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Abstract

Drones, or Unmanned Aerial Vehicles (UAVs), are considered essential tools in search

and rescue, disaster relief, remote sensing, aerial surveillance and security. Drone-

assisted communication networks are gaining considerable attention as a cost-effective

and flexible network infrastructure offering new capabilities and opportunities. In ad-

dition to enabling connectivity for complex multi-drone tasks, drone networks can be

deployed to facilitate connectivity in remote areas and extreme environments and sup-

plement and extend the coverage of mobile networks in response to variable demands.

However, utilizing such flexibility requires dealing with the inherent dynamics of drone

networks, characterized by a high level of mobility and limited resources. Network

softwarization using Software Defined Networking (SDN) and Network Functions Vir-

tualization (NFV) enables flexible and adaptive control and reconfigurability in drone

networks through centralized programmability and virtualized network functions.

In this thesis, we investigate drone network softwarization by identifying poten-

tial gains from the flexibility offered by softwarization not investigated previously in

the context of drone networks. To enable the utilization of SDN and NFV in drone

networks, we propose and describe an architecture for softwarized drone networks.

Furthermore, we address an important challenge relating to SDN control, a key el-

ement in SDN architectures, allowing the programmability of the network through
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an interface between logically centralized controllers and the programmable network

nodes. To adapt to the network mobility and connectivity constraints, we propose

schemes for deploying and assigning SDN controllers embedded in drones, allowing

for continuous operation of control functions with changing network topology and

possible unavailability of ground infrastructure. We also utilize the flexibility offered

by NFV. New deployment and orchestration schemes are needed to efficiently deploy

and manage drone networks defined by Virtual Network Functions (VNFs) imple-

menting task and network functionalities. To this end, we describe the applicable use

cases that benefit from this flexibility and propose schemes that efficiently deploy and

manage NFV-based drone networks.
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Chapter 1

Introduction

Drones, or Unmanned Aerial Vehicles (UAVs), are considered essential tools in search

and rescue, disaster relief, remote sensing, aerial surveillance and security. One of the

goals of using drones is reducing the cost of missions and eliminating risks associated

with sending human personnel to conduct hazardous or costly tasks, especially in the

case of natural disasters and inaccessible areas. Drones have also been used to con-

duct and automate tasks such as geographical mapping, environmental monitoring,

and industrial inspections [Sha+19]. Drones can be equipped with communication

capabilities and deployed as a fleet of cooperating drones to conduct tasks more effi-

ciently and to extend the coverage of communication services.

Networked drones have gained a great deal of attention due to the increasing ca-

pabilities and new opportunities they offer. Wireless communication is a vital part

of drone missions; apart from command and control, communication is used to co-

ordinate between drones in complex multi-drone missions and to relay information.

Ongoing research efforts focus on utilizing the mobility of drones to provide wireless

communications to ground-based devices by mounting communication hardware on

drones. [GJV16]. . The flexibility and 3-dimensional positioning capability of drones
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enable their utilization in various networking applications such as sensing, data collec-

tion, relaying, and assisting the ground-based network by expanding wireless service

coverage. Drone networks are especially beneficial when deployed in temporary situa-

tions and in difficult areas as they are considered a cost-effective alternative to deploy-

ing fixed infrastructure on the ground. [Moz+19]. Drones can also be equipped with

computing capabilities for on-board decision-making and processing mission-related

data to deliver real-time results. Such computing power coupled with connectivity

increase drone capabilities enabling them to execute more tasks and services.

1.1 Motivation

Utilizing drones for providing network services has several challenges spanning mission

planning and deployment, as well as various networking aspects, such as topology

control, connectivity, monitoring and management. Drone networks are inherently

complex because of their time-varying state and resource constraints. Drone networks

have a high degree of mobility and operate in different types of environments and

scenarios. [GJV16]. Compared to other wireless networks the resources available to

drone networks, such as wireless connectivity, energy, and processing capacity, are

limited and prone to malfunctions. [GJV16]. Therefore, techniques for deploying and

managing such systems efficiently and adaptively are needed. Research is ongoing in

addressing various challenges in drone networks. However, given the complexity of

drone networks, facilitating easier development and reconfiguration as well as enabling

adaptive control can enhance the network performance as well as the capabilities and

agility drone networks [GJV16; Ala+20].

Network softwarization technologies, namely Software Defined Networking (SDN),
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and Network Function Virtualization (NFV) have been used to address challenges gen-

erally prevalent in communication networks. SDN separates the control plane from

the data plane by separating the control logic from network devices. The control plane

is moved to a centralized controller that configures and programs network devices

through a control channel and a unified programming interface. As a result, hetero-

geneous network devices become easily manageable and programmable. Furthermore,

centralized control allows the controller to acquire a global view of the network. To-

gether with the programmability of network devices, adaptive network techniques can

be utilized, which allows the network to deal with variable network dynamics. Using

NFV, packet processing functions are realized by software implementations known as

Virtual Network Functions (VNFs) instead of traditional hardware. Such functions

can be instantiated easily on commodity hardware using virtualization technologies,

enabling fast, flexible, and cost-effective deployment of services that can be upgraded

and scaled as needed. The programming flexibility offered by softwarization allows

for accelerated and streamlined development of innovative technologies without the

upgrade cost of new hardware.

By adopting softwarization in drone networks, we gain the same qualitative ben-

efits mentioned earlier. We can quickly develop new technologies that utilize the

centralized control and global view to employ adaptive control in response to drone

network time-variant dynamics and resource constraints. We also gain the ability to

easily reconfigure and reuse drones for multiple types of tasks and missions. Func-

tionalities that drones can perform can be implemented as VNFs and reconfigured

easily as needed. These aspects allow us to enhance drone networks and enable more

innovative applications.
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Several works embraced softwarization to enhance network functionality and ad-

dress the challenges of drone networks mentioned earlier. SDN is generally utilized

to enhance network throughput and connectivity by leveraging centralized control

and programmability. As well, NFV was proposed to provision reconfigurable soft-

warized services running on drone-mounted computing resources. In these works,

SDN and NFV are considered enablers of the proposed novel applications and adap-

tive techniques. However, we seek to identify and quantify direct benefits gained

from softwarization that justify and support the softwarization of drone networks

and enable more innovative applications.

In terms of enabling the SDN architecture in drone networks, a key challenge

remained unaddressed in existing works. The centralized SDN control requires ensur-

ing wireless connectivity, which is a challenging aspect considering network mobility.

Furthermore, by adopting NFV for reconfigurable drone functions, novel schemes are

needed to deploy drone networks and dynamically allocate resources to run intercon-

nected VNFs that implement the functionality of the drone network.

1.2 Research Statement

In this thesis, we aim to identify and demonstrate softwarization gains in drone net-

works and overcome challenges in enabling softwarization and in deploying and man-

aging such networks. Towards that end, we pose the following research questions:

1. What are the possible gains that can be attributed to softwarization and recon-

figuration in drone networks?

2. Given the control plane challenges for software defined drone networks, how can

we efficiently deploy airborne network controllers?
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3. How can we enable efficient planning and deployment of drone networks with

functionality defined by VNFs? and how can we enable the efficient continuous

operations of the deployed networks considering mobility constraints?

1.3 Contributions

The contributions of this thesis are the following.

• Evaluation of Softwarization Gains: To justify softwarization in drone net-

works, we investigate the potential gains of softwarization. To do so, we propose

a model for evaluating the performance gains of softwarized drones. We model a

system consisting of a fleet of drones that conducts multiple tasks with different

requirements. We provide an evaluation of the effect of reconfigurability under

several scenarios compared to alternative systems with limited or no softwariza-

tion.

• Architecture for Softwarized Drone Networks: : We propose an archi-

tecture to enable softwarization of drone networks. We describe the various

components and functionalities needed to enable drone network deployment

and reconfiguration and address the limitations of drone network softwariza-

tion. The architecture encompasses the following proposed contributions.

• SDN Control Deployment: To ensure the availability of SDN control to the

network given the rapid mobility of drones and the need to deploy the network

to remote areas without access to an SDN controller, we propose a scheme for

deploying airborne controllers. The goal is to deploy a limited number of drones

as controllers given capacity and communication constraints and to allow certain
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flexibilities that ensure node-controller and controller-controller connectivity.

Furthermore, we expand by providing a dynamic adjustment scheme to allow

the airborne controllers to track the drone network nodes changing topology.

We enable controllers to do so while limiting their movement to reduce the time

and energy required to adjust the network topology.

• NFV-Based Drone Networks: The use of NFV to deploy multiple network

and processing functions on drone-mounted computing facilities enables a wide

range of applications. It translates to several advantages: flexible network plan-

ning and deployment, efficient use of resources, and dynamic reconfigurability.

This capability is beneficial for tasks in remote areas with no access to comput-

ing infrastructure to offload data for processing. We show applicable scenarios

that require capturing, processing, and delivering data within different locations

in the task area. For such applications, we first express the network or mission

functions as Service Function Chains (SFCs) composed of a series of Virtual

Network Functions (VNFs) to process and transport network traffic. The con-

tribution here is a joint drone network deployment and SFC placement scheme,

to construct a minimal drone network covering the task area and having suffi-

cient resources allocated to accommodate the supplied VNFs and their traffic

requirements. To accommodate the mobility of the deployed network, we pro-

pose a dynamic orchestration scheme that maintains the network connectivity

and SFC requirements as drones move and trigger topology changes. Thus, the

scheme maintains the network while limiting disruptive network adjustments

and overheads resulting from repeated movement and adjustment cycles.
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1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides a review

of drone networks, their applications and challenges. We provide a background of

softwarization technologies, namely SDN and NFV, and their general applicability

in communication networks. We then review the motivations for softwarization in

drone networks. We present an overview of the literature related to the integration

of SDN and NFV in drone networks and discuss current limitations. In Chapter

3, we show softwarization gains in drone networks. We propose a model for evalu-

ating softwarization gains in drone networks where drones are required to conduct

different kinds of tasks. We evaluate the performance gains due to reconfiguration

in a variety of scenarios. In Chapter 4, we describe our purposed architecture for

softwarized drone networks that enables programmability and reconfigurability. The

architecture consists in part of components that we propose to facilitate aerial SDN

control and deployment of NFV-based drone networks. Chapter 5 is dedicated to

SDN controller deployment. We describe the challenges encountered when drone net-

works are deployed in areas disconnected from the ground network controller. We

motivate and propose schemes that allow for deploying a number of network nodes

as aerial controllers in an efficient and dynamically adjustable manner. We follow

with an evaluation of the proposed schemes. In Chapter 6, we focus on incorporating

NFV into drone networks. We discuss the motivations and possible use cases which

would benefit from such integration. An initial deployment scheme for NFV-based

network and dynamic orchestration procedures are described and evaluated. Finally,

in Chapter 7, we provide a summary of our work, present our conclusions, and discuss

possible future research directions.
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Chapter 2

Background

In this chapter, we provide a brief background on drones, their applications in wireless

communications, and the associated challenges. We then present an overview of SDN

and NFV, and the motivations of their use in drone networks. Next, we review the

relevant literature on applying softwarization to drone networks. Finally, we discuss

the softwarization challenges that motivates the work in this thesis.

2.1 Connected Drones

Drones are UAVs or aircrafts used in military operations and various civil and indus-

trial applications, such as search and rescue, remote sensing, infrastructure inspection,

agriculture, and for providing wireless communications [Sha+19] [Tak+18]. A drone

can be described as part of an Unmanned Aircraft System (UAS), where a UAS con-

sists of the aircraft, its payload (e.g., sensors and computing subsystems), a ground

control station, and any other subsystems such as communications and support sub-

systems (e.g., launch, recovery, and transport) [Aus10].

There exist several types of drones. The most commonly used are rotary-wing

and fixed-wing drones. Rotary-wing drones such as quadcopters (e.g. [Dji]) have the
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ability to hover and travel at various speeds and tend to consume more energy. Fixed-

wing drones (e.g. [Ebe]), on the other hand, cannot hover but they permit higher

speeds and endurance [Moz+19]. There are also hybrid types. Both types come in a

variety of sizes, capabilities, weight, speed, range, and flying altitude [Moz+19] and

are classified based on these characteristics [HA17]. Rotary-wing drones including

quadcopters are the most commonly discussed and assumed in the literature due

to their flexibility in deployment and ability to hover. Such drones vary in their

specifications. They can weigh less than 1 kg or up to around 20 kg depending on

size and payload. Their endurance can range from 25 minutes to about an hour in the

more advanced models [HA17; Mar]. On the other hand, fixed-wing drones can fly

for several hours depending on their size, weight, and whether they are powered by

battery or fuel [Moz+19]. Additional aircraft types such as High-altitude Platforms

(HAPs) and Low-altitude Platforms (LAPs) including airships [Itu] and balloons [Loo]

are also considered for applications of aerial networks. Such platforms are deployed

to fly at higher altitudes. LAPs are more flexible in terms of ease of deployment

and mobility and can be deployed at altitudes of a few kilometers. On the other

hand, HAPs, are deployed at altitudes over 17 kilometers and are considered quasi-

stationary [Moz+19].

In addition to using drone networks to support multi-drone tasks, the use of drones

to provide wireless communication services is one of the main applications recently

being pursued [Sha+19]. This is due to the new opportunities they provide and due

to their low cost and positioning flexibility compared to a fixed infrastructure. Drone

networks can be deployed as airborne Base Stations (BSs) for providing and expanding

cellular coverage to mobile users [Cic+19] , as communication relays [ZYS11], and for
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sensing and information collection. Using drone networks to assist in coverage is a

key advantage as drones can be deployed and positioned as needed for variable and

temporary demands such as in crowded outdoor sporting events and crisis situations

[Kal+17; Erd+17; Mal+19].

The wireless technologies that can be utilized by drones include the current exist-

ing technologies such as Wi-Fi and Long-Term Evolution (LTE). Experiments where

a networked fleet of drones utilize Wi-Fi technologies to establish connectivity among

other drones within the fleet have shown promising results [Gu+15; JP+12]. Drones

can also utilize available cellular networks by connecting to LTE and 5th Genera-

tion Wireless (5G) networks as User Equipment (UE) [ZZL16b]. Support for drone

connectivity in LTE and 5G was introduced in 3rd Generation Partnership Project

(3GPP) Releases 15 through 17 [3GP19]. Moreover, technologies such as Device to

Device (D2D) [ZZL16b], mmWave, and Software Defined Radio (SDR) have been

proposed for use by drones [LFZ19].

In terms of network structure, drone networks can utilize both infrastructure-less

(ad-hoc) and infrastructure-based networking. Given the dynamic nature of drone

networks, often a form of Mobile Ad-hoc Networks (MANETs), known as Flying

Ad-hoc Networks (FANETs) [BST13] is used. Similar to MANETs, in FANETs,

nodes (drones) join and leave the network dynamically and form links with neigh-

boring nodes. Nodes also act as relays to forward traffic across the network. The

network logic in MANET is distributed among nodes, as there is no network infras-

tructure. FANETs are differentiated from MANETs based on the mobility rate of

change and continuously changing topology as a result. Infrastructure-based net-

working is also utilized in drone networks, where drones either communicate with
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each other through cellular BSs or a ground control station. Hybrid architectures

are also possible [GJV16]. The choice of architecture depends on factors such as the

communication technology used, the application domain requirements, and the type

of control required for networking and task coordination, which can be centralized

using a control station or distributed among drones.

Drones can also be equipped with on-board computing resources such as single-

board computers for flight control, and for executing algorithms, machine learning

models, and specialized programs for conducting autonomous tasks [Wan+20b]. The

Raspberry Pi is an example of a single-board computer commonly used with drones

[Nog+18]. Examples of more capable computing systems include the Manifold 2

[DJI21] and NVIDIEA Jetson X2 [Nvi].

2.1.1 Applications of Drone Networks

Utilizing drones for communication and networking for various applications is studied

extensively in the literature. Here we provide the most notable and representative

examples of current works. Figure 2.1 depicts examples of drone-based or drone-

assisted communications.

A number of works discussed the deployment and formation of flying network in-

frastructures. In [CS17], authors propose deploying a drone-based multihop backhaul

network to connect ground BSs to the gateway to allow BSs to continue operating

during an outage. An aerial network formation scheme based on game theory is pro-

posed, with the goal of achieving the best network delay and data rate per drone. The

scheme achieves better network performance compared to other approaches without
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Figure 2.1: Examples of using drones in wireless communications

network formation among drones and instead using a direct connection to the gate-

way. A related proposal is made in [Par+16] in which authors propose a network

formation algorithm for deploying drones forming a multihop ad-hoc network in 3-

dimensional space. The algorithm enhances network provision compared to other

formations with uniform altitudes. In [Zha+19], authors propose a framework for

drone-assisted emergency wireless networks to serve disaster-affected users in several

scenarios. In one scenario, a drone is utilized to serve users in an area with a damaged

BS. The drone trajectory is optimized to enhance Quality of Service (QoS) of served

users while limiting interference to users served by other BSs. When all ground BSs

are damaged, the drone establishes multihop connectivity using D2D communication
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among ground devices using combined optimal drone transceiver design and alloca-

tion of D2D links. As well, a stationary multi-drone relaying system is proposed to

link the serving drone to the core network. The proposed framework compares the

effect of different network parameters on performance in terms of the total network

data rate and outage probability.

Using drones to form relay links between distant locations has been one of the most

popular applications of drones in wireless communications [ZYS11; HSL09; ZZL16a].

The flexible mobility of drones is leveraged to expand the range of wireless connec-

tivity in terms of reachability and data rate. In [HSL09], authors propose algorithms

for optimizing the location and movement of drones to improve the connectivity or

reachability of MANETs. The paper demonstrated how optimal trajectories can im-

prove different types of connectivity such as global message connectivity, worst-case

connectivity, and k-connectivity. In [ZZL16a], a drone relaying system is proposed for

relaying messages between two distant fixed wireless nodes. The system jointly opti-

mizes the drone trajectory and transmit power to maximize the system throughput,

achieving better performance than a fixed relay node. Recent efforts focus on utilizing

multiple drones to form relay chains to link distant locations while aiming to minimize

the number of drones needed. However, others aim to enhance network performance

or mission objectives. For instance, authors of [Yan+19] utilize drones to form relay

links between distant drones performing tasks and a gateway node. Authors pro-

vide a scheme for relay drones to autonomously organize and form relay links. The

scheme’s objective is to minimize the number of relay drones. The work proposed

in [Ols+10], provides a scheme for connecting drones performing monitoring tasks in

areas that do not allow for line-of-sight links to the BS, such as mountainous and
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urban valley areas. The proposed scheme can form multihop relay chains and relay

trees while balancing trade-offs between the number of drones, the quality of formed

links, and the quality of sensed information (surveillance). For example, changing a

drone location to form a relay chain can affect the quality of images captured by the

drone, leading to lower surveillance accuracy.

Drones are also utilized as airborne data collectors to efficiently collect data in

resource-constrained Wireless Sensor Networks (WSNs). In drone-assisted WSNs,

drones fly near sensor nodes (SNs) to collect data wirelessly. Drone trajectories are

optimized jointly with the transmission scheduling of drones and SNs. In this man-

ner, data can be collected quickly while SNs consume less energy compared to tradi-

tional WSNs due to the reduced transmission power and time needed to collect data

[Say+16]. The work in [ZZZ18] is an example of such a technique that demonstrates

enhanced energy efficiency compared to stationary data collection.

A number of articles proposed using drones to deploy caching and computation

offloading services to ground users. In such applications, drones utilize drone-mounted

computing devices known as micro edge devices or cloudlets. The goal is to offload

computations from power-constrained ground devices and minimize delay for time-

sensitive tasks by deploying drones near the users. The work in [Che+17] develops

a proactive deployment of cache-enabled drones. The objective is to improve the

users’ quality of experience using a predictive scheme based on information collected

about served users. In [JSK18], a drone with mounted computing resources, called a

cloudlet, provides computation offloading for ground devices to minimize their energy

consumption and improve QoS. Path planning and resource allocation are considered

while optimizing for drone energy constraints.
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One of the most promising uses of airborne platforms is their utilization as aerial

BSs or drone-BSs in 5G networks. Drone-BSs are used to increase the capacity and

coverage of the cellular network and relieve congestion in response to variable and

unexpected demand, such as crowded events. They are also used to expand coverage in

areas with low or nonexistent coverage and to restore connectivity in disaster recovery

scenarios. A great deal of flexibility is added to the cellular network infrastructure due

to the dynamic positioning and ease of deployment of drone-BS . 3GPP Release 15

introduced support of non-terrestrial 5G networks involving satellite and aerial access

services [BY+19]. Different from network topology formation works discussed earlier,

drone-BSs establish connectivity to the terrestrial network through wireless backhaul

links to ground BSs or backhaul nodes. Drone-BSs can also be tethered to ground

nodes to connect to the core network. In the literature, the optimal deployment of

drone-BS is the subject of many studies. The objective of such studies is to determine

the optimal 3D placement of drone-BSs according to certain performance metrics. The

literature is mainly classified according to whether a single drone or multiple drones

are used and the objectives of coverage. Objectives include maximizing the number

of covered users, increasing profit, maintaining or enhancing users data rate and other

QoSs metrics, and reducing the energy consumption of drones. The literature can be

also classified based on whether the proposed schemes are for instantaneous (static)

state or dynamic coverage, where drones move in response to variable demands over

time. The survey provided in [Cic+19] lists the state-of-the-art in this area.

While most deployment techniques focus on deploying a network for single tasks,

the work in [Mal+19] proposes deploying a multi-service drone network for disaster
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situations. Different from works described earlier, the authors propose a task schedul-

ing scheme, utilizing drones with a set of sensors or payloads each corresponding to a

task needed in disaster recovery. The paper studies the benefits of equipping drones

with single or multiple payloads (e.g., radio, camera, and medicine) for performing

network coverage, video monitoring, and medicine delivery tasks. Their assessment

showed that assigning multiple tasks to drones can lead to reducing the number of

required drones if tasks are allocated optimally.

2.1.2 Challenges

Drone networks are characterized by their high degree of mobility and fast-changing

topology. This is an advantage as it allows networks to reorganize and conduct tasks

along varying trajectories. However, it is also a challenge in terms of managing the

network and ensuring connectivity in the presence of intermittent links and frequent

topology changes [GJV16]. Furthermore, drone networks are constrained in terms of

communication, energy, and computing resources compared to traditional fixed net-

works [GJV16]. As well, drones can be of varying hardware, software, and network

technologies. All of those aspects combined complicate the management and opera-

tion of such highly dynamic networks and limit their performance [Sha+19]. These

challenges motivate the need for innovative and unified management technologies that

can simplify the network operation and allow for highly adaptive and informed net-

work techniques. Softwarization technologies such as SDN and NFV can facilitate

such dynamic approaches and simplify the management and control in drone net-

works. In the next sections we introduce network softwarization and we discuss the

advantages and applicability of SDN and NFV to drone networks.
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2.2 Network Softwarization

Network softwarization is a network paradigm in which the design, architecture, de-

ployment, and management of network components are based on software [Afo+18]

rather than traditional hardware. Software programmability then is leveraged to make

networks flexible and reconfigurable by means of software updates. This flexibility

allows softwarized networks to be dynamically reconfigurable on-demand in response

to varying requirements and conditions. The enabler technologies of network soft-

warization are SDN and NFV.

2.2.1 Software Defined Networking (SDN)

In wired networks, SDN addresses the limitations caused by the coupling of network-

ing devices (e.g., switches and routers) and the implementation of network functions

or protocols. Traditionally, these functions are implemented through hardware, which

allows fast packet processing. However, this constrains the rapid development of new

protocols and hinders their adoption, requiring long development cycles and costly

hardware upgrades. In addition, network devices use proprietary interfaces for config-

uration and management, which complicates the management of large-scale networks

with multivendor devices.

The above limitations motivated the need for flexible and programmable networks.

Various efforts in programmable networks led to what is currently known as SDN

[Nun+14]. Initially, SDN referred to the OpenFlow project [McK+08] which began in

2011. Presently, SDN refers to any network architecture that adopts SDN principles,

which are:

1. the separation of the data (forwarding) plane and the control plane,
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Figure 2.2: Data and control planes in traditional networks and in SDN

2. the logical centralization of the control plane,

3. the ability to program network devices, and

4. managing diverse network devices in the data plane using a unified interface

[Kre+15].

In SDN, the handling and forwarding of packets (the data plane) is separated

from packet forwarding decisions (the control plane) as demonstrated in Figure 2.2.

Network devices are turned into simple but flexible devices that expose a unified

programming interface. Instead of operating independently with hardcoded function-

ality, network devices are instructed by centralized software controllers known as SDN

controllers. SDN controllers implement the logic of the network and dynamically di-

rect how network devices process and route packets. Or more precisely, the internal

flow tables in network devices are manipulated by instructions received from SDN

controllers.
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Figure 2.3: SDN architecture [Onf]

SDN Architecture

The typical SDN architecture is shown in Figure 2.3. The architecture consists of the

infrastructure layer, the control layer, and the application layer. The infrastructure

layer consists of the programmable network devices representing the data plane. Net-

work devices are programmable by the SDN controller in the control layer through a

unified interface known as the Southbound Interface (SBI). OpenFlow [McK+08] is

the most common standard interface.

The control plane consists of a centralized SDN controller that implements the

control logic of packet forwarding and programs network devices by manipulating

their configurations and forwarding tables. The SDN controller communicates with

network devices using the SBI via a control channel. The controller, given its central-

ity and knowledge of network devices, maintains a global view of the network state

which includes the connected devices, the network topology, flows, and link statistics.

The controller also provides a set of network services that implement network func-

tions such as topology discovery. The controller abstracts the network and provides
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facilities and a high-level programming interface to network applications (or SDN

applications). This interface is known as the Northbound Interface (NBI).

Network applications operate at a higher level than the control layer. Such appli-

cations include network monitoring and management applications as well as advanced

adaptive network protocols and policies. Such applications utilize the global network

view and services provided by the controller to inform their decisions and react to

network conditions. In turn, the controller compiles requests from applications and

manipulates network devices to update the data plane behavior.

As the SDN controller is logically centralized, a single or multiple distributed

controllers can exist and work in conjunction to control the network and maintain an

up-to-date global state. SDN applications can also be distributed and communicate

with the controller to program the network.

Using the SDN architecture, network devices are not tied to hardcoded protocol

implementations, as network devices can operate as programmed by the controller

and SDN applications. Due to this separation, innovation is accelerated, since SDN

applications can implement experimental and innovative protocols while using com-

modity hardware. Developed protocols and applications can dynamically adapt the

network as needed using the facilities provided by the controller and the unified in-

terface regardless of the underlying network hardware. Thus, operational costs are

reduced due to the lower cost of equipment and the simpler effort required to operate

and manage the network.
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OpenFlow

OpenFlow is a standard that defines the specifications for programmable network de-

vices (known as OpenFlow switches) and the protocol that allows for the interaction

between the controller and programmable switches. The standard is maintained by

the Open Network Foundation (ONF) [Ope15]. The standard specifies the compo-

nents or abstractions that OpenFlow switches must implement to enable their pro-

grammability. The main OpenFlow abstraction is the flow table, which processes and

forwards packets incoming to the switch according to rules installed by the controller.

Figure 2.4 demonstrates the flow table structure. Each table entry specifies the ac-

tions applied for traffic flows with packet header content matching specified values.

Actions applied on matched flows involve rewriting headers, dropping packets, and

forwarding packets through specific ports, or sending packets to the controller for

further processing. Each entry has a set priority if more than one entry has matching

header values. Per-flow statistics are also collected. The flow table represents the

basic functionality of the switch, which enables flexible data plane programmability.

OpenFlow provides a sophisticated programmable packet processing pipeline in which

packets can be handled by multiple flow tables for multi-stage processing. Apart from

switch specifications, the standard defines the OpenFlow protocol with which con-

trol messages and state queries are exchanged between switches and the controller.

Such messages handle switch configuration, rule installations, and statistics polling

to name a few. The OpenFlow protocol is also extensible allowing for customized

control messages and actions.
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Figure 2.4: Flow table structure in an OpenFlow-based switch

2.2.2 Network Function Virtualization (NFV)

NFV [Han+15] intends to reduce the cost of network infrastructure by replacing

hardware network appliances, such as routers, firewalls and load balancers by soft-

warized implementations known as Virtual Network Functions (VNFs). VNFs run

on virtualized general purpose high-capacity servers as virtual machines, as opposed

to specialized hardware appliances. The aim of network operators in using NFV is

similar to SDN, which is reducing costs in terms of capital expenditures and operating

expenditures.

By separating network functions from specialized hardware, greater scalability

and flexibility is achieved in addition to reduced costs as illustrated in Figure 2.5.

Functions run as virtual machines and can be deployed, instantiated, and migrated

on available hardware resources. Network operators also benefit from automated

provision of such functions or services. Functions can also be updated and improved

as often as required using software updates.
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Figure 2.5: VNFs as an alternative to hardware appliances

In wired networks, NFV operates within an architecture standardized by ETSI

[Ets]. The simplified architecture is shown in Figure 2.6 and are described at a higher

level as follows.

• NFV Infrastructure (NFVI): consists of hardware resources and software

components that together represent the physical infrastructure in which VNFs

are deployed and managed. Hardware resources include commodity computing

and networking devices. The virtualization layer abstracts the underlying hard-

ware resources and provides virtualized computing and networking resources

used by VNFs.

• NFV Management and Orchestration (NFV MANO): responsible for

the overall management and provision of network services and constituent VNFs.

It consists of the following components:

– NFV Orchestrator: responsible for orchestrating the lifecycle of network
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Figure 2.6: NFV architecture [Ets]

services by coordinating with the following two components.

– VNF Manager: responsible for the lifecycle management of individual

VNFs (e.g., instantiating and terminating VNFs).

– Virtualized Infrastructure Manager: responsible for managing the

NFVI and allocating resources for VNFs.

Based on this architecture, different network services can be provisioned by net-

work providers according to Service-Level Agreements (SLAs) with greater deploy-

ment flexibility and less cost compared to hardware-based equipment. A service can

be composed of a series of ordered VNFs that process network traffic as mandated by

SLAs. Such a service is also known as a Service Function Chain (SFC) where traffic

is processed through a predetermined sequence of VNFs. In the simplest form, an

SFC can be represented as a line graph such as:
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Firewall → Deep Packet Inspection → Cache

A service has a set of requirements in terms of traffic throughput and delay that must

be satisfied by the service provider.

It is important to note that SDN and NFV are similar but complementary tech-

nologies. SDN is concerned with the configuration and reprogramming of the net-

work forwarding plane, whereas NFV is concerned with replacing network appliances

with softwarized alternatives via virtual machines. Both technologies can coexist in

a single network where VNFs implement various networking functions traditionally

performed by specialized network devices and application servers, while SDN controls

the underlying forwarding and routing in the network. The NFV orchestrator can be

considered as an SDN application that programs the network to route traffic through

VNFs according to service requirements.

2.2.3 Softwarization in Wireless and Mobile Networks

While softwarization is used primarily in wired networks, softwarization also has been

applied in wireless and mobile networks. The use of SDN in wireless networks enables

uniform management and configuration and contributes to reducing cost and adding

flexibility. Since the traditional design of SDN was intended for wired networks, sev-

eral efforts were made to extend SDN abilities in several types of wireless networks

[Cos+12]. SDN can be utilized to facilitate centralized QoS management in heteroge-

neous networks by selecting radio access technologies for users in order to eliminate

congestion [Ras+17]. SDN can also be utilized for channel selection in Wi-Fi access

points to minimize interference [Sey+16]. More advanced wireless SDN applications

include an SDN-based wireless backhaul for small cells to facilitate global network
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monitoring and online optimization against interference [Hur+15].

In the context of MANETs, SDN is utilized to enable centralized and adaptive

routing and failure recovery. The work described in [YQR17] addresses practical

implementation aspects in medium access control to enable SDN in wireless mul-

tihop networks. Results with a small test topology show that centralized routing

can maintain throughput in cases with fast-changing topology and unexpected link

interruptions. SDN also is proposed for Vehicular Ad-hoc Networks (VANETs) to

implement routing protocols informed by the SDN controller to select reliable links

and ensure QoS requirements for the networks of moving road vehicles.

Softwarization using SDN and NFV has also been considered in cellular networks

to handle the explosive growth of data traffic and types of services provided and to en-

able cost-effective and flexible management and scalability. Both SDN and NFV are

proposed for the management and virtualization of the Evolved Packet Core (EPC),

the core network of the LTE system [Bas+13; Jai+16]. Softwarization is presently

considered the basis of 5G networks spanning both the core network and the Radio

Access Network (RAN). Using softwarization, service providers can deploy multiple

virtualized networks known as network slices on top of common infrastructure. Net-

work slices are programmable and automated networks that are tailored for specific

services and requirements [Afo+18].

2.2.4 SDN and NFV for Drone Networks

Softwarization and its advantages have great appeal to wired network providers. How-

ever, given the dynamic nature of drone networks as discussed in Section 2.1 and the

challenges discussed in Section 2.1.2, softwarization advantages are more beneficial
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for drone networks.

Using SDN, drones become the programmable nodes of the network. Management,

and command and control of drone networks can benefit from a unified programming

interface [Sha+19]. Innovative networking schemes and protocols can be rapidly

developed and utilized rapidly. Dynamic and adaptive networking can be easily facil-

itated using the SDN centralized control and visibility to adjust the network behavior

in response to rapidly changing events and requirements [Ala+20; Sha+19]. This en-

ables the network to manage uncertainties in terms of link failures and unavailability

of resources as well as time varying demands and conditions.

For instance, drones deployed as a multihop ad-hoc network may experience in-

termittent links due to mobility, interference, and malicious jamming [Seç+18a]. By

utilizing SDN and the controller visibility into drone locations and environment con-

ditions, the routing paths can be updated accordingly. SDN can facilitate proactive

centralized routing using prior knowledge of drone trajectories to predict link fail-

ures [Iqb+16; CBM17]. The same approach is considered for VANETs, which are

characterized by highly mobile nodes [CBM17; GK18; Gha+19]. A number of works

demonstrate that routing performance is improved using centralized SDN [CBM17].

Even with the availability of cellular networks, drones equipped with cellular connec-

tivity can experience connectivity issues in some environments when cellular coverage

is not optimized for drone altitudes [Tak+18]. Drones equipped with multiple radio

access technologies can be dynamically programmed to use alternative connections.

In Section 2.2.4, we describe research efforts that apply SDN in drone networks.

Furthermore, the use of NFV enables reconfigurability by utilizing drone-mounted
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computing resources to run VNFs that implement a multiplicity of network and task-

related functions. Using NFV, a drone network can be considered as an airborne

physical network infrastructure where network services provisioned as SFCs can be

embedded within the drone network in an automated and dynamically reconfigurable

manner. Such capabilities can be utilized in drone networks supporting ground users

or assisting ground network infrastructure. Additionally, VNFs can be utilized to

define tasks performed by drones, where VNFs implement various algorithms used

to perform certain types of tasks such as area mapping and agriculture monitoring.

This capability also allows the behavior of a drone to be dictated by VNFs. Func-

tions or the type of tasks performed by a drone can easily be configured at deployment

time and dynamically adjusted during operation. Such modular implementation of

functions allows for easy composition of missions or services using manageable and up-

gradeable components. In dynamic scenarios with time-varying requirements, VNFs

can be instantiated dynamically, enabling more scalability and reconfigurability. This

flexibility can also facilitate easier recovery in the case of drone failures or malfunc-

tions, as network or task functions lost due to drone failures can be reinstantiated

quickly in another drone. In Section 2.2.4, we review works that adopt NFV in drone

network scenarios.

SDN in Drone Networks

The adoption of SDN in drone networks focused on optimizing network forwarding

and connectivity by utilizing the SDN controller visibility. In [Seç+18a], authors pro-

vide a software defined drone-based network architecture for reliable connectivity in

drone networks. In this architecture, drones are assumed to have multiple network
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interfaces, such as Wi-Fi and LTE. Drones act as SDN forwarding nodes, while the

SDN controller implements a multi-path disjoint routing protocol to avoid malicious

link jamming by utilizing the multiple interfaces in each drone and the visibility given

by the SDN controller. The authors extend their work in [Seç+18b]. The routing

scheme focused on maintaining connectivity (reachability) and reducing the outage

rate due to jamming. The proposed routing protocol was only compared to a cen-

tralized shortest path routing protocol and mobility was not considered. In [Seç+20],

authors propose a drone mesh network architecture with fog computing capabilities

to provide computation offloading to ground devices. In this architecture, compu-

tation requests made by ground devices are offloaded to either drones (called fog

nodes) or a server on the ground. A joint optimization framework is proposed to

make optimal allocations of network flows and computation the assignments with the

goal of optimizing the network latency or computational response of the system. The

system demonstrates improved latency and balanced task allocation across the net-

work. The system is compared to greedy and static allocation schemes. A small scale

test bed implementation demonstrates similar results to simulation. In [ZWZ18], a

framework for software defined drones with mounted Wi-Fi Access Points (APs) is

proposed. The SDN controller monitors the network traffic load and battery status

of drones, with the goal avoiding congestion by balancing the traffic load among the

network of APs serving ground mobile users. The paper demonstrated the ease of

implementing load balancing using the SDN controller. In [Bar+17], the authors

discuss connectivity and routing challenges in drone networks, including HAPs and

balloons such as the platforms used in Project Loon [Loo]. The authors make the

case for the centralized SDN control for predicting and mitigating link interruptions
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due to network dynamics in time and space. Details of their SDN implementation

are presented in [BC18], however, only qualitative findings are discussed with respect

to SDN . A similar theme but on a smaller scale is discussed in [Iqb+16]. The SDN

controller predicts link disconnections and recomputes routing paths to improve end

to end-to-end availability compared only to the Open Shortest Path First (OSPF)

routing protocol. SDN has also been utilized in drone networks involving military

operations [Zac+17], where multiple drones are employed to monitor areas ahead of

advancing troops and stream videos to the ground. An SDN controller on the ground

manages the network and deals with drones’ mobility and ground units. The ability

of the controller to discover the network topology allows it to optimize the delivery

and quality of video streams from drones to the ground. In [Sha+17], drones are

deployed as drone-BS with SDN forwarding capabilities to facilitate fast handovers

in cellular networks. Both centralized and distributed SDN controllers are used to

inform handover decisions to reduce end-to-end delay, handover delay, and signal-

ing overhead. The paper demonstrated enhanced performance to other SDN-based

handover schemes.

NFV in Drone Networks

The use of NFV in drone networks has been explored only recently. NFV has been

considered to offload drone computation tasks to a virtualized ground infrastructure

and also to provide processing functions on drone-mounted computing resources.

In use cases with available access to an infrastructure, VNFs can be hosted in the

cloud or at the ground control station of the drone mission. In [BBT19], authors pro-

pose using the NFV architecture to deploy VNFs that communicate with drones to
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provide certain services. VNFs are deployed in Multi-access Edge Computing (MEC)

[MB17] nodes placed at various locations at the edge of the network. An orchestra-

tion scheme places VNFs in optimal edge nodes given learned drone trajectories to

meet the QoS required by drones to communicate with VNFs. The use of NFV in re-

connaissance and military-related operations is presented in [Whi+17]. The authors

describe a system that uses container-based (light-weight virtual machines) VNFs

deployed at the network edge on the ground or in control stations to support flying

drones. The VNFs perform mission monitoring and anomaly detection. The authors

reported the ease of use and flexibility provided by the SDN/NFV system to support

missions with demanding mobility requirements. Using the proposed system, VNFs

are migrated across different ground stations according to drone trajectories. As well,

VNFs that perform specialized functions can be deployed on demand for special drone

types and situations.

Other works considered hosting VNFs on-board drone computing resources. Au-

thors in [RS17] describe an SDN/NFV-based architecture for drone networks for rural

zone monitoring. The drone network provides video monitoring as a service where

cameras on the ground and on drones capture footage of monitored rural areas and

stream captured footage to users. The network consists of backbone drones as the

nodes of the network along with SDN/NFV controllers and orchestrators. The VNF

chains required for the service include video transcoding, storage, and streaming. The

authors only provide a model for analyzing the computational load on network nodes

based on factors such as the number of video processing functions and traffic flows.

In [Nog+18], a configurable NFV-system for multi-drone services is proposed.

The system enables dynamic reconfiguration of drones for different missions. The
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VNFs are deployed on drones with Raspberry Pi boards as computing resources.

Drones form a wireless ad hoc network, and the NFV aspects are managed by an

orchestration system in the ground station. A prototype implementation is described

and validated using several field experiments that measure the time and delay of VNF

instantiations and their effect on running functions. A Voice over IP (VoIP) service

was also demonstrated.

Recent proposals focused on integrating SDN/NFV in Space-Air-Ground Inte-

grated Networks (SAGINs). SAGINs are networks that integrate satellites and aerial

networks with terrestrial networks to increase coverage [Liu+18]. Both SDN and

NFV have been proposed to manage such heterogeneous networks. Recent articles

considered provisioning network services as SFCs to serve users and ground vehicular

networks. SAGINs receive requests to deploy services as SFCs composed of a series of

VNFs. VNFs of accepted services are instantiated on ground BSs and on virtualized

aerial nodes (drones and LAPs or HAPs) if needed to satisfy service requirements

[Wan+20a; Li+21]. In [Wan+20a], authors propose an SFC placement scheme to

increase the number of accepted services and thus increase revenue while satisfying

QoS requirements mandated by SFCs. The scheme is evaluated using a fixed network

topology and compared to other SFC placement schemes to demonstrate optimal-

ity in terms of total revenue. In [Li+21], authors consider SAGINs for supporting

ground vehicular networks. The authors introduce an online SFC placement scheme

that continuously adjusts and reschedules the placement of VNFs to accommodate

SFC requirements and to accept new requests to increase revenue.
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2.3 Limitations of SDN and NFV in Drone Networks

In this section, we look into some limitations in the existing literature on SDN and

NFV in drone networks.

Benefits of Softwarization: The use of softwarization in drone networks is mo-

tivated by programming and configuration flexibility and the ease of control expected

from softwarization. The centralized control and the visibility into the network state

can be considered as an appealing tool for developing adaptive network solutions to

deal with dynamic networks. Benefits such as application programming interfaces

(APIs), visibility into network state, modularity, and reuse and upgradability of ex-

isting hardware are considered qualitative benefits. However, additional measurable

benefits can be valuable, providing more insight and motivation for softwarization.

The works that utilized softwarization in drone networks as reviewed in this section

mostly argued for softwarization for its qualitative benefits. As for their qualitative

results, the focus of such works was on demonstrating the feasibility of softwariz-

ing drone networks and achieving certain goals for the targeted networking domains.

For example, the utilization of SDN to enhance routing made use of centralized con-

trol and prior knowledge of drone trajectories to proactively program the network

and avoid or limit network performance degradation or interruptions (outages). In

[Seç+18a; Seç+18b], resilient routing was only compared to centralized routing algo-

rithms (SDN-based). In [Iqb+16], comparisons were made against a single traditional

routing protocol. Similarly, in the context of NFV, proposals such as [RS17] did not

provide comparisons over non-softwarized drones. Works such as [Wan+20a; Li+21]

utilized the reconfigurability of both aerial nodes (drones) and ground nodes to adjust
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provisioned services (VNFs or SFCs) to accommodate new traffic demands. Their or-

chestration schemes were compared against other SFC orchestration schemes. While

softwarization is an enabler for the proposed techniques in those studies, such studies

do not provide direct measurable benefits for softwarizing drone networks. Different

from traditional networks, drone networks are characterized by the additional func-

tionalities or tasks they perform. As discussed in Section 2.2.4, softwarization brings

flexibility to this aspect as well in terms of the ability to reconfigure drone tasks. The

benefits of softwarization and reconfigurability have not been studied. Therefore,

further studies are required to measure the gains of softwarizing drone networks.

SDN Control Connectivity: The controller is the key component in the SDN

architecture as the controller is responsible for implementing the network logic and

programming network devices. In such an architecture, all network devices establish

control channels with the SDN controller, or in the case of multiple distributed con-

trollers, each controller is assigned a subset of network devices to control. Controllers

communicate with network devices to program the data plane and to query the state

of network devices. Due to the role of the SDN controller, the network functionality

depends on the existence of a control channel between SDN controllers and network

devices.

SDN control connectivity is a key challenge in adopting SDN in drone networks,

where drones represent the programmable network nodes. The challenge lies with

ensuring control plane connectivity through wireless links given the variability of

network topology. Existing works reviewed in this chapter assume the availability of

an accessible ground infrastructure with SDN controllers. In SAGINs, SDN controllers

can be located in satellites or HAP nodes which provide coverage using low-altitude



2.3. LIMITATIONS OF SDN AND NFV IN DRONE NETWORKS 35

drones. However, in some practical use cases, drone networks are deployed in remote

areas with limited or no access to ground SDN controllers. Satellites and HAPs may

not be available. In such cases, the availability of SDN control links is critical and

challenging as the network is dependent on the controller during the operation of the

network. To address this challenge, techniques are needed to ensure that persistent

control channels and pairing can be established between SDN controllers and drones.

A possible approach is deploying drones that function as SDN controllers along with

the network. Considering the network mobility, the size of the area covered by the

network, and the range control links, dynamic schemes for controller deployment and

assignment are needed.

NFV-based Drone Network Deployment and Orchestration: Drone net-

works with on-board computing capabilities can be utilized in various drone use cases.

The computing power within the network offers the flexibility to implement task-

related computations involving data acquisition through sensing or imaging and real

time processing and analysis. This is useful for tasks in remote areas with no access to

ground computing infrastructure and to provide network services to end users served

by drones (e.g., computation offloading and caching). As discussed earlier, NFV can

be utilized to implement such functions as modular components configured on drones;

however, deployment and orchestration techniques are needed.

While several works reviewed in this chapter demonstrated the use of NFV includ-

ing SFCs in drone networks, these proposals lack orchestration schemes that also deal

with the variability of drone networks. The works in the context of SAGINs proposed

orchestration schemes, however, the topology is dependent on ground nodes, and the

aerial segment is considered fixed or not controllable by orchestration schemes.
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For applications such as remote sensing and monitoring, drone networks can be

comprised mainly of aerial nodes. In such settings, the network size differs depending

on the task at hand and the topology of the deployed network as it varies over time.

Given the flexibility of NFV, a drone mission or deployment can be specified in terms

of SFC comprising VNFs that implement the different network and mission functions.

Then, it is important to determine the physical network topology that needs to be

deployed in addition to the allocation of SFCs within the deployed network. To the

best of our knowledge to date, no works exist that jointly determine the physical

network topology and SFC orchestration.

Furthermore, the variability of network topology poses an additional challenge.

Due to drone movements and topology changes, often SFC reconfiguration is required.

With this in mind, dynamic network orchestration schemes are needed to maintain the

connectivity of the physical network as well as the deployed SFCs. However, frequent

reconfigurations may disrupt network traffic. Therefore, orchestration schemes are

needed to deal with such dynamics.

2.4 Summary

In this chapter, we presented an overview of connected drones and their applications in

communication networks. We followed by discussing the challenges of drone networks.

Next, we provided an introduction to network softwarization enabled by SDN and

NFV and described the flexibility it introduced to different networking paradigms.

Then, we detailed the case for the softwarization of drone networks and reviewed the

literature that incorporated softwarization in drone networks. Lastly, we highlighted

the current void in the literature and provided a more detailed motivation for this
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thesis. To this end, we discussed the need for assessing the direct softwarization

gains for drone networks. Furthermore, we highlighted the limitations of enabling

SDN and NFV in drone networks, which included an unaddressed challenge in SDN

control connectivity, and the need for deployment and orchestration schemes for NFV-

enabled drone networks.
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Chapter 3

Evaluating Softwarization Gains in Drone

Networks

Softwarizing drone networks promises ease of control, enhanced performance, and

reconfigurability. While performance enhancements were shown in the literature re-

viewed in Chapter 2, it was not apparent whether gains resulted specifically from

softwarization. The benefits of reconfigurability were not clearly demonstrated com-

pared to non-softwarized drones.

The goal of this chapter is to further motivate the use of softwarization in drone

networks and verify possible gains through a proposed evaluation model. We model a

system of reconfigurable softwarized drones and provide an extensive evaluation with

comparison to non-softwarized drones in several scenarios.

3.1 Introduction

In addition to enhancing the management and utilization of networking resources,

softwarization lends itself to leveraging on-board computing power and offering intel-

ligence and autonomy in conducting tasks. For example, reconfigurable drones can
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use sophisticated machine learning models to conduct sensing tasks or industrial op-

erations to process sensed data on-board and broadcast relevant results in real time.

Examples of such uses include detecting damage in infrastructure [Jor+18; Ker+19],

forest fire detection [Jia+19] and post-disaster survivor detection [DOD21]. Com-

putations may include dynamically finding optimal trajectories to achieve required

results efficiently. This is a powerful alternative to collecting and transmitting all

data and process it later in a ground station.

Since task implementations are packaged reusable modules, as virtual machines

or VNFs, the drone task becomes defined by the configured module. Tasks imple-

mentations can also be interchangeable, either at deployment time or while inflight,

leading to an enhanced flexibility and value of a physical drone. The ability to switch

tasks while inflight can enable an immediate response to urgent events. For instance,

when a sudden event occurs that requires deploying a drone to assess the situation,

the operator may reconfigure a drone flying nearby, allowing for a faster response.

The newly configured drone can respond to the event and provide immediate results

given the on-board computational capabilities.

As discussed in Section 2.3, softwarization is proposed for its qualitative benefits,

which include ease of programmability, flexibility, and the logically centralized control

as an instrument for adaptive network functions. Existing works in drone networks

such as those reviewed Section 2.2.4 demonstrated the feasibility of softwarization,

including SDN and NFV, towards their respective problems; however, they do not

show the direct value of softwarization or reconfigurability. To the best of our knowl-

edge, no available quantitative results to date demonstrate the direct measurable

value of softwarization, particularly the dynamic reconfiguration in drone networks
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and scenarios involving drones performing several tasks.

In this chapter, we further motivate the softwarization of drone networks and show

potential quantifiable gains. Based on the aforementioned motivations for drones with

respect to conducting a variety of tasks, we focus on reconfigurability enabled by NFV.

To this end, we propose a model for evaluating the gains of reconfigurable softwarized

drones. We describe a motivating scenario for drone reconfigurability where a system

of softwarized drones managed by a Service Provider (SP) conducts drone tasks as

a service using reconfigurable drones that perform multiple tasks per flight imple-

mented as VNFs. We describe the model elements for such a system and describe the

orchestration strategies used to receive and deploy tasks efficiently and to respond

to urgent events. We present an investigation of the possible benefits of softwarized

drones used to perform tasks in the proposed scenario. We evaluate the softwariza-

tion gains of the system in terms of its ability to efficiently utilize an available fleet

of softwarized drones to complete a campaign of tasks. We also evaluate the system’s

ability to deploy high priority tasks to respond to urgent events. We compare the

system to alternatives with limited and no softwarization capabilities. This evalua-

tion shows novel results quantifying the possible gains due to the softwarization and

reconfigurability of drone networks in future applications.

The remainder of this chapter is organized as follows. In Section 3.2, we provide

an overview of the model proposed to evaluate softwarized drones. In Section 3.3,

we describe the system model and orchestration strategies used for evaluations. In

Section 3.4, we provide an extensive evaluation of the proposed model. A summary

of this chapter is given in the last section.
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Figure 3.1: Overview of the model elements and the overall operation including drone
states, task assignments, and VNF activations. Underlines mark the active task
and VNF. Dashed arrows indicate the trajectory of a flight, marked with requests
transition distances. Our model is described in further detail in Section 3.3.

3.2 Model Overview

To further motivate drone reconfigurability, we illustrate with the following scenario.

An industrial entity, for instance, could utilize a fleet of programmable and reconfig-

urable drones, thus allowing the fleet to conduct different operations and tasks more

efficiently while automating the process. The automation is enabled by softwariza-

tion, since it becomes easier to install task software given an enabling virtualized

system such as NFV. Automation can include receiving and deploying tasks by au-

tomatically reconfiguring drone task software and deploying automated flights. The

SP benefits from such flexibility by completing more tasks with a shorter turnaround

time, and completing several tasks quickly. Such an application brings an opportunity
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for SPs to offer or utilize their fleets of softwarized drones to conduct tasks as services

for customers. Such a service can provide convenience to different customers such as

industries requiring infrastructure inspection tasks, municipalities conducting aerial

surveys and mapping missions, law enforcement, weather services, and academic in-

stitutions. Most importantly, from the SPs point of view, the reconfigurability of

such a system can translate to improved efficiency and increased profitability.

3.2.1 Overview of Model Elements

Consider an industrial entity or an SPs that owns a fleet of drones is offering their

fleet to perform various tasks and is stationed in an area with a demand for these

services. Such a system consists of a drone depot or station, a set of reconfigurable

drones, and an orchestrator that controls the entire system and is responsible for

receiving and deploying tasks. The system is depicted in Figure 3.1.

The general operation of the system can be described as follows. Requests for

conducting drone tasks are submitted to the orchestrator. Requests state the task

requirements in terms of the trajectory, duration, and energy required. As well,

requests may supply the software implementation of the task as a VNF or requests

may be selected from a catalog of VNFs offered by the SP, which include VNFs that

implement algorithms for conducting different tasks such as those shown in Figure 3.1.

Requests are handled by the orchestrator, which processes a queue of task requests

and schedules tasks to drones using an orchestration strategy. Drones, fitted with a

common set of sensors and a computing system, are softwarized and reconfigurable

by installing VNF images corresponding to assigned tasks. Due to this flexibility,

drones can be assigned a series of tasks to perform in a single flight. While the drone
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cruises along the combined trajectory of assigned tasks, VNF images corresponding

to the active task are instantiated and terminated as the drone transitions from one

task area to another. This process is illustrated in Figure 3.1. In this work, we do

not consider the time to instantiate and terminate VNFs. In this work, without loss

of generality, we assume that VNFs are instantiated and terminated while the drone

is transitioning to the next task area.

The depot is where drones are stationed and initially configured. The depot is

equipped with facilities to connect to drone computing systems to configure them as

directed by the orchestrator. The depot also handles the charging or battery swapping

when drones land after performing assigned tasks.

The reconfigurability of drones is enabled by an on-board computing system with

virtualization capability to host VNFs. The system should be designed so VNFs are

given controlled access to drone sensors and an ability to specify a flight path for the

duration of the task. The drone computing system is programmed by the orchestra-

tor with the times to activate VNFs and then deactivating VNFs when tasks exceeds

their allotted time or energy. This reconfigurability permits the orchestrator to as-

sign additional tasks to drones while inflight, assuming a high data rate connectivity

between the drone and the orchestrator to upload new VNFs and task schedules.

The orchestrator oversees the operation of the system. It employs orchestration

strategies to prioritize task requests into a queue and makes assignment decisions

in order to reconfigure drones with assigned tasks. Also, the orchestrator monitors

and maintains the overall state of the system. More specifically, it maintains the

deployment status, current locations, trajectories and energy levels of each drone.

Once the orchestrator assigns a number of tasks to a drone, the orchestrator generates
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the flight plan for the drone to travel from the area of one task to the next. Task

VNFs may choose to reprogram its own flight path for the duration when in control

of the drone.

The orchestrator is assumed to communicate the above aspects with drones using

a SBI similar to the SDN architecture. The SBI allows the orchestrator to control

and reconfigure drones as described earlier. Essential control interactions between

the orchestrator and drones include uploading VNFs, assigning a list of tasks, and

configuring the overall trajectory for drones based on assigned tasks. These interac-

tions take place at the depot initially and optionally for drones inflight when required.

During flights, the orchestrator monitors drones and may instruct drones to alter their

trajectories when an unanticipated events occurs, such as a sudden battery drain or

if task VNFs malfunction.

Our assumption is that reconfigurability relates to what drones can do with the

computing resources and common set of sensors fitted on drones. The tasks that

can be performed by this system may involve sensing tasks or tasks using specialized

algorithms to conduct the task, collect, process and transmit data. The flexibility

lies with the ability to change how the drone operates in a flexible and automated

manner.

3.3 System Model

We denote by D the set of available drones. At any time instant, a drone d ∈ D can

be at one of three states: standby, inflight, and recharging. The inflight state involves

traveling the task area and performing the task. After landing, a drone stays at the

recharging state for a duration Tcharge to charge or swap batteries, after which the
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drone goes into standby state. Cd denotes the fully charged energy capacity of d.

A task request r arriving to the orchestrator is represented by a tuple

〈r,Durr, Kr, L
start
r , Lendr , T arrivalr 〉. Here, Durr is the time duration of the task, Er

is the energy required to fly while conducting the task, and Kr is the type of the

task, which maps to the task VNF image. Furthermore, Lstartr and Lendr represent

the distances from the depot to the task area and from the end point of the task

back to the depot, respectively, while T arrivalr is the arrival time of the request. R

denotes the set of all requests. We denote by Transitr,r̄ a matrix holding the distances

between the end and starting locations of any pair of tasks r and r̄. Trv(.) denotes

a function that calculates the time required for a drone to travel a given distance at

a predetermined speed v. Figure 3.1 demonstrates the distances associated with task

requests.

The orchestrator maintains a priority queue Q of all arrived task requests. The

orchestrator engages its assignment procedure at the arrival of task requests or at the

availability of standby drones in order to process Q and assign tasks to drones. At

any time instant, a softwarized drone d, can be assigned a series of tasks denoted by

Sd, which represent the task list of a particular drone flight with different tasks r ∈ R

as its constituents. We also denote by Sdi and Sde the ith and last tasks assigned

to Sd, respectively, whereas the active task is denoted by Sda. At the end of each

orchestration procedure, drones are assumed to be configured with VNFs of assigned

tasks. Then, assigned drones which are in the standby state are deployed.
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3.3.1 Orchestration Strategy

The orchestration strategy is responsible for prioritizing requests in Q and matching

tasks to drones using certain criteria. We opt to prioritize requests with the short-

est Durr as this reduces the average starting time of tasks. Then an orchestration

procedure assigns tasks to drones by selecting drones that can start assigned tasks

in the shortest time given drones’ current assignments. A task is assigned to a drone

d by allocating from the drone available energy to the assigned task and appending

the task to Sd. To make the allocation, the energy required to perform the task on

the selected drone must include the energy required to fly the drone to the task area

or to transition from the preceding task of the drone, as well as the energy required

to return to the station, in addition to the energy required to fly during the task

duration.

Suppose we are attempting to assign r to d which has current task assignments

Sd. First, we need to calculate the transition time from the task preceding r on d. If

no tasks are already assigned to d, then the transition time only involves travel time

from the depot to the task location. This is expressed as follows:

ttransitd =


Trv(L

start
r ) if |Sd| = 0

Trv(TransitSde,r) if |Sd| > 0

(3.1)

Then, the energy consumed by the task itself and transition as well as the return trip

back to the depot would be:

ed = Energyv

(
ttransit + Trv(L

end
r ) +Durr

)
(3.2)
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where Energyv computes the drone energy for traveling the given duration in a given

speed v as defined later in (3.8). Furthermore, after calculating ed, we calculate the

time to start the task ttostartd , which is the total duration of preceding tasks and their

transitions. More specifically, if d is in standby, then ttostartd involves all durations of

tasks in Sd and their transitions, combined with the time to reach the area of the first

task:

ttostartd = Trv(L
start
Sd1

)+ [∑
i∈Sd

Trv(Transiti−1,i) +Duri

]
+

Trv(TransitSde,r) (3.3)

If the drone to be assigned is inflight, then ttostartd involves the remaining duration of

the currently executing task Sda and all durations and transitions of pending tasks:

ttostartd = Remaining Duration Of Current Task Sda+[∑
i∈Sd

xi ×
(
Trv(Transiti−1,i) +Duri

)]
+ ttransitd (3.4)

where xi ∈ {0, 1} indicates if i ∈ R is pending execution when equals to 1.

The above strategy is encapsulated in the procedure listed in Algorithm 1. For

each r in Q, the procedure examines all available standby and inflight drones (from all

d ∈ D) and calculates ttransitd , ed. If d has sufficient unassigned energy greater than ed,

then it calculates ttostartd and d is added to the candidate assignment set Acand, where

each candidate is expressed as a tuple 〈d, ed, ttostartd 〉. Once a number of candidates

are collected, the candidate with the lowest ttostartd is selected and assigned. If no
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Algorithm 1 Orchestration procedure

Input: Q,D
Output: Assignments of tasks to drones
1: Rrejected ← φ
2: while Q is not empty do
3: r = dequeue(Q)
4: Acand ← φ
5: for all d ∈ D on standby or inflight do
6: Calculate etransitd as per (3.1)
7: Calculate ed as per (3.2)
8: Calculate ttostartd as per (3.3) or (3.4)
9: if GetUnallocatedEnergy(d) > ed then
10: Acand = Acand ∪ {〈d, ed, ttostartd 〉}
11: end if
12: end for
13: if Acand 6= φ then
14: 〈d, ed, ttostartd 〉 ← Select from Acand the tuple with minimum ttostartd

15: Append r to Sd and update allocated energy
16: else
17: Rrejected = Rrejected ∪ {r}
18: end if
19: end while
20: Add all r ∈ Rrejected back to Q

candidate drone is found, then r is rejected. The procedure continues to the next r in

Q and repeats the steps above. All rejected requests are put back in Q for subsequent

calls to the procedure.

3.3.2 Orchestration with Priority

In certain situations, the orchestrator may receive urgent, high priority task requests

that require deploying the task before a deadline. Such tasks can arise in emergency

situations where a drone is needed to respond to a certain event within a certain

timeframe. The flexibility offered by the system allows for reconfiguring drones for
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emergency tasks. However, when the system is utilized (all available drones are as-

signed multiple tasks), then it may not be possible to satisfy some urgent requests

before their deadlines. To overcome this, the orchestrator adopts an alternative or-

chestration strategy that prioritizes urgent tasks and uses preemption if needed to

allow such high priority tasks to start before their deadlines. Using preemption, as-

signed drones pause the ongoing regular tasks and start performing the newly assigned

high priority tasks. Preempted tasks are resumed in subsequent flights.

In this setting with high priority tasks, a task request r is further identified by

Prior and Wr, where Prior ∈ {0, 1} indicates the priority class of the request (0 for

high priority and 1 for regular requests). Wr indicates the deadline to start the task

if it is a high priority one.

The orchestration strategy that considers high priority tasks is described as fol-

lows. The orchestrator prioritizes requests in Q by their priority (high priority re-

quests first) then by the durations from the current time instant t to the requested

deadline, expressed as Wr − t, then by task durations (shortest durations first). To

assign task r, the orchestrator examines all d ∈ D in standby and inflight, and gathers

candidate assignments. For low priority requests, candidate assignments are gathered

and selected as described in Algorithm 1. For high priority requests, multiple types

of weighted assignments are gathered:

• A1: non-preemptive assignments that satisfy the deadline

• A2: preemptive assignments

• A3: non-preemptive assignments that do not satisfy the deadline.

A1 assignments are regular assignments where the assigned task is appended to
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the drone task list and still can be started before the deadline. This is the preferred

assignment as preemption is avoided to limit forestalling regular tasks. The calcula-

tion of ttransitd , ed, and ttostartd is as described earlier using (3.1), (3.2), (3.3) and (3.4).

However, in order to meet the deadline, the assignment must satisfy ttostartd < Wr − t

where t is the current time instant.

A2 assignments use preemption if meeting the task deadline is not possible with an

A1 assignment, i.e., if the deadline will expire before completing the tasks previously

assigned to the drone. A2 assignments require different calculation of ttransitd , ed and

ttostartd since existing tasks in Sd of the considered drone would be preempted and

ignored in calculations. Suppose we are considering a preemptive assignment of r to

d which has a current task assignments Sd. The calculation of ttransitd is:

ttransitd =


Trv(L

start
r ) if d is in standby

Trv(ImmTransitSda,r) if d is inflight

(3.5)

where ImmTransitSda,r yields the immediate transition distance from the currently

executing task Sda to r. Then, ed is calculated using (3.2). Finally, ttostartd is equal to

ttransitd .

A3 assignments are A1 assignments that do not satisfy the task deadline condition

expressed above. These assignments are used as a last resort when no drone can

be assigned using preemption (i.e., when drones are already performing other high

priority tasks).

Assignments are associated with weights (w = 1, 2, and 3) corresponding to their

types (A1, A2, and A3, respectively). The weights are given to candidate assignment

to indicate the assignment type and to allow for selecting the most desired assignments
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which have the lowest weights.

The algorithmic steps involving the above strategy are listed in Algorithm 2. For

each r in Q, all available drones are considered for assignments. For each d in D on

standby or inflight, ttransitd , ed and ttostartd are calculated normally using equations (3.1),

(3.2), (3.3), and (3.4). If r is a low priority task and d has sufficient unassigned energy

then d is added to Acand. If r is a high priority task and ttostartd meets the deadline

Wr, then d is added to Acand as an A1 candidate. If the deadline is not met, then d is

added as an A3 candidate. Then, d is considered for an A2 (preemptive) assignment if

it is not already performing a high priority task. After making the calculations using

(3.1) and (3.2), d is added as an A2 candidate for r if d has sufficient remaining energy.

Such assignment candidates in Acand are represented as tuples 〈d, ed, ttostartd , w〉 where

w is the assignment weight, which also indicates the assignment type. Then, the

procedure selects the drone with the lowest w first and then the lowest ttostartd , and

assigns the task to it according to w.

It should be noted that we only attempt to satisfy the deadlines of high priority

requests, while low priority requests are served in a best-effort manner according to

their order in Q without preemption. Another aspect to note is that non-preemptive

candidate assignments are considered if the associated drone has sufficient unallocated

energy for the task. This guarantees that all tasks assigned to the drone are performed

in the same flight. However, for preemptive assignments, a drone with sufficient

remaining energy for the high priority task is selected, which guarantees completing

the assigned high priority task but not the preempted tasks.
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Algorithm 2 Orchestration procedure for high priority tasks

Input: Q,D with current assignments
Output: Assignments of tasks to drones
1: Rrejected ← φ
2: while not IsEmpty(Q) do
3: r = dequeue(Q), Acand ← φ
4: for all d ∈ D on standby or inflight do
5: w = 1
6: Calculate ttransitd , ed and ttostartd as Algorithm 1.
7: if GetUnallocatedEnergy(d) > ed then
8: if IsHighPrio(r) then
9: if ttostartd < Wr − t then w = 1 else w = 3
10: end if
11: Acand = Acand ∪ {〈d, ed, ttostartd , w〉} . Add as A1 or A3 candidate
12: end if
13: if IsHighPrio(r) and HasNoHighPrio(Sd) then
14: Calculate ttransitd as per (3.5)
15: Calculate ed for preemption using (3.2)
16: ttostartd = ttransitd

17: if ed < GetRemEnergy(d) then
18: Acand = Acand ∪ {〈d, ed, ttostartd , w = 2〉} . Add as A2 candidate
19: end if
20: end if
21: end for
22: if Acand 6= φ then
23: 〈d, ed, ttostart, w〉 = Select from Acand tuple with minimum w and ttostartd

24: Assign r to Sd based on w and update allocated energy
25: else
26: Rrejected = Rrejected ∪ {r}
27: end if
28: end while
29: Add all r ∈ Rrejected back to Q

3.3.3 Flight Duration and Energy Consumption

Once assignment decisions are made and drones configured, flight plans are created

for standby drones and updated for inflight drones. Once a drone d is assigned a set
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of tasks Sd, the flying duration can be calculated as:

FlightDur = Trv(L
start
Sd1

+ LendSde
) +

∑
i∈Sd

Trv(Transiti−1,i) +Duri (3.6)

Note that Transit0,1 = 0. If the drone is already inflight, the remaining duration

from the current time instant is:

RemDur = Remaining Duration of Sda+[∑
i∈Sd

xi ×
(
Trv(Transiti−1,i) +Duri

)]
+ Trv(L

end
Sde

) (3.7)

where xi ∈ {0, 1} indicates if i ∈ Sd is pending execution when equal to 1.

The energy consumption in joules for a drone in forward flight for any duration

T in seconds and speed v in meters per second is:

Energyv(T ) = Pff (v)× T (3.8)

where Pff (v) is a function that computes the power required for flight in watts given v.

We adopted an energy model for rotary-wing drones that models the power consump-

tion of drones in hovering (v = 0) and in forward flight. The model involves a host of

parameters that include the drone mass, air density, rotors and blade configuration.

The model is described in detail in [SAP18]. Note that this is a simplified power

consumption model intended for illustration, thus we omit the power consumption

for ascending and descending. We also ignore the power consumption for computing

and communications as they are negligible compared to the energy required for flight

[SAP18] [Seç+20]. The maximum flight time at speed v and energy capacity Cd is
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Cd

Pff (v)
× 0.9, which excludes 10% of energy capacity for safety.

3.3.4 A Model for Limited Softwarization (Fixed NFV)

For the sake of evaluation, we describe a simpler softwarization model to use as a

baseline. In this model, a softwarized drone is only configurable during the standby

state and only assigned a single task to perform at a time. We call this model fixed

NFV.

The orchestration procedure, listed in Algorithm 3, prioritizes requests with the

shortest duration and is activated only with the availability of drones in the standby

state, denoted by Dstandby ⊂ D, since it is only possible to assign tasks to standby

drones. The flight duration of a fixed NFV drone assigned task request r can be

calculated simply as:

FlightDur = Trv(L
start
r + Lendr ) +Durr (3.9)

Algorithm 3 Orchestration procedure for fixed NFV

Input: Q,Dstandby

Output: Assignments of tasks to drones
1: while not IsEmpty(Q) and Dstandby 6= φ do
2: r = dequeue(Q)
3: d = select any drone from Dstandby

4: Assign r to d
5: Dstandby = Dstandby − {d}
6: end while
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3.3.5 A Model for Non-Softwarized Drones

We describe a model for a system with non-softwarized drones. This model serves

to compare against the proposed system model and the fixed NFV baseline. In this

system, drones are only fitted or configured to perform a single type of task. Hence,

it is not considered softwarized or reconfigurable. However, we assume the system

has a simpler orchestrator that monitors drones and assigns tasks. This is in order

to compare it fairly with the proposed model.

The orchestration strategy for non-softwarized drones is similar to fixed NFV.

However, it only assigns tasks to drones matching the types of the requested tasks.

For any non-softwarized drone d, K̄d indicates the type of the task d performs. A

task r can be assigned to d only if Kr = K̄d. The orchestration procedure involves

the steps listed in Algorithm 4. Finally, the flight duration calculation is the same as

fixed NFV using (3.9).

Algorithm 4 Orchestration procedure for non-softwarized drones

Input: Q,Dstandby

Output: Assignments of tasks to drones
1: Rrejected ← φ
2: while not IsEmpty(Q) and Dstandby 6= φ do
3: r = dequeue(Q)
4: d← select d from Dstandby where Kr = K̄d

5: if any d is selected then
6: Assign r to d
7: Dstandby = Dstandby − {d}
8: else
9: Rrejected = Rrejected ∪ {r}
10: end if
11: end while
12: Add all r ∈ Rrejected back to Q



3.4. PERFORMANCE EVALUATION 56

3.4 Performance Evaluation

We evaluate the benefits of softwarized drones (referred to as dynamic NFV) compared

to drones with limited and no softwarization as described in sections 3.3.4 and 3.3.5.

We built a detailed simulation environment using Python. The environment mod-

els the three states of drones: standby, charging and flying, as well as the energy

consumption, and the generation and assignment of task requests according to the

described system model and orchestration procedures. The environment employs

discrete-event simulation to trigger task generation, orchestration and drone deploy-

ment states. Task starting and completion times on assigned drones are recorded

according to task durations and transition times.

We investigate the benefits of softwarizing drones performing tasks as services in

two scenarios. In the first scenario, the batch of task requests is known beforehand.

For this scenario, we report the total time to complete all tasks, which is the landing

time of the last drone after performing all tasks. In the second scenario, task requests

are not known a priori and thus arrive at random times. For this scenario, the total

completion time is affected by inter-arrival times. Instead, we report the average

task completion time, which is the delay from the arrival of a task to the end of its

execution, averaged over the total number of tasks. The average task completion time

can be calculated as:

1

|R|
×
∑
r∈R

T completionr − T arrivalr (3.10)

where T completionr is the recorded time of deactivating the task VNF in the drone after

completing the task. We also calculate the total energy consumption for executing

all tasks, which is the sum of energy consumed by all flights.
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Furthermore, in an additional scenario, we evaluate the ability of the system

to satisfy high priority task requests. For this scenario, we report the success rate

Rsuccess, which is the fraction of high priority tasks successfully started before deadline

expiry.

3.4.1 Simulation Setup

The simulation is setup as follows. Task durations are uniformly distributed in the

range [5, 20] minutes, while energy requirements are equal to the energy required for

forward flight for the respective task durations. Request task types are also uniformly

distributed over five task types. Assuming tasks take place in a 2 × 2 km2 area and

the depot located at (0, 0), all distance in L and Transit are drawn from two normal

distributions. The first is parametrized with mean µ = 1.6 and standard deviation

σ = 0.5, while the other is parametrized with µ = 1.2 and σ = 0.5. For the scenario

with random requests, inter-arrival times are exponentially distributed with a mean

of 5 and 10 minutes, denoted as Rarrival. In simulations with non-softwarized drones,

drones are divided equally to task types. For example, in simulation runs involving

five non-softwarized drones, there is one drone available for each task type. Drone

flying speeds are fixed at 10 meters per second, while battery capacity is 702.58 kJ

resulting in about 44 minutes of maximum flight time. The parameters of the energy

model used are as stated in [SAP18], except drone mass, which is set to 3.5 kg. The

battery swap or charge time Tcharge is set to 10 minutes. Simulations are terminated

when all tasks are completed. All reported results are averages of ten experiments.
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Figure 3.2: Performance of the predefined tasks scenario with 5 drones

3.4.2 Results

First we investigate the performance of a fixed number of drones while varying the

number of task requests. Figures 3.2a and 3.2b show the total completion time

and energy consumption for the predefined requests scenario. The results are for five

softwarized drones compared to five fixed NFV and five non-softwarized drones. Tasks

are completed faster using dynamic NFV compared to fixed NFV and non-softwarized

drones. This is due the ability of reconfiguring and assigning multiple tasks to any

available drone and due to the time saved traveling between tasks instead of returning

to the depot after every task. Without softwarization, tasks take the longest time to

complete due to having to wait for the availability of drones that match requested task

types. However, with fixed NFV, the system waits for the availability of any drone to

be reconfigured for the requested task type. As expected, the total completion time

increases linearly with the number of requests, as does the difference in performance.

The reduction in energy consumption, as shown in Figure 3.2b, is a direct result of
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the reduced travel times between tasks due to reconfigurability. Fixed NFV and non-

softwarized drones are equal in energy consumption due to the identical operation in

terms of performing a single task per flight.
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(a) Rarrival = 5
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Figure 3.3: The average task completion time for the random tasks scenario with 5
drones and Rarrival = 5 and 10 minutes

Next we repeat the experiment above but with task requests spread out with

5 and 10 minutes average inter-arrival time Rarrival. In Figures 3.3a and 3.3b, we

report the average task completion time. In both cases, with dynamic NFV, the or-

chestrator capitalizes on the dynamic reconfiguration ability to assign tasks to drones

inflight when possible resulting in the shortest per task completion time, which in-

cludes waiting time since the request is received by the orchestrator. With Rarrival

= 5, the dynamic system deploys and completes tasks faster than the fixed NFV

and non-softwarized systems. Using fixed NFV, tasks wait for drones to return and

recharge before getting assigned, whereas with the non-softwarized system, tasks wait

further for drones of the required task type, leading to longer completion times. The
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Figure 3.4: The total energy consumption for the random tasks scenario with 5 drones
and Rarrival = 5 and 10 minutes

advantage of reconfigurability is also evident with Rarrival = 10, but with equal per-

formance for both dynamic and fixed NFV due to the lower utilization of the fleet.

Both softwarized systems show an advantage over the non-softwarized system, al-

beit with a narrower difference. The corresponding energy consumption is shown in

Figures 3.4a and 3.4b. The energy consumption difference decreases as Rarrival in-

creases. This is due to the fact that task requests are more spread out in time and

drones become less utilized. This increases the chances of having available drones

on standby to serve requests regardless of reconfigurability. As a result, many drone

flights in dynamic NFV will constitute a single task per trip leading to similar energy

consumption across all variants.

Next, we examine the relationship between the softwarization performance and

the size of the drone fleet. We fix the number of requests to 120 requests for both

predefined and random scenarios and vary the number of drones in increments of 5

starting from 5 up to 35. For each comparison, non-softwarized drones are divided
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Figure 3.5: Total completion time and energy consumption for 120 predefined tasks
with respect to the number of drones

equally to the five types of tasks.

Figure 3.5a shows the total completion time for 120 predefined task requests

against the number of drones. Tasks are completed faster using more drones. Natu-

rally, an abundance of drones reduces the performance gains of softwarization. How-

ever, the notable result here is that softwarization enhances the performance of a

limited number of drones to an extent equal to or better than a larger non-softwarized

fleet. For example, 5 and 10 softwarized drones perform similar to 10 and 20 non-

softwarized drones, respectively. The corresponding energy consumption is shown in

Figure 3.5b. Note that energy consumption does not increase with the number of

drones since it depends on the number of tasks and their respective energy require-

ments in addition to the distances from and back to the depot. As discussed earlier,

both fixed NFV and non-softwarized drones have the same energy consumption. Dy-

namic NFV reduces the energy consumption by about 14% in this instance due to
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drones traveling from one task to another more frequently than always from and back

to the depot. The distances traveled between tasks varies slightly depending on the

number of available drones due to the orchestrator assigning tasks to drones closer

to task locations. This results in slightly different distances travelled and energy

consumption with different numbers of drones.
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Figure 3.6: Average task completion time for 120 random task requests

Figures 3.6a and 3.6b show the average task completion time for 120 random task

requests with Rarrival = 5 and 10, respectively. In both figures, we also observe the

efficiency of five softwarized drones compared to the fixed NFV and non-softwarized

drones. This is due to the dynamic reconfigurability as the orchestrator can recon-

figure any available drone that can start the task in the shortest amount of time,

whether the drone is in standby or inflight, leading to a short time to start and com-

plete individual tasks. The same discussion of the previous setting (predefined tasks)

applies here in terms of the effect of the abundance of drones. Figure 3.7a shows the

total energy consumption. With a limited number of drones and short inter-arrival
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Figure 3.7: The total energy consumption for 120 random task requests

times, the system is clearly more utilized. However, dynamic NFV is able to conserve

energy by having drones transition from one task to another and avoid making more

frequent and longer trips to the depot. With more drones, dynamic NFV conservers

less energy as the system tends to utilize all available drones to serve requests faster

by deploying a single task per drone, which leads to similar energy consumption as the

alternative systems. A similar effect is shown in Figure 3.7b with a larger inter-arrival

time (10 minutes). Energy conservation is limited in this case as dynamic NFV tends

to deploy a single task per drone more often.

The effect of the inter-arrival time on the performance with regards to random

requests is explored next. A setup similar to the previous one is used with five drones

and 80 random task requests. Figure 3.8a shows the value of softwarization in terms of

average task completion plotted against Rarrival. The figure shows how the difference

in performance decreases as the inter-arrival time becomes larger and the system less

utilized. For energy consumption, as shown in Figure 3.8b, tasks become more spread
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Figure 3.8: The avg. task completion and total energy consumption for the random
tasks scenario with 5 drones plotted against Rarrival

out to the degree that most flights will carry out a single task at a time, making it

gradually equal in energy consumption to fixed NFV and non-softwarized drones as

Rarrival increases.

3.4.3 High Priority Scenario Results

In this section, we demonstrate the ability of softwarized drones with a preemptive

orchestration strategy to accommodate high priority requests. We compare the results

with the original strategy without preemption, as well as with fixed NFV and non-

softwarized drones. Furthermore, we examine the effect of preemption on low priority

tasks.

We demonstrate this scenario first with a varied number of random requests with

Rarrival = 5 minutes, to test the dynamic reconfigurability in a relatively utilized

system. Requests have a probability 0.2 or 0.4 for being high priority tasks. This

probability is denoted by Phigh. Request deadlines are uniformly distributed between
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5 and 15 minutes after request arrival times T arrivalr . In the simulation, the procedure

ImmTransit draws distances from a normal distribution with same parameters as

the Transit matrix. All other parameters are the same as previous evaluations. The

metric reported is the rate of successfully started high priority requests, denoted by

Rsuccess, which is the ratio of successfully started high priority tasks before their

deadlines. For the effect of preemption, we report the average task completion time

and the fraction of preempted tasks.

20 40 60 80 100 120
Number of requests

0.0

0.2

0.4

0.6

0.8

1.0

R s
uc
ce
ss

Fixed NFV
Dynamic NFV
Non-softwarized
Dynamic NFV (w/o preemption)

(a) Phigh = 0.2

20 40 60 80 100 120
Number of requests

0.0

0.2

0.4

0.6

0.8

1.0

R s
uc
ce
ss

Fixed NFV
Dynamic NFV
Non-softwarized
Dynamic NFV (w/o preemption)

(b) Phigh = 0.4

Figure 3.9: Rsuccess for high priority requests with 5 drones

Figures 3.9a and 3.9b show Rsuccess for high priority requests with five drones

while varying the number of requests from 20 to 120. We can observe how non-

softwarized drones are unable to satisfy more than 60%–40% of high priority requests

even with the prioritization of requests. On the other hand, all softwarized systems

(fixed, and dynamic with and without preemption) are able to satisfy the majority of

high priority requests but not all due to the demand for tasks and the limited number

of drones. However, with preemption of lower priority tasks, the dynamic system can
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satisfy almost all higher priority tasks, even with a limited number of drones and an

increasing number of requests.
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Figure 3.10: Effects of preemption on low priority tasks (Phigh = 0.4)

The effects of preemption on low priority requests are shown in Figures 3.10a and

3.10b. We only show results for Phigh = 0.4, as it is the more demanding instance. As

can be observed in Figure 3.10a the fraction of preempted tasks is less than 20% of

low priority tasks. This is in line with how the orchestrator avoids preemptions when

not needed. The average task completion time for low priority tasks is somewhat

affected due to the delay introduced by preemption (Figure 3.10b).

Next, we repeat the evaluation above but we set the number of requests to 120 and

vary the number of drones. Figure 3.11a shows the performance in terms of Rsuccess.

We observe the superior performance of preemptive dynamic NFV in contrast to the

other variants. Note that we can meet the demand for high priority requests with

a small number of drones due to the dynamic reconfigurability and the preemptive

strategy. On the other hand, with an abundance of drones, all variants converge to
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Figure 3.11: The performance of high priority tasks with 120 requests and varied
number of drones and the corresponding fraction of preempted tasks (Phigh=0.4)

the same performance. Figure 3.11b shows the respective fraction of preempted tasks

to the number of low priority tasks, which confirms that preemptions are needed with

a limited number of drones and are avoided when not needed, when a larger number

of drones is available.

3.5 Summary

In this chapter, we evaluated the gains of softwarization in softwarized drones. We

first discussed the motivations for drone softwarization to enable reconfigurable drones

to provide a variety of tasks. We also discussed the need for quantifying direct soft-

warization gains that further motivates softwarization. To this end, we presented

a model for softwarized drones where drones are reconfigurable using NFV and can

perform a multiplicity of dynamically configured tasks. The model incorporates two

orchestration strategies. The first strategy targets completion of tasks in the shortest
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possible time when the campaign is known in advance and also to deploy individual

tasks rapidly when requests arrive at random times. The second strategy is tailored

for scenarios with urgent requests and employs preemption along with the dynamic

reconfigurability to deploy high priority tasks immediately. We compared the perfor-

mance of the proposed model with variants exhibiting limited and no softwarization.

Our results show that a service provider can efficiently perform such a service and

complete a predefined campaign of tasks in a shorter period of time compared to

the alternatives. A short task completion time was also achieved for random tasks.

As well, most high priority tasks can be deployed before the expiry of their deploy-

ment deadline. More importantly, in the presented scenarios, softwarization allows a

smaller number of drones to perform similar or better than a larger number of drones

without softwarization.
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Chapter 4

Architecture for Softwarized Drone Networks

Motivated by the performance evaluation of softwarized drones in the previous chap-

ter, we follow by describing an architecture for softwarized drone networks that en-

ables softwarization and addresses challenges discussed in Chapter 2. This chapter

describes the general architectural requirements and components of the core manage-

ment system of softwarized drones to enable reconfigurable drone networks.

4.1 Introduction

We propose an architecture for softwarized drone networks based on an extended SDN

architecture. The architecture provides a reconfigurable drone network for different

services and applications enabled by programmability, reconfiguration, and central-

ized control through SDN and NFV. Drones represent the programmable nodes of the

network, and they are equipped with various sensors, network radios, and computing

resources, allowing drones to perform network and task-related functions implemented

as on-board VNFs. The goal of this architecture is describing the requirements to

enable the softwarization and add the component that deal with SDN control con-

nectivity and NFV orchestration as described in Section 2.3.
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Several architectures were proposed in the works presented in Section 2.2.4. Our

architecture was one of the earliest proposals of softwarized drone networks [ATH19a].

Our proposed architecture is differentiated by the following aspects:

• enables both SDN and NFV capabilities,

• incorporates deployment modules concerned with initial planning and deploy-

ment of the network and configuration of SDN according to requested services

• addresses the challenge of SDN control connectivity during inaccessibility to

ground infrastructure

• employs deployment and dynamic orchestration schemes of drone networks de-

fined by SFCs.

The remainder of this chapter is organized as follows. An overview of the ar-

chitecture is given in the next section, followed by a description of the architecture

components in Section 4.3. Example use cases are discussed in Section 4.4.

4.2 Architecture Overview

The overall network architecture is depicted in Figure 4.1. The infrastructure layer

is comprised of programmable drones that are flexible in their network structure and

functions. The network is managed by a core management system that consists of two

primary components. The first component is the drone deployment modules, which

are a collection of modules and facilities that carry out the planning and deployment

of the drone network. The second component is the SDN control platform, referred to

as SDNC. SDNC is the SDN controller software that manages the network infrastruc-

ture comprising programmable drones. SDNC exposes an NBI to enable higher level
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components realized as SDN applications to implement the control of the network

and mission. SDNC also controls the network infrastructure through a control chan-

nel and protocol representing the SBI (e.g., OpenFlow). The interface is extended

to support a wide range of messages for monitoring, command and control of drones

and the mission, and the dynamic reconfiguration of drone virtualized functions. The

shaded components in Figure 4.1 represent components we propose in the chapters

following as part of this thesis.

Drone Network Core

Deployment Modules SDN Control (SDNC)

SDN Controller

Mission 
Monitoring 
& Control

Dynamic 
Aerial SDNC
Adjustment

Dynamic NFV 
Orchestration

Dynamic 
Network 
Functions

Deployment 
Modules

Initial Aerial 
SDNC 

Deployment  

Initial NFV 
Network 

Deployment

Control Channel 
Southbound Interface (SBI)

Application Layer
Control Layer

Northbound Interface (NBI)

Infrastructure Layer 
(Data plane)

VNFs

VNFs

VNFs

Ground network 
infrastructure, end 
users & devices 
(optional)

Figure 4.1: The proposed architecture for softwarized drone networks

Missions are specified in terms of the SDN applications running on top of the

SDN controller and used to manage the mission and the network, as well as the
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VNFs images to be deployed onto the computing resources of each drone. For ex-

ample, for a sensing mission, SDN applications may include monitoring and control

applications that collect measurements from drones, monitor the mission, and present

real-time information in a user interface made for mission operators. Mission control

applications may receive commands from operators to direct the mission operation.

Other SDN applications include dynamic network functions tasked with implement-

ing the networking aspects and forwarding traffic through available links. The VNFs

running on drones can include VNFs that perform network functions, control drone

flight paths, or utilize the on-board sensors to collect data. VNFs can also implement

local on-board intelligence using, for example, machine learning models to analyze

acquired data and deliver relevant results. Such VNFs can optionally interact with

corresponding SDN applications or ground users depending on the use case require-

ments. Additional mission specifications can include the required configuration data

used by the supplied applications and VNFs, such as geographic location limits and

predetermined flight trajectories.

4.3 Architecture Components

The components of the architecture are as follows.

Drones: Drones represent the physical infrastructure nodes in the SDN architec-

ture. A typical drone is equipped with one or more wireless interfaces and a set of

sensors commonly used. Drones are also equipped with computing resources used by

the programmable software components described below.

Drones can have varying roles depending on their capabilities and assigned roles

given the mission requirements. Two main roles which can be assigned to drones are,
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task drones and network drones. Task drones perform the actual tasks of the mission,

such as sensing, monitoring, or providing wireless access to ground end users, while

network drones provides connectivity for the mission. Both task and networking

related functions as well as the overall configuration of drones are managed through

the assumed extended SBI.

In terms of network functionality, drones can establish connectivity to terrestrial

networks or function as the nodes of a wireless multi-hop network, depending on

the deployment scenario. Network drones can be separate from task drones, or a

capable drone can carry out both roles provided if the drone is equipped with the

needed components and resources. Network drones perform additional roles such as

data relaying (forwarding) and SDN control. SDN control drones are aerial SDN

controllers that are deployed with the drone network to allow the network to operate

in a geographically distant area from the ground infrastructure as will be discussed

later.

Since drones represent the softwarized infrastructure, drones must consist of hard-

ware and software components that enable programmability and reconfiguration.

Similar to architectures such as [Nog+18; RS17], the expected internal drone compo-

nents are depicted in Figure 4.2, and described as follows.

• Hardware Components: The hardware components of the drone include the

computing and networking devices, sensors, and any specialized equipment such

as thermal imaging cameras.

• Operating System and Virtualization Manager: The hardware components are

abstracted by an operating system (OS) with a hypervisor or virtualization

manager for virtualizing the underlying hardware. The virtualization manager is
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responsible for instantiating and managing VNFs run on drones and facilitating

how VNFs access the underlying physical resources. The virtualization manager

is configured and instructed through the control interface. A light-weight form

of virtualization, known as containerization can be used to run VNFs [Fel+15]

to preserve computing resources. Rather than supplying VNFs as full virtual

machines (VMs) each with its own OS kernel, VNFs are supplied as containers,

consisting of VNF programs that run in isolation and share the host OS when

instantiated.

• SDN Control Channel : This component is one end of the control channel be-

tween the SDNC and drones. It operates at a lower level associated with the

operating system and virtualization manager. Control messages from the SDNC

configure the different components of drones. These include instructions for

configuring the hardware components and controlling network routing and for-

warding. Instructions also include those for configuring flight control and VNF

instantiations. All such commands are delegated to relevant components within

drones. Through this interface, drones report their current state such as position

and battery level back to the SDNC.

Apart from the OS and virtualization manager, the remaining components are

virtualized components deployed as VNFs:

• Network Forwarding : responsible for forwarding network traffic through the

available wireless interfaces. It represents a virtualized forwarding or routing

table for the drone allowing it to act as an SDN device.

• Flight Control : responsible for flying the drone. Its functionality is controlled by
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SDNC applications and may implement autonomous or preprogrammed flight

control following preconfigured trajectories.

• Additional VNFs : are related to the mission and can be configured and instan-

tiated on the drone. VNFs include task-specific VNFs intended to run on the

drone if needed such as sensors and camera drivers and VNFs for traffic or data

processing.

Network 
Forwarding Flight Control Other VNFs

Hardware Resources
(Sensors, Computing, Networking, and Storage)

Containerized VNFs

OS & Virtualization Manager
Control channel 

(SBI)

Figure 4.2: Drone architecture

Drone Network Core: The network core, as depicted in Figure 4.1, consists of

two components, namely, the network deployment modules and the SDNC compo-

nents, which are described as follows.

Deployment Modules : This component is a collection of planning and deployment

modules responsible for configuring the SDNC and drones for the mission according to

requirements specified by the service requester. The component is assumed to be as-

sociated with physical stations for drone payload installation, setup and deployment.

This configuration is done according to the modules implementing initial planning

and deployment schemes of the network. Such schemes select the drones required for
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the task and install required configuration and VNF images to be used. The SDNC

is configured with the supplied SDN applications. The modules include deployment

schemes for specific use cases as well as the initial deployment schemes proposed in

this thesis.

SDN Control (SDNC): This component consists of the SDN controller and several

accompanying applications. While traditionally the SDN controller is responsible for

controlling the network data plane, here it is extended to support the overall con-

trol of the drone network including mission command and control, drone monitoring

and reconfiguration, in addition to network functions. The SDN controller can be

an extensible off-the-shelf SDN controller platform such as OpenDayLight [Ope] and

ONOS [Ono]. Typically, the SDN controller keeps track of the network topology and

maintains an up-to-date global state of the network. To support drone networks, the

SDNC must maintain additional state information related to drones, such as current

positions and battery levels. As well, the SDNC exposes a programming interface (the

NBI) to higher-level SDN applications. The higher-level applications include mission

monitoring and control applications which are mission or task-related functionalities

as described in Section 4.2. SDN applications also include dynamic network functions

such as routing protocols, network or security policies, and NFV orchestration mod-

ules. Such applications rely on the network state maintained by the SDN controller

to support their decisions. In turn, such applications push commands and configu-

rations through the NBI to the SDN controller, which the controller push to drones

via the control channel (SBI). Drones and active VNFs receive such commands and

may communicate back with corresponding applications in SDNC through the control

channel.
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The proposed dynamic schemes, namely the Dynamic Aerial SDN Control Ad-

justment and the Dynamic NFV Orchestration, part of our proposals discussed in

Chapter 5 and Chapter 6, are implemented as SDN applications and are used when

needed. The additional network functions are additional SDN applications supplied

for specialized network functions (e.g., routing) and specialized types of missions.

Ideally, the SDN controller and applications reside in servers or drone control

stations. We assume in such cases that the control channel can be established using

a suitable wireless technology. For missions in remote areas with no access to an

infrastructure, drones can be configured as controllers and are deployed as proposed

in Chapter 5. Controller drones are configured as instances of SDNC with a select set

of SDN applications as needed. Multiple controller drones can exist in addition to the

ground SDNC, each controlling a different set of drones, and as a whole representing

a logically centralized SDNC.

End Devices and Ground Infrastructure: End devices are optional com-

ponents that represent equipment used by end-users to access the network service

provided by the drone network.

4.4 Use Cases

A network system based on this architecture is suitable for operators that require

limited deployments or others that require multi-purpose large-scale deployments.

Below we gives examples of use cases of this architecture.
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4.4.1 Small-Scale Scenarios

This type of deployment suits small and recurrent single applications. A matching

example is monitoring and scanning of areas impacted by a natural disaster, such

as hurricanes and earthquakes. A drone network system based on our architecture

can be utilized by agencies that handle such situations. The agency maintains a

fleet of drones with SDN-enabled components and core management system, as well

task-specific equipment such as thermographic and regular cameras. The softwarized

components that define such a network include SDN applications that conduct the

overall command and control of the mission with associated user interfaces for human

operators. Drone VNFs are also provided for capturing and encoding photos and video

from drone cameras and forwarding them to operators or end devices for monitoring

purposes. Such VNFs may incorporate machine learning models for identifying and

mapping affected areas, which are made available to operators without the need for

further processing. All softwarized components are updated regularly to improve the

mission operating and networking performance without requiring frequent updates to

physical drone components.

4.4.2 Large-Scale Scenarios

This type of deployment is suitable for a large SP in an urban area that owns a fleet

of drones that can be deployed as a flying network infrastructure integrated with the

terrestrial network. Assuming the existence of facilities that automate configuration

and drone deployment, the drone network can be utilized for several purposes. The SP

can be a telecom provider that employs some drones in the fleet as aerial BSs to assist

the coverage of mobile users. The SP uses this flexibility to meet time-varying service
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demands, improve or compensate coverage in crowded events or during outages, in

which drones provide connectivity to mobile users and also establish backhaul links

if needed. The computing resources can also be utilized to deploy computing services

at the edge of the network and close to users. Examples of such services are discussed

in Chapter 2 and include information caching and offloading of resource-intensive

computation tasks from user devices. The reconfigurability of the system allows the

SP to effectively manage the provisioning of services according to demand.

Due to this reconfigurability, the SP can offer its drones as a service to other

customers or entities interested in performing drone tasks as proposed in Chapter

3. Customers of drone services can include city municipalities, law enforcement,

researchers and others who may optionally use customized software components to

enable their use cases of drones. The SP capitalizes on the flexibility and automation

of its system to reconfigure drones and provide the requested services.

4.5 Summary

In this chapter, we proposed a softwarized drone network architecture and described

its components. The architecture enables the flexible deployment, management and

reconfiguration using SDN and NFV technologies. As well, the architectures ad-

dresses current limitations relating to SDN control and orchestration of NFV-enabled

networks. As part of this architecture, Chapter 5 is dedicated to SDN control deploy-

ment and adjustment, while Chapter 6 is dedicated to NFV-based deployment and

orchestration.
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Chapter 5

SDN Controller Deployment

Ensuring the SDN controller connectivity in software defined drone networks flying

in areas isolated from ground network infrastructure is paramount. In this chapter,

we discuss the need for deploying aerial SDN controllers, and we propose schemes for

the deployment and dynamic adjustment of drones with SDN control capabilities.

5.1 Introduction

The controller is a key component in the SDN architecture as the controller imple-

ments the data plane (forwarding) logic. The controller, through its core functionality

and with decisions from higher level SDN applications, interacts with network nodes

(network devices) to monitor the network and build a global network view. As well,

the controller programs the data plane behavior by sending instructions to the net-

work nodes. To do so, the controller maintains control links or connections with all

network nodes to enable continuous messaging between the controller and network

nodes. Although the controller is logically centralized, multiple distributed controllers

can exist to increase the capacity and resilience of controllers, which collectively co-

ordinate to monitor and program the network. Due to the role of the controller in
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SDN, the processing capacity of the controller and the connectivity to network nodes

are key to the network performance. The controller allows the network to utilize

the flexibility of SDN, and also allows the controller to quickly react to changes in

network conditions and program the network accordingly. As a result, considerable

research efforts focused on the SDN controller placement, known as the controller

placement problem (CPP), in wired networks. The CPP is concerned with determin-

ing the number and locations of controllers needed for a given network topology. The

CPP also determines the assignment between controllers and network devices (i.e.,

switches in wired networks) [Wan+17]. We overview works related to CPP in Section

5.2.

In drone networks, maintaining the SDN controller connectivity with network

nodes becomes a challenge due to the network mobility and changing topology. As

the network has some degree of mobility, network nodes need to maintain connectivity

with the controllers located in the ground network infrastructure or control stations.

The lack of control channel connectivity will limit where nodes can be deployed in

many practical scenarios. This aspect is especially challenging when the drone net-

work is required to operate independently from the ground network infrastructure

in a remote area or where no other network infrastructure is available. We propose

deploying dedicated drones as SDN controllers to allow more flexibility in network

deployment locations and mobility while the network is separated from ground in-

frastructure. Having dedicated controllers allows for more freedom in positioning

controllers independently from the topology of the drone network. Also, it allows

for more flexibility in optimizing control links and inter-controller links as discussed

below.
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With that in mind, the dynamic and wireless nature of drone networks mandates

careful consideration to controller deployment. Due to the range of control links,

the processing capacity of controllers and the size of the area where the network is

deployed, multiple drones may be required to operate as controllers. In addition,

inter-controller connectivity is also required for controllers to collectively maintain

the state of the network and control the network accordingly. As well, the mobility

of the network and the continuous change in topology requires that controllers adapt

to such changes to maintain connectivity to network nodes.

To this end, our aim is to address the aspects discussed above by implementing

controller deployment schemes that deploy a minimum number of drones that operate

as SDN controllers, and dynamically readjust controller locations to maintain control

links as the network topology evolves during the mission. The goal of the dynamic

adjustment scheme is to readjust the controller deployment in the shortest possible

time.

The contributions presented in this chapter are as follows. First, we propose a

controller deployment scheme that initially deploys a minimum number of drones

as controllers as part of the drone network. Controllers are deployed to ensure the

connectivity between controllers and network nodes through direct single-hop links

within a threshold of a link quality metric and within the processing capacity of con-

trollers. The scheme also ensures inter-controller connectivity and prioritizes direct

inter-controller links but with the flexibility to allow for indirect links. Second, we

propose a dynamic deployment scheme that updates the deployment by maintaining

the original constraints while minimizing the controllers’ transition distance. This

is done to make controllers readjust quickly and become available to moving nodes



5.2. CONTROLLER PLACEMENT IN THE LITERATURE 83

while limiting the energy required to travel. We also present alternative initial and

dynamic schemes used for cases when only a limited number of controllers can be

deployed. Evaluations show the possible results in a number of deployment scenarios.

The reminder of this chapter is organized as follows. In the following section, we

discuss related works and the motivation to address controller deployment in drone

networks. In Section 5.3, we discuss the considered scenario, network architecture,

and assumptions. Then, we describe the details of our system model and the proposed

initial deployment and dynamic adjustment schemes. The evaluation and results are

presented in Section 5.4. Lastly, we provide some additional remarks and recommen-

dations followed by a summary of this chapter.

5.2 Controller Placement in the Literature

SDN controller placement problem or the CPP is one of the key topics in the SDN lit-

erature in wired datacenter and Wide Area Networks (WANs). The work by Heller et

al. [HSM12] introduced the CPP and considered the average latency between switches

and controllers, then others followed suit. Existing works differ in the placement met-

rics used, such as switch-controller latency [HSM12], controller capacity [Yao+14],

and deployment cost [Bar+13]. Other works focused on the availability and fault

tolerance of SDN controllers [Als+18; Tan+18]. CPP is also examined considering

inter-controller connectivity and the resilience of the distributed control plane. In

[Tan+18], Tanha et al. present a capacity-aware placement scheme that places and

assigns multiple controllers to each switch while guaranteeing switch-controller and

inter-controller delay. An important aspect in CPP is the dynamic adjustment to con-

troller placements and assignments to switches considering current conditions of the
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network. In [Bar+13], authors build a dynamic controller provisioning scheme that

runs at specified periods, activating and deactivating controllers depending on current

demand. The placement in this scheme considers various controller costs including

flow-setup time and statistics collection, as well as inter-controller connectivity.

In [Abd+17], Abdel-Rahman et al. introduced wireless CPP (WCPP) where each

of the links between switches and controllers are wireless. A stochastic approach was

used to model the uncertainties of the wireless channel, with the goal of minimizing

the number of controllers. In [DHZ18], Dvir et al. introduced another model for

WCPP using a new placement metric called transparency, which is the marginal

average latency in the data plane caused by interference from controllers. The model’s

objective is to minimize the average outage of control links and the average latency

while constraining the link throughput and transparency below certain thresholds.

While incorporating SDN into this domain has been discussed in works such as in

[Seç+18a], the requirements and deployment objectives of the control plane in drone

networks has not been studied. As discussed in Section 5.1, certain deployments may

require deploying drones as controllers to increase the deployment flexibility of the

network. This introduces additional challenges since these deployments require con-

sidering the number of controllers and the mobility of the drone network. Controller

placement needs to be dynamically adjusted so that all controlled nodes (drones)

have persistent access to controllers. None of the above works can be applied directly

to our proposed architecture. Existing works considered fixed network topologies

where controller locations are also fixed. Works addressing WCPP did not consider

inter-controller connectivity. In our architecture, controllers are airborne and can be

positioned freely in space. We also consider a dynamic network topology due to drone
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mobility. This imposes an additional challenge which requires continuous adjustment

to controllers to maintain control link connectivity.

5.3 System Description

In this section, we describe the deployment scenario, network architecture, and as-

sumptions. Then, we describe the system model and the initial deployment and

dynamic adjustment schemes that we propose in this chapter.

5.3.1 Deployment Scenario and Network Architecture

We consider a scenario where the drone network is deployed to conduct certain tasks

such as monitoring a remote area and providing connectivity to ground users in a

disconnected area. In such a setting, the drone network forms a topology over the

target area where data traffic is exchanged between drones in the network. As well,

drones have a limited degree of mobility, such that they hover and maintain a topology

for a certain amount of time, then their locations are adjusted at some points in time

to accommodate new requirements. As the network is based on SDN, controllers are

required to monitor and program the data plane according to network conditions. Due

to the lack of ground network infrastructure in this scenario, the deployed network

needs the deployment of drones as SDN controllers along with the network.

The physical architecture in this scenario is depicted in Figure 5.1. The architec-

ture constitutes instances of the SDNC deployed as control drones. These are deployed

to control the network while away from the ground core system. Hereinafter, we refer

to control drones as controllers, and refer to all network nodes as nodes and drones

interchangeably.
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Controllers
(SDNC instances)

Drone network 
nodes

Network links
Control links
Inter-controller links
Indirect inter-controller 
links

Figure 5.1: A schematic of the physical architecture of the network and controller
deployment, including control links and types of inter-controller links

As shown in Figure 5.1, network nodes are interconnected as required for the

mission. Controllers establish control links to nodes to monitor and reconfigure them

as dictated by the SDN applications overseeing the mission. Controllers are also

connected through inter-controller links to maintain a synchronized global view of

the network state. Controllers are inter-connected directly or by using indirect links

through the drone network.

The network deployment is done within the framework of the logical network

architecture discussed in Chapter 4. We assume a drone network is already deployed

and adjusted at different times according to mission requirements. Controllers are

deployed separately by the initial deployment scheme we propose in this chapter

and part of the network deployment modules. Dynamic adjustments to controllers

in response to network topology changes are carried out by the proposed dynamic

scheme, and considered as part of SDNC, as the scheme relies on the current state of

the network given by SDNC.
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5.3.2 Assumptions

We assume that the network can afford to dedicate a number of network nodes

(drones) as controllers, with the freedom to move them independently from the net-

work topology required by the network. Generally, many existing works determine

the controller placement by minimizing the node-controller latency or by ensuring

that it stays below a certain threshold [Lu+19]. This is in order to minimize the

effect of the control latency on reconfiguring the network and setting up network

flows. In this work, we ensure or maximize direct single-hop connectivity between

controllers and network nodes, and assume that control links use different channels

from the network data links. In this manner, we indirectly reduce the node-controller

delay and its potential negative effects on network performance.

5.3.3 System Model

The drone network comprises a connected and undirected graph G = (D,E), where

the vertices set D = {d1, d2, . . . , d|D|} is the set of network drones which are also

considered SDN devices, E is the set of edges representing the wireless links formed

between each pair di, dj ∈ D, and |D| is the number of drones in the network. Each

network drone di generates a number of requests to its controller. The rate of requests

in a unit of time is Rdi

The network system will deploy a number of controllers limited by the maximum

number of controllers to deploy N , which is defined by the network operators accord-

ing to available budget. Controllers can be deployed anywhere in the 2D plane of the

coverage area at a suitable altitude. L is a discretized set of all allowable controller

locations, where li ∈ L represents a possible 2D coordinates for a controller location.
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The placement will result in Nctl controllers represented as C = {c1, c2, ...cNctl
}. Each

c ∈ C maps to a placement location li ∈ L. All controller drones have a capacity for

processing drone requests expressed as Ccap.

The wireless communication model between all drones including controllers is

based on a Friis-based free space propagation model, where path loss, in dB, over

transmission distance d is defined as [LH06]:

PL(d) = 10log10

(
4πdfc
c

)2

(5.1)

where fc is the carrier frequency and c is the speed of light.

5.3.4 Initial Controller Deployment

Initially, the ground station deploys the drone network and determines its topology

and physical locations for the drones. Once a need for a flying control plane is

determined, a placement will be computed for controller drones. The number of

controller drones and their locations will be determined, as well as the assignment

of each node to a controller. The assignment of drones to controllers is based on

establishing a single-hop control link within a path loss threshold. The joint placement

and assignment scheme deploys a minimum number of controllers, limited by the

number of available drones that can function as controllers. We consider an alternative

scheme that deploys a fixed and predetermined number of controllers. This scheme

is useful when the network operator has a limited number of drones that are capable

to function as SDN controllers. In this scheme, controllers establish direct links to

all nodes within their control link range. Controllers then may establish indirect

control links with the remaining nodes. The objective of such scheme is to place the



5.3. SYSTEM DESCRIPTION 89

controllers so that most nodes are within the range of control links. We refer to these

two schemes as MinCtl and FixedCtl, respectively.

For connectivity between controllers, each controller must maintain a connection

to every other controller to enable synchronization of the state of the network. Ideally,

direct connections between controllers is best to reduce latency. However, this can

make the deployment difficult to achieve or not feasible given the limited number of

controllers all attempting to maintain connectivity to all network nodes. A possible

approach is that controllers utilize multi-hop connections through the drone network,

forming indirect links overlaid within the drone network links when it is difficult to

form direct connections. However, this approach may overuse limited network and

computational resources. We adopt a balanced approach by placing controllers in

a way that maximizes single-hop links and leverage multi-hop links when needed to

ensure inter-controller connectivity as shown in Figure 5.1.

Deployment Problem Formulation

Here we describe the formulation for initial deployment, which is a joint controller

placement and assignment problem. Every placement of a controller at li and its

assignment to any di is constrained by achieving a threshold for a link quality metric

for the wireless control channel established between the controller-node pair. Let

Qdi,lj denote the quality of wireless channel that can be achieved between di and a

controller placed at lj. The quality metric can be the transmission delay or channel

path loss. The threshold for this required measurement is given by Qmax.

We model inter-controller links by considering direct and indirect links between

any pair of controllers located at li, lj. Let Qli,lj denote the path loss between a pair
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of controllers at li, lj. A direct link can be established if Qli,lj ≤ Qmax, otherwise, an

indirect link is considered. An indirect link is a link over the drone network and allows

a pair of controllers to communicate using multi-hop links using network drones as

intermediate hops. We express the availability of any type of inter-controller links

between a pair of controllers li, lj in terms of hop count Lcclilj defined as:

Lcclilj =


1 if Qlilj ≤ Qmax

hopslilj otherwise

(5.2)

where hopslilj is the number of hops in indirect links between controllers at li, lj when

connected to the drone networks. The maximum number of hops for inter-controller

links is limited by hopsccmax.

To calculate hopslilj , we construct a master graphGall that constitutes the network

nodes (all nodes in G) and controller nodes equal to the total number of all possible

locations in L. Then, links are added between controllers and all network nodes

within the control channel range (Qli,lj ≤ Qmax). Then, hopslilj is the shortest path

between the a pair of controllers at li, lj in Gall.

The decision variables of the problem are defined as follows. We define yli = {0, 1}

as a binary variable to indicate if a controller is placed at li. We also define the binary

variable xdilj = {0, 1} to express assignment of drone di to a controller located at lj.

We define the binary variable adi = {0, 1} to indicate whether di is assigned to any

controller.
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The MinCtl Scheme

The objective function of this scheme aims to minimize the number of deployed con-

trollers:

Nctl =
∑
lj∈L

ylj (5.3)

Additionally, we attempt minimize the number of hops for inter-controller con-

nections, which increases chances of one-hop connections (Lcclilj = 1):

Htotal =
∑

li,lj∈L,i 6=j

yliyljL
cc
lilj

(5.4)

Then, the model, denoted as program MinCtl, is formulated as:

min w1Nctl + w2Htotal (5.5)

subject to xdilj ≤ ylj ∀di ∈ D, lj ∈ L (5.6)

xdilj ·Qdilj ≤ Qmax ∀di ∈ D, lj ∈ L (5.7)∑
lj∈L

xdilj = 1, ∀di ∈ D (5.8)

∑
di∈D

xdilj ·Rdi ≤ Ccap ∀lj ∈ L (5.9)

∑
lj∈L

ylj ≤ N (5.10)

yljyljL
cc
lilj
≤ hopsccmax ∀li, lj ∈ L, i 6= j (5.11)

where w1 and w2 are weight factors used to adjust the terms of the objective function.

The first constraint (5.6) expresses the assignment and placement relationship

where di can be assigned to a controller at lj only if a controller is placed at li. Using
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the constraint in (5.7), the drone-controller assignment is limited by the required

path loss Qmax for the link between them. The constraint in (5.8) ensures that

each drone is assigned to one controller only. Then, using the constraint in (5.9),

each controller drone is assigned a number of drones with demand Rdi below its

processing capacity. The constraint in (5.10) limits the number of placed controllers

to the number of available controllers N , and the constraint in (5.11) ensures that the

number of hops for inter-controller links that exist between any pair of controllers is

below the maximum allowed number hopsccmax.

Alternative Scheme (FixedCtl)

The FixedCtl scheme aims to utilize the limited number of available controllers to

be assigned and connected directly to most drones, given all constraints expressed

before. The goal is to maximize the number of assigned drones expressed as:

Atotal =
∑
di∈D

adi (5.12)

Note that the scheme does not consider the indirect connectivity to remaining nodes.

However, if we maximize the number of nodes assigned with direct control links, it

is easy to connect to the remaining nodes through the shortest paths. In addition,

we also attempt to minimize Htotal to reduce the number of hops for inter-controller

links.
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The scheme can be formulated as follows (program FixedCtl):

min − w3Atotal + w2Htotal (5.13)

subject to adi = or{xdilj=1
, . . . , xdilj=|L|} ∀di ∈ D (5.14)∑

lj∈L

xdilj ≤ 1, ∀di ∈ D (5.15)

∑
lj∈L

ylj = N (5.16)

(5.6), (5.7), (5.9) and (5.10)

The combined objective function maximizes Atotal (by minimizing the negative

value) and minimizes Htotal. The constraint in (5.14) ensures that adi = 1 if di is

assigned a controller. This expression is derived from all values of xdilj∀lj ∈ L using

the logical OR operator [CBD11]. The constraint in (5.15) ensures that nodes are

assigned to none or one controller at most while the constraint in (5.16) ensures that

only N controllers are deployed.

5.3.5 Dynamic Controller Adjustment

During the operation of the network, the formation of the drone network may change,

and controller links may break as a result of changes. In turn, the drone-controller

assignment needs to be updated. However, only updating the assignment using the

same controller locations may not be feasible, as not all moved drones can establish

links to controllers. In such cases, controller locations need to be recomputed to

accommodate changes to the network topology and to allow re-establishing links

with their assigned drones. Since controllers are already deployed, they will travel to
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their new locations in the shortest possible time to become available to their assigned

drones. Controller travel distance needs to be minimized, as traveling long distances

at high speeds can drain energy resources quickly. As well, controllers must remain

connected to each other to ensure a timely synchronization of the state of the network.

The dynamic scheme involves multiple steps. First, it attempts to reassign mov-

ing drones with broken control links to other controllers without changing controller

locations. This is accomplished using a simple reassignment procedure that abides

by the initial constraints (capacity and link quality). This step is referred to as the

reassignment step. When a simple reassignment is not feasible due to unsatisfied con-

straints, the dynamic scheme performs the next step, which is computing an updated

controller formation and assignment using the already deployed set of controllers.

The scheme attempts to find new locations that require a short time for controllers to

transition to, by minimizing the controllers’ total travel distance. The minimization

of the transition distance allows controllers to adjust quickly to keep up with the

network and travel within speeds that conserve energy. This step is referred to as

placement with minimum transition distance. Finally, when a new formation of exist-

ing controllers is no feasible, the scheme falls back to the initial deployment scheme,

which may require deploying additional controllers and more time for the controllers

to travel. We refer to this step as unrestricted placement.

In what follows we describe in detail the dynamic scheme, named Dyn-MinCtl,

which is used alongside the MinCtl initial scheme. An alternative dynamic scheme

based on FixedCtl is described next.
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Dyn-MinCtl Scheme

The steps of the dynamic scheme are outlined in Algorithm 5.

Reassignment: The reassignment step is implemented by the procedure listed in

Algorithm 6. The procedure attempts to assign drones to existing controllers without

moving controllers. The procedure receives a set of updates U , each u ∈ U is expressed

as a tuple 〈di, locdi〉, where di ∈ D is a drone that traveling to some location locdi . The

procedure iterates the set of updates, and for each update, the procedure first checks

whether the currently assigned controller is still able to communicate with di when

di arrives at locdi . If that is the case, then the procedure continues to the next u ∈ U

(lines 3-7). If di, when at locdi , cannot communicate with its assigned controller,

then the procedure, utilizing its knowledge of the other controller locations, lists all

controllers and computes their Qdi,li . For any controller located at li ∈ L, if Qdi,li is

less than or equal to Qmax, then it is added to a list of controllers that it is possible

to be assigned to di. Then, the list is traversed to pick the first controller that can

satisfy the capacity constraint (lines 8-21).

Placement with Minimum Transition Distance: If there are remaining

nodes that cannot be assigned to any current controllers, then we recompute an

updated placement and assignment that requires a minimal time to readjust. To

Algorithm 5 Steps of the dynamic scheme

1: Reassign(U) . Reassignment step
2: if there are unassigned nodes then
3: sol = Dyn-MinCtl() . Placement with minimum transition distance
4: if sol is infeasible then
5: MinCtl() . Unrestricted placement
6: end if
7: end if
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Algorithm 6 Reassign

1: Output: new drone assignments for U , unassigned drones
2: unassignedDrones ← empty
3: for 〈di, locdi〉 ∈ U do
4: compute path loss between di at locdi and its current controller
5: if path loss ≤ Qmax then
6: continue
7: end if
8: nearbyCtls ← empty
9: for c ∈ C do
10: compute path loss between c and di at locdi
11: if path loss ≤ Qmax then
12: add c to nearbyCtls
13: end if
14: end for
15: while nearbyCtls is not empty do
16: c ← pop(nearbyCtls)
17: if c.load +Rdi ≤ Ccap then
18: assign di to c
19: break
20: end if
21: end while
22: if di is not assigned then add it to unassignedDrones
23: end for

achieve this, we adapt the initial placement model. First, we limit N by the number

of deployed controllers Nctl as we are only repositioning existing controllers. Then,

we attempt to minimize the total relocation distance expressed as:

Disttotal =
∑
lj∈L

ylj · dist(lj, P rev(lj)) (5.17)

where dist(., .) is the distance between two controller locations. Prev(lj) maps lj to

a controller location in the previous placement. A mapping to previous locations is
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required to calculate transition distances between existing and new controller posi-

tions after each placement. To obtain such mapping, we map each candidate location

lj ∈ L to the closest location of an existing controller from the previous placement.

This effectively clusters L into k partitions (k = Nctl). Each of the resulting partition

S = {S1, S2, . . . , Sk}, where each Si ⊂ L, is associated with an existing controller

location. Then we limit each partition to one new controller placement, and consider

each placement a new location for each existing controller in its partition. We achieve

this using the constraint: ∑
lj∈Si

ylj = 1,∀Si ∈ S. (5.18)

This allows us to map new placements to existing ones and compute the distance

difference, and then minimize how far a controller can move using (5.17).

When using the dynamic scheme in conjunction with the MinCtl scheme, the

objective is to reduce the relocation distance, and if possible, minimize hops for inter-

controller links. Minimizing the number of controllers is not needed in this step since

we are only attempting to reposition existing ones. This step is implemented using

the following program (program Dyn-MinCtl):

min w4Disttotal + w2Htotal (5.19)

subject to
∑
lj∈L

ylj = N (5.20)

(5.6)-(5.9), (5.11), (5.18)

Unrestricted Placement: If no feasible placement can be obtained, then we

resort to finding a new placement using the initial placement program. This step does
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not involve restricting the number of controllers to Nctl and limiting travel distances

using the constraint in (5.18). If the resulting Nctl increases from the previous number,

then we consider additional controllers as new ones that need to be deployed. If Nctl

decreases, extra controllers are assumed to travel back to the ground station.

After obtaining an unrestricted placement, we determine which controller travels

to which new controller placement location. This includes determining which con-

troller travels back to the station, or which controller travels from the station to a

new placement locations. Therefore, we compute a mapping between existing and

new placement’s locations that allows each drone to travel to the closest new place-

ment location. The mapping allows us to compute the total controller transition

distance resulting from the placement update.

The mapping can be determined by solving an assignment problem that assigns

locations of existing controllers to new ones such that the total travel distance is

minimal. This problem corresponds to the linear sum assignment problem [RT12],

which can be demonstrated by the worker-job assignment problem with the goal of

minimizing the total cost of assignments. We consider workers as the new placements

and jobs as the existing placements. The assignment cost is the distance between

pairs of existing and new locations.

Suppose the current number of controllers is N̄ctl. After a network update, the

dynamic scheme producedNctl controllers using unrestricted placement. To determine

the mapping, we construct two ordered vectors A = [a1, a2, . . . aN ], containing existing

placements positions, and B = [b1, b2, . . . bN ] containing new placement positions,

where N = max{N̄ctl, Nctl}. If either vector A or B is short of N elements, the vector

is complemented with additional elements representing the location of the station
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locst = (0, 0). Mapping locations to locst allows for determining controllers incoming

or leaving from or to the station. We construct a distance matrix MN×N , where Mij

is the distance between ai and bj. The goal is to find a one-to-one mapping f : A→ B

that minimizes the total distance:

Disttotal =
∑
ai∈A

Mi,f(i) (5.21)

The optimal mapping will determine the distances to transition to new placement

positions. This assignment can be solved optimally using the Hungarian method in

polynomial time [Cro16].

Alternative Scheme (Dyn-FixedCtl)

The alternative dynamic scheme is used in conjunction with the FixedCtl initial

placement scheme. It involves a reassignment step and, when required, a placement

with minimum transition distance.

Reassignment: The reassignment step is the same as the step described in Al-

gorithm 5. The only difference is that the update set U involves only drones with

assigned controllers. If one of such drones cannot be assigned a controller, then the

next step is engaged to avoid losing assignments. The goal of this step in this scheme

remains to avoid expensive computation when the same assignment can be maintained

with simple reassignment.

Placement with Minimum Transition Distance: When the reassignment

step fails, the objective of this step is having the maximum number of nodes assigned

with direct control links and then minimize the transition distance for controllers.
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The step is formulated as follows (program Dyn-FixedCtl):

min − w3Atotal + w4Disttotal (5.22)

subject to
∑
lj∈L

ylj = N (5.23)

all constraints of program FixedCtl (5.13)

and constraint (5.18)

The Dyn-FixedCtl scheme does not require falling back to unrestricted placement

using the initial scheme, since it always finds a placement (given constraints are

satisfied) as not all drones are required to be assigned.

5.4 Performance Evaluation

In this section, we describe our evaluation process and results. The evaluation en-

vironment along with the reassignment algorithm were implemented using Python.

The optimization models were implemented using Gurobi (v9.1.2). Simulations were

run on a machine with an Intel Core i7-9750H CPU at 2.60GHz and with 16GB of

RAM.

Since the objective functions include multiple objectives, we employ the hierarchi-

cal or lexicographic approach [MA04]. Using this approach, the solver finds a solution

for each objective separately in a predetermined priority or order without compromis-

ing the solution of the preceding objective. For instance, in solving the MinCtl model

given in (5.5), the solver first finds the optimal number of controllers Nctl (highest pri-

ority). Then, the solver seeks a solution that minimizes Htotal without compromising

the solution obtained for Nctl. This approach is suitable for models with objectives
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with distinct priorities where lower priority objectives are not required to affect the

higher priority objective. In this work, priority of each objective is according to its

order in the combined objective function. All weights of individual objectives are set

to 1. The non-linear terms in the objective function (5.4) and in the constraint (5.11)

can be linearized as described in Appendix A.1.

For tractability, we discretize controller placement locations L. The area is divided

into a grid of cells of size w× h, where each cell is associated with a single controller

location li ∈ L. Each li ∈ L is positioned in the center of its cell. The size of the cell

can be selected to control the resolution of placement locations. Higher resolutions

(smaller cell size) require a larger number of decision variables. We found that a cell

size of 100× 100 m2 is suitable for the initial (static) case, whereas a size of 50× 50

m2 is best suited for the dynamic case in order to allow more freedom for controllers

to move and optimize transition distances.

We assume controllers are placed at a higher altitude than network nodes to

avoid obstructing network nodes. All simulation parameters are shown in Table 5.1.

Parameter values for controller capacity Ccap and request rates Rdi are informed by

studies such as [Too+12] and [Tan+18] and adjusted to account for the limited scale of

Table 5.1: Evaluation Parameters

Parameter Value Parameter Value
|D| 20, 40, 60, 80 nodes Frequency fc 2 GHz
N 10 Area 1× 1 km2

Qmax 85, 90, 95 dB L cell size (initial) 100× 100 m2

Rdi 100 req/s L cell size (dynamic) 50× 50 m2

hopsccmax 3, 5 (dyn. scenario) Ccap 5000 req/s
w1, w2, w3, w4 1
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drone networks and drone computing capacities. The communication channel range

is controlled by different values for Qmax.

5.4.1 Initial Deployment

Evaluation Setup

To evaluate initial deployment schemes, we ran experiments for different network

sizes |D| as shown in Table 5.1. For each network size, three scenarios associated

with three values of Qmax were evaluated, which represent limited, medium, and

large communication ranges for both control links and inter-controller links, affecting

the difficulty of finding optimal placements. For each network size, we evaluated the

MinCtl and FixedCtl schemes. We also compared the MinCtl scheme with a baseline

scheme that only allows direct inter-controller links (referred to as MinCtl-DirectCC)

to show the flexibility of indirect inter-controller links using MinCtl. As well, the

constraint for limiting the hop count for inter-controller links was omitted to allow

for finding and compare optimal solutions without this restriction.

The drone network topology used in evaluations are randomly generated graphs,

where in each graph instance, nodes are positioned uniformly in the simulation area.

Links between nodes are formed between every node pair that can achieve a path loss

equal or below 90 dB, while the maximum node degree is limited to 4 for all nodes.

Only connected graphs were selected. All results shown are averages of 10 trials (a

different graph for each trial).
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(b) MinCtl with direct inter-controller links

Figure 5.2: The number of controllers for MinCtl scheme

Results

Figures 5.2a and 5.2b show the number of deployed controllers using MinCtl and

MinCtl-DirectCC, respectively with different network sizes and Qmax requirements.

Both schemes produce a similar number of controllers depending on the network size

and Qmax requirements. However, using indirect inter-controller links with MinCtl

gives an advantage over MinCtl-DirectCC and can result in a slightly lower number

of controllers for Qmax = 90 dB. The flexibility of MinCtl is shown for Qmax = 85

dB where MinCtl can find a controller deployment whereas MinCtl-DirectCC cannot

find a feasible deployment of controllers. Hence, there is no plot for Qmax = 85 dB in

Figure 5.2b. Figure 5.3 shows the ratio of the number of controllers to the network

size using the MinCtl scheme.

Figure 5.4 shows the average hop count for inter-controller links. Generally, a low

number of hops is achieved. For Qmax = 95 dB, no plot is shown for network sizes

20 and 40 as only a single controller is deployed and no inter-controller links exist.
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Figure 5.3: Ratio of the number of controllers to the network size - MinCtl
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Figure 5.4: Average number of hops for inter-controller links - MinCtl

For network sizes 40 and 60, two controllers are deployed with Qmax = 95 dB (which

require inter-controller links). For Qmax = 90 dB, the average hop count is between 1

and 1.5 hops. However, for the more restricted range (Qmax = 85 dB), an average of

3 hops is required, which offers flexibility of having connected controllers even when
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direct inter-controller links are not possible.

The FixedCtl scheme is evaluated with different network sizes and numbers of

controllers N = 1, 2, and 3. We also set the values for Qmax to 85 dB and 90 dB only

as they are the more restrictive cases.
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Figure 5.5: Ratio of network nodes assigned direct control links - FixedCtl

Figures 5.5a and 5.5b show the ratio of assigned nodes when deploying 1, 2, and

3 controllers using the FixedCtl scheme. It can be observed that with a limited

range (85 dB) the scheme can reach direct link coverage ratio between 0.2 and 0.8

depending on the number of controllers. With a higher range (90 dB) almost all nodes

are assigned direct control links except when using a single controller.

Figures 5.6a and 5.6b show the average hop count for inter-controller links. Similar

to the MinCtl scheme, a single-hop inter-controller connectivity can be achieved with

the range of 90 dB, and a limited number of hops is required with the more limited

range of 85 dB.

We demonstrate the running time of the MinCtl and FixedCtl schemes in Figure

5.7. The figure shows that the running time (measured as wall clock time) increases
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Figure 5.6: Average number of hops for inter-controller links - FixedCtl
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Figure 5.7: Running time for initial schemes

with the network size. It was found that most of the time is consumed by the second

objective of these schemes which is minimizing the hop distance of inter-controller

links. For comparison, we show in the same figure the running time for both schemes

when only involving a single objective (the first objective), which is minimizing the



5.4. PERFORMANCE EVALUATION 107

number of controllers for MinCtl and maximizing assigned nodes for FixedCtl. When

employing a single objective, the running time is significantly reduced and also in-

creases slightly with the network size.

5.4.2 Dynamic Adjustment

Evaluation Setup

For evaluating the dynamic schemes, we used network topologies generated in the

same manner as the evaluation of initial deployment as starting topologies. The cell

size for controller placement was set to 50 × 50 m2 as it allows for optimizing the

relocation distance. The remaining parameters are listed in Table 5.1. Qmax values

were set to 85 dB and 90 dB as they are the most challenging due to their limited

range.

Each simulation run starts with an initial placement scheme applied to the starting

topology. After the initial controller placement, 10 successive topology update events

are applied to simulate changes in network node locations. In each event, a random

number of drones is selected and moved to random points within a 300× 300 m2 area

around each drone that moved. This is to simulate a somewhat local movement as it is

not intended for drones to move far across the network area. The dynamic placement

scheme is triggered with each network update. Update events are assumed to take

place after completion of all movements and placement changes of the preceding

update.

The Dyn-MinCtl scheme was evaluated with three network sizes |D| = 20, 40,

and 60 nodes, each with Qmax = 85 dB and 90 dB. The Dyn-FixedCtl scheme was

evaluated with |D| = 40 and varied number of controllers (N = 1, 2, and 3) and Qmax
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values of 85 dB and 90 dB. The limit on hop distance for inter-controller hopsccmax was

set to 8 for Qmax = 85 dB and 3 for Qmax = 90 dB.

To evaluate the effect of distance minimization, Dyn-MinCtl and Dyn-FixedCtl

were compared with two variants of the same scheme. The first, referred to as base-

line 1, involves the reassignment step and unrestricted placement. The other, referred

to as baseline 2, only involves unrestricted placement.

Reported results are averages of 10 different runs for each combination of scenario

parameters.

Results

First, we demonstrate select instances of the dynamic scenarios. We show how such

scenarios progress while applying the dynamic schemes in response to network topol-

ogy updates. We show the total distance for controllers to transit to new placements

following each network topology update.
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Figure 5.8: Total distance to adjust controllers after each network update. Dyn-
MinCtl and Network size |D| = 40.
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Figure 5.9: Total distance to adjust controllers after each network update. Dyn-
FixedCtl, Network size |D| = 40 and number of controllers N = 2.

Figures 5.8a and 5.8b show the travel distance after each topology change using

the Dyn-MinCtl scheme for two connectivity ranges. The scheme achieves the mini-

mum distance compared the baseline schemes due to the reassignment step and the

minimization of distance when computing an updated placement. Baseline 1 performs

better than baseline 2 due to making use of the reassignment step which avoids the

need to move controllers when the link range is permissive. However, both baselines

tend to perform in a similar way or very close to each other with the limited range.

The same discussion applies with the Dyn-FixedCtl schemes as shown in Figures

5.9a and 5.9b. In this scenario, movement is not required as much as the previous

scenario as the number of controllers and their connectivity are limited. The baselines

perform more closely as the reassignment step is not useful most of the time due the

limited connectivity of the few controllers. The Dyn-FixedCtl scheme is able to reduce

the distance much more than the baselines due to the optimization of the transition

distance.
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The above scenarios show that when minimizing the transition distance, the con-

trol network can readjust quickly and possibly save energy while maintaining connec-

tivity to network nodes after network topology updates.

Next, we compare the average total distance travelled by controllers on aggregate

for all evaluated scenarios. Figure 5.10a shows the total distances of Dyn-MinCtl and

the baseline schemes for Qmax = 85 dB. The associated average number of controllers

produced by the schemes is shown on the right y-axis. As shown in the figures,

Dyn-MinCtl scheme achieves low transition distances, more than half the distances

required by the baseline schemes. Figure 5.10b shows the case with Qmax = 90

dB. The permissive communication range leads to deploying a limited number of

controllers and a smaller transition distance than the aforementioned scenario. As

expected, the optimal scheme significantly reduces the transition distances compared

to the baseline schemes. Baseline 1 performs better than baseline 2 due to making

use of the reassignment step, which is more applicable with a wider communication

range.

Note that the Dyn-MinCtl scheme appears to require slightly more controllers

on average. The reason for this is that Dyn-MinCtl tends to maintain a consistent

number of controllers due to the minimal transition placement step, which restrict

the number of controllers from changing. On the other hand, the baseline schemes

involve the unrestricted placement step (reapplying the initial placement), which,

in some update events, will deploy a smaller number of controllers than what was

required in preceding events. The baselines continuously produce the minimal number

of controllers required for the current network topology and deploy a smaller number

of controllers on average.
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As for the Dyn-FixedCtl scheme, as shown in figures 5.11a and 5.11b, we show

the total distances along with the average assignment ratios produced (right y-axis).

This scenario was evaluated with 40 network nodes while varying the fixed number of

controllers, which results in different assignment ratios. Similar to the former scheme,

the optimal scheme reduces the transition distances, while the baselines perform in a

similar way to each other, as the reassignment step is not useful unless all nodes are

assigned (N = 3 controllers and Qmax = 90 dB), in which case, the proposed scheme

takes advantage of both reassignment and distance minimization, leading to shorter

distances than N = 2.

It is important to note that performance of the optimal schemes (both Dyn-MinCtl

and Dyn-FixedCtl) is mainly due to the distance minimization step. The reassignment

step is useful for avoiding unnecessary computations when simple reassignment is

sufficient. On average, for the MinCtl scenarios, distance minimization is involved in

updating the placement 67% of the time with the limited range and 49% of the time

with the wide range. For the FixedCtl scenarios, distance minimization is involved

94% and 82% of the time for limited and wide ranges, respectively.

Lastly, we show the running time for the dynamic scheme when employing the

distance minimization step. The running time for Dyn-MinCtl scenarios is shown in

Figure 5.12a. It increases with the network size, but maintains a very short running

time under 2 seconds. The running time for the Dyn-FixedCtl scheme is shown

in Figure 5.12b for the scenario discussed earlier in the evaluation (Fixed network

size N = 40 and varied number of controllers), where the running time was found

to be higher. This is due to the nature of the objective function which involves

maximizing the assignment and minimizing the transition distance. There also can
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Figure 5.10: Total transition distance for controllers (left y-axis) and the number of
controllers (right y-axis) - Dyn-MinCtl
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Figure 5.11: Total transition distance for controllers (left y-axis) and the coverage
(ratio of drones assigned direct control links) (right y-axis) - Dyn-FixedCtl

be different solutions that yield the same objective value, for which the solver spends

more time looking for the optimal solution. This may require further investigation and

experimentation with different formulations or an algorithm that reduces complexity.
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Dyn-FixedCtl

5.5 Discussion

In this section, we discuss our results and offer insights into future work.

Employing two objectives for the initial scheme is ideal to achieve optimal deploy-

ment for both objectives. However, the second objective (minimizing inter-controller

hop distance) led to additional running time. In practice, it is best to set an empirical

limit on the hop distance using constraints given the characteristics of the network

and control channels. As a result, the running time is reduced as well.

The FixedCtl and Dyn-FixedCtl schemes are useful when only a fixed and limited

number of controllers can be deployed. However, the benefit of Dyn-FixedCtl comes

at the cost of some additional running time. A possible improvement is maximizing

the assignment to nodes that require communication with controllers the most. The

next step after obtaining a partial assignment involves allocating control channels to

the remaining nodes through the network and dynamically adjust such allocations.

Making such allocations requires the visibility of the SDN controller into the network
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traffic. This can be a topic of future study.

The proposed schemes can be modified to serve in more general use cases. For

instance, a modified scheme can be used as a form of topology control to relocate more

important and central nodes and connect to the remaining nodes of the network.

The placement problem is a variant of the facility location problem, where con-

trollers are the facilities, and network nodes are the clients with fixed demands. This

problem and its dynamic variants has been shown to be NP-hard [FH09]. Fast heuris-

tic algorithms are desired for solving larger problems due to the exponential complex-

ity of solving large integer programs with an increasing number of variables and con-

straints. However, in this work, the goal is to show the objectives and requirements

for deploying dedicated nodes for control plane functions and outline the general pro-

cedures to deploy and maintain controllers optimally, as well as to demonstrate the

results and applicability for the specified scenarios. Solutions were mostly obtained

in a reasonable time using a commercial solver. Future work can look into developing

fast and scalable heuristic algorithms. This poses a challenge due to the difficulty in

capturing the multiple requirements of dynamic deployment.

5.6 Summary

In this chapter, we presented controller deployment schemes for drone-based soft-

ware defined networks that require deploying dedicated drones for SDN control. The

proposed schemes ensure different requirements for such deployments, including the

assignment of direct control links as well as inter-controller links. A flexible approach

is utilized to ensure inter-controller connectivity by prioritizing direct single-hop links

and allowing short indirect links through the drone network when required. An initial
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deployment scheme is proposed to deploy and assign the minimum of controllers to

network nodes. A dynamic adjustment scheme is proposed to relocate the deployed

controllers and update controller assignments while minimizing the distance required

for controllers to travel after each network topology update. A variant of each of the

above schemes is proposed for cases where only a limited number of drones is allowed

to function as controllers. The evaluation of the initial deployment schemes showed

the possible optimal deployments for aerial SDN controllers for drone networks. Eval-

uation of the dynamic schemes showed that the transition distance of controllers can

be significantly minimized following network topology updates, leading to minimizing

the controllers’ travel delay to maintain control links, and potentially preserving the

energy required for controllers to travel during adjustment.
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Chapter 6

Deploying NFV-Based Drone Networks

In this chapter, we address the need for deployment and SFC placement schemes for

NFV-based drone networks. After demonstrating applicable scenarios, we propose

schemes for static deployment and dynamic orchestration of drone networks composed

of SFCs with location requirements. The proposed schemes determine the optimal

network topology and optimal placement of VNFs and traffic paths required by SFCs.

As well, dynamic orchestration reconfigures the deployed drone network with minimal

overhead.

6.1 Introduction

In situations where a communication network is required but where a ground net-

work infrastructure is not available, the use of drones equipped with communication

capabilities to deploy a temporary network is a plausible solution [Moz+19; May+19;

SK18]. This would be especially useful for scenarios involving remote sensing, ru-

ral broadband access, and search and rescue operations [Seç+20] particularly since

deploying a fixed infrastructure for temporary situations is costly. While deploy-

ing drone-based backhaul networks for emergency situations has been discussed in
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the literature [Par+16; SK18], there is further merit in designing a flexible network

architecture for multi-task drone network deployments.

In some drone network scenarios, performing complex computational tasks, such as

analysis of collected data, is often required to assist the mission. Such computing tasks

can be offloaded to the edge network and cloud infrastructure. However, given that

missions are deployed in remote areas that lack access to ground network resources,

utilizing computing capabilities mounted on drones is promising. NFV allows for

provisioning network services as SFCs, where each SFC is composed of a series of

VNFs that implement network packet processing functions. VNFs are easily deployed

on virtualized hardware. As well, VNFs can be used to implement various aspects

in addition to networking, such as flight control and operating sensors mounted on

drones. NFV enables mission operators to reconfigure drones with multiple services

in that way operators use the same drone for multiple missions. This would allow

for different novel use cases, such as deploying emergency voice communications and

video surveillance services, provided VNFs implement such functionalities.

In order to facilitate and utilize the capabilities stated above, we propose planning

drone network deployments by expressing missions as a set of SFCs that implement

the mission functions. Each SFC is composed of modular VNFs for data acquisition,

processing, and transmission. Data is collected at certain locations in the mission

area and then transmitted to target locations while being processed by a number of

VNFs in a certain order. Based on such requirements, optimal planning is needed

to determine the size of the network, node locations, topology, and the placement of

SFCs within the network topology, which includes placing VNFs and routing traffic

between them. The goal is to create a network capable of carrying traffic across
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the mission area. Furthermore, network and mission mobility requires continuously

adapting the network topology and SFC placements. This introduces an additional

challenge, as continuously relocating VNFs and rerouting traffic between them may

introduce additional overhead, which must be minimized while ensuring the network

meets SFC requirements.

The contributions of this chapter are as follows:

• We propose a joint drone network deployment and an SFC placement scheme for

planning and deploying NFV-based drone networks. The goal is to construct a

minimal drone network able to host a given set of SFCs that define the network

functions. The scheme minimizes the number of deployed drones and routes SFC

traffic through a minimum hop distance. The scheme is intended for deploying

a stationary or initial NFV-based drone network.

• We design a greedy algorithm as a faster alternative to the aforementioned

scheme. The algorithm constructs a network as required to host the given SFCs

and yields near optimal results.

• We propose a dynamic orchestration scheme for maintaining the network while

drones are moving according to changing SFC location requirements. The

scheme adjusts the topology and SFC placement of the deployed network to

accommodate the movement of drones while performing tasks as mandated by

SFCs. The scheme minimizes the possible overhead of VNF relocations and

rerouting of SFC traffic due to changes in network topology.

The remainder of this chapter is organized as follows. In the following section,

we review the relevant literature and the limitations that motivate this work. In
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Section 6.3, we describe example scenarios that could be served by the proposed

system. Then, we define the problem and discuss architectural considerations and

assumptions. In Section 6.4, we present the system model, and in Section 6.5, we

describe the static deployment scheme, and provide an alternative greedy algorithm

for static deployment. In Section 6.6, we describe the dynamic orchestration scheme.

The evaluation setup and results of both static deployment and dynamic orchestration

scenarios are presented in Section 6.7. Finally, in Section 6.8, we summarize this

chapter.

6.2 SFC orchestration in the Literature

SFC placement or orchestration is an actively explored area in NFV literature in wired

data centers and cloud networks. In such settings, the SP receives service requests to

provision network services represented as SFCs according to QoS requirements. This

is known as orchestration, and it is accomplished by embedding, or placing SFCs

within the physical network topology and possibly adjusting previously provisioned

SFCs. SFCs are placed within a physical network by mapping VNFs to physical nodes

(servers) and mapping or routing links between consecutive VNFs through physical

network links. Placements can be made with respect to different objectives [HB16].

For example, the SP seeks to make optimal allocation of resources to provision SFCs

in order to satisfy the demand while reducing costs related to the number of servers

and their energy consumption [Bar+16], satisfying QoS in terms of throughput or

delay [Taj+19], and increasing utilization and profit by accepting most requested

services [Wan+20a].

In Section 2.2.2, we reviewed the relevant literature in which authors proposed
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use cases and applications that utilize NFV in drone networks. In [RS17] a numerical

analysis of the network computational load was provided for VNF assignments, while

in [Nog+18], the feasibility and performance of deploying VNFs on drones equipped

with small computing boards were evaluated through a practical implementation. In

other proposals, drones are connected to and supported by VNFs hosted in ground

infrastructure (e.g., a cloud platform) [BBT19; Whi+17], where such VNFs provide

different services that include monitoring and control services. The focus of these

studies was on the optimal placement of VNFs in ground infrastructure to meet the

connectivity requirements of moving drones.

While the aforementioned works considered NFV in applications of drone net-

works, such works assume a fixed network topology and/or VNF assignments. As

well, they considered different use cases and objectives. To the best of our knowl-

edge, no other works have considered the problem of jointly deploying the physical

drone network and allocating resources for VNFs with chaining requirements. This

work is unique in that the proposed system determines the physical network size

and topology needed to embed the required SFCs within the physical network. Our

system is composed of a static deployment scheme that targets initial or stationary

network deployment and a dynamic variant that targets orchestrating the network

with mobility requirements. The latter maintains the network in a manner that limits

possible overhead resulting from network reconfiguration.

6.3 Problem Description

In this section, we describe an example use-case that motivates this work, then outline

the problem definition and the considered network architecture and assumptions.
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Figure 6.1: A use case of a video monitoring mission defined using an SFC

6.3.1 Use Cases

A remote monitoring mission can express its network and computation tasks as SFCs.

These are composed of a series of VNFs that perform network and processing tasks

while traffic passes through VNFs to reach its destination. An example use case is a

mission involving monitoring and video streaming. Figure 6.1 depicts the associated

SFC of this mission. The video monitoring SFC consists of VNFs for video capture,

video transcoding, and video streaming [RS17]. These functions can be deployed

where video monitoring traffic will be initiated from a video capturing drone deployed

to an area of interest. The video monitoring drone hosts the initial video capture

function. The final streamer function can be hosted on the video monitoring drone,
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or a different drone depending on the SFC location requirements or based on user

locations. Intermediate functions can be placed in any of those drones or intermediate

drones if traffic flows through them, depending on available computing resources. To

illustrate, Figure 6.2, demonstrates a drone network with a placement of a number of

SFCs. Consider SFC 1 as a video monitoring chain, where VNF 1 implements video

capture, VNF 2 implements video transcoding, and VNF 3 implements streaming.

Other use cases can be served by this architecture. One may involve a telecom

operator deploying drones with MEC capabilities as temporary micro BSs to enhance

coverage at crowded sporting events or festivals [Bou+19]. The operator can deploy

services with low-latency requirements as SFCs close to the covered users. Services

can include serving or caching popular or event-related social media content [Che+17]

and computation offloading [Zhe+19; Wan+20c]. In this instance, source locations

in Figure 6.2 can be considered the gateway to the operator’s core network. Another

example is a drone-based cloud-like service [Nog+18] for emergency networks. Such

a system may involve different VNFs functions as well as mobility requirements to

serve mobile users.

Due to the ease of configuring drones with different VNFs, computing resources

offered by drones can be shared between multiple SFCs, possibly as replicas of the

same chain to video monitor multiple areas. For instance, other SFCs with different

functionalities may be paired with the video monitoring chain, to provide other types

of sensing or network functions besides video monitoring, leading to flexible and

modular composition of the mission.
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Figure 6.2: An example of a drone network deployment and SFC placement given
a set of SFCs. Each SFC consists of chained VNFs and location requirements for
first and last VNFs. Drones are deployed to locations required by SFCs (d1, d2, and
d3 are primary drones). For network connectivity, links are formed between drones,
and relay drones are deployed if needed (d4 is a relay). SFCs are placed within the
physical network.

6.3.2 Problem Definition

Static Deployment

We are given the set of SFCs R, each with their requirements: VNF processing

capacities, required link throughput, and source and target locations. All available

drones and their capacities are also given. The aim is to jointly accomplish the

following:

• Construct a drone network formation with the minimum number of drones and

with the required connectivity and capacity to host the given SFCs. Specifically,

the topology is generated so that drones, referred to as primary drones, are

placed at the source and target locations of SFCs, while ensuring connectivity
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is established between them. Relay drones are deployed if needed.

• Place or embed SFCs (VNFs and VNF links) within the generated physical

network. This includes the placement of the VNFs on drones computing re-

sources and routing SFC traffic to support the chaining of VNFs where VNF

links are within the capacity of physical network links. We also minimize the

hop distance for SFC traffic flows to reduce delay.

We propose an optimal scheme and an alternative greedy algorithm for static

deployment. Figure 6.2 illustrates a set of SFCs given and the resultant drone network

formation and SFC placement.

Dynamic Orchestration

We target the case where SFCs have mobility requirements where SFCs change their

source locations (to, e.g., capture video from different areas) while target locations

remain stationary serving as sinks for the traffic. In this manner, drones hosting the

first VNFs of SFCs transition over a series of locations during the mission as SFCs

update their source locations.

Dynamic orchestration is needed to adjust the network topology and SFC place-

ment in response to location updates. Primary drones are moved to the updated

source locations. If this mobility results in link disconnections or changes in link ca-

pacities, then SFC traffic flows are disrupted. Dynamic orchestration then adjusts the

network topology and SFC placements to maintain the operation of the network dur-

ing drone movements. It does so while maintaining the network size and minimizing

hop distances for SFCs. However, the network is expected to experience many adjust-

ments over time, which can lead to disruptive overheads such as VNF relocations and
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rerouting of SFC flows. Such overhead should be minimized to limit disruptions to

network functions. We propose a dynamic orchestration scheme tasked with adjust-

ing the network topology and SFC placement during drone movements with minimal

overhead (i.e., with minimal changes to SFC placements).

6.3.3 Architecture and Assumptions

In the context of the proposed softwarized drone network architecture, the static

deployment scheme and algorithm are implemented as a module of the network de-

ployment modules. The dynamic scheme is part of SDNC. We assume that either a

ground-based or aerial controller is connected to the network and is able to reconfigure

the network using the dynamic scheme proposed in this chapter.

Without loss of generality, we assume that there are sufficient computing resources

available using on-board computing boards. Such hardware can be used along with

container-based virtualization [Fel+15] to host VNFs, as it is a light-weight alternative

to full virtual machines. VNF images can be preloaded and configured on the on-board

computers prior to the initial mission deployment and instantiated at deployment

time.

While energy consumption is an important aspect in drone networks, we do not

consider the energy consumed by drones in the dynamic scenario. We assume that an-

other independent module handles the charging and scheduling of drone deployments.

This can be considered in a future study.



6.4. SYSTEM MODEL 126

6.4 System Model

A drone network hosting a set of SFCs is to be deployed in a mission area. The set of

all allowable drone locations is denoted by L = {l1, l2, . . . }, where locations are in a 2-

D horizontal plane and assuming a predetermined altitude. The set of all SFCs to be

deployed on a drone network is denoted by R = {r1, r2, . . . }. Each r ∈ R is associated

with a directed path graph Sr = (Fr,VLr), which represents the chain’s ordered VNFs

Fr = {f r1 , f r2 , . . . f r|Fr|} and the VNF links VLr = {(f rm, f rm+1) | m = 1, . . . , |Fr| − 1}

that connect them. We denote by sr, τr ∈ L the source and target locations required

by an SFC r, where drones hosting r must be deployed. The required link throughput

for any SFC r is denoted by δr, while cpufrm and ramfrm represent the CPU cores and

RAM capacities required by VNF f rm.

The aim is to construct the physical topology for the network from the set of

available drones D = {d1, d2, . . . d|D|}. We denote by E = {(di, dj) | di, dj ∈ D} all

possible links between drones. The final topology of the network to be constructed

is represented by a graph G = (D̄, Ē), where D̄ ⊆ D is the selected subset of drones

and Ē ⊆ E is the selected subset of links. Each di ∈ D̄ is deployed to a location

li ∈ L. Selected drones D̄ constitute two subsets of drones. The first is referred to as

primary drones D̄prim, which are drones deployed to locations required by SFCs. The

other is relay drones D̄rel, which are drones deployed to support network connectivity.

Each di ∈ D has a known capacity of computing resources in terms of the available

CPU cores and RAM, expressed as cpudi and ramdi , respectively.

We adopt free space propagation to model wireless links between drones due to

the lack of obstacles in drone altitudes in remote areas. The path loss PL(dist) in

dB, over transmission distance dist in meters between a pair of locations in L is as
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defined in 5.1, described in Chapter 5. We assume orthogonal channel allocation,

where the capacity of a wireless channel between a location pair in bits per second is

given by [CS17]: C = B log2(1 + Pt−PL(dist)
Pn

), where B is the channel bandwidth, Pt

is the transmission power, and Pn is the noise.

Based on the channel model above, we define the following constants for every

pair of locations in L. We define pllk,ll ∈ {0, 1} as equal to 1 if the path loss between

a pair of drones placed at lk, ll ∈ L is below the path loss threshold plmax. We also

define βlk,ll as the achievable link capacity between the pair of nodes placed at lk, ll.

We use the constants defined above to determine path loss and link capacity between

any pair of drones in D when placed at any pair of locations in L.

6.5 Static Deployment

The static deployment scheme proceeds as follows. The scheme is given the set of

SFCs R along with the VNF processing capacities, required link throughput, and

source and target locations for each SFC. All available drones and their capacities are

also given. An initialization step determines the placement of primary drones. Then,

using integer linear programming (ILP), the scheme jointly determines the placement

of relay drones, the formation of physical links between drones, and SFC placements.

6.5.1 Initialization

Since the locations required by SFCs R are given (source and target locations), we ini-

tialize the deployment by placing primary drones at these locations. This formalized

as follows. Let Lreq ⊂ L denote the set of all locations required by SFCs, obtained

as Lreq = {sr, τr | ∀r ∈ R}. Then, we select subset from the available drones D and
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place each of these drones at the source and target locations as primary drones D̄prim.

This placement results in a one-to-one mapping M : D̄prim → Lreq. Therefore, M(di)

yields the location lk ∈ Lreq assigned to di. For convenience, M(lk) also yields the

reverse assignment, that is, the drone di ∈ D̄ placed at lk.

6.5.2 ILP Formulation

The following decision variables determine the location of drones, including relays,

and the physical links formed between them as well as the placement of VNFs on

each drone and the assignment of VNF links to physical links. The decision variables

are:

• udi,lk ∈ {0, 1} indicates if di is placed at location lk.

• udi ∈ {0, 1} indicates whether drone di is deployed regardless of selected loca-

tion.

• kdi,dj ∈ {0, 1} indicates if the physical link (di, dj) is active (selected) between

the pair of drones di and dj.

• xfrm,di ∈ {0, 1} indicates if VNF f rm is placed in di.

• y
frm,f

r
m+1

di,dj
∈ {0, 1} indicates if VNF link (f rm, f

r
m+1) of SFC r is mapped or routed

through the physical link (di, dj).

The constraints for the ILP model are formulated as follows.

1) Drone Deployment and Placement: Primary drones are selected and posi-

tioned as dictated by the initialization step. This is done by setting the decision
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variables for drone deployment status and placement location :

udi = 1, ∀di ∈ D̄prim (6.1)

udi,M(di) = 1, ∀di ∈ D̄prim (6.2)

For all drones, the following constraints ensure that a drone is assigned to one location

only, and each location is assigned to one drone only:

∑
lk∈L

udi,lk = udi , ∀di ∈ D (6.3)

∑
di∈D

udi,lk ≤ 1, ∀lk ∈ L (6.4)

2) Formation of Physical Links: Let z(di, lk, dj, ll) denote a binary decision vari-

able that equals 1 if a pair of drones di, dj, when placed at locations lk, ll, can achieve

the required path loss plmax. Values of said variable instances are determined using

the following constraint:

z(di, lk, dj, ll) = 1 iff udi,lk + udj ,ll + pllk,ll = 3

∀(di, dj) ∈ E,∀(lk, ll) ∈ L
(6.5)

The following constraint activates links between a pair (di, dj) based on the values of

z(di, lk, dj, ll), which, if sum to 1, indicate the drone pair are placed at a location pair

within range from each other to allow for establishing a physical links:

kdi,dj ≤
∑

(lk,ll)∈L

z(di, lk, dj, ll), ∀(di, dj) ∈ E (6.6)
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Furthermore, we impose a limit on the number of physical links per drone (node

degree), indicated by γmax, to load balance traffic.

∑
(di,dj)∈E

kdi,dj ≤ γmax, ∀di ∈ D (6.7)

3) VNF Placement: The constraints for placing VNFs on drones are as follows.

Using the placement of primary drones in the initialization step, we place the first

VNFs of each SFC in drones placed at SFCs’ source locations. Similarly, last VNFs

are placed in drones at the SFCs’ target locations. This expressed by the following

constraints:

xfr1 ,M(sr) = 1, ∀r ∈ R (6.8)

xfr|Fr |
,M(τr) = 1, ∀r ∈ R (6.9)

The following two constraints ensure that each VNF must be placed on a deployed

drone, that a VNF must be placed on one drone only:

xfrm,di ≤ udi , ∀r ∈ R, ∀f rm ∈ Fr,∀di ∈ D (6.10)

∑
di∈D

xfrm,di = 1, ∀f rm ∈ Fr,∀r ∈ R (6.11)

The following constraints ensure that each drone hosts VNFs within its CPU and

RAM capacities:

∑
r∈R

∑
frm∈Fr

xfrm,di × cpufrm ≤ cpudi , ∀di ∈ D (6.12)



6.5. STATIC DEPLOYMENT 131

∑
r∈R

∑
frm∈Fr

xfrm,di × ramfrm ≤ ramdi , ∀di ∈ D (6.13)

4) VNF Link Placement: In the following constraint, we ensure that links between

VNFs are placed on active physical links:

y
frm,f

r
m+1

di,dj
≤ kdi,dj ∀r ∈ R, ∀(f rm, f rm+1) ∈ VLr,∀(di, dj) ∈ E (6.14)

As well, for each physical link (di, dj), we ensure that the VNF links mapped to it do

not exceed the capacity of the physical link:

∑
r∈R

∑
frm∈Fr

y
frm,f

r
m+1

di,dj
× δr ≤

∑
(lk,ll)∈L

z(di, lk, dj, ll)× βlk,ll ∀(di, dj) ∈ E (6.15)

Finally, we ensure the connectivity between consecutive pairs of VNFs by placing VNF

links along the physical links between VNFs. This is achieved using flow conservation

constraints as used in [Bar+16]. For each di, we ensure that there is an equal in-flow

and out-flow of VNF links between each consecutive VNF pair. The produced VNF

links are mapped to physical links between di and its adjacent nodes in G, denoted

by n(di). The constraint is expressed as follows:

∑
dj∈n(di)

(y
fm,fm+1

di,dj
− yf

r
m,f

r
m+1

dj ,di
) = xfrm,di − xfrm+1,di

∀r ∈ R, ∀(f rm, f rm+1) ∈ VLr,∀di ∈ D

(6.16)

5) Objective Functions: Our goal is to minimize the number of deployed drones to

reduce the mission cost, and have the shortest possible paths for placed SFCs. The
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number of deployed drones, Ndeployed, is calculated simply as:

Ndeployed =
∑
di∈D

udi (6.17)

The routes for SFCs can be minimized by minimizing the total number of VNF

links, denoted by Nvlinks and calculated as:

Nvlinks =
∑
r∈R

∑
(fm,fm+1)
∈VLr

∑
(di,dj)
∈E

y
fmfm+1

didj
(6.18)

Then, the complete ILP model is expressed as follows:

min w1Ndeployed + w2Nvlinks (6.19)

subject to constraints:

(6.1) - (6.16)

where w1 and w2 are weights used to reflect the importance of the respective objective

function.

6.5.3 Greedy Algorithm for Static Deployment

For static deployments, the model described above can be replaced with a simple

and fast greedy algorithm that can produce near-optimal results. In what follows we

explain the basic idea of the algorithm, then we describe it in more detail.
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Algorithm Overview

The algorithm starts by placing primary drones at all source and target locations

required by SFCs. To place relay drones if needed, additional drones for relaying are

placed at candidate locations. Then, the algorithm builds a nearly complete graph

Gfull of all placed drones D with all possible links that satisfy the path loss threshold.

A key challenge in the algorithm is determining locations for relay drones. Delau-

nay triangulation is used to produce candidate location points for relay drones similar

to [HSL09; LH05]. The algorithm performs several iterations with different subsets

of candidate locations until a complete solution is found.

In each iteration, the algorithm seeks to place SFCs in the shortest paths available

in Gfull while avoiding selecting paths with relay drones to avoid deploying relays

when not needed to minimize the network size. The algorithm assigns low weights

to paths involving primary drones only, and high weights to paths involving the

additional relay drones. The algorithm then places SFCs (VNFs and VNF links) on

the shortest weighted paths wherever possible. Selected links paths (links) are added

to the target graph Gtarget along with any relay drones newly selected. If an SFC is

placed on a path with relay drones, the weights assigned to this path are lowered so

the path can be used to place remaining SFCs.

Algorithm Details

The algorithm is listed as Algorithm 7 and described in more detail as follows. The al-

gorithm takes as input all SFCs R, their source and target locations, their throughput

requirements, available drones D and their computing capacities. The output of the

algorithm is the final graph Gtarget as the physical network, and the solution vectors
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Figure 6.3: Delaunay triangulation with circumcenters shown in blue.

X and Y , which describe the assignment of VNFs and VNF links, respectively.

The algorithm starts by obtaining the set of all source and target locations required

by SFCs denoted by Lreq ⊂ L (line 1). The algorithm then generates a set of candidate

locations for relay drones, denoted by Lrel (line 2). Delaunay triangulation is used

to generate triangles from all locations in Lreq as demonstrated in Figure 6.3. For

each triangle, the circumcenter point is calculated and added as a candidate location

to Lrel. Only locations that can satisfy the threshold of plmax with locations forming

the triangle are added. In line 3, the algorithm divides Lrel into subsets each with

length ≤ |D| − |Lreq|.

The algorithm performs a number of iterations (line 4). In each iteration, a

different subset of untested relay locations, denoted by L̄rel ⊂ Lrel, is selected (line

4). In line 5, drones are assigned to both required and relay candidate locations, Lreq

and L̄rel. In line 6, the algorithm builds a connected graph Gfull with drones D̄ as

nodes with all possible links within the plmax threshold, given their assigned locations.

The algorithm obtains the capacities of the constructed links in the graph. Then, in

line 7, Gtarget is initialized with drones from D̄ that are assigned to Lreq and without
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Algorithm 7 Greedy algorithm for static deployment

Input: D with their capacities and R with all requirements
Output: Gtarget, X, Y
1: Lreq = Get all source and target locations of SFCs.
2: Lrel = Circumcenters(DelaunayTrig(Lreq))
3: Divide Lrel into subsets each of length ≤ |D| − |Lrel|
4: for subset L̄rel of Lrel do
5: D̄ = Assign drones to locations Lreq and L̄rel
6: Build connected graph Gfull with D̄ and get link capacities.
7: Initialize Gtarget with drones assigned to Lreq
8: for r ∈ R do
9: Update weights W for Gfull using (6.20) and (6.21)
10: P = Get shortest simple paths in Gfull for r
11: for p ∈ P do
12: if path p is feasible for r then
13: Place r in p and update X and Y
14: Update Gtarget with new drones/links from p
15: break
16: end if
17: end for
18: if r is not placed then break
19: end for
20: if all r ∈ R placed then
21: return Gtarget, X, Y
22: end if
23: end for

any links yet.

For each SFC r ∈ R, weights for edges in Gfull, denoted by W are calculated

(line 9), where Wdi,dj is the weight for the edge or link (di, dj) in Gfull. The weight

calculation is done so that initially only the links between drones placed at the re-

quired locations (drones that exist in Gtarget) have low weights and thus are preferred

for placing SFCs. Other links involving relay drones (not in Gtarget at the start of

the algorithm) have greater weights to avoid or delay selecting them if they are not

needed. If such links are selected in later steps, they are added to Gtarget and their
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weights are lowered so that they can be utilized for subsequent placement iterations.

The weights for a link (edge) (di, dj) involving drones di and dj in the complete graph

Gfull are:

Wij = w(di) + w(dj) (6.20)

where

w(di) =


1 if di ∈ Gtarget

10 otherwise

(6.21)

In line 10, the algorithm obtains from Gfull paths P , the set of weighted shortest

simple paths between the two drones placed at the source and target locations of r.

Each path p ∈ P is examined to test if it is feasible for placing r (line 11). In line 12,

the feasibility is determined by testing the residual capacity in links and drones along

p. This is based on capacities of drones and links in Gfull and current placements X

and Y , as well as whether selecting p will result in having nodes with links greater

than γmax. If p is a feasible path, r is placed in p (line 13). This step places VNFs

of r in drones in path p sequentially. First, it places the initial and last VNFs in the

first and last drones in the path. Then, intermediate VNFs are placed greedily in the

first drone in the path or in subsequent ones as capacity is available. VNF links are

placed in all links in p. Then, updated assignments for VNFs and links are reflected

in X and Y . In line 14, Gtarget is updated with drones and links from p that were not

previously in Gtarget.

If a single SFC r is not placed then the iteration fails (line 18). If all SFCs are

placed, the algorithm is successful and Gtarget, X, and Y are returned (lines 20 and

21). At the step in line 23, if not all r ∈ R are placed, then the current iteration

is not successful. If there are remaining untested relay locations, then the algorithm
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proceeds to the next iteration to try a different set of relay locations. If no available

locations can be tried, then the algorithm fails and exits.

Algorithm Complexity: Candidate relay locations are generated at the start

of the algorithm. This step is performed once and it mainly depends on Delaunay

triangulation which has complexity O(NlogN) [HSL09], where N is the number of

locations required by SFCs. The main outer loop performs a few iterations depending

on the number of divisions of relay candidates. It can be limited by a maximum

number I. In each iteration, the algorithm loops over all r ∈ R to place SFCs.

Assuming that each r ∈ R has a unique source-target location pair, the algorithm

obtains the K shortest simple paths in Gfull for each r ∈ R using an algorithm

with complexity O(K|D|3) [Yen71; HSSC08], with |D| as the number of nodes in

Gfull. The overall complexity of the algorithm excluding the initial triangulation is

O(IK|D|3|R|).

6.6 Dynamic Orchestration

Next, we consider scenarios with mobility. Once a network is deployed initially using

the static scheme, SFCs change their source locations repeatedly during the mission

while target locations remain static where drones placed there serve as sinks for

traffic, as discussed in Subsection 6.3.2. Once the next source locations for SFCs are

determined and received by the orchestrator, dynamic orchestration is triggered to

update the network if needed. We refer to such events as update events.

Dynamic orchestration proceeds as follows. The scheme takes as input the same

input parameters as given to the static scheme with updated SFC source locations

in addition to the network deployment and SFC placement decided in the previous
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update event or initial deployment. Similar to the static scheme, an initialization step

first updates the placement of primary drones. Then, using ILP, the scheme updates

the placement of relay drones, the formation of physical links between drones, and

SFC placements.

6.6.1 Initialization

Let ˆ̄D ⊆ D be the set of drones deployed in the last update event, where ˆ̄D includes

primary drones ˆ̄Dprim and relay drones ˆ̄Drel.

Primary drones are moved to the updated locations. Let Lreq ⊂ L contain the

updated locations required by SFCs. Then, the deployed primary drones ˆ̄Dprim are

mapped to the updated locations Lreq. The mapping M is now defined as M :

ˆ̄Dprim → Lreq.

After determining the placement of primary drones, the orchestrator can test

whether the network can keep the same links and SFC placement without compro-

mising SFC requirements. This is done by updating the previous solution to reflect

the new primary drone locations and checking if the constraints for link connectiv-

ity and capacity are violated. If there are no violations, the network retains the

same links and SFC placements and avoids adjustment. If there are violations, the

orchestrator proceeds to the next step.

6.6.2 ILP Formulation

Using the decision variables described in Section 6.5, we formulate the following con-

straints.
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First, we maintain the deployment status of all deployed drones including relays:

udi = 1, ∀ di ∈ ˆ̄D (6.22)

Then, we position primary drones in the updated locations as indicated by the up-

dated mapping M using the following constraints:

udi,M(di) = 1, ∀ di ∈ ˆ̄Dprim (6.23)

As well, first and last VNFs of each SFC remain in the same drone placement. This

is expressed with the following constraints:

xfr1 ,M(sr) = 1, ∀r ∈ R (6.24)

xfr|Fr |
,M(τr) = 1, ∀r ∈ R (6.25)

As locations of primary drones change, it is likely that locations of relay drones

will need to change to ensure connectivity or capacity along SFC paths. It is useful to

select new locations for relay drones that minimize the travel distance, and in turn,

minimize the time required to adjust the network to the new topology. This is done

by considering the previous locations of relay drones using the following constraint:

∑
lk∈L

udi,lk · dist(lk, P revLoc(di)) ≤ distmax, ∀di ∈ ˆ̄Drel (6.26)

where dist(., .) is the distance between a pair of locations in L, and PrevLoc(di)

obtains the previous location where di was deployed, and ˆ̄Drel ⊂ ˆ̄D is the subset of

drones deployed as relays in the previous update. The maximum allowed distance is
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denoted by distmax which can be set to an arbitrary suitable value or to the largest

movement step to be travelled by primary drones. This constraint is not required but

it is useful when it becomes important to reduce or limit reconfiguration travel delay.

Objective Functions

The original two objective functions are required in the dynamic scheme. The first

is keeping the network size minimal, which in a dynamic scenario, allows us to avoid

deploying additional relay drones unless it is not possible to maintain network con-

nectivity. The second is routing SFCs through the minimum hop distance, which in

the dynamic setting serves to maintain short hop distances for SFCs.

In addition to the aforementioned objectives, the dynamic scheme aims to min-

imize the possible overheads resulting from adjusting the network topology. These

include VNF placement changes, which are considered disruptive to the network traf-

fic. Overheads also include changing the routing paths for SFCs due to changes in the

network topology. In a highly dynamic setting, such overheads should be minimal,

as network adjustments can take place frequently due to constant topology changes

during drone movements.

Overhead can be minimized by minimizing the difference between previous and

new decisions involving placements of VNFs and VNF links as well as network link

states, namely, all decision variables x, y and k. As a result, changes to VNFs and

VNF link placement as well as changes to the states of physical links will be mini-

mized. This can be done by minimizing the distance between two vectors that involve

previous and new states. The distance between such state vectors can be computed

using the Hamming distance [FM14] which calculates the distance between values of
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two vectors in terms of the number of disagreeing pair-wise elements. Since all states

are represented by 0 and 1 values, the Hamming distance represents the number of

changed vector elements or changed states.

We formalize the above as follows. To simplify the notation, let X denote the

ordered vector of VNF placement decision variables (i.e., all xfrm,di variables) and let

X̂ denote values of X in the previous state in the same order, and given as constants

to the problem. The Hamming distance between VNF placement states X and X̄ is:

∆(X, X̂) =
∑

1≤i≤|X|
X̂i=0

Xi +
∑

1≤i≤|X|
X̂i=1

(1−Xi) (6.27)

where i is the index of the ith vector element. The same is done for VNF link

placements, where Y is the vector of all y
frm,f

r
m+1

di,dj
decision variables and Ŷ is the

vector of their previous values:

∆(Y, Ŷ ) =
∑

1≤i≤|Y |
Ŷi=0

Yi +
∑

1≤i≤|Y |
Ŷi=1

(1− Yi) (6.28)

and for variables involving physical link state decisions, where K and K̄ encompass

all kdi,dj variables and their previous values, respectively:

∆(K, K̂) =
∑

1≤i≤|K|
K̂i=0

Ki +
∑

1≤i≤|K|
K̂i=1

(1−Ki) (6.29)

As such, minimizing ∆(X, X̂) limits changes to placements of intermediate VNFs.

Changes to SFC paths are reduced by minimizing changes to states of physical links

∆(K, K̂) and also by minimizing ∆(Y, Ŷ ) which restricts the solver from selecting
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routes different from previous ones because they are of the same length.

The objective function and constraints of the dynamic scheme is expressed as:

min w1Ndeployed + w2Nvlinks + w3∆(K, K̂) + w4∆(X, X̂) + w5∆(Y, Ŷ ) (6.30)

subject to constraints:

(6.3) - (6.16)

(6.22) - (6.26)

where wi are weights used to reflect the importance of the respective objective func-

tion.

After applying an update, the number of relocated VNFs is calculated as 1
2
∆(X, X̂)

since a Hamming distance of 2 involves a single VNF relocation from one drone to

another. The set of rerouted SFCs in the last step Rrerouted is defined as:

Rrerouted = { r : |yf
r
m,f

r
m+1

di,dj
− ŷf

r
m,f

r
m

di,dj
| = 1 ∀r ∈ R ∀(f rm, f rm+1) ∈ VLr ∀(di, dj) ∈ E }

(6.31)

where ŷ
frm,f

r
m+1

di,dj
is the value of the variable in the previous update. Thus, the number

of rerouted SFCs is |Rrerouted|. The number of links which their states changed is

∆(K, K̂).

Dynamic orchestration can be solved using existing solvers in a reasonable time

for the network instances considered in this work. Note that in this work we consider

a limited degree of mobility in which drones will hover after each movement for a

certain amount of time. In future work, we will consider developing a lower-complexity

algorithm for dynamic orchestration.
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6.7 Performance Evaluation

In this section, we present the performance evaluation of the proposed static and

dynamic schemes and results.

The simulation environment and deployment algorithm were developed in a Python-

based environment. The proposed optimization models for the static and dynamic

orchestration were implemented using CPLEX (version 12.10) using the DOcplex

Python interface. The NetworkX library [HSSC08] was used for graph algorithms.

Simulations were run on a machine with a 2.60GHz Intel Core i7-9750H processor

with 16GB of RAM.

We assume 10 drones are available for deployment, with fixed CPU and RAM

capacities as shown in Table 6.1. The channel model parameters are shown in Table

6.1. The deployment area size is 1000 m × 1000 m. For tractability, the placement

locations in L are discretized into a grid with cells or tiles each of size w × h. The

size of cells can be varied according to the density required for the task at hand and

the size of the area. However, more density increases the complexity of solving the

problem. We set it to 100 m × 100 m, which is a reasonable area size for drones

to conduct tasks. For each pair lk, ll ∈ L, we compute βlk,ll and pllk,ll according the

propagation and capacity models described in Section 6.4.

For evaluations of the static and dynamic schemes, SFCs are generated as follows.

The number of SFCs |R| is varied between 4 and 16. SFC throughput requirements

as well as the configurations of associated VNFs such as CPU requirements are drawn

from a uniform distribution with the ranges shown in Table 6.1. For each comparison

of |R|, we assume each pair of SFCs share a single source location. We select |R| / 2

locations, sampled from L as source locations for SFCs, where each pair of SFCs share
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the same source location thus the same primary drone. For target locations, all SFCs

are assigned a single location at the corner of the simulation area, which means only

a single target or sink node exists for the network. This leads to requiring 1 + |R| / 2

primary drones for each evaluation of |R|, where the deployment scheme minimizes

the number of relay drones to deploy in addition to the remaining objectives. Hence,

the number of primary drones corresponding to |R| is shown in the secondary (top)

x-axis.

For the optimal static scheme, the solver time limit is set to 5 minutes, while

for the dynamic scenario evaluation, it is set to 2 minutes. All reported results are

averages of 10 independent simulation runs.

We use the weighted sum approach for solving both multi-objective ILP problems

(static and dynamic), as it allows for obtaining solutions relatively quickly. Since

objective functions can have different magnitudes and in order to set their weights

easily, we normalize each objective function in the range [0, 1]. With normalization,

weights are set such that
∑5

i=1wi = 1. Selected weights are shown in Table 6.1. The

details of normalization are discussed in Appendix A.2.

6.7.1 Static Deployment

We evaluate the proposed static deployment scheme and greedy algorithm in terms

of the ability to deploy a static NFV-based drone network. We assess the size of the

produced network in terms of the number of deployed drones and the placement of

SFC traffic in terms of hop distances for SFCs with varied number of SFCs |R|. We

also report additional network and VNF placement properties. For the size of the

network, we show the total number of deployed drones including relay drones. Note
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Table 6.1: Evaluation Parameters

Parameter Value
Transmission power Pt 15 dBm
Carrier frequency fc 2 GHz
Channel bandwidth B 20 MHz
plmax 95 dB
Noise power Pn -80 dBm
Area 1000 m× 1000 m
L cell size w × h 100 m× 100 m
Number of drones |D| 10 drones
Drone CPU cores CPUdi 8 cores
Drone RAM RAMdi 16 GB
Max. number of links per drone γmax 4
Number of SFCs |R| [4, 14]
CPUfm , RAMfm [1, 3] cores, [1, 3] GB
VNFs per SFC |Fr| [2, 4]
SFC throughput δr 5, 10, 20, 25 Mbps
w1, w2 (proposed static) 0.7, 0.3
w1, w2, w3, w4, w5 (proposed dynamic) 0.4, 0.2, 0.1, 0.2, 0.1
w1, w2 (dynamic baseline) 0.7, 0.3

that the number of deployed drones includes the number of primary drones, which

is known a priori given SFC specifications as discussed earlier in this section, while

the number of relays is the result of network size minimization. However, we show

the total number of deployed drones so the size of the overall network is noted. The

number of relay drones is also reported.

For each comparison of |R|, we compare the proposed optimal scheme with the

greedy algorithm. We also compare with a variant of the optimal scheme that only

minimizes the number of deployed drones and does not optimize VNF links, to com-

pare the effect of the objective function. We refer to this latter scheme as the baseline.
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(a) Minimal drones and VNF links (proposed) (b) Minimal drones (baseline)

(c) Greedy algorithm

Figure 6.4: Topology and placement results example for 6 SFCs. Open circles repre-
sent drones and the small solid dots represent VNFs placed in drones. VNFs of the
same color belong to the same SFC. Drone d0 is the sink node at the target location
of SFCs, while other drones are sources or relays. Black lines are wireless links. Ar-
rows represent the VNF links passing through physical links as the paths allocated
for SFCs in corresponding color.

Results

We demonstrate the static deployment with a single scenario instance with 6 SFCs,

shown in Figure 6.4. The figures show three network topologies and SFC placements

produced by the evaluated schemes. Figure 6.4a shows the network produced by the
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proposed scheme, Figure 6.4b shows the network produced by the baseline (minimum

drones) while Figure 6.4c shows the network produced by the greedy algorithm. In

this scenario, d0 is the sink node deployed at the target location where last VNFs of

all SFCs are placed. Drones d1, d2 and d3 are primary drones placed at SFC source

locations while the remaining drones are relays. It can be observed that some VNFs

are placed along the route of SFCs while other functions are placed on a single node.

Drone computing resources are shared between functions of all SFCs, and drones are

positioned to support the delivery of SFCs from source to target locations. Both

the proposed and baseline schemes produced a single relay drone, while the greedy

algorithm required two relays, due to the limited ability of the algorithm to find

optimal relay placements. The proposed optimal scheme and the algorithm allocate

shortest paths for SFCs, depending on available link capacity. While not apparent in

this instance, the baseline scheme tends produce sub-optimal routes in larger instances

First we examine the number of deployed drones. As discussed earlier, the number

of drones is affected by the number of locations required by SFCs (the number of

primary drones). Thus, the deployment schemes minimize the number of relay drones

and position them in optimal locations in order to support the network connectivity.

Figure 6.5a shows the number of deployed drones by the three schemes. The number

of relay drones is shown in Figure 6.5b. The number of relay drones is unpredictable

since it depends on where the primary drones are located and how they are spaced

from each other. The proposed scheme and the baseline produce the same number

of relay drones since they both minimize the number of drones. The algorithm,

however, shows a tendency to require more relays. This is because the algorithm

efforts at reducing the number of relay drones are limited since it does not explore
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(a) Total number of deployed drones including primary and relay
drones
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(b) Number of relay drones

Figure 6.5: Number of deployed drones

all possible relay placements to select ones that minimize the number of relays as it

is limited by the triangulation-based placement of relays.

In Figure 6.6, we report the average hop distance per SFC. While the number
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Figure 6.6: Average hop distance per SFC

of SFCs does not affect hop distance, it can be observed that both the optimal pro-

posed scheme and the greedy algorithm perform similarly. This is due to the optimal

scheme optimizing the placement of VNF links, whereas the greedy algorithm selects

the first short path available leading to a performance that is similar to the optimal.

The baseline scheme results in additional hops for SFCs due to not optimizing traf-

fic routes. While the advantage is not pronounced due to the limited network size

and deployment area, this optimization is needed to ensure the efficiency of selected

paths. In different settings, for example in larger networks or in resource constrained

networks, this aspect is important to be considered.

It is interesting to note the number of processing drones per SFC, as reported

in Figure 6.7. The number of processing nodes per SFC is the number of nodes

that host VNFs for a particular SFC. The minimum expected number is two nodes

which include the source node of the SFC and the node hosting the terminal VNFs.

Intermediate VNFs (when the SFCs consists of more than two VNFs) are placed either
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Figure 6.7: Average processing nodes per SFC

in the first, last or any intermediate drones along the path. It is generally better to

reduce this fragmentation to the lowest, which leads to having more VNFs of the

same chain in the same physical node. Then VNFs can communicate locally and

not depend on external links. The optimal and the baseline do not directly optimize

for this fragmentation. However, this is affected indirectly by the optimization of

traffic routes. The baseline spreads out traffic VNFs along the routes. The difference

is minimal. However, the optimal scheme and greedy algorithm tend to require the

minimum number of two processing nodes. The algorithm tends to be lower since the

algorithm places intermediate VNFs in the first nodes of SFC paths, and does not

move to the next node until the current node is at capacity.

Next, we examine the running time of the optimization schemes compared also

to the greedy algorithm. The comparison is shown in Figure 6.8. For the optimiza-

tion based schemes, it is observed that when a small number of SFCs and drones is

required, there are often difficult instances to solve which take and extended amount
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Figure 6.8: Average running time

of time. These are usually instances where the required locations are far apart and

the solver spends a long time to find optimal placements for relays and SFCs. This

difficulty is observed in the optimal scheme and baseline where solve times tend to

be inconsistent. On the other hand, as the number of drones increases, there is less

chance of having drones far apart. As a result, the difficulty tends to decrease and

most instances are solved in shorter times that are closer to the mean. However,

the baseline tends to solve those instances faster due to optimizing a single objective

function. The greedy algorithm demonstrates an extremely short solve time measured

at less than half a second. It increases linearly by unnoticeable fractions of a second

with the number of SFCs. While the running time is not important in the static

deployment since it is computed once; however, the algorithm is useful for fast proto-

typing or planning. It also provides an alternative to using commercial optimization

solvers.
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6.7.2 Dynamic Orchestration

Setup

In this section, we evaluate the dynamic scheme in terms of its ability to adjust the

deployed network and reduce the overhead resulting from continuous mobility and

orchestration cycles.

We evaluate a dynamic network with a varied number of SFCs. The setup is the

same as the static scenario in terms of SFC capacities and location requirements as

well as the parameters shown in Table 6.1. For each comparison of |R|, the simulation

starts by making an initial placement using the optimal static scheme. Then, ten

successive movement steps are generated. In each step, |R| / 2 random locations are

generated and set as source locations for each pair SFCs in the same manner used

as the static deployment evaluation. Locations are generated using a variation of the

random waypoint mobility model [AT14] where new locations are within the vicinity

of 400 m from previous locations. This is to simulate limited incremental movements.

At each step, the dynamic scheme is invoked to adjust the network.

We compare the dynamic proposed scheme with a baseline variant that does not

minimize overhead, where the objectives are only minimizing the number of drones

and VNF links. The weights used for both schemes are shown in Table 6.1. In this

evaluation, we report a number of metrics that demonstrate the changes undertaken

by the network during the 10 movement steps. These include the number of drones

and wireless links established between drones. We report the number of VNF relo-

cations, which is the total number of intermediate VNFs that underwent changes in

placement. As well, we report the number of rerouted SFCs as a result of adjustment.
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Results

Both schemes produce the same number of deployed drones. We do not report it since

it rarely increases in our simulations above the number of initially deployed drones as

shown in Figure 6.5a in the static scenario. This is attributed to the fact that both

schemes minimize the number of drones with the highest weight among objectives.

This leads to preventing the deployment of additional relays during movements steps

unless it is necessary. When required, both schemes only deploy an additional drone

in about 10% of the simulation runs.
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Figure 6.9: Total number of migrated VNFs

Figure 6.9 shows the total number of VNFs that underwent placement change dur-

ing the simulation. VNF relocations occur due an interplay of topology changes, route

allocations, and the solver exploring diverse solutions leading to the same objective

value. It can be observed that a high number of relocations occurs if no considerations

are made to limit them. Note that these placement changes only involve intermediate
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VNFs.
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Figure 6.10: Total number of changes to states of physical links

Figure 6.10 shows the total number of changed links. This represents the total

number of links connected or disconnected due the reconfiguration made by the dy-

namic schemes. It can be observed that with overhead minimization, links undergo

significantly less changes than without minimization. As such, the network maintains

the topology as drones move. We reiterate that the reason we reduce this change is

to minimize the need to reroute SFC traffic along affected links.

In Figure 6.11, we show the total number of rerouted SFCs. With overhead

minimization, the number of SFCs affected by topology changes is reduced compared

to no overhead minimization. This is the combined result of minimizing changes to

network links and VNF link paths.

As a result, it can be observed that with only a limited number of movement steps,

a considerable amount of overhead can be generated which requires constant main-

tenance of SFCs and their traffic routes. Practical scenarios are expected to involve
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Figure 6.11: Total number rerouted SFCs

a larger number of movement steps and different patterns of location requirements.

Therefore, overhead reduction is crucial to limit the load on controllers overseeing the

network and to ensure smooth network operation.
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Figure 6.12: Average hop distance per SFC
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As noted earlier, the second objective of minimizing VNF links conflicts with

overhead minimization, as the former seeks to select the best paths for SFCs while the

latter seeks to limit changes in consecutive steps. We compare the overall average hop

distance, as shown in Figure 6.12. We observe that the average hop distance is slightly

affected due to overhead reduction. While the difference is small, with overhead

reduction, hop distances are not optimized at the same degree as the alternative

scheme.
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Figure 6.13: Average solve time (s)

Finally, we examine the running times of the compared dynamic schemes. Note

that the same pattern of difficulty decreasing with the increase of SFCs and deployed

drones is present here for the reasons discussed in the static scenario. However, in the

dynamic case, average running times are generally lower than the static scheme, as

the dynamic scheme uses decisions made by the initial placement and previous steps.
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6.8 Summary

In this chapter, we reiterated the motivations and advantages of utilizing NFV in

drone networks. The use of NFV in drone networks is motivated by the ability and

ease of configuring drones for various tasks, especially those that require in-network

computing. This is especially useful for missions in remote areas with no access

to reliable infrastructure. We illustrated how chained VNFs can be used in drone

networks to deliver and relay traffic in applications such as remote video monitoring.

We then detailed the problem definition, motivating the need to determine an efficient

deployment of the physical network to host and route SFC traffic as required. We

also detailed special considerations needed to orchestrate the network given SFC

mobility requirements. Therefore, specialized deployment and orchestration schemes

are needed to facilitate such applications.

To target scenarios with stationary networks, we proposed a deployment scheme

implemented as an ILP. The scheme deploys drone networks with VNFs hosted in

drone computing resources. A minimal network topology is determined based on

supplied SFCs and associated VNFs with location requirements. We followed by

providing a fast greedy algorithm that produces reasonable deployments and provides

an alternative to depending on optimization solvers.

For scenarios with mobility requirements, we addressed the case where SFCs re-

quire the hosting drones to move over the mission area. A dynamic orchestration

scheme is developed for this purpose. The scheme’s objective is to maintain the de-

ployed network during movement while minimal adjustments are made to the network

topology and the hosted SFCs. This ensures that a limited number of disruptive net-

work changes take place. This is an important consideration since updates made by
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orchestration are expected to take place many times during repeated movements.

The proposed optimal static scheme and greedy algorithm were compared with a

variant of the optimal scheme in terms of attributes of the produced networks, such

as the number of relays, SFC hop distance, and other attributes. Then we evaluated

the proposed dynamic scheme. The proposed scheme with overhead minimization

was compared to a baseline scheme with no overhead minimization. We reported the

total number of relocated VNFs and rerouted SFCs, and the extent of changes to the

network topology after a number of movements and update events. Results showed

a significant reduction of such overheads which confirmed the need to make such a

consideration in orchestrating NFV-based drone networks.
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Chapter 7

Conclusions and Future Directions

The use of unmanned aerial vehicles or drones is increasingly growing [Fed20] and

is expected to be a part of many industrial and civilian applications including fu-

ture mobile networks [Sha+19]. Communications and computing are integral parts of

drone networks [Wan+20b], involved in command and control and enabling connec-

tivity and intelligence for multiple networked drones conducting a variety of tasks.

Drone-assisted communication networks are enabling many promising applications,

as drones’ flexibility and mobility are utilized to deploy network services on demand

and extend the coverage of terrestrial networks.

Considerable challenges are faced in drone networks due to their distinct charac-

teristics compared to traditional networks. Mobility, the likelihood of intermittent

connectivity, and lack of access to ground infrastructure in remote areas are among

the aspects of drone networks that present unique challenges.

Softwarization is a key element in today’s wireless and mobile networks. Using

softwarization technologies, namely SDN and NFV, the traditional integration be-

tween the control and data planes is separated. This separation consolidated control
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functions into logically centralized components that control diverse commodity hard-

ware representing programmable network devices. This leads to cost savings and ease

of control and management of various and easily upgradable network devices. Using

NFV, an additional layer of softwarization is added, where network processing func-

tions are deployed as virtualized elements instead of hardware elements. Nowadays,

softwarization spans cloud and mobile networks and is one of the foundations of the

5G architecture [Afo+18].

SDN was introduced to drone networks to circumvent the challenges mentioned

above by utilizing centralized control and programmability [SO+20]. NFV was also

applied to enable more abstraction and reconfigurability as well as virtualized on-

board processing. While this integration showed performance improvements from

networking and service perspectives, more investigation is needed to measure the ben-

efits of softwarization concerning reconfiguration and the possible new applications

delivered based on realized gains. A few additional challenges in applying softwariza-

tion remain unaddressed.

In this thesis, we focused on demonstrating the benefits gained from reconfigura-

bility offered by softwarization. We also addressed some open challenges of enabling

software defined drone networks. Specifically, we targeted enabling aerial SDN con-

trol, the deployment, and dynamic orchestration of NFV-based missions of networked

drones.

7.1 Conclusions

Chapter 3 was dedicated to demonstrating the direct advantages of reconfiguration.

We proposed a model for evaluating the gains of a network of softwarized drones
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that conduct a multiplicity of tasks and utilizes inflight dynamic reconfigurability

to enhance the networks efficiency in response to urgent events. We motivated the

model by proposing a representative use case, where an industrial entity uses a fleet

of drones to conduct different routine tasks. A similar use case is an SP that offers

its drone fleet as a service in a setting where customers from municipalities, law

enforcement, and research are interested in utilizing the fleet to conduct different

tasks. We described the elements of the model, its operation, and how it is enabled by

softwarization. For the purpose of evaluation, we introduced two additional variants of

the model, one with limited softwarization and another with non-softwarized drones,

each fixed to serve a single type of task. In our evaluations, the models were compared

based on the ability to complete assigned tasks in the shortest amount of time. The

reconfigurability of the softwarized system allowed the fleet to accomplish tasks sooner

than the non-softwarized fleet. As well, the softwarized models demonstrated energy

savings. Another evaluated scenario focused on the ability of the fleet to respond

quickly to critical events, such as monitoring a crisis or sensing data of a natural

phenomenon within a limited time frame. Such tasks are designated as high-priority

and have a deadline by which the task must be completed. Thanks to the dynamic

reconfigurability, softwarized drones are highly successful at fulfilling high-priority

tasks owing to its flexibility over non-softwarized or non-reconfigurable drones. In

this chapter, we demonstrated that softwarization increases the efficiency of a small

fleet of drones to a level similar to, or better than, a non-softwarized fleet of the same

or twice the size, due to dynamic reconfigurability in accordance to the requested

tasks. Such gains can translate to more utilization and revenue for the SP, as it is

able to serve more tasks, while costs could be minimized by maintaining a smaller
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fleet.

In Chapter 4, we proposed an architecture for softwarized drone networks and de-

scribed its components. The architecture enables flexible deployment, management,

and reconfiguration using SDN and NFV technologies. The various requirements and

components to enable a reconfigurable drone network suitable for various applications

were described. Within this architecture, we proposed components that enable ad-

dressing limitations with respect to SDN control and orchestration of NFV-enabled

networks. We also discussed possible use cases of the proposed architecture.

Chapter 5 focused on addressing SDN control connectivity challenges within the

architecture described in Chapter 4. We identified the limitation when the network is

deployed in areas with limited or no access to a ground infrastructure to connect to

SDN controllers. In such a setting, several drones are dedicated as SDN controllers.

Certain requirements need to be met for deploying controllers, which are limiting

the number of controllers and ensuring the direct connectivity for control links and

inter-controller links. We described two schemes with different priorities with respect

to the number of drones allowed to be deployed as controllers. The first scheme

is more permissible in terms of the number of controllers and thus can guarantee

controller connectivity to all drones. The second scheme allows only a few controllers

and guarantees direct connectivity to the maximum possible number of drones. The

proposed schemes include variants for initial deployment and dynamic adjustment

as the network topology changes. Dynamic adjustment schemes adjust controller

locations to maintain control links while limiting the distance required for controllers

to travel. This optimization thus allows controllers to travel efficiently by limiting the

time and energy required for controllers to travel during adjustments. Evaluations
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showed the performance of the proposed schemes. For the initial deployment of

controllers, we showed the number of controllers needed for different topologies and

showed the flexibility of establishing multi-hop inter-controller links when needed.

In the dynamic setting, we demonstrated the reduced distances required to adjust

controllers during network topology changes. The result of our work is that a drone

network can be deployed with airborne controllers that dynamically adapt to the

network topology independently from the actual network formation related to the

task, while maintaining established control links. This ensures that the control plane

is functional to operate a dynamic network.

In addition to enabling modularity of functions and reuse of hardware (drones),

NFV also enables reconfigurable on-board processing in drone networks. To facili-

tate such flexibility, in Chapter 6 we discussed the need for planning and orchestra-

tion techniques for NFV-based drone network missions. We demonstrated a remote

video monitoring use case that expresses its mission using several SFCs, where SFCs

capture, process, and transmit data between different locations through the drone

network. To deploy such a network, a minimal and efficient formation of the net-

work needs to be determined along with optimal placement and routing of SFCs

within the drone network. An optimal scheme was proposed for static and initial de-

ployments. To facilitate the mission mobility requirements, a dynamic orchestration

scheme was proposed to adjust the network topology and SFC placements as needed

while limiting disruptive overheads such as continuous rerouting and relocation of

VNFs. Evaluations showed the feasibility and properties of networks deployed using

the static scheme in terms of network size and selected traffic paths. A comparison

was made to a proposed fast heuristic algorithm that achieves deployments close to
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the optimal scheme. For dynamic scenarios, evaluations showed how dynamic orches-

tration can efficiently maintain the deployed networks while keeping overheads to a

minimum. This is an important consideration in such highly dynamic settings due to

network mobility.

7.2 Future Directions

Several future directions could be pursued based on the work presented herein. We

list these below.

• To investigate additional gains due to softwarization, future work may consider

expanding on the evaluation presented in Chapter 3 and investigate additional

use cases. For instance, within the same SP or industrial contexts, evaluations

may involve more specialized tasks that seek different independent objectives

while deployed simultaneously. For example, objectives may include maintain-

ing coverage of a set of services or maintaining up-to-date sensing information.

We anticipate that such tasks can be deployed more effectively using softwarized

reconfigurable drones, where the different task goals are met with an enhanced

efficiency due to softwarization.

• The architecture described in Chapter 4 can be expanded further by investi-

gating detailed requirements and specifications for both the northbound and

southbound interfaces based on real world experiments. Such work can involve

experimental design and implementation of a softwarized network of drones

with associated software stack. The next step is standardization of developed

interfaces to enable an open and standardized softwarized drone networks.
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• For the SDN controller deployment proposed in Chapter 5, we relied on op-

timization solvers to solve the optimization models of the proposed schemes.

Thus, low complexity and fast heuristic algorithms are needed. A challenge for

potential algorithms is meeting all the discussed link and movement require-

ments at an acceptable level compared to the optimal schemes.

• The SDN controller deployment schemes can be further improved by taking

into account realistic network conditions. The problem can be investigated

using detailed mobility and traffic models of drone networks, including the dif-

ferent interactions between the drone network nodes and controllers. Then,

controller deployment, movement, and assignment can be dynamically adjusted

according to different requirements, such as the varying demands of drones, QoS

requirements, and mobility based on the current state of the network.

• The work presented in Chapter 6 can be extended further by developing a

heuristic or greedy algorithm for dynamic orchestration to increase scalability

and reduce the complexity of the dynamic scheme. Another important direction

is incorporating drones’ power consumption in dynamic network adjustments.

The dynamic scheme can be improved by efficiently relocating VNFs and rerout-

ing traffic away from drones with depleted batteries.

• In Chapter 6, the focus was on deploying drone networks where SFCs require in-

stantaneous VNF operation and connectivity within each chain. An extension

that is worth investigating is scenarios where SFCs operate similar to delay-

tolerant networking. While in-network computation is still required, computa-

tion results are not required in real-time. This can be useful in situations where
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drones have limited computing capacity or cannot establish connectivity at all

times. In such scenarios, individual VNFs in the chain operate independently

and with space and time constraints. For example, data acquisition VNFs can be

activated to collect data at certain times or in remote disconnected areas. VNFs

for data processing are activated at different times when results are requested

and connectivity can be established. Such scenarios require orchestrating the

network with such constraints in mind and schedule the operation of VNFs and

their connectivity accordingly.
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Appendix A

Notes On Optimization

A.1 Linearization of Non-Linear Terms

The non-linear terms in the objective function (5.4) and in the constraint (5.11)

for both initial and dynamic MinCtl and FixedCtl schemes can be linearized using

[Tan+18; CBD11] by introducing a binary variable zij to replace the product of yli

and ylj . Then, we replace the constraint (5.11) with the following constraints:

zij ≤ yli ∀li ∈ L (A.1)

zij ≤ ylj ∀lj ∈ L (A.2)

zij ≥ yli + ylj − 1 ∀li, lj ∈ L, i 6= j (A.3)

zijL
cc
lilj
≤ hopsccmax ∀li, lj ∈ L, i 6= j (A.4)

Then, objective function (5.4) is expressed as:

Htotal =
∑

li,lj∈L,i 6=j

zijL
cc
lilj

(A.5)
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A.2 Multi-Objective Optimization

In this section, we discuss the approach used in Chapter 6 to solve static and dynamic

schemes with multiple objective functions.

Multiple, sometimes conflicting, optimal solutions can exist for a multi-objective

optimization problem. There exist different techniques for solving multi-objective

optimization [MA04]. The hierarchical or lexicographic approach as used in Chapter

5, ranks objectives by priorities set by the decision maker and solves each objective

separately without compromising solutions of higher priority objectives. Another ap-

proach is to generate the set of Pareto optimal solutions [MA04] which are the set

of solutions where each objective value cannot be improved without compromising

other objective values. This allows the system or decision maker to select the pre-

ferred solution. However, the above techniques are computationally expensive due

to the number of objective functions. Due to the dynamic and iterative nature of

the dynamic adjustment, solutions must be obtained in the shortest amount of time.

We use the weighted sum approach to combine all objective functions into a single

function, where weights dictate the importance and contribution of each individual

objective function to the total value according to the preference of the system.

Since objective function values can have different magnitudes, it is recommended

to normalize or rescale them so it is easier to set the weights. We normalize the

objective functions by their minimum and maximum feasible values. Each objective

function fi is transformed into fnormi =
fi−fmin

i

fmax
i −fmin

i
. Ideally, such normalization entails

finding the minimum and maximum feasible objective function values by solving

for each objective separately or obtaining such values from the Pareto set [MA05].

However, to reduce the time required to obtain a solution, we normalize by estimated
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values for each objective function based on problem intuition and experimentation.

With normalization, all objective functions are assumed to be in the range [0, 1] and∑5
i=1 wi = 1.

All objective functions are transformed as described above. Rough estimations of

the feasible minimum and maximum objective values are made using formulas shown

and discussed below. The weights given to each objective function are shown in Table

6.1. We experimented with different variations of these formulas and weights and as

well without normalization which did not alter the overall finding of the evaluation

presented in Chapter 6. It is expected that in different settings, system implementers

would experiment with different weights and bounds. Estimated minimum and max-

imum objective values are calculated as follows.

• Nmin
deployed: At minimum, only primary drones are deployed which is determined

by the number of required locations by SFCs |Lreq|.

• Nmax
deployed: The number of deployed drones is limited by |D|.

• Nmin
vlinks: The lower bound of the number of VNF links that use physical links is

equivalent to at least one VNF link per SFC, i.e., at least one hop is required

for SFCs that start from one location and ends at another. This is equivalent

to |R|.

• Nmax
vlinks: The upper bound of the number of VNF links that uses physical links

is bound the total count SFCs VNF links:

Nmax
vlinks =

∑
r∈R

|VLr | (A.6)
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• ∆(X, X̂)min,∆(Y, Ŷ )min,∆(K, K̄)min: The minimum Hamming distance can be

zero, meaning no changes happened to the network state in consecutive orches-

tration steps.

• ∆(X, X̂)max: The maximum number of VNF relocations is bound by the total

number of intermediate VNFs in the network (All VNFs minus first and last

VNFs of each SFC). Each VNF relocation involves a Hamming distance of two.

∆(X, X̂)max = 2
∑
r∈R

|Fr| − 2 (A.7)

• ∆(Y, Ŷ )max: The maximum number of changes to VNF link placements is hard

to estimate but we set it to the total number of SFCs VNF links:

∆(Y, Ŷ )max =
∑
r∈R

|VLr | (A.8)

• ∆(K, K̂)max: The maximum number of changes to network link states is also

hard to valuate, but we set it to the number of active physical links formed after

the last orchestration step:

∆(K, K̂)max =
∑

(di,dj)∈E

k̂di,dj (A.9)
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