The number of misplaced 

anchor nodes in this experiment is set to 5. The SNR values are 10, 20, and 30db. Furthermore, 

ordered anchor misplacement with fixed displacement value (OM-FD) is adopted in this scenario. 

The percentage of TP and TN of the sensing nodes will be calculated in two cases: with, and without 

the existence of measurement error (i.e., SNR-Free). The results are shown in Figure 6.7. The 

results show that as the measurement error becomes smaller, the percentage of TP increases while 

the percentage of TN decreases. On the other hand, TP-SNR-Free and TN-SNR-Free refer to the 

other case where no measurement error is applied. We note that the percentage of TP is at least as 

three times as the percentage of TN sensing nodes. Furthermore, Figure 6.7 shows that TP-SNR-

Free and TN-SNR-Free tend to be convergence limits for TP, and TN, respectively. This is because, 

as the SNR value gets higher, the impact of 𝐶𝑚𝑒𝑎𝑠 gets smaller which makes the resultant error 

component more driven by 𝐶𝑚𝑖𝑠𝑝 .  
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Figure 6.7: The impact of measurement error on the sensing validity. 

Next we study the impact of anchor misplacement on sensing validity under OM-FD setting. 

We conduct this experiment under various values of SNR, namely, 10, 20, and 30 db. The results 

are shown in Figure 6.8.   

 

(a) SNR = 10db 
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(b) SNR = 20db 

 

(c) SNR = 30db 

Figure 6.8: The impact of anchor misplacement on sensing validity under OM-FD with 

different values of SNR.  
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Figure 6.8 shows that as the number of misplaced anchor nodes increases, the percentage of TP 

decreases, while the percentage of TN increases for all SNR values. Figure 6.8(a) has the lowest 

percentage of TP sensing nodes with average 70%, compared to 77% and 80% in Figure 6.8(b) and 

(c), respectively. It is intuitive to see that while the SNR value increases, TP converges to TP-SNR-

Free, and TN converges to TN-SNR-Free. This is because  𝐶𝑚𝑒𝑎𝑠 becomes smaller and eventually 

will have trivial values compared to 𝐶𝑚𝑖𝑠𝑝. 

The third experiment is similar to the previous one. However, it is conducted under RM-RD 

setting. We only include the result for SNR value of 10. 

 

Figure 6.9: The impact of anchor misplacement on sensing validity under SNR 10db. 

Figure 6.9 shows interesting results where the number of misplaced anchors has no negative 

impact of sensing validity. In contrast, as the number of misplaced anchor nodes increases, the 

percentage of TP sensing nodes increases while the percentage of TN sensing nodes decreases. This 

means that measurement error cancels out the impact of anchor misplacement. This result is 

consistent with our results described in Section 6.3.2 where randomness contributes to high 

accuracy and, hence, a high percentage of sensing validity.  
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Lastly, we compare the impact of the four combinations that we listed in Section 6.3.2, namely, 

OM-FD, RM-FD, OM-RD, and RM-RD. In this experiment, the TP, TN, TP-SNR-Free and TN-

SNR-Free values are averaged over 14 misplaced anchor nodes. 

 

Figure 6.10: The impact of different settings on sensing validity. 

The results show that the best percentage values of valid sensing are obtained when the anchor 

displacement values are selected randomly, see Figure 6.10. The differences between TP, TN and 

their SNR-Free counterparts are expected to get smaller when the values of SNR increases. This is 

because the measurement error gets smaller and, hence, converge to SNR-Free case. 

6.6 Summary 

In this chapter, we investigate the problem of sensing validity under the presence of anchor 

misplacement with and without the existence of measurement error. We present an algorithm that 

tests the sensing validity and classifies the sensing nodes as true positive (TP) or true negative (TN). 
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The results of our research show the importance of validating the sensing reports especially under 

the presence of error components such as anchor misplacement and measurement error. Results 

also show the need to evaluate the impact of anchor location uncertainty on the performance of the 

existing coverage protocols. Anchor misplacement poses serious degradation in the quality of 

sensing coverage. Consequently, false sensing reports are generated by affected sensing objects. 

While collective sensing nodes improves the percentage of sensing coverage, anchor misplacement 

increases the TN sensing nodes. The findings of our study also show that the randomness of anchor 

misplacement and displacement value mitigates the impact of anchor misplacement and gets higher 

valid sensing rate. Furthermore, our findings suggest that low SNR values undermines the impact 

of anchor misplacement. Under high SNR values, extending the sensing range of the affected 

sensing nodes reduces the impact of anchor misplacement and provide a great number of valid 

sensing report.  
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Summary and Conclusions 

Localization and sensing coverage are two major services in WSNs. WSN is one of several 

enabling technologies of IoT. Operating under the umbrella of IoT necessitates considering the 

characteristics of IoT such as heterogeneity, scalability, dynamicity, randomness, and multiple 

ownership.  

Anchor misplacement affects the accuracy of localization. Furthermore, it creates perceived 

coverage which is a false coverage. This leads to a serious degradation to the quality of sensing 

coverage. False sensing reports posed by affected sensing objects may lead to fatalities in cases 

such as wildfire, chemical and gas leakage. 

Next, the summary of this thesis is presented in Section 7.1. In Section 7.2, we conclude the 

thesis, while the future work directions is presented in Section 7.3. 

7.1 Summary 

In Chapter 3, we investigate the IoT sensing coverage problem where heterogeneous and 

randomly deployed sensing nodes are considered. Computational geometry has been utilized to 

establish a localized approach that enabled us to discover the problem in a distributed manner. 

Intra-triangle coverage approach is introduced to detect the coverage holes, and providing lower 

and upper bounds for coverage holes. The results benefit many large-scale coverage applications 

to detect the sensing coverage problem and either to tolerate the sensing holes or to heal them by 

adding more sensors to the affected area. 

In Chapter 4, we investigate the problem of anchor misplacement in WSNs which has been 

generally overlooked by the WSN research community. Mitigating the impact of anchor 

misplacement should be considered in order to realize accurate and reliable localization service in 
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IoT context. A distributed algorithm to detect the misplaced anchor nodes has been proposed. The 

performance evaluation of our proposed algorithm outperforms the other competitive algorithm in 

[91] in terms of successful detection ratio,  mistaken anchor ratio, and localization accuracy. 

In Chapter 5, we extend our research in Chapter 3 to cover the sending coverage under the 

presence of anchor misplacement.  Characteristics of IoT such as heterogeneous and non-

deterministic deployment of IoT sensing nodes have been considered. We show new types of 

coverage holes which have been posed by anchor misplacement. We exploit a Delaunay 

Triangulation to zoom in on the problem. This enables a close detection of coverage holes in the 

vicinity of affected sensing nodes. 

In Chapter 6, we address the problem of sensing validity with the possible existence of anchor 

misplacement and measurement error. We propose an algorithm that tests the sensing validity and 

classifies the sensing nodes as true positive (TP) or true negative (TN). The results of our research 

show the importance of validating the sensing reports especially under the presence of error 

components such as anchor misplacement and measurement error. Results also show the need to 

evaluate the impact of anchor location uncertainty on the performance of the existing coverage 

protocols.  

7.2 Conclusion 

In IoT context, collective networks run by multiple operators would enhance the services in 

terms of accuracy and reliability. For instance, collective IoT sensing nodes not only improve the 

percentage of sensing coverage, but also enhance the identification of the bounds of coverage holes 

among these networks. However, the research in WSNs has overlooked the problem of anchor 

uncertainty. The assumption that there is an absolute confidence of  anchor’s position is not always 

true. In fact, the probability of anchor misplacement increases in dynamic contexts such as IoT. 

We found that a larger sensing range with fewer sensing nodes mitigates the impact of anchor 

misplacement on sensing coverage. This provides economic benefits in terms of fewer sensing 
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nodes being needed. It can also expand the lifespan of collective IoT networks by preserving energy 

while maintaining the average sensing range at a desired level. 

Our findings show that the randomness of anchor misplacement and displacement value 

mitigates the impact of anchor misplacement and gets higher valid sensing rate. Furthermore, low 

SNR values undermines the impact of anchor misplacement. Under high SNR values, extending 

the sensing range of the affected sensing nodes reduces the impact of anchor misplacement and 

provides a greater number of valid sensing reports. 

Thus, it is important to overcome the impact of anchor misplacement on major IoT services 

such as sensing coverage and localization. The error posed by anchor misplacement should be 

included in any future error model of IoT. Otherwise, the error model will be deficient. 

7.3 Future Work 

Communication coverage is of direct consequence of sensing coverage [101], [102]. Therefore, 

anchor misplacement has an impact on communication coverage as well. Future work includes to 

study the routing holes resulting from anchor misplacement and find out to what extent anchor 

misplacement impacts the lifespan (i.e., connectivity) of the network. It would be interesting to 

know what the minimum average node degree is such that the network remains connected after 

discarding the incorrect anchor nodes. 

Another direction would be to design of a stochastic model for the anchor misplacement error. 

This requires an analytical study to formulate and determine the best fitting probability distribution 

for this type of error. 

Future work may also include the relationship between sensor density and mitigating the 

effect of anchor misplacement on coverage hole. For instance, what would be the sensor density 

that would eliminate the coverage hole?  Another possibility is looking into sufficient sensing 

coverage in overlapped sensing nodes.  Given a set of deployed sensing nodes of multiple sensing 
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providers, what is the subset of these nodes that provides the best coverage and/or monetary cost 

savings? 
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