INTELLIGENT FRAMEWORK FOR MONITORING CROPS
IN GREENHOUSES

by

Asmaa Mohamed Al-Maamoun Ali

A thesis submitted to the School of Computing
in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University
Kingston, Ontario, Canada

(October 2020)

Copyright ©Asmaa M. Al-Maamoun Ali, 2020



Abstract

Wireless Sensor Networks (WSNs) and Wireless Visual Sensor Networks (WVSNs) are two
monitoring technologies that have the potential for use in many application domains, and both are
poised for growth in many markets from the farm to the office. Integrating a WSN with a WVSN
in a commercial greenhouse setting is an application domain yet to be researched. The integration
of WSN and WVSN has the potential to overcome the problems other monitoring systems have
encountered. A system combining these two wireless networks will need no human interaction,
deliver real-time data indicating an adverse event, be cost-effective, and use less power. Additional
efficiencies specific to the greenhouse application are needed due to its clutter and occluded
environment, very large area, and restricted energy plan. This thesis presents a framework that
combines WSN, WVSN, Machine Learning (ML), deep learning, and image processing to address
the challenges faced by operators of commercial greenhouses. The framework achieves three
objectives. First, finding the optimal placement of WVSN nodes to minimize the number of
installed camera nodes. Second, monitoring the growth of the plants and detect any abnormalities
caused by pests or diseases. Third, controlling the microclimate inside the greenhouse and
dynamically predicting the duty cycle activities of the monitoring sensors.

Our first objective is achieved by formulating and solving an optimization problem to find the best
placement for the camera sensors of the WVSN, maximize the area covered, and minimize the
number of camera sensors used with good quality images. The second objective is achieved by
using the Hough Forest ML and image processing techniques on the images taken by the WVSN
to detect any fungus, monitor the growth of the plant, and to increase crop production and quality.
Our third objective is achieved by controlling the microclimate inside the greenhouse using deep

learning prediction Long Short-Term Memory (LSTM) model. The prediction model will not only
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control the microclimate inside the greenhouse but also predict and control the monitoring sensor’s

duty cycle to decrease energy consumption and prolong the network’s lifetime.
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Chapter 1

Introduction

In the past, traditional crop cultivation was widespread across vast landscapes and remains
today essential for the development of human civilization. Crop cultivation takes a
tremendous amount of hard work and continuous care and attention. There were many
problems involved in traditional crop cultivation: the plant’s growth and development
depended entirely on the environment and the weather; plants had no protection against
pests and diseases. However, the development of modern crop cultivation occurred with
the advent of commercial greenhouses [1][2]. A greenhouse allows commercial farmers to
grow crops where the changing weather would generally create an unfavourable
environment for growing plants. The production of crop plants in greenhouses does not
depend on geographic location or even the time of year. A greenhouse gives plants
optimum conditions for healthy, vigorous growth. The quality and yield of a crop depend
solely on the quality of the environment in the greenhouse.

Given that this environment could negatively impact the plants’ growth and yield, it is
imperative to have continuous monitoring and control of specific environmental factors to
produce maximum crop yield. Temperature, humidity, pressure, wind, and dew point are
the most common environmental factors that growers monitor closely. However, these
factors alone do not give the grower the complete picture of the condition of the greenhouse
ecosystem. Commercial greenhouses are huge and have large outer surfaces where

changing weather can vary significantly between different areas inside the greenhouse. It



is common to use sensors and actuators in greenhouses. However, installation requires
extensive wiring and maintenance, making the system complex and expensive. Several of
the latest wireless and artificial intelligence technologies are promising to contribute to
increasing the production of a greenhouse by solving its problems and limitations. Among
these technologies are Wireless Sensor Networks (WSNs), Wireless Visual Sensor
Networks (WVSNs), intelligent learning (machine and deep learning), and image
processing techniques. WSN and WVSN are possible solutions to problems faced by
operators of commercial greenhouses. Both networks can operate within a wide range of
environments. They are inexpensive, small, require reasonable power to operate, offer
flexibility, and exhibit distributed intelligence. The sensing devices in a WSN are called
sensor nodes! and in a WVSN they are called camera sensor nodes®. They used to capture
images and sense specific properties of the surrounding environment, including physical
and chemical properties, and transmit the sensed data to a central unit called the Base
Station (BS) either periodically or on-demand. According to different application
requirements, the networks may consist of just a few or as many as thousands of nodes
operating collaboratively and coherently for a few days or several years to fulfill a specific
task [3]. However, at the same time, excessive use of the nodes will increase energy
consumption, consequently decreasing the network's lifetime. This is especially true in
applications that need continuous monitoring and observation inside large, and occluded

environments like a greenhouse.

! sensor node, wireless sensor node, or sensor are terms being used interchangeably in this thesis.
2 camera sensor node, wireless camera, camera node, or camera sensor are terms being used interchangeably
in this thesis.
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An intelligent solution comprising machine learning and deep learning has become the
most promising and significant technology development in recent years. Machine learning
is capable of automatically learning without human interaction and without being
programmed. Machine and deep learning extract knowledge from the data that it is given.
This knowledge that has been learned can be used to make decisions and generate
predictions. Machine and deep learning techniques can be found in WSNs and WVSNs,
depending on the labelled data’s availability during training.

Merging WSN, WVSN, machine learning, deep learning, with image processing, will help
to overcome the problems mentioned earlier, investigate efficient network deployment
plans to address the many challenges that have not been addressed and fill the literature

gap in this research area.

WSN and WVSN deployment challenges and the motivations behind this research are
presented in the following section. Significant research contributions followed by an
overview of this thesis and an outline of the remaining contents of this thesis are given in

the next sections.

1.1 Motivations and Objectives

Greenhouse crops are susceptible to fluctuations in environmental factors. These factors
directly impact plant growth, and poor conditions can spread pests and diseases, ruining an
entire crop in the greenhouse. Deploying large scale WSNs in greenhouses becomes
necessary to control and monitor the environmental parameters. However, the number of

data transmissions between sensor nodes and the BS in such environments increase



significantly along with the network size, promoting data congestion, and a high sensory
data loss rate [4-6]. Excessive use of sensor nodes will consume more power, and sensors
not operating collaboratively and coherently will shorten the network’s lifetime. A short
lifetime sensor node will cause instability during the crop life cycle inside the greenhouse.
Therefore, there is a crucial need to develop an intelligent solution to predict the weather
conditions that affect the greenhouse ahead of time. This solution will help in controlling
and stabilizing the microclimate inside the greenhouse. This solution requires historical
data and a high degree of accuracy before it can be deployed in a commercial greenhouse.
Also, issues related to sensor node’s energy consumption and network lifetime must be
considered for efficient performance in a greenhouse application. Many investigations
looked at changing the duty cycle of the sensors to decrease energy consumption [7], even
though reducing the consumed energy for a long duty cycle would result in a considerable
amount of unreported data in the network. Therefore, in any proposed intelligent solutions
for predicting operational modes of a sensor, it is essential to consider the duty cycle. This
will help decrease the wake-up time, which will reduce energy consumption and prolong

the lifetime of the network.

Deploying a WSN alone is not enough to overcome all the issues mentioned earlier. There
is certainly potential to use camera sensors of a WVSN as a complement to a WSN in
monitoring crop growth. Camera sensors are capable of recognizing fungus, pests, and
diseases that impact the growth of the plant. If the camera sensor detects increasing fungus
on the plant, an alert message that the humidity level is too high inside the greenhouse

could be sent. However, the placement of a camera sensor in a greenhouse is challenging.



The placement camera nodes largely influence the operations and performance of WVSN,
as camera nodes must be able to observe events of interest and transmit the data to the BS.
Finding the best location for camera sensors to cover a large area using the minimum
number is an open research problem. The images taken by the camera sensor must be of
high quality and high resolution. Thus, the deployment strategy of a WVSN can be
modelled as an optimization problem. The problem should aim at maximizing the area to
be covered with the least number of camera sensors. This optimization problem becomes
challenging because there should be no overlapping field of view between camera sensors.
Nonetheless, the camera sensor consumes more energy than any other sensor node,
transmits huge amounts of data, and needs a large bandwidth. Thus, the intelligent solution,
which predicts sensor node operation modes, can predict the duty cycle of the camera
sensor to control the wake-up and sleep modes and hence, decrease the energy consumed

during the monitoring time and reduce unnecessary data transmission.

Images from good quality camera sensors are affected by noises and may have unwanted
objects in the image, which needs to be cleaned out to be used for recognition processes.
With no human interaction, these images need to identify first if the plant has fungus or
not. Naturally, the greenhouse is a fully occluded and cluttered environment in which it
may be difficult to distinguish and recognize an unhealthy plant. Moreover, the light
intensity varies from one area of the greenhouse to another, depending on the direction of
the camera when taking images and ambient light through the greenhouse covering. All

these issues can affect the image. Combining machine learning with image processing



algorithms can enhance the output images and can program the sensor to recognize the

unhealthy plant and locate the fungus on that plant.

Motived by the aforementioned challenges, in this research, we aim to achieve the

following objectives:

Monitoring crop growth in the whole greenhouse area.

Early detecting of the existence of powdery mildew in a highly occluded and
cluttered greenhouse.

Automating greenhouse operations for reducing the cost and decreasing human
interaction.

Predicting the greenhouse environmental factors to monitor and stabilize the

microclimate inside the greenhouse.

1.2 Thesis Contributions

The main contributions of this thesis are as follows:

1.

Finding the optimum placement for camera sensors in a commercial greenhouse.
To this end, we define an objective function that aims to maximize the covered area
and the quality of the image and minimize the number of camera sensors. Since this

problem is NP-hard. we resorted to using two sub-optimization problems.

We present an automated fungus detection system using WVSN, image processing
techniques, and the Hough Forest machine learning algorithm to distinguish
between healthy and unhealthy plants and identify the area on the plant that has the

fungus with a high degree of accuracy.



3. We propose an intelligent prediction model based on Long Short-Term Memory
(LSTM) to control and stabilize the environmental condition in a greenhouse for

optimal crop production.

4. We devise a novel approach, based on our proposed intelligent prediction model,
to predict the sensor nodes’ operational modes (wake-up and sleep) through their

duty cycles to decrease the energy consumed and prolong the network lifetime.

1.3 Thesis Overview

This thesis introduces a novel framework that can be applied in a smart commercial
greenhouse. The framework includes WSN, WVSN, image processing, machine learning,
and deep learning. The framework comprises state of the art approaches on the placement
of the camera sensors with maximum image resolution and maximum area covered with a
minimal number of cameras to monitor plant growth in commercial greenhouses using
WSNs and WVSNS. Lastly, the framework uses state of the art prediction models to operate

the sensor node efficiently.

Three phases of research will be described in this thesis, as shown in Figure 1.1. The first
phase studies problems related to the deployment of WVSN in the greenhouse. Our aim in
this phase is to find the optimal placement for camera sensors, minimize the number of
sensors, maximize the area covered, and have better image quality. The second phase
involves image processing with machine learning algorithms for dealing with images taken

from the camera sensors to recognize the healthy and unhealthy plant. Many image
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processing techniques are applied to these images, and then the Hough Forest machine
learning algorithm is used for object recognition and segmentation. The Hough Forest was
chosen as the detection algorithm for its robustness to occlusion and accuracy. The third
phase uses a deep learning LSTM prediction model to predict and control the microclimate
inside the greenhouse and communicate with camera sensors to improve monitoring the
plants. In this phase, the prediction model will control the duty cycle of the wireless sensor
node to achieve less power consumption and, thus, prolong the network lifetime, which

results in a good quantity and quality crop production.

Phase One Phase Two

Image Processing and Machine
Learning

Wireless Visual Sensor Network

Figure 1.1: Phases of Research

The interaction of the operation of the three phases of the proposed framework can be
briefly explained as follows. Initially, during phase one, the camera sensor, placed in the
optimum location, will take pictures of the plants and send them to the central servers at

the BS for phase two. The images will go through numerous processes to remove noise and



be ready for review. If any anomaly is detected in phase two, the BS sends a message to an
actuator to spray the appropriate pesticide. At the same time, sensors send readings of
environmental factors. If any measured factor value goes beyond a threshold that is harmful
to the crops, then the sensor node will send three messages. One message will be sent to
the actuator to perform an action such as open greenhouse windows if too hot, reduce
watering if too damp, or water plants if too dry. The second message will be sent to the BS
for updating the prediction model and update the duty cycle of the sensor node. The last
message will be sent to the camera sensor within the closing proximity of that actuator to
take pictures of the crops. Then, those images are sent by WVSN to the BS to take
appropriate measures, such as checking the plant’s health condition. The full framework is

shown in Figure 1.2.

Wireless
sensor
node

v

* Converting color images to grey J

* Resizing images
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Sensor

Images
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PFTILL L 4

Wireless Visual Sensor Network | Image Processing and Machine Learning | Wireless Sensor Netwark and Prediction Model

Phase One | Phase Two § Phase Three

Figure 1.2: Full Framework Interaction
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1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 highlights the relevant
background literature. Chapter 3 presents our proposed model for the placement of the
camera sensors in the greenhouse and our solution to the placement optimization problem.
Chapter 4 explains our solution to recognizing fungus and diseases using image processing
and machine learning algorithms on images taken from camera sensors. Chapter 5 explains
our proposed prediction model based on LSTM for predicting and controlling the
microclimate inside the greenhouse and investigate the effect in predicting the duty cycle
of the sensors in terms of energy consumption and network lifetime. Lastly, Chapter 6

concludes the thesis and provides directions for future work.
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Chapter 2

Background and Overview

In this chapter, we present the relevant background material describing technologies used
in this thesis, including wireless sensor networks, wireless visual sensors network, image

processing, machine learning, and deep learning.

2.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) consists of groups of many small devices called
sensors, usually distributed indoors or outdoors over a specified area. Each sensor has built-
in a communication unit to send and receive data from other connected sensors, a sensing
unit for data acquisition, a battery and a microcontroller that will process local data. All
sensors have different bandwidths, communication ranges, and can communicate in a
single hop or multi hops. The location and placement of these sensors can be mapped or
deployed randomly. The sensor’s function is to sense and collect environmental data, then
send that data to the Base Station (BS) for processing [8]. Typical WSN is shown in Figure

2.1.

Internet

Base Station

Sensor Node

User

Figure 2.1: Typical WSN
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WSNs have been used in many applications, such as: monitoring the environment,
healthcare monitoring, target tracking, and industrial process monitoring. These types of
applications require the sensors to be active for a long time. Thus, an excessive amount of
the sensor’s battery will be used, and the battery will drain within a few days. There are
many challenges associated with WSNSs, including the network's lifetime, limited amount
of energy, data loss, overhead costs, latency, process time, and scalability. These
challenges are application dependent on WSN deployment, which can be explained as
follow:

e Harsh environment: Sensor nodes can be deployed in different environments depending
on the application. High humidity, dirt, dust, and corrosive environments are all
considered harsh conditions that can reduce their performance and give inaccurate
information [9].

e Self-Management: Usually, there is a large number of sensor nodes in a network. A
failure in any of the nodes or any additional sensor node will affect the entire network.
Sensor networks should adapt to any changes in connectivity [10].

e Redundant Data: A sensor node usually collects data and sends it to the BS. However,
when data is sent from many nodes simultaneously, this can cause redundancy of data,
which wastes energy [11].

e Real-Time Operation: Many applications required to receive data without delay for
reliability and security. However, in a poor network, old data can be mixed with current

data resulting in incorrect data being sent to the BS [12].
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Coverage and Connectivity: Network coverage should assure that all the area to be
monitored is fully covered not just part of the area. At the same time, network
connectivity assures that all nodes should be able to communicate back and forth
between each other [13].

Energy: this is one of the main concerns with sensor nodes. Energy is consumed during
node operation and in all processing, transmitting, sensing, and data collecting tasks.
However, sensors have limited battery power, the batteries are small and sometimes
difficult to change because for example the deployment is over a large area, or in a
hazardous environment. Continuous monitoring or tracking will drain the battery very
quickly [14].

With excessive use of sensors, comes an important issue related to sensor lifetime
which depends on how much energy is needed and consumed while the sensor is
functioning. Sensor nodes must optimize the energy usage for the network’s lifetime.
One method of lowering or minimizing sensor energy consumption is through

controlling its duty cycle activities.

A duty cycle is a period that the sensor is active. Duty cycles are a favorable approach to

saving energy in WSNs [15]. Sensors management activities can be classified into two

groups: sleep/wakeup protocol and topology control protocol. This classification is based

on the topology the sensors were implemented. For the first type (sleep/wake-up protocol),

each node works individually. Sensors can be in active (wake-up) mode and then switch to

sleep mode when there is no data to send. This type can alternate between wakeup and

sleep modes. For the second type (topology control protocol), a select minimum subset of
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sensor nodes can be active for network connectivity and the remaining sensor nodes will

be in sleep mode to save power and lower the amount of consumed energy by the network.

2.2 Wireless Visual Sensor Networks

A typical Wireless Visual Sensor Network (WVSN), shown in Figure 2.2, consists of a
group of sensor cameras that can process images from different vantage points that can
create a more useful image that contains more information. Usually, the sensor cameras
can process images locally, communicate between other cameras and the BS that processes
the collected images from each camera.

The difference between WVSNs and other types of WSNs is the type of data being
collected. Most sensors collect measurements as a one-dimensional data signal. However,
a sensor camera collects a two-dimensional set of data. Thus, the additional dimensionality
of data adds a level of complexity. Another difference is when a sensor collects data, it
uses the sensing range, but when a sensor camera collects data, it uses the field of view.

These differences are illustrated in Figure 2.3.

- /

Application Server

Base Station

Figure 2.2: Typical WVSN
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Figure 2.3: Difference Between WSN and WVSN

Listed below are the characteristics of a sensor camera [16]:

e Resource Requirements: The battery in the camera has limited energy for sensing,
processing, and transmitting. Sensor cameras generate large amounts of data that

need large bandwidth.

e Local Processing: The processes that happen locally in a sensor camera reduce the
amount of data that needs to be communicated in the network. All processes, from
simple image processing to a complex vision algorithm, depend on the application

and the level of connection that the camera node can provide.

e Real-time Performance: Usually, applications need real-time data from the camera
sensors, setting a limitation on the length of the delay and the amount of time that

data needs to be transmitted from the node to the BS.
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e Precise Location and Orientation: Most image processing in WVSNs requires

information about the location of the camera node and its orientation.

e Time Synchronization: Time is very important in many applications. Applications
that involve multiple cameras depend on the synchronized camera’s images for
object localization. The information from the image would be meaningless without

the correct time that the image was taken.

e Data Storage: Usually camera sensors create very large amounts of data that need
to be stored. Monitoring is an application that uses cameras. Therefore, it has more
data to capture and transmit, which means cameras will consume more energy. In
this case, the camera sensor should be equipped with the capacity to store large

data.

2.2.1 Sensor Camera

In addition to the main function of a sensor camera which is captures images, the camera
can extract information from the image using machine vision technology. The sensor
camera components are an image sensor, image digitization circuitry, image memory, a
processor, a communication interface, I/O lines, a lens holder, and a built-in illumination
device. Many applications use sensor cameras such as monitoring environment (animal
habitats, hazardous area, building, street, train station, airport), smart meeting rooms
(visual studios), smart home (elderly care, kindergarten), and surveillance (parking lots,

remote area, traffic, public places) [17].
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2.3 Image Processing

Image processing is a method used to get an enhanced image or to extract information from
the image. It is a type of signal processing where the input is an image, and output may be
a clearer image or features associated with that image. Currently, image processing is
among the fastest-growing technologies. The basic image processing techniques [18],

given in Figure 2.4, are:

Image Acquisition: is capturing an image using a suitable camera. There are different
cameras for different applications. In Chapter 4, we used a camera that is sensitive to the

visual spectrum.

Grey Level Image: indicates the brightness of a pixel. In greyscale or color image, a pixel
value can range between 0 and 255. The minimum grey level is 0. It carries how white and
black pixel intensity in the image. To convert any color image to grayscale is by taking the
average of the three colors of RGB image. So, adding R, G, B, and then divide by 3.
Usually, it is easier to deal with a gray level image than a color image because grayscale is
only one channel containing brightness information without any visible color, comparing
to three channels (RGB) in a color image, which needs more complicated processing steps.
Also, the gray level image size is smaller than the color image size, making it faster for

processing.

Noise Removal: is a process to remove unwanted noises using the low-pass filter or any
smoothing operation. One of the methods is convolving the image with a Gaussian mask,

which will brighten the value of the pixel to be closer to other values of its neighbors.
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Edge Detection: one of the image processing techniques for finding the boundaries of an

object inside the image and detecting the discontinuities in brightness in the images.

Image Enhancement: is a process for adjusting digital images so the outcome can be more

appropriate for a specific application. Such as sharpen the edges, boundaries, or contrast.

Image Segmentation: is a process for portioning digital images into multiple segments. To
simplify or change the representation of an image into something more meaningful and

easier to analyze.

Captured images using camera sensors require image processing methods to extract
specific information from the image. For more detail, a scene can be recorded using image

processing from camera sensors for tracking and monitoring applications [18].

Image Acquisition Image Enhancement

A 4 A 4

Noise Removal Edge Detection

y

Image Segmentation|

Figure 2.4: Image Processing Techniques

2.4 Machine Learning

Machine learning has become the most promising and significant technology development

in recent years. It is capable of automatically learning without human interaction and
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without being programmed. Machine learning extracts knowledge from the data it is given.
This knowledge that has been learned can be used to make decisions and generate
predictions. Machine learning techniques can be found in many types of WSNs and
WYVSNs, depending on the labelled data’s availability during training.

Machine learning approaches can be classified into four categories:

e Supervised machine learning: learn from example data associated with labels or
targeted responses, then generate a label to new unseen data.

e Unsupervised machine learning: learn from plain examples without any associated
labels. The focus of unsupervised learning is to study the data structure and
restructure it into a more meaningful structure.

e Semi-supervised machine learning occurs, when part of the available data comes
with labels and the other part does not come with labels.

e Reinforcement learning occurs, when an agent is responsible for taking action in an

environment with the purpose to maximize return rewards.

Supervised learning is the most popular category of machine learning due to the abundance
of data and storage available nowadays. Supervised learning depends on the availability of
the labelled data; that is, there is a set on input data (X) associated with label data (Y).
Supervised learning learns a mapping function from input data to output label according to

the following equation:

FX)=Y (2.1)
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where X can be any set of data (features), which are believed to capture the underlying
relationship between the input data and output. Y is the label and it can be a discrete value

as in classification supervised learning, or real value as in regression supervised learning.

2.4.1 Supervised Learning Algorithms

This subsection introduces the six machine learning algorithms that are used either for
classification or regression. Among these algorithms, Random Forest algorithm is used in

Chapter 4.

2.4.1.1 Decision Tree

Decision Tree (DT) can be used in regression and classification problems. It is a tree-like
graph. DT consists of nodes and branches. The node represents the feature of the dataset.
The branches represent the possible value of the feature to trace the tree. The root node
represents the whole dataset and the metric like the mean square error when solving the
regression problem, or it can be the information gain when solving a classification problem.
This is used to determine the split in the data. DT is easy to interrupt but it can be large,

and pruning should be done to avoid overfitting [19].

2.4.1.2 K-Nearest Neighbour

K-Nearest Neighbour (KNN) algorithm is based on the distribution free assumption of data.
KNN uses K neighbours for a point in the features space to predict the label of this point.
For a regression problem, KNN is the average of the K neighbouring values, which are the

distances between every training example to the point. Then, K-nearest neighbour is used
20



to calculate the average, which is the label for this point. For a classification problem, the
class of the point is assigned based on the majority class of the K neighbour. KNN is simple
and easy to implement. However, KNN can be slow and choosing the value of K is not

easy in some applications [20].

2.4.1.3 Linear Regression

In linear regression a real value y is predicted based on a set of variables x4, X, X3, ... X,,
it assumes a linear relationship exists between X and Y.

Y=Bo+ B1* X1+ B2 * xo+ ..+ Ln* xp, (2.2)

The weights S ..., in Equation 2.2 are learned during the training process of a linear
regression model such that the prediction error is minimized. Regularization terms can be
added to the linear regression equation to ensure that the model is not overfitting to the

training data and can perform well on new unseen data.

2.4.1.4 Support Vector Machine

Support Vector Machine (SVM) splits the data to maximize the margin between the
different classes, where the closest point to the boundary is called support vectors. The
decision boundary or the kernel may be linear or non-linear depending on the complexity
of the problem. SVM works effectively in high-dimensional data and complex non-linear

data points, although it may be computationally expensive [21].
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2.4.1.5 Naive Bayes

Naive Bayes (NB) is based on the Bayesian theorem. NB performs well on most of the
classification problems despite its simplicity. NB assumes independence between the
different input features and represents the relationship between the label and the input
feature in conditional probability relationships. NB may also be used for regression by

modelling the probability distribution of the target label with kernel density estimators [19].

2.4.1.6 Random Forest

Random Forest (RF) is like DT in which the decision is based on a set of many trees, not
only one as in DT. In a regression problem, the new input will assign a real value based on
the mean of all trees. In a classification problem, a class based on the mode of prediction
of all trees in the forest is assigned to a new input point. RF implementation is useful on
large datasets, but they are prone to overfitting because of the large number of tuning
parameters that need to be chosen adequately. The process handles randomness by
selecting a random sample of training data to build each tree. At each node, there will be
many split points created by choosing each data point's feature value; usually, the one with
the highest information gain will be chosen, to generate two child nodes. To speed up the
process, a small random subset of features allows the tree to quickly calculate the split
point and give the highest information gain. This process will repeat many times until the
target is detected, and time and depth are achieved. The randomness makes the trees
uncorrelated to each other, allowing the output of the forest to have low bias and low

variance, as shown in Algorithm 2.1 [22].
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Algorithm 2.1: Random Forest

1. Build forest of T trees, each denoted by the letter 7 . For each tree t:

(a) Take a sample n of the training data set N (with replacement);n << N

(b) Repeat the following steps for each node until a target certainty, time, or
depth is achieved

i. Select a subset of f features from the complete feature set F.
ii. Create split points on each axis by choosing each data point’s values
iii. Choose a split point that gives the maximum information gain.
iv. Create two child nodes based on the split.
(c) Do not prune the tree after it is grown.

2. Classify a new unknown data point by processing it through each tree

3. Calculate the mean or mode of the tree outputs and return the final classification.

2.4.2 Hough Transform

Hough Transform is a technique to extract features in the image. It can identify only certain
defined shapes such as lines, circles, and ellipse. The purpose of Hough Transform is
grouping edge points into the object candidate performing a voting procedure over a set of
a parameterized image object. Since there are many objects that have an arbitrary shape,
there is a need for a technique to find an object in an image. Generalized Hough Transform

has been used to identify the location of any arbitrary shape.

In Chapter 4, we used Generalized Hough Transform due to the imperfection of edge

detector or image data. There can be missing points or pixels on the desired line, or
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sometimes there are deviations between the real line and the noisy edge points as they are
obtained from the edge detector. Thus, it is better not to depend on the edge detector and

depend on the Hough Transform.

2.4.3 Generalized Hough Transform

The generalized Hough transform is a method for estimating the parameters of a shape
from its boundary points. It extends the classic version for simple shapes like lines and
circles by parameterizing in an R-table, with no need for any analytical form. Any shape is
specified by the set of boundary points. An R-table must be created for each different shape.
The gradient for each point and the length and the orientation of the vector with reference
(centre of gravity) will be generated and will characterize the shape. By increasing the
space dimensionality of Hough and adding new factors, the generalized Hough transform
will be able to recognize any changes in scale and orientation. Algorithm 2.2 [23] shows

the generalized Hough transform process.

There are some limitations in using the generalized Hough transform in some applications.
Hough transform works well with a clear target shape that can be generated from an edge
detection algorithm which is difficult to guarantee in images of greenhouse plants due to
significant clutter. The additional problem is that the generalized Hough transform can only
work with shapes that have a very limited variance; this is not the case in greenhouses

where plant shapes have large variability.
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Algorithm 2.2: Generalized Hough Transform

=

Find the edges in the prototype image.

Choose a reference point (.. y.) ; e.g., center of gravity.

Compute the distance, r to the reference point and the gradient orientation ¢ of each
pixel using a Sobel operator.

: Using the following equations store the reference point as a function of ¢, creating

the R-table.

cr= (g —2)?+ (y — y)?
6:

3 = arctan( L&)
I £I¢

o1 | (ri,B1)
6 | (1. B0) [ (3.33) | .. | (k. )
n | (1. B7) (rn: B2

: To detect the shape parametrized by the R-table, create a 4 dimensional Hough

spaceH ([x.]. [y.]. [0]. [s])where @ is the orientation ands is the scaling factor, and
initialize the cells to zero.

8: For each edge point(z. y) in the search image compute.
9: Look up ¢ in the R-table and convert each(r. J) to a potential(x.., y.) using the fol-

10:

11
12:

lowing formulas.

r. =2+ rcos(f)

Yo =y + rsin(j3)

For each value of s and#’ in their ranges rotate and scale(x,.. y.) to form(z,. y,.)' and
increment H ([2], [y.]. 0], [s'])

: Examine the Hough space for local maximums, each of which represent a potential

object

2.4.4 Hough Forest

Hough Forest is a combination of the generalized Hough transform and Random Forest.
Algorithm 2.3 [24] presents the Hough Forest algorithm. The Hough Forest was chosen as
the detection algorithm because of several of its unique characteristics: (1) It can robustly
deal with stem occlusion; stems partially covered by a leaf can still be detected, (2) Its

resistance to noise in training data allows for limited dataset preparation requirements, (3)
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Its classification performance is excellent, and (4) It is inherently parallel allowing it to

scale in performance to meet time requirements. Further explanation is given in Chapter 4.

2.5 Deep Neural Networks

Artificial Neural Network (ANN) comes from developing intelligent tasks mimicking the
tasks performed by the human brain. ANN is a data modelling tool connecting a strong,
complex relation between input/output. ANN functions like a human brain in the following
ways: neural gets knowledge through learning, then this information will be stored in
interneuron connection which is called as synaptic weights. One of the neural functions has
the capability to directly identify linear and non-linear relationships from the data being
modelled. ANN model is a structure that can create a mapping or relationship from the
dataset. The network model is adjusted and then trained from a collection of datasets called
the training set. After training, the ANN will be able to predict, estimate, classify or

simulate tasks on a new dataset from the same data sources.

Deep learning is a subset of machine learning. It is a neural network with multi-layers and
these layers have multi hidden layers. The purpose of adding hidden layers between the
input and the output is to improve the accuracy and the performance of the neural. Each
layer in the deep network is responsible for extracting features from the input data
automatically. As the deep network grows, the more complex the feature and the more
abstraction must be extracted [25]. Thus, improving the accuracy and avoiding the

excessive processing time. In contrast, when the neural is shallow, less feature to extract.
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Thus, less accuracy. The following three subsections present an overview of the most

common examples of deep neural networks.

Algorithm 2.3: Hough Forest

Training the Hough Forest

1. Annotate an image set with a bounding box and a centroid for each instance of the target
object. All target objects should be scaled to be similar in size.

For T trees in forest [:

3. Randomly select N images from a set of images S for training, where § >> N

4. Choose P 16x16 pixel patches from N images at random and describe each using ap-
pearance information/, a class label ¢, and the displacement vectord. From the object

centroid — P = (7. ¢, d). Background patches (outside a bounding box) are not given a
displacement vector.

(a) Appearance Information can include color intensity values, derivative filter re-
sponses. histograms of oriented gradients, etc

5. Train the decision tree:

(a) Feed in a subset of patches to a node and pick the optimal binary test from set
of randomly generated binary tests. An optimal test will split the data with mini-
mum uncertainty as defined as:

1. Uy(A) = |A|Entropy(e;)
ii. Ua(A) =3, —1(di — da)?

iii. where A is a set of patches, ¢ is the impurity of the class label (0-1).and
d 4 is the average displacement vector to the center of the object.

(b) split the subset of patches into two child nodes and repeat a)

(c) if the node is at the tree’s maximum depth or the amount of patches left is less
than the limit, classify the node as a leaf

i. record the proportion of patches from the target class contained in the leaf
node

1. record the displacement vectors for each patch that contributed to the leaf
node

Detecting object classes
1. In the test image. use each 16x16 patch as input into each tree of the forest

Take the sum up the average outputs of the leaf nodes into the Hough space

BN

Examine the Hough space for local maximums, each of which represent a potential
object

4. Variable scales and rotations are handled by increasing the dimensionality of the Hough
space from 2D to 4D
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2.5.1 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is the most common form of neural networks. It is a feed-
forward neural network. The architecture of MLP is shown in Figure 2.5. It consists of a
cascade of three different layers: input layers, hidden layers, and output layer. The number
of neurons in the input or output layer depends on the problem that MLP is trying to solve.
Also, the number of hidden layers and the number of neurons on them depends on the
designer and how the parameters can tune during the MLP training process. Many hidden
layers make the network deeper. MLP is called a feed-forward network because the
neurons in one layer are not connected to each other, but in the next layer, the neurons are
connected to other neurons. In each connection there is a weight value. These weights have

been learned during the training process of MLP.

Input 1

Output

Input Layer Hidden Layer(s) Output Layer

Figure 2.5: Multi-Layer Perceptron Architecture
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Figure 2.6 shows the basic elements of MLP. A neuron takes n inputs, a weight will be
carried in each connection, then each input will be multiplied by its assigned weight and
sum-up the results [21]. An activation function F is applied to the sum to generate the

output of the neuron. The equation below summarizes the neuron functionality:

Output = f(ZP(input; * W) (23)

Input1

Output

Input n

Figure 2.6: Multi-Layer Perceptron

Both regression and classification applications can use MLP depending on the neuron’s
activation function in the output layer. For binary classification, sigmoid activation
function will be used for neuron in the output layer, while regression rectified linear unit

(ReLU) activation function will be used in the output layer.
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2.5.2 Recurrent Neural Network

A drawback of the ANN is that it cannot capture the sequential information from the input
dataset, which is required in many applications such as speech recognition, text generation,
voice semantic recognition to name a few. Recurrent Neural Network (RNN) is used to
overcome this drawback. RNN has a recurrent relation on the hidden state, as shown in
Figure 2.7. This looping constraint ensures the capture of sequential information in the input

data, and this is considered as the main difference between RNN and ANN [26].

Input

Output Output

Input

Output
Output

Input

Output

Output
Input

"
Hidden Layer idden Layer

Recurrent Neural Network Artificial Neural Network

Figure 2.7: Main Difference Between ANN and RNN Architecture

Recurrent Neural Network (RNN) is a type of ANN which works perfectly with time series
data, contains loops, and allows the information to be stored within the network. RNNs

usually process time series and keep an internal state which summarizes the information in
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the connection which was between the nodes that form a direct graph along a temporal
sequence [26]. This allows RNN to exhibit temporal dynamic behavior.

RNN steps are:

1. RNN will convert the independent activations into dependent activations. Then
assign the same weight and bias on all layers. Thus, reducing the complexity of
RNN parameters makes the neural memorize previous output when provided the
input of the next layer.

2. Three layers of the same weights and bias merge into one recurring structure (RNN
state) as shown in Figure 2.8. Weight and bias 1 denoted as W1 and B1, respectively.
Similarly, for the second layer, W2, B2, and the third layer, W3, B3. These layers

are separate from each other, which means no memories from the previous output.

F(W1,B1)+(W2

,B2)+(W3,83)

Figure 2.8: RNN State
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The following function calculates the RNN state:

he = f (he-1, %)
where:
h; = current state
h;_, = previous state
x; = input state
Apply the activation function:
he = tanh( Whp * he—q + Wyn * x¢)
where:
Wyn = weight at recurent neuron

W,n= weight at input neuron

To get the output:

Ve = Why * hy

2.5.2.1 Long Short-Term Memory

(2.4)

(2.5)

(2.6)

Long Short-Term Memory (LSTM) is an artificial RNN architecture used in the deep

learning field of study. LSTM has feedback connections that are different from ANN. Also,

LSTM can process all sequences of data not only one single data point. LSTM has a

powerful function as RNN in remembering long periods and previous events. Furthermore,
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LSTM can efficiently work with scalable processing capabilities (i.e., powerful GPUs) to
handle and analyze a massive datasets. This ability alone makes LSTM one of the best
commercial artificial intelligent achievements to date [27]. LSTM network applications
include processing, classification, and prediction based on time-series data. LSTM has
been used for many tasks such as unsegmented, connected handwriting recognition, speech
recognition and anomaly detection in network traffic. Some applications are affected by
lags of unknown duration between important events in a time series. LSTM can be
deployed for this type of application to deal with the exploding and vanishing gradient
problems and learn tasks that require memories of events that happened thousands or even
millions of discrete time steps earlier.

A common LSTM unit is composed of a cell, an input gate, an output gate and a forget
gate. The cell remembers values over arbitrary time intervals and the three gates regulate

the flow of information into and out of the cell, as shown in Figure 2.9.

‘ Y
C, l—y

he

Figure 2.9: LSTM Architecture
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The processes in how the LSTM model prediction works is explained as follows. Firstly,
know which information should be canceled from the cell state. This depends on the
sigmoid layer (forget gate layer) which looks at h;_4, x; and the output will either 0 or 1

in C;_;. 1 represents “completely keep” and O represents “completely leave”.

fe =0 (Wr.[he—y,xc] + by) (2.7)

Secondly, information that will be stored in the cell state. Sigmoid layer updating value

(input gate layer) and tanh layer to create a new vector with new values.

ip =0 (W;.[heeq,xe] + by) (2.8)

C, = tanh(Wg .[ he—y, %] + be) (2.9)

Thirdly, updating the cell state by multiplying the old state with f;.

Co= fex Coox+ i *C, (2.10)

Finally, the output of the cell state will be:

or =0 (Wo [he—1,Xe] + bo) (2.11)

ht = Ot * tanh Ct (212)

Usually, important information is transferred from short-term memory to long-term

memory and kept there.
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2.6 Environmental Factors

Plant growth in a greenhouse environment, and in general in an agricultural environment,
goes through many different stages. Including germination, sprouting, flowering and fruit
development. The development of the plant is impacted by its environment, the nutrients
in the soil and the suitability of conditions. A greenhouse environment consists of several
factors, including temperature, humidity, air pressure, dew point and wind [28]. Each of
these factors plays an important role in the plant’s growth. Poor environmental conditions

can weaken plants, thereby increasing the risk of disease and pest infestation.

2.6.1 Effect of Temperature

Temperature is an essential environmental factor for plant growth as it will affect
germination, sprouting, flowering and fruit development. Moreover, when ambient
temperature increases the transpiration rate goes up during the growing stage. Temperature
can cause changes impacting other environmental factors such as humidity and soil
moisture. Therefore, the temperature should be maintained at an optimum level whenever

possible [29].

2.6.2 Effect of Humidity

Humidity is an essential factor for plant growth especially when levels are too high or too
low, the plant can show signs of distress [30]. If humidity is high, above 80%, for a long

time, fungal diseases can appear and spread to neighboring plants. Moreover, the air

35



becomes saturated with water vapor which ultimately restricts transpiration, affecting the

greenhouse crops significantly.

2.6.3 Effect of Air Pressure

Air pressure is the main factor that affects all other factors. Air pressures control the

circulation of the atmosphere. Thus, changes in temperature, rainfall, and winds [30].

2.6.4 Effect of Dew Point

At night, when the air cools to the dew point, the condensation happened, and water
droplets are created on any cooler surface like the leaves. This moisture stimulates the

germination of fungal such as powdery mildew.

2.6.5 Effect of Wind

The wind passes over all sides of the greenhouse and creates different air pressure, which
generates a force that can damage the greenhouse. In addition, the wind will decrease the

humidity of the air [28], thus, hindering the plant growth.

2.7 Summary

In this chapter, the necessary background material describing wireless sensor networks,
wireless visual sensor networks, image processing, machine learning, and deep learning,
was presented. The technical differences between WSNs and WVSNSs, in addition to their
applications, were explained. In this research, we merge WSN and WVSN for the best of

monitoring and controlling inside the greenhouse environment. Image processing methods
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for enhancing images were described. These methods are combined with the WSN and the
WYVSN to design an automated system for early plant disease detection. Standard machine
learning and deep learning algorithms were described in this chapter. The Hough Forest
machine learning algorithm explained, compared, and chosen, in this research, among other
machine learning algorithms for recognizing of powdery mildew on leaves of the plants.
The LSTM deep learning model was selected to be used in our research compared to other
models due to its high degree of accuracy of predicting the greenhouse environmental

factors. Lastly, these factors, which affect greenhouse crop production, were explained.
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Chapter 3

Optimal Placement of Wireless Sensor Cameras

3.1 Introduction

There is considerable research on how to control the environment of a greenhouse, the
temperature, humidity, wind, pressure and dew point by using sensors [31] [32].
Conversely, there is much less research on the early detection of diseases that can damage
greenhouse produced crops. The stability of the ideal environment for growing plants is
guaranteed by using a Wireless Sensor Network (WSN), to monitor and control the
conditions for optimum plant health and growth. Tracking plant growth is the best method
for early detection of plant disease and preventing significant crop losses. A Wireless
Visual Sensor Network (WVSN) is an efficient technology for monitoring plant growth
with the added feature of wireless sensor cameras. The WVSNs are widely used for
surveillance and detecting anomalies [33-35] and are poised to be the best solution for early
detection of plant anomalies and diseases in greenhouse crop production.

The area inside a greenhouse that needs to be monitored is very large, and it would take an
infinite number of images to cover. To improve the performance in terms of storage and
processing and reduce the response time of the image processing unit, we should place the
WVSN cameras so that there is no overlap of images taken by the cameras. It is also
necessary to capture images with high resolution for better processing and analysis. Hence,

optimizing the number of sensor cameras will help in:
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(1) Optimizing the limited storage space of the sensor camera nodes.

(i1) Decreasing the processing time to then be able to analyse these images quickly
and isolate plants showing signs of disease.

(1)  Producing high-quality images for avoiding false detections.

(iv) Minimizing the project cost since WVSN systems can be expensive to install

and maintain.

This chapter presents a mathematical formulation and an optimal solution for the best
placement of the WV SN camera nodes to cover a large area, produce high-quality images,
and avoid overlapping between cameras.

The remainder of this chapter is organized as follows. In Section 3.2, we review the related
work. Section 3.3 defines the problem statement and highlights the research contributions.
Section 3.4 outlines the assumption and provides problem formulation. Section 3.5
describes the ILP problem formulation. Section 3.6 presents the implementation and
numerical results. Section 3.7 includes the performance evaluation, finally, in Section 3.8,

is the summary for this chapter.

3.2 Related Works

Having looked at recent literature on the issue of monitoring greenhouse environments, we
can see that the deployment of sensor cameras in many different applications has been
increasing rapidly over the past decade. Since a sensor camera placement problem is
considered an NP problem, the direction of the research finding the optimal camera
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placement has been changed from theoretical analysis to practical application, which
increases the complexity of the model with realistic assumptions [36]. Several works had
an interest in maximizing coverage, such as [37], where authors studied the problem of
maximizing coverage on a set of discrete targets by directional sensors that could turn
around. This work was aimed to maximize the network lifetime by maximizing the number
of covered targets and minimizing the number of sensors activated at any given moment.
The authors ensured that a target must be covered by at least one camera (tolerating
overlapping images between the sensors) and did not consider optimal camera placement
since they assumed that the cameras were placed randomly. In work presented in [38], the
authors proposed a heuristic for the maximum coverage of an area when one of the existing
cameras breaks down. The proposed algorithm is a decentralized control system that allows
the communication between the cameras in other nearby locations to adjust their direction
and field of view.

Authors in [39] solved the camera placement problem using dynamic programming to
maximize the coverage area and use it in a surveillance application without considering the
quality of the images’ resolution. In [40], the authors tried to solve the same problem
focusing on maximizing the coverage area and minimizing the cost. Authors in [41] used
a graph-based approach to cover a larger area with less time. The authors in [42] model the
sensor field as points on a grid (coordinates) and present an Integer Linear Programming
(ILP) solution for minimizing the number, and therefore the cost, of the sensors it would
take to completely cover the area to be monitored, taking into consideration that sensors
vary in terms of field of view ranges and price. The authors did not solve the problem of

overlapping between cameras. In [43], the authors address the problem of optimally placing
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multiple sensor cameras to cover a given area. They modeled the problem using a linear
programming approach which determines the minimum number of cameras needed to
cover the monitored area. This approach also determined the exact position of each camera.
However, their solution does not manage the problem of overlapping between the cameras
and image quality. In [44], authors propose a Computational Fluid Dynamics (CFD)
solution using wireless sensor camera nodes and image processing to monitor the
temperature in a greenhouse when physical measuring instruments are not available. In
[45], the authors propose a global greedy search optimization method to look for the
camera’s optimal placement. However, the proposed method is very long and complex. It
must explore all the possible solutions, and it tolerates overlapping between the cameras.
In [46-48], the authors used a different approach to find the camera sensor placement. They
solved the problem using Particle Filtering (PF), Resampling Particle Swarm Optimization
(RPSO). While they achieved good coverage control, their solution did not consider the
resolution of the images.

It is worth noting there remains a gap in research for formulate a general problem for
WVSN camera deployment management in greenhouses. Such a problem must consider
finding the optimal placement for the camera sensors, reducing the number of cameras,
increasing the quality of the images, avoiding overlapping views, covering a large area,
and guaranteeing there are no images of the same plant from more than one camera. Our

proposed optimization problem manages and satisfies all of these requirements.
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3.3 Problem Statement and Contributions

The major challenges in WVSNs deployment in greenhouses is the need to cover a large
area of plants, and gather high-quality images while managing with the computation,
sensing ability, and communication constraints. As a result, careful wireless sensor camera
node placement can be a very effective means of optimizing practical and economical

solution goals.

In this chapter, we investigate a solution for solving the following problem:

Given a greenhouse with WVSN infrastructure in place, determine the best placement
of the visual sensors to capture images of a desired quality, covering the entire
greenhouse area using the minimum number of nodes ensuring connectivity between

nodes.

To this end, major contributions of this work are listed as follows:

1. Finding the optimum placement for camera sensors in a commercial greenhouse by
formulating an optimization problem that will maximize the covered area and
minimize the number of camera sensors with the fact that each point must be seen
by one and only one camera.

2. Recent papers tried to solve the placement WV SN problem without considering the
importance of image quality. We formulate an optimization problem to consider

this feature. To this end, we define an objective function that aims to maximize the
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covered area and the quality of the image and minimize the number of camera
sensors. However, we found that this problem is an NP-complete problem in which

we overcome this challenge by solving it as two sub-optimization problems.

3.4 Optimal Placement Camera Quality Problem Formulation

In this section, we present the optimization problem formulation starting with preliminaries

and assumptions.

3.4.1 Preliminaries

In an ideal situation, the camera should have a 360-degree field of view. In this work, we
consider the angular field of view of the camera is, 6 € ]0°, 180°]. Meaning that if the
camera is in the centre of a circle, the camera will collect images from the full arch within
the angle range ]0°, 180°].

Each camera has characteristics which can be defined as follows:

e Focal Length (FL): is the distance between the lens and the image sensor when
the subject is in focus. In other words, it is the distance from the back of the lens to
the plane of the image formed of an object placed infinitely far in front of the lens,
usually stated in millimetres.

e Angle of View (AOYV): is the angle subtended by the camera lens, i.e., the visible
extent of the scene captured by the camera lens. A wide-angle of view captures a

broader area, and vice versa.
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e Resolution: is the number of pixels per image. The higher the number of pixels,

the higher the image quality.

The Field of View (FOV) for the covered area in the WVSN can be specified by the
Angular Field of View (AFOV), in degrees, or the Linear Field of View (LFOV), in metres.
The AFOV is defined by the focal length, f, and the horizontal dimension of sensor in
millimetres, b, as in Equation 3.1. The shorter the FL, the wider the AFOV, see Figure 3.1.

Both the AFOV and the LFOV can be measured horizontally, vertically, or diagonally.

AFOV = 2 tan™t (%) 3.1)

Object at Infinity

AFUV saEe™ }__ Shorter Focal
P Lengih

AFOV/2

}* Longer Focal Length 4~|

Figure 3.1: The Relation Between the AFOV and the FL
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For a given sensor camera and without varying the FL, the AFOV remains constant in
contrast to the LFOV which varies depending on the distance between the sensor and the
monitored area. The larger the distance between the sensor and the monitored area, the

larger the LFOV the poorer the quality of the collected images.

3.4.2 Assumptions and Definition

Assume that the greenhouse is a rectangular area with length L and width W. In the
beginning, we assume that there is no obstacle between the sensor camera and the plants,
so we can place the cameras wherever we feel we need them.
The assumptions regarding the properties of the WVSN cameras are as follows:
= All the cameras have the same characteristics.
» The camera's field of view is an angle of 6 € ]0°, 180°].
= The FL of the camera is fixed; in other words, all the cameras have the same AFOV.
= All the cameras have the same capture resolution R = R, * R,,, where R is the
number of pixels of the image. Rj is the horizontal number of pixels. R, is the
vertical number of pixels.
» The cameras can be fixed in a predefined position and placed at the same height.

* The monitoring area is a shape in two-dimensional Euclidean space.

Definition 1. In this chapter, we define the quality of an image as the number of pixels per

unit distance.

Table 3.1 defines the symbols used in this chapter.
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Table 3.1: Glossary of Notation

Symbol Meaning
C Set of cameras
0 Angle of view
R Image resolution, total number of pixels of the image
Ry Number of pixels in the horizontal line of an image
R, Number of pixels in the vertical line of an image
Q The image quality, number of pixels per unit distance

Qumin The minimum accepted quality

3.4.3 Optimization Problem Formulation

In this work, we are interested in determining:

1) The optimal placement of cameras to have the desired quality of the image object.

2) The required number of cameras to cover the entire monitored area.

3) The positioning of the cameras so that there is no overlap between images taken by the

cameras.

We consider that the monitoring area is a rectangle in the two-dimensional Euclidean space
defined by the points ABCD, such that A = (x,,y,),B = (xp,¥p), C=(x;, y.),and D =
(x4, ¥a). We are interested in the covered area determined by the horizontal field of view

of the cameras. In other words, we are interested in the part of the line defined by the points

A and D.
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Denote the set of cameras by C = {1,...,1,...,c}. A camera i has an AOV denoted by 6;,
and we have V(i,j) € C?,6; = 6;. Denote the coordinates of the camera i by (x;, y;). Our
aim is to calculate the coordinates of the part covered by the camera, illustrated in Figure
3.2 as a green line [I' I"'], where point I" is (%, yy) and point 1" is (x;7, y;7). Coordinates

of both points can be calculated as follows.

Xjt = X — 3 (3.2)
Yir =i (3.3)
Xjr =X+ (3.4)
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yirt = Vi (3.5)
The height, h, (or the distance from the camera to the sensed object or the ground), and the
AVOF, 0, are known. But% is unknown.
Hence,

xir, yy) = (Xi —hxtan (g) in) (3.6)

xyr, y57) = (Xi + h X tan (g) ,yi) 3.7

Given h and 6, % can be found as follows:

n(5) =T arz=sin(g)
smz—1 a/—smzx

and

Hence,

a4/, =h x tan (g) (3.8)
Initially, we are interested in finding the optimal placement of the cameras considering the
horizontal field of view. For this reason, the value of the coordinates over the Y-axis of the
covered area is equal to the value of the Y-axis of the camera. And the covered area on the
X-axis is:

a=2xhxtan (e) (3.9)

2
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Which is characterized by the part: [I' I'] such that I' and I" are determined by the (6) and

(7).

3.4.3.1 Camera Placement Constraints

)

2)

The coordinate on the Z-axis: The position of the cameras cannot be too close to
the sensed object as to interfere with the plant’s growth and cannot be too far from
the sensed object to be able to analyse the captured images. If the camera is far from
the object, we get a poor-quality image that will not allow track the growth of the
plant and detect diseases.

The height of the cameras from the ground:

Vi € C, hypin < d(1,Ip) < hpax (3.10)

where d(I,1;) is the distance of the camera i from the ground or the sensed object.
I, is the orthogonal projection of the point I on the X- axis, and h,,,;;, and h,,, are
the minimum and the maximum distance, respectively, of the camera from the
object that we can not go beyond.

The coordinate on the X-axis: The X-axis coordinate of a camera can take any value
from the range determined by the X-axis coordinate of the monitored area. Hence,

the X-axis coordinate of a camera i must satisfy:

ViEC, XaSXiSXd (311)

where x, and x; are the X-axis coordinates of points A and D, respectively.
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3)

4)

)

The coordinate on the Y-axis: Since we are interested in monitoring linear area, the
Y-axis coordinate for all the cameras is equal to the Y-axis coordinate of the line
that we want to monitor,

VieC(C yi =Yy, (3.12)

Covering the entire area: Every point in the monitoring area must be covered by a

single camera, i.€., every point is seen at least and at most by one camera.

V(x,y) E[AD]3lieC/(x,y) € [I'T"] (3.13)

The communication between the cameras: The distance between two consecutive

cameras should be less than the transmission range of the cameras in order to

guarantee good communication between the wireless cameras. We assume that all

the cameras are homogeneous, i.e., the transmission range of a camerai € Cist.

v(ii+1) eC?,dli+1) <t (3.14)

d(i, i +1) is the distance between the cameras i and i +1.

3.4.3.2 Objective Function Definition

We consider the following objectives in the definition of the optimization problem.

>

Minimizing the number of cameras needed for covering the entire monitored area:

50



Min {|C|} (3.15)

where |C| is the number of cameras.

» Maximizing, over X, the covered area by each camera:

MaxZLCil 2 X X X tan (g) (3.16)

» Maximizing, over X, and |C|, the quality of images:

|C|XRp

Max
IC] 0
ket 2><X><tan(5)

(3.17)

By combining the three equations, the objective function of the optimization problem can

be written as:

0

5)+ IC] )
Zk=12xx><tan(2)

CIxR
Z{<C=|12><X><tan( ICI<Rp

Max{

} (3.18)

ICI

With considering the constrains, we can rephrase our optimization problem to be written

Zl,f:ll 2XXX tan(g)+

|C|><Rh
ICl 9
Zk=12><thun(2)

Objective: MAX{

€|

Subject to: Egs (3.10)-(3.14)
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This problem is cast as an Integer Linear Program (ILP) optimization problem explained

in the next subsection.

3.5 ILP Optimization Problem Formulation

We present in this section the ILP formulation of our defined optimization problem above.
We call the ILP problem as Integer Linear Programming-Optimal Placement Camera
Quality (ILP-OPCQ). To solve the ILP-OPCQ problem we identify the workspace as a grid
map; the monitored area (i.e., the monitored green line in Figure 3.2) corresponds to a
vector line with L = E[r2,] lines. The space where the cameras can be placed is viewed
as a grid map with L = E[r2,] lines and K = E[hy,4,] columns, denoted it by P(k,[),

wherek = 0,...,Kandl = 0,...,L.

3.5.1 ILP-OPCQ Objective Function Definition

We consider rephrasing the objective function as follows.

» Minimizing the number of cameras needed for covering the entire monitored area:

Minypmex w2 P(kI)  (3.19)

I=r1y

where r1,, r2, are the X-axis coordinates of the horizontal line of the area.
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1, if acameraplaced at coordinates (k, 1)
0, otherwise

P(k,1) = {

» Maximizing k in the Eq. (3.20), which stands for maximizing the covered area by

each camera.

MaxZpme 32 2 x kx tan (2) x P(k, ) (3.20)

» Maximizing k in the Eq. (3.21), which stands for maximizing the resolution
quality of images.

T T2 PORDXRy

l=r1
Max{———mi } (3.21)
Tpmax $32 2skstan(3)

By combining the three equations, the ILP-OPCQ objective function can be written as:

hmax r2x
Zk=h i Zl=r1x PDXRn

pmax  yX2 2xkxt Paoy +
Z mmz1 R an( )X teb Eﬁm}?x Zizx Zxkxtan(g)
Max{ . min } (3.22)
Tpmax 32, Pk

3.5.2 Constraints of the ILP-OPCQ Problem

1. The cameras cannot be placed at a height less than h,,,;;, and greater than h,,,,, see
constraint (3.10), which is equivalent to
P(k,1) =0, VK€ [0,E[hp] — 1], and 1€ [0,L] (3.23)

2. We can place at most a single camera in a column

YK P(k,D)<1,VIeE[O,L] (3.24)
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3. The left sight covered area of any camera should be greater than the X-axis

coordinate of the beginning of the covered area.

v(k,1) € [1,K] x [1,L]
P(k1) x (1 — k x tan (g)) > E[rl,] (3.25)

The right sight covered of any camera should be lower than the X-axis coordinate

of the end of the covered area.

v(k 1) € [1,K] % [1,L]

P(k, 1) * (1 +Kk X tan (g)) < E[r2] (3.26)

4. The constraint (13) is equivalent to
v(k 1) € [1,K] x[1,L]

such that

P(k1—1) x (1— 1+kxtan(§)) < P(k,1) x <l—kxtan(g)> x P(k,1) x(l+k><

tan (g)) <P(k1+1)x (1 +1-kXtan (S))

P(k, 1) x (l +k X tan (g)) <Pk, 1+ 1) X (l +1—kxtan (g)) (3.27)
And
Tpme ¥z 2 X k X tan (3) X PO = E[12,] = E [rl,] (3.28)
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Consequently, with the aid of the constrains, the optimization problem can be rephrased

as follows:

hmax 72x
Lie=hyp, i 2l=r1; FRDXRR

hmax X2 (g)
Zk:hmin Zl:xl 2xkxtan >

TRMAx $X2 p(g,1)
min

hmax X2 )
Zk:hmin Xy, 2><k><tan(2)><P(k,l) +

Objective: Max{

}

l=x1

Subject to: Egs. (3.23)-(3.28)

3.6 Implementation and Numerical Investigation

In general, most attempts from the literature, for example [49] and [50], considered the
placement optimization problem to be an NP-complete problem due to its complex
constraints. Our formulation adds extra factors and constraints by considering the quality
of images and the fact that each point must be seen by one and only one camera which
previous works did not address. This adds more complexity to the problem, specifically,
the fifth quadratic constraint of our problem Eq. (3.27). Thus, our problem is also
considered to be an NP-complete problem due to its complexity. Our approach to solve the

ILP-OPCQ problem is by solving it as two sub-problems sequentially:

1) Maximizing the quality of images and the covered area: ILP-OPCQ problem gives
us the optimal distance, between the cameras and the object, regarding the quality
of the images while maximizing the HFOV (i.e., the horizontal axis of the LFOV)
of the cameras. This problem is modelled as the maximization of a function without
constraint as explained in the next subsection.

2) Avoiding overlaps between images and determining the number of cameras: ILP-

OPCQ problem allows us to determine the exact position of each camera; thus,
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minimizing the necessary number of cameras to cover the entire area and avoiding
overlaps between the collected images. This problem is modelled as an Integer

linear programming problem as detailed in the second part of this section.

3.6.1 Maximizing the Quality of Images

Our aim in this section is to find the cameras’ best placement to cover a large area while
guaranteeing high-quality images. The objective function of this sub-problem is the same
as the objective functions Eq. (3.16) and Eq. (3.17) of the main problem. In other words,
the sub-problem definition includes finding the optimum of one variable X, which is the
distance between the cameras and the sensed objects. This distance is defined as the
perpendicular distance between the cameras and the sensed area. This distance is the
optimal distance, which guarantees good quality images while maximizing the area
covered by each camera. The following function illustrates the relationship between the

covered area and the quality of images.

Rh

2><X><tan(g) (3.29)

Max f(X) = 2 x X X tan (g) +

where X is the distance between the object and the camera and R, is the horizontal
resolution of the image. The first term of the Eq. (3.29) relates to the maximization of the
sensed area, while the second term relates to the maximization of the image resolution.
Figure 3.3, illustrates how the function f varies in terms of the value of the distance X. We
considered that R, = 1024 M pixel and 6 =160°. We can see from the figure that both the
sensed area and the image quality depend on the distance X. As X increases the sensed area
increases, and the quality of the images decreases and vice versa.
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f in function of the distance X
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Figure 3.3: The Relation Between the Distance X and Function f

Overall, this function accepts one extremum point (a minimum), denote by E(y, ). Before

this point, i.e., when x < x,, as long as x decreases toward 0 the function increases towards
+00. Meaning that we are maximizing the quality of the image and decreasing the covered
area. On the other hand, when x > x,, as long as x tends toward +oo the function f also
tends toward +oo which means that we are increasing the covered area, while the quality
of the image is decreasing.

Accordingly, the point E presents a good compromise between the covered area and the
quality of images. Thus, either we maximize the covered area and minimize the quality of
images or we minimize the covered area and maximize the quality of images.

The point E is the solution of the following equation:
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(X) = 9\ _ Rh
f'(X) = 2 X tan (2) than(g)xxz 0
2
which is:
X = _Rn __ (3.30)

Next, we consider studying the relationship between the cameras’ optimal position and the
quality of the image function. There is a trade-off between the resolution of the image and
the covered area. If the quality of the camera is high, then the camera covers a smaller area.
Figure 3.4 shows this relationship. The X-axis represents the resolution of the camera
which varies from 100 to 1024 pixels. The higher the resolution, the larger the optimal
distance and the larger the sensed area.

It is worth mentioning that the optimal distance obtained by maximizing the Eq. (3.29) may
give a quality that is lower than the minimum acceptable quality to analyse the plants. To
avoid this, we propose Algorithm 3.1 to determine the optimal distance between the

cameras and the covered area that guarantees at least a minimum image quality.
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Figure 3.4: The Optimal Distance in Function of the Image Resolution

Algorithm 1 input parameters are the properties of the cameras, namely:

0 , the AFOV of the cameras in degree

Ry, the quality of the cameras, i.e., the number of pixels of the horizontal line of
images taken by the cameras.

Q, image quality. We set Q = Q,in, the minimum quality that we should guarantee
to properly analyse the images. It is expressed as the number of pixels per unit
distance, i1.e., how many pixels represents the information that exists in a unit of
distance in the area covered. Higher number of pixels means more detailed image.
Qmin 1s used only if the optimal distance X does not guarantee the minimum

required resolution.
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Algorithm 3.1: Determining the Optimal Distance Between the Cameras and the Area

Covered

Input: 0, Ry, Q = Quuin
Output: X, optimal distance between the cameras and area covered

x=_ VR

2 X tan (g)

if (L@) < Qmm> then

2XXXtan 2
X=—"t
2 X Qmin xtan(3)
end if
Return X

3.6.2 Optimizing the Number of Cameras

Knowing the optimal distance of the cameras from the ground of the greenhouse
(Algorithm 3.1), we can calculate n, the number of cameras necessary to cover the entire

greenhouse area as follows:

D
n=H <2><X><tan(g)> (3.3

where X is the optimal distance calculated using Algorithm 1, D = x, — x4 is the length

of the covered area, and H(x) is the function defined by

E(x) + 1, if (x — E(x) = 5)

(3.32)
Ex) , Otherwise

H(x) = {

The function H makes sure that the number of cameras is an integer. The choice of the

number % in the function H is arbitrary, and in the real world it depends on which is the
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case to address: tolerating uncovering the last part of the covered area or not tolerating

uncovering the last part of the covered area.
In our case, x — E(x) = %, means that the field of view of the last camera will not fully
exploitable. Since it will cover the last part belonging to the covered area and determined

by: D —E(x) X2 XX X tan (g) and the rest of the field view will be inexplicable. In

the case where x — E(x) < % , the last part D —E(x) X2 Xn X tan (g) will be

uncovered. Otherwise, if x — E(x) = 0. Hence, the entire area will be covered with the n

cameras.

Up to this point, we determined the minimum number of cameras to cover the whole area.
Next is to determine the position of each camera.

The position, on the X-axis, of camera i is determined by the following sequence:

Xj = Xj_1 + 2 X X X tan(g) (333
X = X, + X xtan(e) )

2
Algorithm 3.2 combines the steps solution of the two sub-problems described above. Inputs
for Algorithm 3.2 are the same inputs of Algorithm 3.1. The outputs of the algorithm are
X, the optimal distance between a camera and the plant (i.e., the Y-axis coordinate of the
cameras), and 1, a vector which contains the exact position of each camera (i.e., the X-

axis coordinate of each camera).
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Algorithm 3.2: Determining the Minimum Number of Cameras and Exact Position of each

one

Input: 0, R, Q = Qyeq
Output: minimum number of cameras and position of each one

X = call Algorithm 1

D -
n= H (—e> /In, the minimum number of cameras to cover the whole area

2 XXX tan(i)

// The algorithm to determine the position of each camera

V,[n]; //vector of n elements to store the position of each camera

0

W1l = x, + X % tan<§>

Forj:=1tonstepl do
, , 0
Wil=Vli—-1]+2 xX X tan(z)

end for

In real life, sometimes a specific image quality is required in order to analyze the plants
and extract information from the captured images. In this case, therefore, we need to
determine the exact position of cameras with respect to a given image quality value, Qyq-
Steps of Algorithms 3.1 and 3.2 can be implemented to find those positions with using the

same input parameters and set @ = Qy¢q-

3.7 Performance Evaluation

In this section, we evaluate our proposed optimization problem in practical settings with
different input conditions for the AFOV, image resolution, and image quality. We used

MATLAB R2019b software for this evaluation.
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3.7.1 Experimental Cases and Results

Three test cases are considered in our experiments as explained below. For all the three
cases, we consider a greenhouse with a grid area of side length L distance-unit. We set L
= 1000 distance-unit. Our goal is to have a big number for L to show better results scale
regardless of what unit can be assigned to L. Some camera sensors are deployed in each
line of the grid area at the same height. The height will be determined in test case one, and
the exact number of cameras will be determined in test case two. Sensor cameras capture
images with the desired resolution once a day. Camera sensors transmit captured images
to the base station. Single-hop and/or multi-hop communication can be used depending on
the number of cameras and their locations. The communication protocol can be based on

standard WiFi or Zigbee.

3.7.1.1 Test Case One

In the first case, we determine the optimal distance between the cameras and the plants,
while guaranteeing a good quality image and wider area coverage. In this case, we set the
cameras AFOV, 0 = 120° and the value of Rj varies from 100 pixels to 1024 pixels, to
study the effect of camera quality in terms of the resolution of the collected images on the
number of cameras necessary to cover the entire area and the optimal distance between the
cameras and the plants.

In Figure 3.5, we plot the necessary number of cameras to cover the area L in function of
the quality of cameras. The Y-axis represents the optimal number of cameras and the X-

axis represents the quality of cameras, i.e., the resolution (Rj) of the collected images. We
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observed that the optimal number of cameras varies from 38 cameras, for a resolution of

100 pixels, to three cameras for resolution of 1024 pixels.

o The number of cameras as a function of the image resolution
T T T T T
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Figure 3.5: The Minimum Number of Cameras to Cover the Area L in Function of the

Quality Image

Hence, if the quality of cameras increases, the number of cameras decreases. This is
explained by looking at Eq. (3.30), increasing Rj (the quality of cameras) will result in
increasing the optimal distance X, therefore, decreasing the number of cameras. Increasing
the distance between the cameras and the ground X will allow the coverage of a larger area
and hence, decreases the number of cameras.

This result is supported by the results plotted in Figure 3.6. It shows the optimal distance
X as a function of the quality of cameras. As we can see, the optimal distance increases by
increasing the quality of cameras; it goes from 8.33 distance-unit for the image quality

resolution 100 pixels to 85 distance-unit for the image resolution quality 1024 pixels. So,
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increasing the cameras’ quality will increase the covered area by each camera and hence,

decrease the number of cameras.

- The distance X as a function of the image resolution
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Figure 3.6: The Optimal Distance X in Function of the Quality of Camera R,

3.7.1.2 Test Case Two

In the second case, we find the exact positions of the needed cameras, n, taking into
consideration of avoiding redundancy and overlapping views between the collected
images. In this case, we set the horizontal coordinates of the side L to x, = 0 and x; =
1000, the cameras AFOV, 6 = 160°, and the value of R, to be either 1000 pixels or 1500

pixels.
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Figure 3.7 shows the obtained results where the green curve represents the exact position

of the cameras that capture images of R,=1000 pixels, and the blue curve represents the

1500 pixels.

exact position of each of the cameras that capture images of R,

The exact position of all cameras to cover the area

©
[
-
]
a2 o
T T T T T ° &
o =
>
=}
0
]
5
™)
------------ %
||||||||||||||| S
L Ao m===""" S
T Skl S
|||||||||||||||||||| ©
||||| e i o
e e &
lllllllllllllll ©
lllllllllll FamutTU . - .
|||||||||| k-]
(2% e R o= L 4
||||||||||||||| o
A e e g o
L. T SRR A S e s s Wu. m
||||||||| o @
||||||| 8
||||||||| .O..i-.nn-r.u....n..x S
Q=i ... 0 e messsaaa...
llllllllll
lllllllllllllll 2
iy s
Gegzosest ST ey
||||||||||||||||
lllllllllll P . lln ..
PR e e I )
e ———— e T 3
s < P e
|||||||||||
.
|||||
PR S T Al
o e T
||||||||||
e 3
llllllllllllllllll
||||| e o = o
= GI lllllllllll o
lllllllllllllllllll 3
||||||||||| re——LL e
|||||
|||||||||||||||||||||
OI..F lllllllllll @rromoomm=mm""
:::::::::::::
||||||||||||||
|||||||| OmiiilL o
B SRR L LT PO g
lllnlllllllllllv t..l..n..||h.n
Qugzz=="""""" T e o e i
|||||||||||||||||||
|||||||||||| 1||r.r|...|-s|.:..r|u..-
|||||||||||||
[ o S
||||| P ke
i ST TS
1 1 1 1 | LTy P
N (=] oo} © < o o
-

puUNo1B B} WL} SEIBLUED 8U} JO BOUBISIP 8y

The covered area

Figure 3.7: The Distance from the Camera to the Ground of the Greenhouse in the Covered

Area

From the figure, we can see that in order to cover the entire area, we need either 11 cameras

) plus 1,

1500
2X11.66Xtan 80

1000 pixels (each camera covers an area of 88.16 distance-unit) or eight
66

It is worth mentioning that the 8" camera will cover an extra part of area of approximately

cameras of quality R, = 1500 pixels (each camera covers an area of 132.25 distance-unit).
57.96 distance-unit (the blue highlighted section in Figure 3.7). This is explained by the

fact that the number of cameras n is equal to the integer part of (

of quality Ry,



which is E(7.56) + 1 = 8. Whereas, if choosing the second type of camera, i.e., cameras
of quality R, = 1000 pixels, an area of about 30.20 distance-unit will not be covered (the

green highlighted section in Figure 3.7), since the number of cameras n is equal to the

1000

integer part of ————————=11.34 which is 11. Summary of the obtained results is given
2X7.77Xtan 80
in Table 3.2.
Table 3.2: Cameras Position Properties
Coverage area per
Ry, X
) ) camera Number of cameras
(pixels) (distance-unit) . )
(distance-unit square)
1000 7.77 88.16 11
1500 11.66 132.25 8

3.7.1.3 Test Case Three

In the third case, we consider finding the camera’s position with respect to a given image
quality to satisfy the purpose. For this case, we set the image quality to a specific value,
Qreq = 20 pixels per distance-unit. Other input parameters, 6 and Rj, are set to the same
values used in test case two (i.e., 0 = 160°, and Ry, = 1000 pixels or 1500 pixels). Based on

the R;, value we consider two types of cameras:

e Type 1: cameras that can capture images of R, = 1000 pixels

e Type 2: cameras that can capture images of R, = 1500 pixels
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1000

Figure 3.8 shows the exact position of type 1 cameras in order to cover the area of L

= 441 distance-unit from the ground of the

distance-unit. Each camera is placed at X

greenhouse, and the necessary number of cameras needed to cover the whole area is 20.

Thus, each camera covers an area of 50 distance-unit.

The exact position of cameras in function of the required quality
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Figure 3.8: The Exact Position of Cameras

Figure 3.9 shows the exact position of type 2 cameras in order to the same area of L = 1000

6.61 and

distance-unit. For this camera, type 2, X, for each camera, is found to be at X

13 cameras are needed to cover the whole area. This gives 75 distance-unit coverage area

for each camera.
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Comparing the two types of cameras, the first type of camera is closer to the ground of the

greenhouse and can cover smaller areas compared to the second type of camera, which is

higher up from the ground of the greenhouse and can cover larger areas. Hence, this

confirms that the camera’s quality and the required image quality are two important factors

for determining the cameras’ exact position.

The exact position of cameras in function of the required quality
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Figure 3.9: The Exact Position of Cameras in Function of the Required Quality

3.8 Summary

In this chapter, we discussed deploying WVSN in a greenhouse, aiming at finding the

optimal number and position of the sensor cameras to cover the entire greenhouse area

while maximizing both the quality of the images and the area covered by each camera. We

formulated the problem as an ILP. We proposed two algorithms. Algorithm 1 for finding
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the optimal position for the cameras and Algorithm 2 for determining the number of
cameras needed with high-quality of images. Experimental results show the effectiveness
of the proposed solution in finding the minimum number of cameras, the exact placement
of each camera to cover the entire area being monitored in the greenhouse with the required

image quality resolution to pick up any signs of plant disease.
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Chapter 4
Fungus Detection System Using Wireless Visual Sensor Network and

Machine Learning

4.1 Introduction

Statistics Canada released the 2018 census data that “In 2018, there were a total of 866
commercial greenhouse vegetable operations with 17.5 million square meters of
production area, which produced over 660,535 metric tons of vegetables. There has been a
steady increase in greenhouse vegetable production in Canada and it is anticipated that
acreages in greenhouse vegetable production will continue the multi-decade growth trend.
Ontario continued to lead the greenhouse vegetable sector in 2018, representing 68% of
the total production in Canada, followed by British Columbia and Quebec with 18% and
6%, respectively.” [116], shown in Table 4.1 and Figure 4.1. Also, the problem that
concerns the labour cost of commercial greenhouse, as stated by Canada Agriculture,
“Greenhouse operating expenses were up 1.6% in 2019 to $2.7 billion, largely driven by
higher labour costs. Although the number of employees fell by 205 from a year earlier
to 32,373 in 2019. As reported by Canada's Agriculture Sector Labour Market Forecast
to 2025, the greenhouse industry was identified as the most problematic agriculture sector
in terms of labour shortage.” [51]. There is a growing demand to automate greenhouse crop

production due to the recent COVID-19 pandemic.
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Greenhouse 14,216,767 14,592,933 15,928,094 16,878,194 17,438,325
(square meter)

Table 4.1: Harvested Greenhouse in Canada (Square Metre)

Newfoundland and Labrador
Prince Edward Island

Nova Scotia ||

New Brunswick ]

Quebec |

Ontario

Manitoba ]
Saskatchewan
Alberta ||
British Columbia :l

0 5,000,000 10,000,000 15,000,000 20,000,0p0

square metres

Source(s):Table 32-10-0018-01.

Figure 4.1: Provincial Distribution of Total Greenhouse Area, 2019

Large production crop greenhouses are growing rapidly. With this growth, comes a
significant need to maintain production for economic reasons. One efficient way to
maintain production growth is by controlling the greenhouse atmosphere and monitoring

the plants to remain healthy throughout the life cycle.

Because the environment of a greenhouse is warm and humid, disease and pest issues can
become particularly challenging for greenhouse growers. From fungus and rusts to viruses

and root rots, disease can cause damage to plants. In this study and without loss of
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generality, we will focus on detecting powdery mildew, which grows on the plant leaves.
Powdery mildew is a fungal disease that looks like a dusty white coating on the leaves and
stems of infected plants as shown in Figure 4.2. A powdery mildew infection usually begins
as a few spores on the leaves but quickly spreads. The white powdery surface is a thick
coating of the fungi spores [52]. This type of fungus increases in 99% humid conditions
with moderate 25°C temperatures. In a greenhouse when the summer is humid, powdery
mildew almost always makes an appearance. It can affect any plant. In extreme cases, it
results in leaf yellowing and dropping, stunted plant growth, distortion of buds, blooms,

and fruit, and eventually, overall weakening of the plant.

Figure 4.2: Powdery Mildew Fungus Disease

It is well documented that powdery mildew diseases, which are caused by several species
of fungi, will affect most if not all plants. These diseases can reduce crop production, which
leads to economic losses. Several methods can be used to diagnose and determine what

harmful agent is affecting the plant leaves. These methods are the following [53]:
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e Visual inspection: methods to discover certain deficiencies of the crop; however,
not all damage can be seen by the naked eye.

e Soil analysis: measuring the amount of nutrient level in the soil.

o Tissue analysis: measuring the nutrient level in the plant leaves, and stem.

e Bioassays: a method for diagnosing nutrient deficiencies that combine tissue
analysis and testing in pots.

e Field Tests: are one of the efficient methods to diagnose nutrient deficiencies, but

it is an expensive procedure.

These methods are used as the first step in exploration; however, since field tests are
expensive, difficult to administer, and can be done only in a laboratory we need an in-
house, inexpensive technology to detect and diagnose different diseases with minimal
human interaction. The use of technology in agriculture has been increasing. Depending
on its nature agriculture technology can be biochemical (pesticides and fertilizers) or
implemented into farm management. Mechanical and information technology can be
applied to agriculture, such as in monitoring growth and controlling pests, geophysical
measurement systems, flood detection and precision agriculture [54][55]. Moreover, there
are sensor systems for monitoring the environment, such as ambient temperature, humidity,
wind [56]. Monitoring systems are based on WSN technology [57]. WSN technology will
not create a new agricultural product but will help improve existing techniques to improve

the diagnosis of plant diseases and ensure final product quality [58].
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WSNs have been used in countless applications [55]. One of these applications is
measuring environmental parameters inside a greenhouse. Measuring these parameters is
not enough to maintain healthy plants. To have healthy plants in greenhouses, we must
carefully monitor the plants’ growth and the environmental parameters by using reliable
and affordable technologies. Among these technologies are the Wireless Visual Sensor
Networks (WVSNs) and intelligent detection techniques, including image processing

methods.

This chapter proposes developing an automated detection system to detect powdery mildew
fungal disease and monitor the plant growth in a smart greenhouse, shown in Figure 4.3.
We consider a greenhouse that is fully occluded and cluttered with varying degrees of light.
The system utilizes four individual technologies, WVSN, WSN, a machine learning
technique, and image processing methods. A WSN is deployed in a greenhouse to monitor
the atmospheric conditions. A WVSN is deployed to monitor the plant growth via cameras,
while image processing methods and machine learning techniques detect disease in the

plant from the captured images from the camera sensors of the WVSN.

The reminder of this chapter is organized as follows. In Sections 4.2, we review the related
work. Section 4.3 defines the problem statement and highlights the research problem.
Section 4.4 describes the automated fungus detection system. Section 4.5 includes the
experiment results and performance evaluation for the system, lastly, Section 4.6, present

our summary of the chapter.
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Figure 4.3: Typical Smart Greenhouse

4.2 Related Works

There is very little research in combining WSNs with image processing and pattern
recognition in agriculture. The authors in [59] mentioned two systems for image
recognition. They explained the structure, the recognition algorithms, and the neural
classifier. One of their applications was image recognition based on an adaptive control
system for micromechanics where a neural classifier was used for texture recognition of
metal surfaces. The authors also used pesticides to kill insects by using a web-camera based
computer vision system to automate the recognition of larva. Their system sought to locate

the insect and larvae early so that they could reduce the use of pesticides. The system

76



consisted of neural classifiers, which would detect the insect from a captured image.
Recognizing the larvae and sensing warmth to indicate the larvae were active are not easy
tasks because different species of larva have different colors, shapes, and sizes and can be
under a leaf. They used pre-processing techniques, then trained the system. Their system
was not able to distinguish between textures related to the larvae and those related to the
background of the image.

Research done by the authors in [60] had the same type of the system as in the previous
work [59], but the purpose of this work was to use a back-propagation ANN model to
distinguish between weeds and young corn plants. The authors used a series of cameras to
obtain high-quality images. Each image was pre-processed from the bitmap format with
image processing to indexed images based on the RGB color system. Then, each index
color acted as input for the ANN. The output value was 0 or 1, representing whether the
image was weeds or young corn plants. The processing time was 20 hours for training the
network. This process can help reduce the use of herbicide sprays if it decreases the training
time.

Another work involved in recognizing weeds [61] used a fuzzy logic system to create a
weed map to determine the location of the weed to use the right amount of herbicide. The
authors also used a digital camera and a personal computer for more testing. Their system
was able to locate some of the weeded areas, which resulted in using less herbicides,
reduced soil and water pollution, and some cost savings.

The authors of [62] used machine vision to detect a worm in maize plantings. They used a
pre-processing technique that converted the image from grayscale to binary images using

an iterative algorithm. First, the system segmented the leaves and divided them into pixels.
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Second, the images were divided into blocks. Blocks that contained a more significant
amount of leaf surface were selected. These selected blocks were recognized as damaged
or undamaged by counting the objects in each block. Their system performed well overall.
In [63], the authors merged three thresholding strategies, fuzzy method, Otsu method, and
Isodata algorithm, to determine whether the field was covered with oat or frost. They stated
that this merger provided better results than using each method separately.

The work in [64] presented the use of image processing to measure the water droplet size
and distribution of agricultural sprinklers. They used the properties of Fourier analysis and
correlation in the frequency domain. The purpose of this paper was to obtain a direct
measurement of sprinkler drops, which would help avoid exceeding the size of the drop
that would lead to soil erosion, surface sealing, and infiltration, as well as to minimize the
size of the drop not to be affected by wind drift and that alters the pattern of irrigation. This
study would help the farmer control the size of the drops and maintain the right amount of
water.

Another use of visible light image processing and machine vision system was presented in
[65] and [66] to detect diseases in the field. Their systems achieved a good detection rate
with some restrictions on input, such as taking images only from the top view of the plant
with uniform background and taking images only of a single centred leaf. These restrictions
make the system unsuitable for autonomous detection.

Using a camera provides more information and benefits over sensor networks alone as in
[67]. The authors used a camera sensor network for recognition, tracking, and detection.
Their work introduced low-latency detection, low power, and efficient recognition.

However, their work depended on using light image processing, which would not be
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efficient in detecting pests or disease. In [115], the authors used image recognition based
on the Convolution Neural Network (CNN) to detect powdery mildew of tomato crop.
They create artificial powdery images using image fusion techniques to prepare various
forms of CNN learning data. The testing was applied in real images taken from the
greenhouse. The performance of their system achieved 93%. The weakness of using CNN
in this task is, CNN does not encode the position and the orientation of the powdery from
the images; the noise in the image can affect the performance of CNN. Also, CNN is not
invariant to large transformations of the input data, which means that CNN cannot
distinguish the object when it is in different viewing angles. It is also highly computational
cost, needs good GPU and large training data.

Most of the previous works done on detecting diseases and pests used a digital camera with
image processing. To the best of our knowledge, no work such as our proposed automated

system has been done in a greenhouse.

4.3 Problem Statement and Contributions

Early and fast detection of any diseases or pests in a greenhouse is an essential step and
part of an integrated management strategy needed to maintain the health of the plants and
increase crop production. Automated plant disease detection in an environment like a
greenhouse is complex because the surroundings are a fully cluttered, large-scale, and
uncontrolled environment. In this chapter, we investigate a solution for solving the

following problem:
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Design and develop an automated detection system for observing disease, pest, or

deficiency present on the leaves of plants in an occluded and/or cluttered greenhouse.

To address this problem, we propose an automated detection system that utilizes WVSN,
WSN, the Hough Forest machine learning technique, and image processing methods.
WVSN and WSN are deployed to continually monitor the plant growth and the atmospheric
conditions of the greenhouse for healthy crop production. The image processing methods
and the Hough Forest technique are used to efficiently detect powdery mildew fungus in
images of the plant’s leaves taken from a WVSN. Our contribution can be summarized as

follows.

Proposing an automated fungus detection system using WVSN, WSN, the Hough Forest
machine learning technique, and image processing methods, to distinguish between healthy
and unhealthy plants, and identify the powdery mildew fungus on the plants with a high

level of accuracy.

4.4 Automated Fungus Detection System

The block diagram of the proposed detection system is presented in Figure 4.4. The system
has the following four units: WVSN unit, WSN unit, image processing unit, and machine
learning detection unit. In the WVSN unit, camera sensors are installed inside the
greenhouse to capture images and transmit them to the image processing unit. The image

processing unit processes the captured images using different methods: resizing, filtering,
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segmentation, and noise removal. The image processing unit’s output images are used as
input to the machine learning unit to detect mildew fungus. If fungus is detected, then the
WVSN unit communicates with the WSN to send a job request to an actuator to do an
action such as start the fan or open a window to reduce humidity. In the following

subsections, we present the details of each unit.

Wireless
Sensor
Network Unit

Actuator job
request
Wireless Visual |
Sensor _d, p ma?ge Unit
2 Capture rocessing uni
Network Unit images
A
Prepared
images
Machine
Learning
Detection Unit
Detected fungus
images

Figure 4.4: Block Diagram of the Proposed System
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4.4.1 Wireless Visual Sensor Network Unit

A WVSN has camera-equipped sensor nodes. The very small sensor camera nodes can
capture visual data, and process and transmit image/video information [68]. The nodes
capture images to monitor the growth of the plants, detect any fungal diseases, or pests that
can adversely affect the plant. This type of communication network will minimize human
interaction. In general, the monitored area is an immense place, which means we must deal
with a large number of images. To improve the performance, in terms of storage and
processing, and reduce the response time of the image processing unit, we consider placing
the sensor camera nodes such that there is no overlap between images taken by those nodes.

Optimum locations for the nodes are determined and explained in Chapter 3.

Images are taken from different locations and angles of different camera sensor nodes in a
greenhouse during the daytime. The sensor camera’s specifications are (12MP, 50mm focal
length, 1/2.55-inch sensor, dual-pixel PDAF, and f/1.5-2.4 variable-aperture lens), as well
as another camera sensor (12MP, 2x focal length, /2.4 lens, 1/3.6-inch sensor, AF). Also,
a single LED flash is in both cameras. The distance between the camera sensor and the

plant achieves better resolution at the same time with no overlap explained in Chapter 3.

Samples of the plant leaves in the greenhouse images are shown in Figure 4.5. The dataset
consisted of 282 images at 1960 x 4032 pixels/image obtained from a greenhouse in Surrey,
British Columbia, Canada [107]. Images were taken with different levels of occlusion. The

levels varied between images from low to highly occluded and cluttered. The images were
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visually inspected for powdery mildew fungus, which was observed in the images. Note

that these images have different resolutions from the images used in Chapter 3.

Figure 4.5: Plants Images Captured by Sensor Camera Nodes in the Greenhouse
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4.4.2 Image Processing Unit

In this unit, different image processing methods are used to prepare the images for the

machine learning unit. One of the most prominent issues in disease detection techniques is

background clutter in a greenhouse setting. The problem with background clutter is the

high possibility of false detection, which will decrease efficiency and accuracy by

searching to cover an area that does not contain the object of interest. The use of

segmentation image processing for the fungus will remove the background clutter by

applying the following six steps:

)

2)

3)

4)

5)

6)

Find the RGB color spaces from the image. RGB stands for red, green, blue channels.
RGB is a composite of the independent grayscale images that correspond to the
intensity of red, green, and blue light.

Determine the difference between red color image and green color image. Get the
difference between red channel and green channel

Convert the images to grayscale.

Create the mask for the foreground (i.e., the plant leaves)

Apply a median filter over the mask to remove the noise. First sorting all pixel values
from the window into numerical order, and then replacing the pixel being considered
with the middle (median) pixel value.

Extract the foreground from the image.

Final results will have the Region of Interest (ROI) image, as shown in Figure 4.6. The

prepared images will be used as input into the machine learning detection unit.
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4.4.3 Machine Learning Detection Unit

In this section, we propose using Hough Forest machine learning to detect powdery mildew
fungus on the plant leaves. Hough Forest is chosen as the detection algorithm because of
its robustness to occlusion and noise. Hough Forests combine random forests’ learning
properties with the detection properties of Hough transforms [69]. Prepared images, from
the image processing unit, are used to create labelled image samples in which each image
sample is labelled either has fungus or no fungus. The sampling is performed using a
cropping tool that is developed to crop and label images successfully. The tool allows a
user to left-click-drag-and release or right-click, using a two-button computer mouse to
point a portion of the image as leaves. We note that since the samples are picked from
training images that are selected randomly, the number of training samples will vary among
the various folds. After sampling the training set, patches are created using a semi-
automatic approach. P, training batches are created with a size of 16x16 pixels. Each batch
is then represented by a feature P, = ([;, C;, d;) : [; is an appearance information which
can includes image features (L*a*b color space), derivative filter (first and second
differentials using Sobel operator), and three histograms of the oriented gradient, C; is an
image class (leave, background), and d; is a distance vector from center of image to center
of batch, as described in [70]. After that, the implementation of the Hough Forest described
in [69] is used to train the classifier. Samples of the patch images used for training the
decision tree. Each tree generates an output to create a prediction. A random subset of

features was chosen for each split of tree branches. A training process is shown in Figure
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4.7, and a detection process is shown in Figure 4.8. All the Hough Forest approach in Figure

4.9.

create patches  remap patches
from objects  to feature space

Create random forest

Collectimage  create samples of objects

Figure 4.7: Hough Forests Training

O
-
Sample image feed samples into count vote from each Search for maximum
random forest patch into a Hough space in Hough space

Figure 4.8: Hough Forests Detection
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Figure 4.9: Hough Forest Approach

4.4.4 Wireless Sensor Network Unit

The greenhouse will have a WSN with actuators that communicate with the WVSN to
control the greenhouse atmosphere. When the WV SN detects an unusual status in the plant
leaves received from the machine learning detection unit, it will send a message to the BS
of the WSN requesting the wireless sensor nodes to measure the humidity inside the
greenhouse. If the humidity is high, the BS sends a message to the actuator to turn on a fan

or open a window, for example, to decrease the humidity in the greenhouse (see Figure

43).

4.5 Experimental Results

In this section, we evaluate the performance of our proposed automated detection system.
We start by describing the dataset used. Then we explain the training process following by

performance evaluation for the system, statistic results, and comparison and discussion.

88



4.5.1 Dataset

Our dataset consists of 282 images at 1960 x 4032 pixels/image. Labelled sample images
are prepared using a semi-automatic approach to create patches. Five hundred and two
patches are created; 260 positive patches have fungus and 242 negative patches did not.
All patches are re-sized to 256 x 256 pixels/image. A Hough Forest is trained with positive
fungus images with the negative background removed. Samples of the patch images used
for training are shown in Figure 4.10 and Figure 4.11. These images are not part of the

testing set. More detailed results are included in the Appendix A.
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Figure 4.10: Positive Training Patches
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Figure 4.11: Negative Training Patches

4.5.2 Training Process

General outlines of training and detection are shown in Figure 4.7 and Figure 4.8,
respectively. Patches are extracted randomly from each image sample and carried different
features. These features have the information used for constructing each tree that included
each channel of the L*a*b color space, first and second discrete differentials, using the
Sobel operator, as well as nine histograms of gradients, as described by Leibe et al. in [70].
J. Gall's re-implementation of the Hough Forest described in [69] is used to train the
classifier. The patches are selected randomly with their location and image classification.

Then they are passed along to the root node of the decision tree. Each patch is processed
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through a tree until it reached a leaf node. The tree will split into two new nodes, which
will maximize the information gain. Every node knows the position of the patches relative
to the center of the image and image classification. The leaf node had the position and the
class information about that patch, which would be used to create a vote into a Hough
space. All trees have votes in Hough space. The highest number of votes indicates the
correct location of the object (i.e., fungus). The process will keep repeating until it reaches
the stopping point. Many trees are trained using the same steps, thus, creating a forest. The

forest contained ten trees, each with a depth of 18 nodes, as shown in Figure 4.12.
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Figure 4.12: Hough Tree Forest
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4.5.3 Performance Evaluation

With a machine learning algorithm, it is necessary to divide the dataset into training and
testing subsets. This process will be repeated many times. Each time, the data is randomly
selected to create different training and testing subsets. We use k-fold cross-validation to
divide the data into training and testing, with k = 5. This approach ensures that every image
sample will be tested, and the testing subset will not overlap. We use MATLAB R2019b
software with intel ® Core ™ 17-7500 CPU@ 2.70GHZ to apply 5-fold cross-validation
on 282 images taken from inside the greenhouse. The results of the 5-fold cross-validation
are presented in Figure 4.13. The results are averaged over 282 images. We use the
Receiver Operating Characteristic (ROC) parameter. The ROC is calculated by comparing
the True Positive (TP) rate to the False Positive (FP) rate. Also, in Figure 4.13, we calculate
the area under ROC curve (AUC), which evaluates how good the classifier is, and how

accurate the output is. In our case, the AUC is 96.96%.
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Figure 4.13: ROC for Hough Forest Trained with Fungus Image Patches
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The results of testing 100 images are shown in Table 4.2. The results show detection rates
of 71% True Positive (TP), and 23% True Negative (TN). The total of all true detection
rates is 94%. The rate of False Negatives (FN) is low at 5%, and the rate of False Positives

(FP) is much lower, at 1%.

Table 4.2: Results of Fungus Detection on the Testing Dataset

Test Fungus in image No Fungus in image
% %
Detected fungus TP (71) FP (1)
No detected fungus FN (5) TN (23)

Sample output results from applying the Hough Forest machine learning on the images
were TN detection (healthy plant) and TP detection (fungus found), as shown in Figures

4.14 and 4.15, respectively. FN detection and FP detection are shown in Figure 4.16 and

4.17, respectively.

Figure 4.14: True Negative Detection
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Figure 4.16: False Negative Detection
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4.5.4 Statistical Results

In Table 4.3, statistical results show how well our system performed in predicting powdery

Figure 4.17: False Positive Detection

mildew fungus based on the images.

Table 4.3: Statistical Results

Sensitivity 93.4% Specificity 95.8%
Positive likelihood 22 Negative likelihood 0.06
ratio ratio
Positive predictive 98.6% Negative predictive 82.1%
value value
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Sensitivity shows the probability that our test results are positive when the fungus
is present. In our case, we have a high probability of 93.4%.

Specificity shows the probability that our test results are negative when the fungus
is not present. In our case, we have a high probability of 95.8%.

A positive likelihood ratio of greater than 1 indicates that the test result is associated
with fungus. In our case, the result was 22, which conforms our output results.

A negative likelihood ratio of less than 1 indicates that the test result is associated
with an absence of fungus. In our case, the result was 0.06, which confirms with
our output results.

Positive predictive value shows the probability that the fungus is present in the
images when the test is positive. In our case, the probability value was 98.6% (very
high).

Negative predictive value shows the probability that the fungus is not present in the

images when the test is negative. In our case, the probability value was 82.1% (very

high).

4.5.5 Comparison and Discussion

Table 4.4 shows a comparison of our proposed system applying Hough Forest machine

learning on images taken from the WVSN, from different angles and placement, against

each image process used in previous works [65], [66] and [115]. Images in [65] are taken

from the top view, which minimizes the clutter from the background images. The work in

[66] cropped the leaf images before applying color-texture detection, which reduced the
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clutter of background images. In [115], they used artificial images in training while real
images in testing; they could not deal with the real images that have noises and different

viewing angles. Also, they used GPU to speed the training processes, but it was costly.

Table 4.4: Comparison with Other Works

Authors Method Images Detection Rates
(%)
L. Velzquez et al. Color feature Images with top 70
[65] detection view
M. Zhang et al. [66] Color texture Images contain 67-88
detection leaves only
H. Jungetal. [115] CNN Artificial Images 93
A. Ali and H.S. Hough Forest, color Images with 94
Hassanein [71] and background different view and
removal varying light

4.6 Summary

This chapter proposed an automated detection system for any disease or pests in an
occluded and cluttered greenhouse. The system is designed to detect any type of diseases
or pests on plant leaves. However, and without loss of generality, our study focused on

detecting powdery mildew fungus disease as a proof of concept. Hough Forest machine
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learning technique is applied to detect the powdery mildew fungus in images of the plant
leaves taken from a WVSN. A detection rate of 94% is obtained, which confirms the
performance strength of our proposed system. Also, our system obtained a low false
positive rate, which is very important for maintaining a successful detection system, as
each positive detection would require sending messages to sensor nodes to measure the

humidity of the greenhouse and re-set accordingly.
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Chapter 5
Intelligent Framework for Predicting and Controlling the Greenhouse

Microclimate

5.1 Introduction

Continuous monitoring of plant crops and frequent controlling of the microclimate inside
a greenhouse using WSN increases the node’s energy consumption and, thus, shortens the
network lifetime. Also, given the scale of commercial greenhouses and the scale of the
network, the number of data transitions between sensor nodes and the BS in this specific
environment will increase significantly, causing data congestion, a high rate of sensory
data loss, and a low signal-noise ratio [72-76]. Moreover, the deployment and maintenance
cost of a WSN is expensive. A smart greenhouse microclimate is a complex nonlinear
system that provides an optimum environment for plant growth. Because of the complexity
of the factors involved, the slow time variation, and the non-linearity of the smart
greenhouse microclimate, it is challenging to build a precise mathematical model. The
widely used current greenhouse microclimate modelling has the following three
approaches: computational fluid dynamics model method, the mechanism by design
modelling method, and the system identification method. These methods have several
limitations and unknown parameters. They also require expensive instruments and tests
[77-81]. A smart greenhouse requires intelligent technologies and tools to process data at
areasonable cost and translate it into better decisions and actions [82]. Thus, it is important
to accurately predict a greenhouse microclimate for environmental control and crop

management. Likewise, controlling the duty cycle (i.e., operational activities, wake-up and
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sleep) of monitoring sensor nodes will reduce the consumed energy and prolong the
network lifetime. When the weather background and the composition of the system’s
greenhouse components are determined, the system’s unique agricultural microclimate
characteristics will be relatively stable, which is conducive to prediction. Data prediction
helps improve data quality, reduces unnecessary data transmission, and saves sensor nodes
energy. Microclimate prediction is useful in the thermal analysis of a greenhouse for
enabling the cooling and heating load calculation. The prediction and control of all the
microclimate parameters will help reduce plant stress, decrease fungus growth, decrease
the number of pests, foster an appropriate environment for growing crops, and prolong the
network lifetime. However, the prediction of the microclimate in a greenhouse is a
challenging task for researchers. Many methods use redundant and periodic sensory data

based on historical data; this usually results in low prediction accuracy [83-85].

This chapter proposes an intelligent framework to predict and control the microclimate of
a greenhouse and maintain its deployed WSN energy as efficiently as possible for a long
time. The framework uses a deep learning model, Long Short-Term Memory (LSTM), to
collect and predict five environmental factors: air temperature, relative humidity, air
pressure, dew point, and wind data daily. LSTM is an artificial Recurrent Neural Network
(RNN) architecture well-suited to classifying, processing, and making predictions based
on time series data. There are many different types of classical time series prediction, but
these techniques are not suitable in our case because they work well on short-term
prediction and does not show its effectiveness for long term data. Also, these techniques

are based on existing patterns that will continue in the future. But in the real dynamic nature
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of time series data, these assumptions are not valid, which indicates to use deep learning
techniques as LSTM. Besides, the input data sometimes in time series suffers from
sequence dependence problem which LSTM can resolve it because it is easier to be trained

on large hidden architecture and get better results.

The remainder of this chapter is organized as follows. Section 5.2 reviews the recent related
works. Section 5.3 states the research problem and lists our contributions. Section 5.4
introduces our proposed framework. Section 5.5 explains the first phase of building a
prediction model. The performance evaluation of the LSTM model is covered in Section
5.6. Section 5.7 explains the second phase of the prediction duty cycle, based on the LSTM
model, and gives our proposed algorithm. Lastly, in Section 5.8, the performance

evaluation for the proposed algorithm is discussed.

5.2 Related Works

In recent years, intelligent solutions based on using machine learning and deep learning
technologies have developed rapidly and have significantly contributed to the advancement
of prediction models. These models were shown to enhance the quality, accuracy,
generalization ability, and robustness of the conventional time series prediction tools.
Many models based on regression and the neural network have been built [86-87].
Recurrent Neural Network (RNN) has many applications in speech recognition, machine
translation, and time-series data prediction due to its memory capability. The Long Short-
Term Memory (LSTM) neural network is based on the development of RNN. LSTM is

based on time series of connecting previous information to the present task and having a
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very large memory. LSTM can remember information for long periods, making LSTM a
good candidate model to forecast the greenhouse microclimate. LSTM performs well when
processing long-term dependencies of time series data and predicting long-interval events
as in [88]. With the existence of the Internet of Things (IoT) and cloud services, a large
amount of environmental data can be saved and accessed, facilitating LSTM model
accuracy.

In [89], the authors proposed a predictive solution for disaster monitoring using a neural
network-based Multivariate Correspondence Analysis (MCA-NN). The MCA-NN model
aims to improve the detection results by combining features from multivariate shallow
learning models as described in [89]. Others utilized Cellular Neural Networks (CNN) to
monitor desertification. Authors in [90] used CNN to predict the trend of land
desertification from 2000 to 2011; the experiment showed that the CNN model is better
when they used an exponential smoothing model first before the prediction. The authors in
[91] proposed a method based on the Artificial Neural Network (ANN) to predict irrigation
requirements using the multi-layer perceptron model to extract the climate information
retrieved from the public weather forecast to predict current crop evapotranspiration. In
[92], the authors built an Autoregressive Neural Network (AR-NN) model for the seasonal
weather, to map the nonlinear relationship of the data collected to get reliable prediction
results.

All the previous works and applications mentioned above, depend basically on sensors for
collecting data. The sensors deployed in various environments for numerous applications
must have a long lifetime, long enough to fulfill the application requirements with high

accuracy and efficiency to produce reliable predictions. There are many factors that affect
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the quality of the wireless sensor network. One of these factors is energy consumption.
Authors of [93] used experimental measurements to show that transmitting data will
consume more energy than processing data. While authors in [94], claimed energy could
be consumed by sensor components such as the CPU, radio, and microprocessor. Many
schemes are proposing to conserve energy via communication [95]. Another approach to
energy conservation was to reduce the amount of data transmitted either by compression
[96] or aggregation [97]. In addition, many proposed works have been done to save energy
by scheduling the sleep/wake-up duty cycle among sensor nodes in the network. In [98],
the authors derived an algorithm to increase energy efficiency based on the node’s location
and the scheduling of node activities. The simulation indicated that the network design was
maximizing the lifetime of the sensor. In [99], the authors discussed the parameters that
can affect the energy consumption and lifetime, their experiment focused on the effects of
different data sizes and changing the duty cycle (sleep, idle, sleep). They concluded that
sleep current is an important parameter that reduced the lifetime of the battery by 193 days.
Furthermore, they reported that the increase in data packet size would decrease the lifetime
of the battery. The authors in [100] proposed a method based on local traffic for the derived
distance-duty cycle. They compared three methods: Traffic-adaptive Distance-based Duty
Cycle Assignment (TDDCA), Distance-based Duty Cycle Assignment (DDCA) and
Constant Duty Cycle (CDC), based on each method's packet delivery ratio (PDR). The
results proved that the PDR is almost the same in the three methods for light traffic loads.
However, for heavy traffic loads, each method performed differently. Another approach in
[101] the authors provided different duty cycles based on the distance between the node

and the BS to show the effect of traffic load on the amount of consumed energy. In [102],
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the authors found node density impacted energy consumption with different numbers of
nodes and duty cycles. In [103], the authors attempted to prolong the lifetime of the node;
their experiment concluded that the node is in a wake-up mode when the energy level is
above a certain threshold and can transmit, receive, and process data. When the energy
level is under the threshold, the node enters sleep mode and is inactive. In [104], the authors
determined that device placement cannot be feasible because of the environment or if the
number of devices is large. The work involved many attempts that assumed a device could
be placed in the sensing field with the goal of optimizing the device placement with respect
to system lifetime. In [105], the authors attempted to find the minimum number of relay
nodes (RNs) and where the best location would be to meet the constraints of the network
lifetime. They used a recursive algorithm by placing the RNs in the intersections of the
communication range of the largest number of sensors. In [106], the authors proposed a
way to decrease the energy consumption by using B-MAC carrier sense media protocol
which reduced the duty cycle to achieve a low power operation.

Some drawbacks we noted in the literature work above are as follows. Most of the works
did not include all the microclimate factors that affect the growth of a plant. Most did not
consider the prediction of the maximum, minimum, and average of all the microclimates,
which helps establish boundaries for the prediction of weather values to enhance the
accuracy of the prediction model. Besides, all the proposed works for decreasing the energy
consumption of sensors were mostly covering location, the components in the sensor,
communication, duty cycle, data size and data type that need to be transmitted. Our

proposed framework uses a deep learning model to collect and predict the sensor’s duty
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cycle which will change and control the sensor’s operation that monitors the microclimate

inside the greenhouse, saving the energy and prolonging the lifetime of the network.

5.3 Problem Statement and Contributions

The microclimate inside each part of the greenhouse must be monitored frequently and
kept under control to avoid any sudden environmental changes that affect the growth of the
crop. However, such intensive use of sensors for monitoring will consume much energy
and decrease the networks’ lifetime. In this chapter, we investigate a solution for solving

the following problem:

Determine an efficient solution for monitoring the microclimate to protect crop growth

while increasing the lifetime of the WSN

To address this problem, we propose an efficient two-phase framework. The first phase
uses the LSTM model with data collected from WSN to control and stabilize the
greenhouse atmosphere to ensure good quality crop production. In the second phase, the
LSTM model will be used to control the duty cycles of the sensors which will decrease the

energy consumption and cost production and increase the network’s lifetime.
To this end, the major contributions of this work are listed as follows:

e Proposing an intelligent prediction model Long Short-Term Memory (LSTM) to

control and stabilize the microclimate in a greenhouse for better crop production.
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The model succeeds in predicting the microclimate of the greenhouse for seven

days, 30 days, and 90 days, ahead.

e Designing a novel algorithm, based on our proposed intelligent prediction LSTM
model, to predict the sensor nodes operational modes (wake-up and sleep) through
their duty cycles. The algorithm succeeds in decreasing the consumed energy and

prolonging the network lifetime.

5.4 Proposed Framework

In this section we present the two phases involved in the implementation of the proposed
framework. Phase one, building an intelligent prediction model to control the microclimate
inside the greenhouse is explained in Section 5.5. The second phase uses the predicted
model to control the duty cycle of sensors and is described in Section 5.7. The proposed

framework is shown in Figure 5.1.

Phase One Phase Two
Intelligent Predicted Output Prediction Duty
Prediction Data —> Cycle Algorithm
Approach

Actual Collected

Data

Figure 5.1: Proposed Framework

5.5 Phase One: Intelligent Prediction Approach

In this section, we present our novel approach for building an intelligent prediction model

based on Long Short-Term Memory (LSTM) to control the microclimate inside a
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greenhouse. Phase one of our proposed approach has four stages as given in Figure 5.2.
The first stage involves wireless sensor nodes to sense and transmit microclimate data from
inside the greenhouse. The second stage involves collecting all the microclimate data and
pre-processing these data. The third stage involves, building the prediction model (training,
testing, and validation) until the model reaches a high level of accuracy and meets the
requirements to be used inside the greenhouse. The fourth stage involves the prediction
values used to control the greenhouse when the sensors are in sleep mode of their cycle
and as input values to phase two. All four stages are described in more detail in the

following subsections.

Building LSTM
Input Stage Pre-processing Data Stage Model Stage Output Stage

S * Controlling the
ensory * Collecting data microclimate

microclimate data SiCleanine data * Testing data . X
¢ * Validation data » ° Prolongingthe

* Training data

network lifetime

Figure 5.2: Phase one Stages

5.5.1 Deployment of the WSN in the Greenhouse

We consider a two-dimensional greenhouse area of size A = L x W, where L and W
represent the length and the width of the greenhouse. The WSN has a group of n sensors S
={51,5,,.. 5y} connected and deployed in the greenhouse at different locations as shown

in Figure 5.3. Without loss of generality, each sensor is connected to a BS in single hop
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and transmit data using the Zigbee communication protocol®. All sensors have the
following characteristics: a limited power supply, equal initial energy, and the same
lifetime. We assume that the lifetime for all sensor nodes is known in advance. In our study,
we assume that each sensor has the following two modes of operations: wake-up (or active)
and sleep, during its duty cycle. Each sensor is responsible for sensing, processing, and

transmitting the microclimate data.
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Figure 5.3: WSN Deployment in a Greenhouse
5.5.1.1 Data Collection and Preparation

Our proposed approach is based on a very large dataset of historical weather records. Data
collection is the second operational stage of phase one. We utilize a dataset of 1826 records

collected by many types of wireless sensor nodes that have been installed inside and outside

3 Other network architectures/protocols could have been used.
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a greenhouse in Surrey, British Columbia, Canada to monitor the microclimate [107]. From
this point forward we will refer to air temperature, humidity, air pressure, dew point, and
wind as five environmental factors, were recorded and analyzed with the help from
Weather Underground, a community of volunteers reporting data taken from specific
weather sensors, located in British Columbia. This data has been collected for five years
from January 1, 2015 to December 30,2019, on an hourly, daily, and weekly basis. From

that dataset we calculate the maximum, minimum, and mean data for all five factors.

In this study, we used the collected data to train and test our proposed model for weather
prediction for 7/30/60 days. The prediction for 60 days ahead is an effective indicator
before the sensor run out of battery and give the greenhouse manager the chance to replace
the sensor without any damage can affect the greenhouse. The inputs for the model were
the maximum, minimum, and mean of the five factors. The output weather predictions were

for 7/30/60 days in the future. The sample of the microclimate data is shown in Figure 5.4.

After collecting data from sensor nodes, we prepare the dataset to be fed to the model using
a cleaning process. All records should not have missing values. The dataset must be in
numerical value. Applying scaling transformation and then normalization on the dataset.
LSTM generally improved its performance with the normalized data. We prepare the
dataset to LSTM by normalizing the input variables. Normalization using Gaussian
distribution is a rescaling of the data from the original range so that all values are within
the range of 0 and 1. We accurately estimate the minimum and maximum values. The
dataset already comes pre-processed by the community. Any data that has a missing value
was replaced with NaN. Also, any duplicated data were discarded. All data are transformed
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and scaled for easier use. Following data preparation, cleaned data is input into the LSTM

model. The model consists of three steps explained next and illustrated in Figure 5.5.
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Figure 5.4: Sample Microclimate Data
110



Selecting Inputs

v

Building LSTM Model

v

Training —

v

Y

Testing

v

Is Actual
=~ Predicted?

End

Figure 5.5: Flowchart for Building the LSTM Model

5.5.1.2 Building LSTM Model

LSTM is a type of deep learning RNN architecture. The input of LSTM can be current data
and data previously collected. Thus, the input of the LSTM model at time t is the model
output at time t-1 along with new input at time t. The model depends on time series to
predict the future microclimate in the greenhouse, which is dependent on the previous

microclimate of the greenhouse. Data has been collected and used to determine which
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prediction is more accurate for the next 7/30/60 days. The prepared dataset is divided into
training, testing, and validation sets (80% for training, 10% for testing, and 10%
validation). These sets are then split into input and output variables. In LSTM the input
changed to a 3D format [features, samples, timesteps]. For predicting all the weather
conditions, we define the LSTM with 50 neurons in the first hidden layer and 15 neurons
in the output layer. The input shape is a one-time step with 15 features. The model fits for

1500 training epochs with different batch sizes and activation function (Relu).

We can forecast for all the test dataset after fitting the model. We combine the forecast
with the test dataset and invert the scaling. Calculating the error score for the model by
using original scale of forecasts and actual values. We calculate the Mean Absolute Error
(MAE) and the Mean Square Error (MSE). Based on our predictions, and to increase the
accuracy of our proposed model, we apply two different gradient descent optimization
algorithms Adam [108] and the Stochastic Gradient Descent (SGD) [109]. The LSTM
model with those two optimization algorithms is tested, and the results compared by
calculating the Root Mean Square Error (RMSE). The best-suited model is selected based
on the minimized values of MSE and MAE and used to measure the performance of the
model.

After prediction, we can change any environmental factor inside the greenhouse to the
desired level and control it by requesting an actuator to initiate an action such as open the
windows, switch on the heater, or switch on the fan. Our model was tested on different
datasets collected from wireless sensor monitoring. Additionally, our model can predict

distinct lengths of time.
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There are two parts of the LSTM model: the training part and the prediction part.

A. Training Part

The LSTM training model, shown in Figure 5.6, is used to predict the microclimate inside
a greenhouse. Our LSTM model has three layers: an input layer, a hidden layer, and a dense
layer. The input layer has 50 neurons and is used to provide input to the LSTM model. The
LSTM model input is a vector containing the current (hour, day, or week) for the weather
forecast data. This feature vector is denoted by x;,0 < i < n, in the diagram at time t. Our
model has 16 hidden layers. The LSTM model’s output at time t is an initial parameter
vector which is also an input for the model for time t+1. The hidden units are internally
connected, where output h; of LSTM at time t is the input of the next hidden unit, h;, ;.
The hidden layer is used to adjust the weights assigned to the initial parameters based on
the gradient descent difference. The LSTM model output at time t is also the input for the
model for time t+1. This is because the LSTM behavior for that next hour’s, day’s, or
week’s output is dependent on the previous hour’s, day’s, or week’s output. The last layer
is the dense layer. The output of all units in the hidden layer h; is connected to a dense
layer whose output p; has 15 units, representing each microclimate forecast. These

predicted values are then compared with the actual weather forecast’s value at that time.
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Figure 5.6: LSTM Training Model with Input, Hidden, and Dense Layers

B. Prediction Part

In the prediction phase, we use the trained LSTM model to predict the microclimate
forecast for the next 7/30/60 days. Let P} denote the microclimate i at time t. Let {F}...
E!} be the climate features. Given a tuple (P,F), our goal is to predict Pf*1, Pf*2 ... pt*™m
, where m is the number of days for which prediction is required. The feature vector at time
t is the input to the trained LSTM model that predicts the microclimate for the number of
days, passed as an argument in the function. The next day’s predicted values are appended
with the corresponding day’s weather forecast data to predict the next day’s microclimate.
The whole function is recursively called n times, where n is the number of days for which
prediction is required. We predict the next m number of days microclimate; instead of

training a separate LSTM model for different values of n, one model is trained to predict
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the next day’s values that are extrapolated for the next day’s prediction, as shown in Figure

5.7.

Pt

Temperature

Humidity

Pressure

Wind

Dew Point

Figure 5.7: LSTM Prediction Model

5.6 Performance Evaluation

In this section, we present the performance evaluation and results’ comparisons of our
intelligent LSTM model built in phase one. Our proposed model is implemented with
multiple python packages including TensorFlow [110] and Keras [111] to perform label
encoding and scaling on our dataset, respectively. The LSTM model predicts the five
environmental factors over the next number of days. There are multiple parameters
(number of epochs, hidden layers, hidden neurons) on which the LSTM model works.
Tuning all these parameters results in different RMSE values. We performed several

experiments to find the optimal value of the parameters to achieve the least RMSE.
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The data is split into training, testing, and validation. To assess the performance of the
proposed model, we compare the training data results and validation data in loss function.
We used three loss functions to measure how accurately our model can predict the expected
outcome. The loss function is a measure of how well our model did at predicting the
outcome. A high value for the loss means our model performed poorly. A low value for the

loss means our model performed very well. The three loss functions are explained below.

5.6.1 Evaluation Metrics

We used the following three loss functions, MAE, MSE, and RMSE, per Equations 5.1,
5.2, and 5.3, respectively. RMSE is the difference between the microclimate weather values
predicted by a model and the values observed. Because the model is trained on past data,
we report the RMSE for future microclimate weather prediction values. In Equations 5.1-
5.3, s represents the test sample size. The MAE and MSE results are shown in Figure 5.8
and Figure 5.9, respectively. From here on, we use the MAE in our results. Because the
MSE loss function square the error and it will take time to reach the minimum, rather than

MAE loss function is subtracting the error and will be faster to reach to the minimum.
1 .
MAE = - i=1|Predicted; — Actual;| (5.1)

MSE = % *_,(Predicted; — Actual;)? (5.2)
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RMSE = \E Yi_,(Predicted; — Actual;)? (5.3)
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Figure 5.9: MSE Result.
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5.6.2 Results and Discussion

Based on our predictions, and to increase the accuracy of our proposed model, we apply
two different gradient descent optimization algorithms Adam [108] and the Stochastic
Gradient Descent (SGD) [109]. The advantage of the Adam algorithm over SGD is that

global minima are achieved faster with fewer epochs, as shown in Figures 5.10-5.13.

MAE
45

=== Train_MAE
— Validate_MAE
35 -

25 1

loss MAE

15
10

0 200 400 600 800 1000 1200
no. of epochs

Figure 5.10: 50 Neurons, SGD
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Figure 5.11: 5 Neurons, SGD
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Figures 5.10, 5.11, 5.12 and 5.13 show which optimization algorithm reaches global
minima, with fewer epochs, faster when there is different neurons input. From the figures,
the global minima are achieved with the least number of epochs when the number of
neurons is higher. The figures also illustrate that 50 neurons perform better than five
neurons in terms of achieving global minima. In Figure 5.12, the use of 50 neurons and the
Adam algorithm achieved the global minima in fewer than 30 epochs, while in Figure 5.10,
the use of 50 neurons and the SGD algorithm achieved the global minima in 200 epochs.
We used the Adam algorithm with one hidden layer, 50 hidden units, and 150 epochs in
our LSTM model to obtain the global minima. We did not define the learning rate in the
Adam algorithm since it already calculates the individual adaptive learning rate for each

parameter.

The RMSE results for 7/30/60 days are shown in Figures 5.14, 5.15 and 5.16. Each figure
represents the five environmental factors, for the predicted and actual data. From the results
[112], we can see that the proposed model can predict the future weather inside the
greenhouse with a high level of accuracy because the performance of the model is good on
both the training and validation sets (good fit) as shown in Figure 5.8. It is noticeable that
the prediction accuracy is almost the same in all the three figures. More detailed results are

included in the Appendix B.
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5.7 Phase Two: Prediction Wireless Sensor Nodes Duty Cycle

In phase two of our proposed framework, we propose an algorithm called Prediction Duty
Cycle Algorithm (DCPA) to decrease the consumed energy of the wireless sensor and
camera sensor nodes and prolong the network lifetime by predicting and controlling the
duty cycle of the nodes during the crop life cycle in a greenhouse. Data input for the DCPA
is taken from the LSTM model, which is developed in phase one.

In the remainder of this section, we first explain the plant growth cycle in a greenhouse to
understanding of the natural growth cycle of a plant which is important when making
decisions that affect the overall efficiency of greenhouse crop production. Without loss of
generality, we explain this cycle using the growth of a tomato plant. We then explain in

detail the steps of our proposed algorithm, DCPA.

5.7.1 Case Study: Tomato Plant

In this research, we focus on the tomato crop as a use case for understanding its growth
cycle that help in building our model. The optimum microclimate levels for the best
greenhouse cultivation of tomatoes depend on different growth stages and conditions.
There are five stages of growth in a tomato: germination and early growth with initial
leaves take between 25-35 days, the vegetative period between 20-25 days, the flowering
period 20 to 30 days, the early fruiting period between 20 to 30 days, and the mature
fruiting period between 15-20 days [113]. The exact period of days depends on the
atmosphere inside the greenhouse. For most greenhouse tomatoes to reach maturity and

ripeness is between 65 to 100 days. Shortening the production time can be done by
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changing the conditions inside the greenhouse. The growth stages of a tomato plant are
graphically presented in Figure 5.17 along with fruit maturity and ripeness levels. It should
be noted that tomatoes are harvested when they have reached the mature green stage (vine-

ripe), which is just as they start to ripen.

Vegetative
Early growth
< 25-30 days 20-25 days 20-30 days 20-30 days 15-20 days
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Green Breaker Turning Pink Lightred

Figure 5.17: Five Growth Stages for Tomato Plants

Air temperature higher or lower than the optimal values affects different stages of tomato
growth and development. High temperatures cause the fruit to die because of improper
transpiration and can destroy the plant. Tomato plants are notably sensitive to above
optimal air temperatures during the reproductive stage and may face a reduction in the
percentage of fruit set, which triggers a significant yield decrease in commercial
cultivation. On the other hand, the decreasing temperature will affect respiration and

photosynthesis, causing a hormone imbalance in the tomato plant. In addition, a very high
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level of humidity in the greenhouse environment causes diseases and fungal pathogens to
grow and spread rapidly infecting the plants. Pests also spread faster in high temperatures
and humidity. Some of the diseases and physiological abnormalities associated with high
humidity in greenhouse production include black spot, powdery mildew, leaf-edge burn
and blossom-end rot of tomatoes. As well, plants evapotranspiration may be limited.
Barometric pressure directly affects the water uptake by tomato plants and likewise the
overall tomato fruit yield. Extremely high- or low-pressure values can result in leaf
physiology disorders and the fruit to die.

By knowing the duration of the plants’ growth, we can control the greenhouse environment
to speed up the growth of the plants and also to protect them from diseases. Predicting
greenhouse optimal parameters for seven days after seeding, which is when the seeds
germinate (sprout), and 30 days is the duration of each stage in tomato growth, allowing
growers to control the climate inside the greenhouse during these periods of growth. It will
also reduce energy consumption for wireless sensor nodes which in return will reduce

network deployment and maintenance costs.

5.7.2 Proposed Duty Cycle Predicting Algorithm (DCPA)

Based on the literature reviewed, there remains a gap in the research that answers the
question: How can you decrease the amount of energy consumed by wireless sensor nodes.
To solve this problem. We build the LSTM model as explained in section 5.5. Then, use

our novel algorithm DCPA based on LSTM to predict and control the monitoring sensors’
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duty cycle. Using our proposed DCPA will regulate between wake-up/sleep mode for the

sensors depending on the prediction model.

Our proposed algorithm’s primary goal is to predict the operation of the sensor nodes
through the duty cycle to make sure that the nodes are not active continuously when
monitoring the greenhouse. Thus, reducing the consumed energy and prolonging the WSN
lifetime. DCPA uses the output features’ values from the LSTM prediction model as an
input. Each sensor can be in active mode or in sleep mode depending on the difference
between the actual measured value and the predicted value. DCPA works as given in
Algorithm 5.1.

Sensors at time t start in an active mode and sense any of the features (i.e., environmental
factors), A;, inside the greenhouse and compare it with predicted value, P;, from the model.
All predicted values are stored in an array of size n, P/n]. The sensor node will calculate
the absolute difference between actual value and predicted value at time t. If the difference
is greater than a predefined threshold value, then the sensor will continue to be active and
will send the new value to the BS to update the prediction model. For example, the
threshold value equal to an acceptable temperature range as in [114]. The BS then will send
a job request to an actuator to do an action to reduce the current feature value inside the
greenhouse. For example, switch on the fan for a specific period of time if the air
temperature or humidity levels exceed the threshold. The sensor node will continue sensing
and comparing until sensor node runs out of energy or the difference is less than the
threshold. If the difference is less than then threshold, then the sensor node will sleep for a
period of time, S7;. The value of ST; is determined based on the feature value increase or
decrease in the greenhouse. This can be calculated using a sleeping time indicator S77,
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which is the difference between 4; and Py pgr,, where PST; is the proposed sleeping time
attand Pgypgsr, 1s the predicted feature value at (¢ + PST;) from P/n]. If STI is less than

zero, this means the feature value is decreasing and thus, the sensor node can sleep as
proposed, i.e., sleeping time is equal to proposed sleeping time (ST, = PST;). While, if

STI is greater than zero, this means the feature value is increasing and the sleeping time
_sm
should be less than the proposed time as follow ST, = le 10 X PSTtJ .

Table 5.1 defines the symbols used in Algorithm 5.1.

Table 5.1: Algorithm 5.1 Symbol Definitions

Symbol Definition
P[n] Array of predicated features’ values for n hours
P; Predicted feature value at ¢
A; Actual feature value at ¢
Diff: Feature difference value between A; and P,
PST: Proposed sleeping time at ¢
Piypst, Predicted feature value at (¢ + PSTy)
STI Sleeping time indicator, which is the difference between 4, and Py pgr,
ST: Sleeping time at ¢
Th Predetermined threshold value
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Algorithm 5.1: Predict Duty Cycle

Input: Array of predicted features’ values for n hours, P[n], and actual feature value, A, at time ¢t
Output: Sleeping time at ¢
// Do for each sensor at time t = 1:n
do
Determine P; from P[n]
Sense and measure the current actual feature value, A,
Calculate Diff; = A: - P:
if (Diff: <= Th) then // Sensor sleeping mode
Calculate PSTy = Trunc | Ay — P, |
Determine Py pgr, from P[n]

Calculate STI = Pt+PSTt - At

if (STI > 0) then // Feature value will increase

_sm
ST, = le 10 X PSTtJ

else // Feature value will decrease

STt = PSTt
t=t+ STt
end if-else

else // Sensor active mode
Transmit A; to the BS
BS sends a job request to the actuator to adjust the feature value inside the
greenhouse
Update the prediction model based on the value of A,
t=t+1

end if-else

while (t <= n /[ Diff:> Th)

end do-while
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5.8 Performance Evaluation

In this section, we evaluate the performance of sensor node operation using our proposed
algorithm, DCPA, and compare it with two different operational methods: Short Duty
Cycle (SDC) and Long Duty Cycle (LDC). The sensor nodes in both methods, SDC and
LDC, will alternate between the two operational modes, active and sleep, for different
lengths of time. During the active period, the nodes can sense the microclimate factors of
the greenhouse, process, and send data to the BS. In our study, we consider that the nodes
in SDC in an active mode for an hour and then in sleep mode for the next hour. While, the
nodes in the LDC sleep for six hours and wake up for one hour. Thus, on a period of 24
hours, the SDC nodes are active for 12 hours and sleep for another 12 hours in total. On

the other hand, the LDC nodes will sleep for 20 hours and be active for 4 hours.

A WSN enabled greenhouse, shown in Figure 5.3, is considered in this simulation with the
defined parameters and values given in Table 5.2. Figures 5.18-5.20 show the simulation
comparison results between the three methods in terms of the following performance

metrics running for 24 hours:

e Total energy consumption: The estimated consumed energy, Ec, for sensing,
computing, sending, receiving, and sleeping as in [41]. Thus, Ec is the summation
of estimated energy consumed in sensing (SsE), energy consumed in computing
(CpE), energy consumed in sending (SnE), energy consumed in receiving (RcE),
and energy consumed in sleeping (SpE), for all n sensors. It can be calculated using
the simple model in Eq. 5.6. Note that other more elaborate energy consumption
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models could have been used, but we are more concerned with relative energy

consumption as opposed to absolute values.
E. = ¥i=1(SSE + CpE + SnE + RcE + SpE)g, (5.6)

Network lifetime (or remaining network energy): is defined as the total remaining
energy of all sensor nodes of the network over a certain period of time. Let us
assume that the initial network energy or energy of all nodes is equal to Ein. We
estimate the energy consumptions of all sensor nodes in the network to be Ec for a
certain period of time. Then, the network lifetime is estimated as Ein, — Ec, the

difference between E. and Ein.

Unreported data: is number of significant changes in the environmental factor value
that is not reported to the BS since the sensor node was in sleep mode according to

its duty cycle activities.

Table 5.2: Simulation Parameters.

Greenhouse area 100m x 100m
Number of sensor nodes 10
Base station position (50, 50)
Initial node energy 2]
Sensing energy 0.157J
Computing energy 0.27]
Sending energy 1.057J
Receiving energy 0.57]
Sleeping energy 0.01J
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5.8.1 Results and Discussion

Figure 5.18 illustrates the total estimated energy consumption using the three methods. We
note that the SDC operational method’s energy consumption is the highest, while energy
consumption is the lowest for the LDC operational method. Sensor nodes consume more
energy in the SDC method due to the frequent active every other hour for one hour for the
sensor nodes where they have to sense, process, and transmit. While less energy is
consumed using the LDC method since the sensor nodes are in sleep mode most of the time
and thus, save more energy. It is noted that, in Figure 5.18, our proposed algorithm, DCPA,
performs much better than the SCD and very close to the LDC method. The reason is that
the sensor nodes will be active only when there are significant changes in the greenhouse
microclimate conditions. Thus, more control over the operation of the nodes and thus,
saving more energy.

Figure 5.19 shows the total remaining energy using the three methods. The DCPA achieves
a better network lifetime compared to the SDC method and very close to the LDC method.
The results in this figure complement the results obtained in Figure 5.18 and based on our
assumptions that all sensor nodes have equal initial energy and same lifetime, as explained
in Section 5.5.1. The more time the sensor nodes sleep, as in the LDC case, the more energy
is saved; thus, longer network lifetime is achieved. This is not the case when using the SDC
method where more energy is consumed which shortens the network lifetime. Our
algorithm shows reasonable results based on its ability to predict and control the sensor
nodes’ operation based on real-time collected data making it a more practical solution to

implement.
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Figure 5.20: Reported and Unreported Comparison Results Between DCPA, SDC, LDC

Figure 5.20 illustrates the comparison results between the methods based on three cases:
(1) significant change occurs in the greenhouse microclimate condition but this change is
not reported to the BS since the sensor node is in sleep mode, (2) significant change occurs
in the greenhouse microclimate condition and this change is reported to the BS since the
sensor node is in an active mode, and (3) no change occurs in the greenhouse microclimate
condition when the sensor did the comparison between actual and predicted values, and
thus, there is nothing to report to the BS. In case one, unreported data, the LDC method
achieved the highest value since the sensor nodes are in sleep mode most of the time
making them fail to report any significant changes in the greenhouse. While, the SDC has
the lowest unreported data because the nodes are active most of the time and can report

any significant changes that are happening in the greenhouse. Interestingly, the DCPA has
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fewer missing data, since the nodes are operated by executing our intelligent algorithm
with high accuracy to predict more realistic sleeping time based on the greenhouse
microclimate conditions. The nodes using the DPCA are awake when there are significant
changes in the greenhouse and sleep mode when no significant changes are happening.
Results obtained in cases 2 and 3 are straightforward and confirm the ability of the three
methods to report significant changes when sensors are in active mode and save energy
when there are no significant changes to report efficiently. The DCPA result in case 2 is
close to the result of the SDC. In addition, the summation of reported data and unreported
data when there is a change for both methods, DCPA and SDC, have almost the same value.
High result value for the DCPA in case 3 confirms the ability of the LSTM model to predict

the microclimate changes in the greenhouse accurately.

We conclude from the above results, Figures 5.18-5.20, that our proposed algorithm,
DCPA, achieves better realistic and more robust performance results in terms of energy
consumption and network lifetime than both SDC and LDC methods. This is because
sensor nodes using DCPA consume energy in an optimistic way; they are only in an active
mode when there are changes in the greenhouse that require the nodes to send messages to
the BS. As sensor nodes using DCPA know ahead what will happen in the greenhouse
microclimate condition based on the proposed LSTM prediction model. In phase one, we
showed that the LSTM model has a high level of accuracy where predicted values are
almost the same as actual values most of the time. By using the predicted values from the
LSTM model as input for the DCPA this ensures that sensor nodes will not miss reporting

significant changes in the greenhouse microclimate conditions to the BS. This is because
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the nodes will be for the majority of the time in the right mode of operation. Also, it is
noted that sensor nodes that use DCPA consume energy wisely which means prolonging
the lifetime of the sensors and thus, they can be used for longer periods of time ideally for
longer than the lifecycle of the growing crop. This will reduce the cost of both WSN
deployment and maintenance. Keep in mind that each location for each sensor is different.
This means if some sensors are in sleep mode because they did not sense any changes,
other sensors can detect the changes and report it and update the prediction model. This

increases the efficiency of the network that have DCPA.

These results confirm the ability of the sensor nodes to use DCPA to operate efficiently in
different conditions and save time to fix any critical issues that may happen inside the

greenhouse. Making it more practical than the other two methods SDC and LDC.

5.9 Summary

In this chapter, we introduced a prediction-based framework for monitoring microclimate
parameters and controlling the sensor nodes in a greenhouse for having high-quality
production of crops with less cost. WSN is deployed inside the greenhouse to collect the
microclimate data. The LSTM model with different optimization algorithms are applied to
the training and testing of environmental data that is collected over a five-year span. The
accuracy of the model performance, as evaluated by measurements of AME, MSE and
RMSE, is high. The obtained prediction results for 7/30/ 60 days ahead are promising and

are significantly useful in predicting and controlling the sensor nodes’ duty cycles (active
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mode and sleep mode) inside the greenhouse. The proposed DCPA is used to control and
predict the duty cycle of the nodes during the crop lifecycle. We showed through simulation
that our proposed algorithm, DCPA, performance is robust and more practical than the
existing two methods, SDC and LDC. The estimated energy consumption and network
lifetime are better in DCPA compared to the SDC method. Also, the DCPA has fewer
missing data reported compared to the LDC method.

This research can efficiently facilitate the deployment of WSN and using intelligent
prediction solution, in the greenhouses, not only to decrease the energy consumption of the
WSN nodes and the production cost but also will predict, control, and moderate the
microclimate inside the greenhouse and thereby prevent any incident that would adversely
affect the crop from happening. We, therefore, advocate adopting the deployment of this

framework whenever possible in practice.
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Chapter 6

Conclusions and Future Works

The last decade has witnessed an increasing implementation of greenhouse applications
using WSNs and WVSNs due to the combined potential of these two technologies,
especially in monitoring, detection, and controlling applications. However, these essential
tasks need particular efficiency in a greenhouse setting to ensure data availability, high-
quality image resolution, maintain the microclimate stability, and timeliness delivery,
within a realistic cost. In literature, existing schemes in this research area are limited to
specific cases and deliver results that are far from optimum. To the best of our knowledge,
no cohesive framework exists that considers all the issues involved in a greenhouse
application, including uncertainty in detecting plant diseases, prediction accuracy,
optimizing placement, coverage, and resolution for monitoring and controlling devices.
This chapter concludes the thesis with a summary of our research contributions in Section

6.1, as well as future research directions outlined in Section 6.2.

6.1 Research Contributions Summary

The work in this thesis proposed a realistic and practical framework that utilizes WSN,
WYVSN, machine learning, deep learning, and image processing technologies to satisfy
greenhouse-specific network properties.

The framework is divided into three phases. In the first phase, we succeeded in finding the

minimum number of camera sensors, and the optimal placement of each camera sensor, to
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cover a large area in the greenhouse with high-resolution quality and no overlap between
images. High-resolution images were enhanced, then image processing techniques were
applied for the segmentation process and machine learning to recognize and identify
powdery mildew fungus in our proposed automated system. Phase two achieved high levels
of accuracy that confirmed the system’s ability for its intended purpose. In the last phase,
our proposed prediction system efficiently demonstrated saving time and effort in
preventing fungus or an infestation of pests by controlling and predicting the microclimate
ahead of time. Thus, increasing the quality and quantity of the greenhouse crop. Also, our
novel proposed algorithm, DCPA, at this phase, proved decreasing the extensive work of
the wireless sensors, by predicting and controlling their duty cycle activities, which
effectively decreases the consumed energy, prolong the network lifetime, and reduce

deployment and maintenance costs.

Our proposed framework is composed of three phases as presented in Chapter 3 (Phase 1),
Chapter 4 (Phase 2), and Chapter 5 (Phase 3). In Chapter 3, we formulated an optimization
problem for defining the optimal placement for the sensor cameras to satisfy four main
criteria, minimizing the number of sensor cameras, maximizing the covered area,
maximizing image resolution, and avoiding overlap image views. This problem is
considered an NP-complete. We used ILP formulation and divided the objective function
into two sub-functions to solve the problem. The first function considers maximizing the
quality of the image and the area being covered. The second function considers avoiding

the overlap between images and minimizing the number of deployed sensor cameras. The
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experimental results for both functions were satisfactory, showing great promise as future

applications.

In Chapter 4, we proposed a novel automated detection system that used the high-resolution
output images taken from the sensor cameras and good coverage of the area. The system
used the Hough Forest machine learning technique and image processing methods to
enhance these images. The system was able to identify and recognize the early signs of
powdery mildew fungus from the images with high accuracy levels. The cross-validation
result is 96.69%, which is high enough to show the excellent system performance. The fact
that we achieved statistical results with a detection rate of 94% is another indication of the

strength of the proposed system.

In Chapter 5, we introduced a framework with two stages. In the first stage, we used deep
learning with WSN to control and predict the microclimate. We proposed building the
LSTM prediction model based on collected data from wireless sensors. Our proposed
model’s accuracy was tested and validated using MAE, MSA, RMSE, and this showed that
the data were accurately trained with great validation accuracy. The model examined two
optimization functions with a different number of neurons to achieve the most accurate

results in less time.

In the second stage, we used the LSTM prediction model, from stage one, to propose our
novel algorithm, DCPA, to predict and control the sensor duty cycle activities. We
compared our proposed DCPA with SDC and LDC. The performance of the DCPA was
better than the SDC in consuming energy and lifetime and better than the LDC in having

fewer missing data. These results assure maintaining stability inside the greenhouse ahead
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of time with minimum human interaction and saving the sensor’s power extending its

lifetime considerably during its deployment.

Merging WSN, WVSN, deep learning, machine learning, image processing technologies
creates a complete monitoring framework for a greenhouse to increase the quality and
quantity of crop production without human interaction and for less cost. The significance
of the proposed framework deployment in this thesis moves beyond the scientific data
collection to enable a smart, intelligent, and safe, productive environment. The framework
provides automatic, fast and accurate detection capabilities with long life network
interaction, which applies to greenhouses deployment and can be used in different

locations, including:
(1) Nursing homes, and home care for monitoring and reporting an emergency,

(2) Airports, trains, and transportation systems to provide information such as identification

and recognition in real-time for security purposes, and

(3) Outdoor environment monitoring such as farms to monitor grazing animals and report

their health.

6.2 Future Work

Several future research directions and open issues can be derived from our work thus far.

In this section, we outline these directions.

e We used the Hough Forest machine learning technique and image processing

methods to recognize powdery mildew fungus in a tomato crop. We think using the
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same technique and generalizing it to recognize any diseases that affect crops is

possible.

We intend to expand our work in a more dynamic WSN and WVSN, where each
smart camera and sensor node has a mobility feature and checks the effect on the
network efficiency.

Deep learning networks proved their ability to learn any complex function between
a given input and an output. This potential may be further investigated to
understand the timing requirements and the delay model of connections.

Deep learning can be trained to solve the best placement, given an objective
function. A deep learning model can be trained on the proposed problem, ILP-
OPCQ, and their corresponding placement solutions. Later this model could be
generalized to generate a placement solution to new unseen data.

Developing a hybrid model including the CNN and ARIMA models for predicting

the microclimate and diseases in a greenhouse.
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Appendix A

Samples of Greenhouse Images
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Prediction Microclimate
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