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Abstract 

Wireless Sensor Networks (WSNs) and Wireless Visual Sensor Networks (WVSNs) are two 

monitoring technologies that have the potential for use in many application domains, and both are 

poised for growth in many markets from the farm to the office.  Integrating a WSN with a WVSN 

in a commercial greenhouse setting is an application domain yet to be researched. The integration 

of WSN and WVSN has the potential to overcome the problems other monitoring systems have 

encountered. A system combining these two wireless networks will need no human interaction, 

deliver real-time data indicating an adverse event, be cost-effective, and use less power. Additional 

efficiencies specific to the greenhouse application are needed due to its clutter and occluded 

environment, very large area, and restricted energy plan. This thesis presents a framework that 

combines WSN, WVSN, Machine Learning (ML), deep learning, and image processing to address 

the challenges faced by operators of commercial greenhouses. The framework achieves three 

objectives. First, finding the optimal placement of WVSN nodes to minimize the number of 

installed camera nodes. Second, monitoring the growth of the plants and detect any abnormalities 

caused by pests or diseases. Third, controlling the microclimate inside the greenhouse and 

dynamically predicting the duty cycle activities of the monitoring sensors.  

Our first objective is achieved by formulating and solving an optimization problem to find the best 

placement for the camera sensors of the WVSN, maximize the area covered, and minimize the 

number of camera sensors used with good quality images. The second objective is achieved by 

using the Hough Forest ML and image processing techniques on the images taken by the WVSN 

to detect any fungus, monitor the growth of the plant, and to increase crop production and quality. 

Our third objective is achieved by controlling the microclimate inside the greenhouse using deep 

learning prediction Long Short-Term Memory (LSTM) model. The prediction model will not only 
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control the microclimate inside the greenhouse but also predict and control the monitoring sensor’s 

duty cycle to decrease energy consumption and prolong the network’s lifetime.   
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Chapter 1 

Introduction  

In the past, traditional crop cultivation was widespread across vast landscapes and remains 

today essential for the development of human civilization. Crop cultivation takes a 

tremendous amount of hard work and continuous care and attention. There were many 

problems involved in traditional crop cultivation: the plant’s growth and development 

depended entirely on the environment and the weather; plants had no protection against 

pests and diseases. However, the development of modern crop cultivation occurred with 

the advent of commercial greenhouses [1][2]. A greenhouse allows commercial farmers to 

grow crops where the changing weather would generally create an unfavourable 

environment for growing plants. The production of crop plants in greenhouses does not 

depend on geographic location or even the time of year. A greenhouse gives plants 

optimum conditions for healthy, vigorous growth. The quality and yield of a crop depend 

solely on the quality of the environment in the greenhouse.  

Given that this environment could negatively impact the plants’ growth and yield, it is 

imperative to have continuous monitoring and control of specific environmental factors to 

produce maximum crop yield. Temperature, humidity, pressure, wind, and dew point are 

the most common environmental factors that growers monitor closely. However, these 

factors alone do not give the grower the complete picture of the condition of the greenhouse 

ecosystem. Commercial greenhouses are huge and have large outer surfaces where 

changing weather can vary significantly between different areas inside the greenhouse. It 
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is common to use sensors and actuators in greenhouses. However, installation requires 

extensive wiring and maintenance, making the system complex and expensive. Several of 

the latest wireless and artificial intelligence technologies are promising to contribute to 

increasing the production of a greenhouse by solving its problems and limitations. Among 

these technologies are Wireless Sensor Networks (WSNs), Wireless Visual Sensor 

Networks (WVSNs), intelligent learning (machine and deep learning), and image 

processing techniques. WSN and WVSN are possible solutions to problems faced by 

operators of commercial greenhouses. Both networks can operate within a wide range of 

environments. They are inexpensive, small, require reasonable power to operate, offer 

flexibility, and exhibit distributed intelligence. The sensing devices in a WSN are called 

sensor nodes1 and in a WVSN they are called camera sensor nodes2. They used to capture 

images and sense specific properties of the surrounding environment, including physical 

and chemical properties, and transmit the sensed data to a central unit called the Base 

Station (BS) either periodically or on-demand. According to different application 

requirements, the networks may consist of just a few or as many as thousands of nodes 

operating collaboratively and coherently for a few days or several years to fulfill a specific 

task [3]. However, at the same time, excessive use of the nodes will increase energy 

consumption, consequently decreasing the network's lifetime. This is especially true in 

applications that need continuous monitoring and observation inside large, and occluded 

environments like a greenhouse.  

 

 
1 sensor node, wireless sensor node, or sensor are terms being used interchangeably in this thesis. 
2 camera sensor node, wireless camera, camera node, or camera sensor are terms being used interchangeably 
in this thesis.  
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An intelligent solution comprising machine learning and deep learning has become the 

most promising and significant technology development in recent years. Machine learning 

is capable of automatically learning without human interaction and without being 

programmed. Machine and deep learning extract knowledge from the data that it is given. 

This knowledge that has been learned can be used to make decisions and generate 

predictions. Machine and deep learning techniques can be found in WSNs and WVSNs, 

depending on the labelled data’s availability during training. 

Merging WSN, WVSN, machine learning, deep learning, with image processing, will help 

to overcome the problems mentioned earlier, investigate efficient network deployment 

plans to address the many challenges that have not been addressed and fill the literature 

gap in this research area.   

 

WSN and WVSN deployment challenges and the motivations behind this research are 

presented in the following section. Significant research contributions followed by an 

overview of this thesis and an outline of the remaining contents of this thesis are given in 

the next sections. 

1.1 Motivations and Objectives  

 

Greenhouse crops are susceptible to fluctuations in environmental factors. These factors 

directly impact plant growth, and poor conditions can spread pests and diseases, ruining an 

entire crop in the greenhouse. Deploying large scale WSNs in greenhouses becomes 

necessary to control and monitor the environmental parameters. However, the number of 

data transmissions between sensor nodes and the BS in such environments increase 
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significantly along with the network size, promoting data congestion, and a high sensory 

data loss rate [4-6]. Excessive use of sensor nodes will consume more power, and sensors 

not operating collaboratively and coherently will shorten the network’s lifetime. A short 

lifetime sensor node will cause instability during the crop life cycle inside the greenhouse. 

Therefore, there is a crucial need to develop an intelligent solution to predict the weather 

conditions that affect the greenhouse ahead of time. This solution will help in controlling 

and stabilizing the microclimate inside the greenhouse. This solution requires historical 

data and a high degree of accuracy before it can be deployed in a commercial greenhouse. 

Also, issues related to sensor node’s energy consumption and network lifetime must be 

considered for efficient performance in a greenhouse application. Many investigations 

looked at changing the duty cycle of the sensors to decrease energy consumption [7], even 

though reducing the consumed energy for a long duty cycle would result in a considerable 

amount of unreported data in the network. Therefore, in any proposed intelligent solutions 

for predicting operational modes of a sensor, it is essential to consider the duty cycle. This 

will help decrease the wake-up time, which will reduce energy consumption and prolong 

the lifetime of the network.  

 

Deploying a WSN alone is not enough to overcome all the issues mentioned earlier. There 

is certainly potential to use camera sensors of a WVSN as a complement to a WSN in 

monitoring crop growth. Camera sensors are capable of recognizing fungus, pests, and 

diseases that impact the growth of the plant. If the camera sensor detects increasing fungus 

on the plant, an alert message that the humidity level is too high inside the greenhouse 

could be sent. However, the placement of a camera sensor in a greenhouse is challenging. 
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The placement camera nodes largely influence the operations and performance of WVSN, 

as camera nodes must be able to observe events of interest and transmit the data to the BS. 

Finding the best location for camera sensors to cover a large area using the minimum 

number is an open research problem. The images taken by the camera sensor must be of 

high quality and high resolution. Thus, the deployment strategy of a WVSN can be 

modelled as an optimization problem. The problem should aim at maximizing the area to 

be covered with the least number of camera sensors. This optimization problem becomes 

challenging because there should be no overlapping field of view between camera sensors. 

Nonetheless, the camera sensor consumes more energy than any other sensor node, 

transmits huge amounts of data, and needs a large bandwidth. Thus, the intelligent solution, 

which predicts sensor node operation modes, can predict the duty cycle of the camera 

sensor to control the wake-up and sleep modes and hence, decrease the energy consumed 

during the monitoring time and reduce unnecessary data transmission.   

 

Images from good quality camera sensors are affected by noises and may have unwanted 

objects in the image, which needs to be cleaned out to be used for recognition processes. 

With no human interaction, these images need to identify first if the plant has fungus or 

not. Naturally, the greenhouse is a fully occluded and cluttered environment in which it 

may be difficult to distinguish and recognize an unhealthy plant. Moreover, the light 

intensity varies from one area of the greenhouse to another, depending on the direction of 

the camera when taking images and ambient light through the greenhouse covering. All 

these issues can affect the image. Combining machine learning with image processing 
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algorithms can enhance the output images and can program the sensor to recognize the 

unhealthy plant and locate the fungus on that plant.  

Motived by the aforementioned challenges, in this research, we aim to achieve the 

following objectives: 

 Monitoring crop growth in the whole greenhouse area. 

 Early detecting of the existence of powdery mildew in a highly occluded and 

cluttered greenhouse. 

 Automating greenhouse operations for reducing the cost and decreasing human 

interaction.  

 Predicting the greenhouse environmental factors to monitor and stabilize the 

microclimate inside the greenhouse. 

1.2 Thesis Contributions  

The main contributions of this thesis are as follows: 

1. Finding the optimum placement for camera sensors in a commercial greenhouse. 

To this end, we define an objective function that aims to maximize the covered area 

and the quality of the image and minimize the number of camera sensors. Since this 

problem is NP-hard. we resorted to using two sub-optimization problems. 

2. We present an automated fungus detection system using WVSN, image processing 

techniques, and the Hough Forest machine learning algorithm to distinguish 

between healthy and unhealthy plants and identify the area on the plant that has the 

fungus with a high degree of accuracy.   
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3. We propose an intelligent prediction model based on Long Short-Term Memory 

(LSTM) to control and stabilize the environmental condition in a greenhouse for 

optimal crop production.   

4. We devise a novel approach, based on our proposed intelligent prediction model, 

to predict the sensor nodes’ operational modes (wake-up and sleep) through their 

duty cycles to decrease the energy consumed and prolong the network lifetime.   

 

1.3 Thesis Overview 

 

This thesis introduces a novel framework that can be applied in a smart commercial 

greenhouse. The framework includes WSN, WVSN, image processing, machine learning, 

and deep learning. The framework comprises state of the art approaches on the placement 

of the camera sensors with maximum image resolution and maximum area covered with a 

minimal number of cameras to monitor plant growth in commercial greenhouses using 

WSNs and WVSNs. Lastly, the framework uses state of the art prediction models to operate 

the sensor node efficiently.  

 

Three phases of research will be described in this thesis, as shown in Figure 1.1. The first 

phase studies problems related to the deployment of WVSN in the greenhouse. Our aim in 

this phase is to find the optimal placement for camera sensors, minimize the number of 

sensors, maximize the area covered, and have better image quality. The second phase 

involves image processing with machine learning algorithms for dealing with images taken 

from the camera sensors to recognize the healthy and unhealthy plant. Many image 
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processing techniques are applied to these images, and then the Hough Forest machine 

learning algorithm is used for object recognition and segmentation. The Hough Forest was 

chosen as the detection algorithm for its robustness to occlusion and accuracy. The third 

phase uses a deep learning LSTM prediction model to predict and control the microclimate 

inside the greenhouse and communicate with camera sensors to improve monitoring the 

plants. In this phase, the prediction model will control the duty cycle of the wireless sensor 

node to achieve less power consumption and, thus, prolong the network lifetime, which 

results in a good quantity and quality crop production.  

 

 

 

Figure 1.1: Phases of Research 

 

The interaction of the operation of the three phases of the proposed framework can be 

briefly explained as follows. Initially, during phase one, the camera sensor, placed in the 

optimum location, will take pictures of the plants and send them to the central servers at 

the BS for phase two. The images will go through numerous processes to remove noise and 
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be ready for review. If any anomaly is detected in phase two, the BS sends a message to an 

actuator to spray the appropriate pesticide. At the same time, sensors send readings of 

environmental factors. If any measured factor value goes beyond a threshold that is harmful 

to the crops, then the sensor node will send three messages. One message will be sent to 

the actuator to perform an action such as open greenhouse windows if too hot, reduce 

watering if too damp, or water plants if too dry. The second message will be sent to the BS 

for updating the prediction model and update the duty cycle of the sensor node. The last 

message will be sent to the camera sensor within the closing proximity of that actuator to 

take pictures of the crops. Then, those images are sent by WVSN to the BS to take 

appropriate measures, such as checking the plant’s health condition. The full framework is 

shown in Figure 1.2. 

 

Figure 1.2: Full Framework Interaction 
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1.4 Thesis Outline  

 

The remainder of this thesis is organized as follows. Chapter 2 highlights the relevant 

background literature. Chapter 3 presents our proposed model for the placement of the 

camera sensors in the greenhouse and our solution to the placement optimization problem. 

Chapter 4 explains our solution to recognizing fungus and diseases using image processing 

and machine learning algorithms on images taken from camera sensors. Chapter 5 explains 

our proposed prediction model based on LSTM for predicting and controlling the 

microclimate inside the greenhouse and investigate the effect in predicting the duty cycle 

of the sensors in terms of energy consumption and network lifetime. Lastly, Chapter 6 

concludes the thesis and provides directions for future work.  
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Chapter 2 

Background and Overview 

 

In this chapter, we present the relevant background material describing technologies used 

in this thesis, including wireless sensor networks, wireless visual sensors network, image 

processing, machine learning, and deep learning. 

2.1 Wireless Sensor Networks 

A Wireless Sensor Network (WSN) consists of groups of many small devices called 

sensors, usually distributed indoors or outdoors over a specified area. Each sensor has built-

in a communication unit to send and receive data from other connected sensors, a sensing 

unit for data acquisition, a battery and a microcontroller that will process local data. All 

sensors have different bandwidths, communication ranges, and can communicate in a 

single hop or multi hops. The location and placement of these sensors can be mapped or 

deployed randomly. The sensor’s function is to sense and collect environmental data, then 

send that data to the Base Station (BS) for processing [8]. Typical WSN is shown in Figure 

2.1.  

 

 

Figure 2.1: Typical WSN 
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WSNs have been used in many applications, such as: monitoring the environment, 

healthcare monitoring, target tracking, and industrial process monitoring. These types of 

applications require the sensors to be active for a long time. Thus, an excessive amount of 

the sensor’s battery will be used, and the battery will drain within a few days. There are 

many challenges associated with WSNs, including the network's lifetime, limited amount 

of energy, data loss, overhead costs, latency, process time, and scalability. These 

challenges are application dependent on WSN deployment, which can be explained as 

follow: 

 Harsh environment: Sensor nodes can be deployed in different environments depending 

on the application. High humidity, dirt, dust, and corrosive environments are all 

considered harsh conditions that can reduce their performance and give inaccurate 

information [9].  

 Self-Management: Usually, there is a large number of sensor nodes in a network. A 

failure in any of the nodes or any additional sensor node will affect the entire network. 

Sensor networks should adapt to any changes in connectivity [10].  

 Redundant Data: A sensor node usually collects data and sends it to the BS. However, 

when data is sent from many nodes simultaneously, this can cause redundancy of data, 

which wastes energy [11].  

 Real-Time Operation: Many applications required to receive data without delay for 

reliability and security. However, in a poor network, old data can be mixed with current 

data resulting in incorrect data being sent to the BS [12]. 
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 Coverage and Connectivity: Network coverage should assure that all the area to be 

monitored is fully covered not just part of the area. At the same time, network 

connectivity assures that all nodes should be able to communicate back and forth 

between each other [13].  

 Energy: this is one of the main concerns with sensor nodes. Energy is consumed during 

node operation and in all processing, transmitting, sensing, and data collecting tasks. 

However, sensors have limited battery power, the batteries are small and sometimes 

difficult to change because for example the deployment is over a large area, or in a 

hazardous environment. Continuous monitoring or tracking will drain the battery very 

quickly [14]. 

With excessive use of sensors, comes an important issue related to sensor lifetime 

which depends on how much energy is needed and consumed while the sensor is 

functioning. Sensor nodes must optimize the energy usage for the network’s lifetime. 

One method of lowering or minimizing sensor energy consumption is through 

controlling its duty cycle activities.  

 

A duty cycle is a period that the sensor is active. Duty cycles are a favorable approach to 

saving energy in WSNs [15]. Sensors management activities can be classified into two 

groups: sleep/wakeup protocol and topology control protocol. This classification is based 

on the topology the sensors were implemented. For the first type (sleep/wake-up protocol), 

each node works individually. Sensors can be in active (wake-up) mode and then switch to 

sleep mode when there is no data to send. This type can alternate between wakeup and 

sleep modes. For the second type (topology control protocol), a select minimum subset of 
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sensor nodes can be active for network connectivity and the remaining sensor nodes will 

be in sleep mode to save power and lower the amount of consumed energy by the network.  

2.2 Wireless Visual Sensor Networks 

A typical Wireless Visual Sensor Network (WVSN), shown in Figure 2.2, consists of a 

group of sensor cameras that can process images from different vantage points that can 

create a more useful image that contains more information. Usually, the sensor cameras 

can process images locally, communicate between other cameras and the BS that processes 

the collected images from each camera.   

The difference between WVSNs and other types of WSNs is the type of data being 

collected. Most sensors collect measurements as a one-dimensional data signal. However, 

a sensor camera collects a two-dimensional set of data. Thus, the additional dimensionality 

of data adds a level of complexity. Another difference is when a sensor collects data, it 

uses the sensing range, but when a sensor camera collects data, it uses the field of view. 

These differences are illustrated in Figure 2.3.   

 

Figure 2.2: Typical WVSN 
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Figure 2.3: Difference Between WSN and WVSN 

 

Listed below are the characteristics of a sensor camera [16]: 

 Resource Requirements: The battery in the camera has limited energy for sensing, 

processing, and transmitting. Sensor cameras generate large amounts of data that 

need large bandwidth. 

 Local Processing: The processes that happen locally in a sensor camera reduce the 

amount of data that needs to be communicated in the network. All processes, from 

simple image processing to a complex vision algorithm, depend on the application 

and the level of connection that the camera node can provide.  

 Real-time Performance: Usually, applications need real-time data from the camera 

sensors, setting a limitation on the length of the delay and the amount of time that 

data needs to be transmitted from the node to the BS.  
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 Precise Location and Orientation:  Most image processing in WVSNs requires 

information about the location of the camera node and its orientation. 

 Time Synchronization: Time is very important in many applications. Applications 

that involve multiple cameras depend on the synchronized camera’s images for 

object localization. The information from the image would be meaningless without 

the correct time that the image was taken.    

 Data Storage: Usually camera sensors create very large amounts of data that need 

to be stored. Monitoring is an application that uses cameras. Therefore, it has more 

data to capture and transmit, which means cameras will consume more energy. In 

this case, the camera sensor should be equipped with the capacity to store large 

data.   

 

2.2.1 Sensor Camera 

 

In addition to the main function of a sensor camera which is captures images, the camera 

can extract information from the image using machine vision technology. The sensor 

camera components are an image sensor, image digitization circuitry, image memory, a 

processor, a communication interface, I/O lines, a lens holder, and a built-in illumination 

device. Many applications use sensor cameras such as monitoring environment (animal 

habitats, hazardous area, building, street, train station, airport), smart meeting rooms 

(visual studios), smart home (elderly care, kindergarten), and surveillance (parking lots, 

remote area, traffic, public places) [17]. 
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2.3 Image Processing  

 

Image processing is a method used to get an enhanced image or to extract information from 

the image. It is a type of signal processing where the input is an image, and output may be 

a clearer image or features associated with that image. Currently, image processing is 

among the fastest-growing technologies.  The basic image processing techniques [18], 

given in Figure 2.4, are: 

Image Acquisition: is capturing an image using a suitable camera. There are different 

cameras for different applications. In Chapter 4, we used a camera that is sensitive to the 

visual spectrum.  

Grey Level Image: indicates the brightness of a pixel. In greyscale or color image, a pixel 

value can range between 0 and 255. The minimum grey level is 0. It carries how white and 

black pixel intensity in the image. To convert any color image to grayscale is by taking the 

average of the three colors of RGB image. So, adding R, G, B, and then divide by 3. 

Usually, it is easier to deal with a gray level image than a color image because grayscale is 

only one channel containing brightness information without any visible color, comparing 

to three channels (RGB) in a color image, which needs more complicated processing steps. 

Also, the gray level image size is smaller than the color image size, making it faster for 

processing.  

 

Noise Removal: is a process to remove unwanted noises using the low-pass filter or any 

smoothing operation. One of the methods is convolving the image with a Gaussian mask, 

which will brighten the value of the pixel to be closer to other values of its neighbors.  
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Edge Detection: one of the image processing techniques for finding the boundaries of an 

object inside the image and detecting the discontinuities in brightness in the images.  

Image Enhancement: is a process for adjusting digital images so the outcome can be more 

appropriate for a specific application.  Such as sharpen the edges, boundaries, or contrast.  

Image Segmentation: is a process for portioning digital images into multiple segments. To 

simplify or change the representation of an image into something more meaningful and 

easier to analyze.   

Captured images using camera sensors require image processing methods to extract 

specific information from the image. For more detail, a scene can be recorded using image 

processing from camera sensors for tracking and monitoring applications [18].   

 

 

 

Figure 2.4: Image Processing Techniques  

 

2.4 Machine Learning  

Machine learning has become the most promising and significant technology development 

in recent years. It is capable of automatically learning without human interaction and 
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without being programmed. Machine learning extracts knowledge from the data it is given. 

This knowledge that has been learned can be used to make decisions and generate 

predictions. Machine learning techniques can be found in many types of WSNs and 

WVSNs, depending on the labelled data’s availability during training.  

Machine learning approaches can be classified into four categories: 

 Supervised machine learning: learn from example data associated with labels or 

targeted responses, then generate a label to new unseen data. 

 Unsupervised machine learning: learn from plain examples without any associated 

labels. The focus of unsupervised learning is to study the data structure and 

restructure it into a more meaningful structure. 

 Semi-supervised machine learning occurs, when part of the available data comes 

with labels and the other part does not come with labels. 

 Reinforcement learning occurs, when an agent is responsible for taking action in an 

environment with the purpose to maximize return rewards. 

 

Supervised learning is the most popular category of machine learning due to the abundance 

of data and storage available nowadays. Supervised learning depends on the availability of 

the labelled data; that is, there is a set on input data (X) associated with label data (Y). 

Supervised learning learns a mapping function from input data to output label according to 

the following equation: 

 

                               F(X) = Y                                                       (2.1) 
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where X can be any set of data (features), which are believed to capture the underlying 

relationship between the input data and output. Y is the label and it can be a discrete value 

as in classification supervised learning, or real value as in regression supervised learning.  

2.4.1 Supervised Learning Algorithms  

 

This subsection introduces the six machine learning algorithms that are used either for 

classification or regression. Among these algorithms, Random Forest algorithm is used in 

Chapter 4.  

 

2.4.1.1 Decision Tree 

Decision Tree (DT) can be used in regression and classification problems. It is a tree-like 

graph. DT consists of nodes and branches. The node represents the feature of the dataset. 

The branches represent the possible value of the feature to trace the tree. The root node 

represents the whole dataset and the metric like the mean square error when solving the 

regression problem, or it can be the information gain when solving a classification problem. 

This is used to determine the split in the data. DT is easy to interrupt but it can be large, 

and pruning should be done to avoid overfitting [19]. 

 

2.4.1.2 K-Nearest Neighbour 

K-Nearest Neighbour (KNN) algorithm is based on the distribution free assumption of data. 

KNN uses K neighbours for a point in the features space to predict the label of this point. 

For a regression problem, KNN is the average of the K neighbouring values, which are the 

distances between every training example to the point. Then, K-nearest neighbour is used 
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to calculate the average, which is the label for this point. For a classification problem, the 

class of the point is assigned based on the majority class of the K neighbour. KNN is simple 

and easy to implement. However, KNN can be slow and choosing the value of K is not 

easy in some applications [20]. 

 

2.4.1.3 Linear Regression  

In linear regression a real value y is predicted based on a set of variables 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, . . . 𝑥௡, 

it assumes a linear relationship exists between X and Y. 

                       Y = 𝛽଴ + 𝛽ଵ ∗  𝑥ଵ +  𝛽ଶ ∗  𝑥ଶ+ . . + 𝛽௡ ∗  𝑥௡                                             (2.2) 

 

The weights 𝛽଴ . . . 𝛽௡ in Equation 2.2 are learned during the training process of a linear 

regression model such that the prediction error is minimized. Regularization terms can be 

added to the linear regression equation to ensure that the model is not overfitting to the 

training data and can perform well on new unseen data.  

 

2.4.1.4 Support Vector Machine 

Support Vector Machine (SVM) splits the data to maximize the margin between the 

different classes, where the closest point to the boundary is called support vectors. The 

decision boundary or the kernel may be linear or non-linear depending on the complexity 

of the problem. SVM works effectively in high-dimensional data and complex non-linear 

data points, although it may be computationally expensive [21]. 
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2.4.1.5 Naive Bayes 

Naive Bayes (NB) is based on the Bayesian theorem. NB performs well on most of the 

classification problems despite its simplicity. NB assumes independence between the 

different input features and represents the relationship between the label and the input 

feature in conditional probability relationships. NB may also be used for regression by 

modelling the probability distribution of the target label with kernel density estimators [19]. 

 

2.4.1.6 Random Forest 

Random Forest (RF) is like DT in which the decision is based on a set of many trees, not 

only one as in DT. In a regression problem, the new input will assign a real value based on 

the mean of all trees. In a classification problem, a class based on the mode of prediction 

of all trees in the forest is assigned to a new input point. RF implementation is useful on 

large datasets, but they are prone to overfitting because of the large number of tuning 

parameters that need to be chosen adequately. The process handles randomness by 

selecting a random sample of training data to build each tree. At each node, there will be 

many split points created by choosing each data point's feature value; usually, the one with 

the highest information gain will be chosen, to generate two child nodes. To speed up the 

process, a small random subset of features allows the tree to quickly calculate the split 

point and give the highest information gain. This process will repeat many times until the 

target is detected, and time and depth are achieved. The randomness makes the trees 

uncorrelated to each other, allowing the output of the forest to have low bias and low 

variance, as shown in Algorithm 2.1 [22]. 
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Algorithm 2.1: Random Forest   

 

 

2.4.2 Hough Transform 

Hough Transform is a technique to extract features in the image. It can identify only certain 

defined shapes such as lines, circles, and ellipse. The purpose of Hough Transform is 

grouping edge points into the object candidate performing a voting procedure over a set of 

a parameterized image object. Since there are many objects that have an arbitrary shape, 

there is a need for a technique to find an object in an image. Generalized Hough Transform 

has been used to identify the location of any arbitrary shape.  

In Chapter 4, we used Generalized Hough Transform due to the imperfection of edge 

detector or image data. There can be missing points or pixels on the desired line, or 
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sometimes there are deviations between the real line and the noisy edge points as they are 

obtained from the edge detector. Thus, it is better not to depend on the edge detector and 

depend on the Hough Transform.  

2.4.3 Generalized Hough Transform  

 

The generalized Hough transform is a method for estimating the parameters of a shape 

from its boundary points. It extends the classic version for simple shapes like lines and 

circles by parameterizing in an R-table, with no need for any analytical form. Any shape is 

specified by the set of boundary points. An R-table must be created for each different shape. 

The gradient for each point and the length and the orientation of the vector with reference 

(centre of gravity) will be generated and will characterize the shape. By increasing the 

space dimensionality of Hough and adding new factors, the generalized Hough transform 

will be able to recognize any changes in scale and orientation. Algorithm 2.2 [23] shows 

the generalized Hough transform process. 

 

There are some limitations in using the generalized Hough transform in some applications. 

Hough transform works well with a clear target shape that can be generated from an edge 

detection algorithm which is difficult to guarantee in images of greenhouse plants due to 

significant clutter. The additional problem is that the generalized Hough transform can only 

work with shapes that have a very limited variance; this is not the case in greenhouses 

where plant shapes have large variability.  
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Algorithm 2.2: Generalized Hough Transform 

 

 

 

2.4.4 Hough Forest 

 

Hough Forest is a combination of the generalized Hough transform and Random Forest. 

Algorithm 2.3 [24] presents the Hough Forest algorithm. The Hough Forest was chosen as 

the detection algorithm because of several of its unique characteristics: (1) It can robustly 

deal with stem occlusion; stems partially covered by a leaf can still be detected, (2) Its 

resistance to noise in training data allows for limited dataset preparation requirements, (3) 
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Its classification performance is excellent, and (4) It is inherently parallel allowing it to 

scale in performance to meet time requirements. Further explanation is given in Chapter 4. 

 

2.5 Deep Neural Networks 

 

Artificial Neural Network (ANN) comes from developing intelligent tasks mimicking the 

tasks performed by the human brain. ANN is a data modelling tool connecting a strong, 

complex relation between input/output. ANN functions like a human brain in the following 

ways: neural gets knowledge through learning, then this information will be stored in 

interneuron connection which is called as synaptic weights. One of the neural functions has 

the capability to directly identify linear and non-linear relationships from the data being 

modelled. ANN model is a structure that can create a mapping or relationship from the 

dataset. The network model is adjusted and then trained from a collection of datasets called 

the training set. After training, the ANN will be able to predict, estimate, classify or 

simulate tasks on a new dataset from the same data sources.  

 

Deep learning is a subset of machine learning. It is a neural network with multi-layers and 

these layers have multi hidden layers. The purpose of adding hidden layers between the 

input and the output is to improve the accuracy and the performance of the neural. Each 

layer in the deep network is responsible for extracting features from the input data 

automatically. As the deep network grows, the more complex the feature and the more 

abstraction must be extracted [25]. Thus, improving the accuracy and avoiding the 

excessive processing time. In contrast, when the neural is shallow, less feature to extract. 
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Thus, less accuracy. The following three subsections present an overview of the most 

common examples of deep neural networks. 

 

Algorithm 2.3: Hough Forest  
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2.5.1 Multi-Layer Perceptron 

Multi-Layer Perceptron (MLP) is the most common form of neural networks. It is a feed- 

forward neural network. The architecture of MLP is shown in Figure 2.5. It consists of a 

cascade of three different layers: input layers, hidden layers, and output layer. The number 

of neurons in the input or output layer depends on the problem that MLP is trying to solve. 

Also, the number of hidden layers and the number of neurons on them depends on the 

designer and how the parameters can tune during the MLP training process. Many hidden 

layers make the network deeper. MLP is called a feed-forward network because the 

neurons in one layer are not connected to each other, but in the next layer, the neurons are 

connected to other neurons. In each connection there is a weight value. These weights have 

been learned during the training process of MLP. 

 

 

Figure 2.5: Multi-Layer Perceptron Architecture 
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Figure 2.6 shows the basic elements of MLP. A neuron takes n inputs, a weight will be 

carried in each connection, then each input will be multiplied by its assigned weight and 

sum-up the results [21]. An activation function F is applied to the sum to generate the 

output of the neuron. The equation below summarizes the neuron functionality:   

 

                       𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓( ∑ ( 𝑖𝑛𝑝𝑢𝑡௜ ∗  𝑊௜)
௡
௜  )                                                     (2.3) 

 

 

 

Figure 2.6: Multi-Layer Perceptron 

 

Both regression and classification applications can use MLP depending on the neuron’s 

activation function in the output layer. For binary classification, sigmoid activation 

function will be used for neuron in the output layer, while regression rectified linear unit 

(ReLU) activation function will be used in the output layer.  
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2.5.2 Recurrent Neural Network 

 

A drawback of the ANN is that it cannot capture the sequential information from the input 

dataset, which is required in many applications such as speech recognition, text generation, 

voice semantic recognition to name a few. Recurrent Neural Network (RNN) is used to 

overcome this drawback. RNN has a recurrent relation on the hidden state, as shown in 

Figure 2.7. This looping constraint ensures the capture of sequential information in the input 

data, and this is considered as the main difference between RNN and ANN [26]. 

 

 

Figure 2.7: Main Difference Between ANN and RNN Architecture 

 

Recurrent Neural Network (RNN) is a type of ANN which works perfectly with time series 

data, contains loops, and allows the information to be stored within the network. RNNs 

usually process time series and keep an internal state which summarizes the information in 
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the connection which was between the nodes that form a direct graph along a temporal 

sequence [26]. This allows RNN to exhibit temporal dynamic behavior.   

RNN steps are: 

 

1. RNN will convert the independent activations into dependent activations. Then 

assign the same weight and bias on all layers. Thus, reducing the complexity of 

RNN parameters makes the neural memorize previous output when provided the 

input of the next layer.  

2. Three layers of the same weights and bias merge into one recurring structure (RNN 

state) as shown in Figure 2.8. Weight and bias 1 denoted as W1 and B1, respectively. 

Similarly, for the second layer, W2, B2, and the third layer, W3, B3. These layers 

are separate from each other, which means no memories from the previous output. 

 
Figure 2.8: RNN State 
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The following function calculates the RNN state: 

ℎ௧ = 𝑓 ( ℎ௧ିଵ , 𝑥௧)                                                         (2.4)     

where:  

ℎ௧ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒  

 ℎ௧ିଵ = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑎𝑡𝑒  

𝑥௧ = 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑎𝑡𝑒  

Apply the activation function: 

ℎ௧ =  tanh( 𝑊௛௛ ∗  ℎ௧ିଵ +  𝑊௫௛ ∗  𝑥௧)                          (2.5) 

where:  

𝑊௛௛ = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑟𝑒𝑐𝑢𝑟𝑒𝑛𝑡 𝑛𝑒𝑢𝑟𝑜𝑛 

𝑊௫௛= 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑖𝑛𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛 

 

To get the output: 

𝑦௧ =  𝑊௛௬ ∗  ℎ௧                                                       (2.6) 

 

 

2.5.2.1 Long Short-Term Memory  

 

Long Short-Term Memory (LSTM) is an artificial RNN architecture used in the deep 

learning field of study. LSTM has feedback connections that are different from ANN. Also, 

LSTM can process all sequences of data not only one single data point. LSTM has a 

powerful function as RNN in remembering long periods and previous events. Furthermore, 
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LSTM can efficiently work with scalable processing capabilities (i.e., powerful GPUs) to 

handle and analyze a massive datasets. This ability alone makes LSTM one of the best 

commercial artificial intelligent achievements to date [27]. LSTM network applications 

include processing, classification, and prediction based on time-series data. LSTM has 

been used for many tasks such as unsegmented, connected handwriting recognition, speech 

recognition and anomaly detection in network traffic. Some applications are affected by 

lags of unknown duration between important events in a time series. LSTM can be 

deployed for this type of application to deal with the exploding and vanishing gradient 

problems and learn tasks that require memories of events that happened thousands or even 

millions of discrete time steps earlier.  

A common LSTM unit is composed of a cell, an input gate, an output gate and a forget 

gate. The cell remembers values over arbitrary time intervals and the three gates regulate 

the flow of information into and out of the cell, as shown in Figure 2.9.  

 

 

 
Figure 2.9: LSTM Architecture 
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The processes in how the LSTM model prediction works is explained as follows. Firstly, 

know which information should be canceled from the cell state. This depends on the 

sigmoid layer (forget gate layer) which looks at ℎ௧ିଵ, 𝑥௧ and the output will either 0 or 1 

in 𝐶௧ିଵ. 1 represents “completely keep” and 0 represents “completely leave”. 

 

𝑓௧ = 𝜎 ( 𝑊௙ . [ ℎ௧ିଵ , 𝑥௧] + 𝑏௙)            (2.7) 

 

Secondly, information that will be stored in the cell state. Sigmoid layer updating value 

(input gate layer) and tanh layer to create a new vector with new values. 

                 

𝑖௧ = 𝜎 ( 𝑊௜ . [ ℎ௧ିଵ , 𝑥௧] +  𝑏௜)                 (2.8) 

𝐶௧
෩ = tanh( 𝑊஼  . [ ℎ௧ିଵ , 𝑥௧] +  𝑏஼)          (2.9) 

 

Thirdly, updating the cell state by multiplying the old state with 𝑓௧.  

                                 

𝐶௧ =  𝑓௧ ∗  𝐶௧ିଵ + 𝑖௧ * 𝐶௧
෩                (2.10) 

 

Finally, the output of the cell state will be:  

 

     𝑜௧ = 𝜎 ( 𝑊௢  [ ℎ௧ିଵ , 𝑥௧] + 𝑏௢)             (2.11) 

     ℎ௧ = 𝑜௧ ∗ tanh 𝐶௧                                  (2.12) 

 

Usually, important information is transferred from short-term memory to long-term 

memory and kept there.  
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2.6 Environmental Factors 

Plant growth in a greenhouse environment, and in general in an agricultural environment, 

goes through many different stages. Including germination, sprouting, flowering and fruit 

development. The development of the plant is impacted by its environment, the nutrients 

in the soil and the suitability of conditions. A greenhouse environment consists of several 

factors, including temperature, humidity, air pressure, dew point and wind [28]. Each of 

these factors plays an important role in the plant’s growth. Poor environmental conditions 

can weaken plants, thereby increasing the risk of disease and pest infestation. 

 

2.6.1 Effect of Temperature 

Temperature is an essential environmental factor for plant growth as it will affect 

germination, sprouting, flowering and fruit development. Moreover, when ambient 

temperature increases the transpiration rate goes up during the growing stage. Temperature 

can cause changes impacting other environmental factors such as humidity and soil 

moisture. Therefore, the temperature should be maintained at an optimum level whenever 

possible [29]. 

 

2.6.2 Effect of Humidity 

Humidity is an essential factor for plant growth especially when levels are too high or too 

low, the plant can show signs of distress [30]. If humidity is high, above 80%, for a long 

time, fungal diseases can appear and spread to neighboring plants. Moreover, the air 



 

36 

 

becomes saturated with water vapor which ultimately restricts transpiration, affecting the 

greenhouse crops significantly. 

2.6.3 Effect of Air Pressure 

Air pressure is the main factor that affects all other factors. Air pressures control the 

circulation of the atmosphere. Thus, changes in temperature, rainfall, and winds [30]. 

 

2.6.4 Effect of Dew Point 

At night, when the air cools to the dew point, the condensation happened, and water 

droplets are created on any cooler surface like the leaves. This moisture stimulates the 

germination of fungal such as powdery mildew. 

 

2.6.5 Effect of Wind 

The wind passes over all sides of the greenhouse and creates different air pressure, which 

generates a force that can damage the greenhouse. In addition, the wind will decrease the 

humidity of the air [28], thus, hindering the plant growth.   

 

2.7 Summary  

In this chapter, the necessary background material describing wireless sensor networks, 

wireless visual sensor networks, image processing, machine learning, and deep learning, 

was presented. The technical differences between WSNs and WVSNs, in addition to their 

applications, were explained. In this research, we merge WSN and WVSN for the best of 

monitoring and controlling inside the greenhouse environment. Image processing methods 
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for enhancing images were described. These methods are combined with the WSN and the 

WVSN to design an automated system for early plant disease detection. Standard machine 

learning and deep learning algorithms were described in this chapter. The Hough Forest 

machine learning algorithm explained, compared, and chosen, in this research, among other 

machine learning algorithms for recognizing of powdery mildew on leaves of the plants. 

The LSTM deep learning model was selected to be used in our research compared to other 

models due to its high degree of accuracy of predicting the greenhouse environmental 

factors. Lastly, these factors, which affect greenhouse crop production, were explained. 
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Chapter 3 

Optimal Placement of Wireless Sensor Cameras 

 

3.1 Introduction 

There is considerable research on how to control the environment of a greenhouse, the 

temperature, humidity, wind, pressure and dew point by using sensors [31] [32]. 

Conversely, there is much less research on the early detection of diseases that can damage 

greenhouse produced crops. The stability of the ideal environment for growing plants is 

guaranteed by using a Wireless Sensor Network (WSN), to monitor and control the 

conditions for optimum plant health and growth. Tracking plant growth is the best method 

for early detection of plant disease and preventing significant crop losses. A Wireless 

Visual Sensor Network (WVSN) is an efficient technology for monitoring plant growth 

with the added feature of wireless sensor cameras. The WVSNs are widely used for 

surveillance and detecting anomalies [33-35] and are poised to be the best solution for early 

detection of plant anomalies and diseases in greenhouse crop production.  

The area inside a greenhouse that needs to be monitored is very large, and it would take an 

infinite number of images to cover. To improve the performance in terms of storage and 

processing and reduce the response time of the image processing unit, we should place the 

WVSN cameras so that there is no overlap of images taken by the cameras. It is also 

necessary to capture images with high resolution for better processing and analysis. Hence, 

optimizing the number of sensor cameras will help in:  
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(i) Optimizing the limited storage space of the sensor camera nodes. 

(ii)  Decreasing the processing time to then be able to analyse these images quickly 

and isolate plants showing signs of disease. 

(iii)  Producing high-quality images for avoiding false detections. 

(iv)  Minimizing the project cost since WVSN systems can be expensive to install 

and maintain. 

 

This chapter presents a mathematical formulation and an optimal solution for the best 

placement of the WVSN camera nodes to cover a large area, produce high-quality images, 

and avoid overlapping between cameras.  

The remainder of this chapter is organized as follows. In Section 3.2, we review the related 

work. Section 3.3 defines the problem statement and highlights the research contributions. 

Section 3.4 outlines the assumption and provides problem formulation. Section 3.5 

describes the ILP problem formulation. Section 3.6 presents the implementation and 

numerical results. Section 3.7 includes the performance evaluation, finally, in Section 3.8, 

is the summary for this chapter.  

 

3.2 Related Works 

 

Having looked at recent literature on the issue of monitoring greenhouse environments, we 

can see that the deployment of sensor cameras in many different applications has been 

increasing rapidly over the past decade. Since a sensor camera placement problem is 

considered an NP problem, the direction of the research finding the optimal camera 
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placement has been changed from theoretical analysis to practical application, which 

increases the complexity of the model with realistic assumptions [36]. Several works had 

an interest in maximizing coverage, such as [37], where authors studied the problem of 

maximizing coverage on a set of discrete targets by directional sensors that could turn 

around. This work was aimed to maximize the network lifetime by maximizing the number 

of covered targets and minimizing the number of sensors activated at any given moment. 

The authors ensured that a target must be covered by at least one camera (tolerating 

overlapping images between the sensors) and did not consider optimal camera placement 

since they assumed that the cameras were placed randomly. In work presented in [38], the 

authors proposed a heuristic for the maximum coverage of an area when one of the existing 

cameras breaks down. The proposed algorithm is a decentralized control system that allows 

the communication between the cameras in other nearby locations to adjust their direction 

and field of view. 

Authors in [39] solved the camera placement problem using dynamic programming to 

maximize the coverage area and use it in a surveillance application without considering the 

quality of the images’ resolution. In [40], the authors tried to solve the same problem 

focusing on maximizing the coverage area and minimizing the cost. Authors in [41] used 

a graph-based approach to cover a larger area with less time. The authors in [42] model the 

sensor field as points on a grid (coordinates) and present an Integer Linear Programming 

(ILP) solution for minimizing the number, and therefore the cost, of the sensors it would 

take to completely cover the  area to be monitored, taking into consideration that sensors 

vary in terms of field of view ranges and price. The authors did not solve the problem of 

overlapping between cameras. In [43], the authors address the problem of optimally placing 
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multiple sensor cameras to cover a given area. They modeled the problem using a linear 

programming approach which determines the minimum number of cameras needed to 

cover the monitored area. This approach also determined the exact position of each camera. 

However, their solution does not manage the problem of overlapping between the cameras 

and image quality. In [44], authors propose a Computational Fluid Dynamics (CFD) 

solution using wireless sensor camera nodes and image processing to monitor the 

temperature in a greenhouse when physical measuring instruments are not available. In 

[45], the authors propose a global greedy search optimization method to look for the 

camera’s optimal placement. However, the proposed method is very long and complex. It 

must explore all the possible solutions, and it tolerates overlapping between the cameras. 

In [46-48], the authors used a different approach to find the camera sensor placement. They 

solved the problem using Particle Filtering (PF), Resampling Particle Swarm Optimization 

(RPSO). While they achieved good coverage control, their solution did not consider the 

resolution of the images.  

It is worth noting there remains a gap in research for formulate a general problem for 

WVSN camera deployment management in greenhouses. Such a problem must consider 

finding the optimal placement for the camera sensors, reducing the number of cameras, 

increasing the quality of the images, avoiding overlapping views, covering a large area, 

and guaranteeing there are no images of the same plant from more than one camera. Our 

proposed optimization problem manages and satisfies all of these requirements.  
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3.3 Problem Statement and Contributions 

 

The major challenges in WVSNs deployment in greenhouses is the need to cover a large 

area of plants, and gather high-quality images while managing with the computation, 

sensing ability, and communication constraints. As a result, careful wireless sensor camera 

node placement can be a very effective means of optimizing practical and economical 

solution goals.  

In this chapter, we investigate a solution for solving the following problem:  

Given a greenhouse with WVSN infrastructure in place, determine the best placement 

of the visual sensors to capture images of a desired quality, covering the entire 

greenhouse area using the minimum number of nodes ensuring connectivity between 

nodes. 

 

To this end, major contributions of this work are listed as follows: 

1. Finding the optimum placement for camera sensors in a commercial greenhouse by 

formulating an optimization problem that will maximize the covered area and 

minimize the number of camera sensors with the fact that each point must be seen 

by one and only one camera.  

2. Recent papers tried to solve the placement WVSN problem without considering the 

importance of image quality. We formulate an optimization problem to consider 

this feature. To this end, we define an objective function that aims to maximize the 



 

43 

 

covered area and the quality of the image and minimize the number of camera 

sensors.  However, we found that this problem is an NP-complete problem in which 

we overcome this challenge by solving it as two sub-optimization problems. 

 

3.4 Optimal Placement Camera Quality Problem Formulation 

In this section, we present the optimization problem formulation starting with preliminaries 

and assumptions.  

3.4.1 Preliminaries 

 

In an ideal situation, the camera should have a 360-degree field of view. In this work, we 

consider the angular field of view of the camera is, θ ∈ ]0௢, 180௢]. Meaning that if the 

camera is in the centre of a circle, the camera will collect images from the full arch within 

the angle range ]0௢, 180௢].   

Each camera has characteristics which can be defined as follows: 

 

 Focal Length (FL): is the distance between the lens and the image sensor when 

the subject is in focus. In other words, it is the distance from the back of the lens to 

the plane of the image formed of an object placed infinitely far in front of the lens, 

usually stated in millimetres. 

 Angle of View (AOV): is the angle subtended by the camera lens, i.e., the visible 

extent of the scene captured by the camera lens. A wide-angle of view captures a 

broader area, and vice versa.  
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 Resolution: is the number of pixels per image. The higher the number of pixels, 

the higher the image quality. 

 
The Field of View (FOV) for the covered area in the WVSN can be specified by the 

Angular Field of View (AFOV), in degrees, or the Linear Field of View (LFOV), in metres. 

The AFOV is defined by the focal length, f, and the horizontal dimension of sensor in 

millimetres, b, as in Equation 3.1. The shorter the FL, the wider the AFOV, see Figure 3.1. 

Both the AFOV and the LFOV can be measured horizontally, vertically, or diagonally. 

 

𝐴𝐹𝑂𝑉 = 2 𝑡𝑎𝑛ିଵ ቀ
௕

ଶ௙
ቁ         (3.1) 

 

 

 

Figure 3.1: The Relation Between the AFOV and the FL 

 

b/2 

b/2 
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For a given sensor camera and without varying the FL, the AFOV remains constant in 

contrast to the LFOV which varies depending on the distance between the sensor and the 

monitored area. The larger the distance between the sensor and the monitored area, the 

larger the LFOV the poorer the quality of the collected images. 

 

3.4.2 Assumptions and Definition 

Assume that the greenhouse is a rectangular area with length L and width W. In the 

beginning, we assume that there is no obstacle between the sensor camera and the plants, 

so we can place the cameras wherever we feel we need them.  

The assumptions regarding the properties of the WVSN cameras are as follows: 

 All the cameras have the same characteristics. 

 The camera's field of view is an angle of θ ∈ ]0௢, 180௢]. 

 The FL of the camera is fixed; in other words, all the cameras have the same AFOV. 

 All the cameras have the same capture resolution 𝑅 = 𝑅௛ ∗  𝑅௩ , where R is the 

number of pixels of the image. 𝑅௛ is the horizontal number of pixels. 𝑅௩ is the 

vertical number of pixels. 

 The cameras can be fixed in a predefined position and placed at the same height. 

 The monitoring area is a shape in two-dimensional Euclidean space. 

 

Definition 1.  In this chapter, we define the quality of an image as the number of pixels per 

unit distance. 

Table 3.1 defines the symbols used in this chapter.   
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Table 3.1: Glossary of Notation 

Symbol Meaning 

𝐶 Set of cameras 

θ Angle of view 

R Image resolution, total number of pixels of the image 

R୦ Number of pixels in the horizontal line of an image 

R௩ Number of pixels in the vertical line of an image 

𝑄 The image quality, number of pixels per unit distance 

𝑄௠௜௡ The minimum accepted quality 

 

 

3.4.3 Optimization Problem Formulation 

In this work, we are interested in determining:  

1) The optimal placement of cameras to have the desired quality of the image object. 

2) The required number of cameras to cover the entire monitored area. 

3) The positioning of the cameras so that there is no overlap between images taken by the 

cameras. 

 

We consider that the monitoring area is a rectangle in the two-dimensional Euclidean space 

defined by the points ABCD, such that 𝐴 =  (𝑥௔ , 𝑦௔), 𝐵 =  (𝑥௕  , 𝑦௕), C= (𝑥௖, 𝑦௖), and D = 

( 𝑥ௗ, 𝑦ௗ). We are interested in the covered area determined by the horizontal field of view 

of the cameras. In other words, we are interested in the part of the line defined by the points 

A and D. 
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Denote the set of cameras by 𝐶 = {1, . . . , 𝑖, . . . , 𝑐}. A camera 𝑖 has an AOV denoted by 𝜃௜, 

and we have  ∀(𝑖, 𝑗) ∈ 𝐶ଶ, 𝜃௜ = 𝜃௝ . Denote the coordinates of the camera 𝑖 by (𝑥௜, 𝑦௜). Our 

aim is to calculate the coordinates of the part covered by the camera, illustrated in Figure 

3.2 as a green line [Iᇱ Iᇱᇱ], where point Iᇱ is (x୧ᇲ, y୧ᇲ) and point Iᇱᇱ is (x୧ᇲᇲ , y୧ᇲᇲ). Coordinates 

of both points can be calculated as follows.  

 

                                             

Figure 3.2: The Horizontal Field of View 

 

x୧ᇲ = x୧ −
ୟ

ଶ
       (3.2) 

y୧ᇲ = y୧       (3.3) 

 x୧ᇲᇲ = x୧ +
ୟ

ଶ
        (3.4)  

 

(x, y) 

𝜃

2
 

h 

Iᇱ Iᇱᇱ a 

l 
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y୧ᇲᇲ = y୧                    (3.5)  

The height, h, (or the distance from the camera to the sensed object or the ground), and the 

AVOF, θ, are known. But 
௔

ଶ
  is unknown.  

Hence,  

                         (x୧ᇲ , y୧ᇲ) = ቀx୧ − h × tan ቀ
஘

ଶ
ቁ , y୧ቁ       (3.6) 

                         (x୧ᇲᇲ , y୧ᇲᇲ) = ቀx୧ + h × tan ቀ
஘

ଶ
ቁ , y୧ቁ                    (3.7) 

Given h and θ, 
௔

ଶ
 can be found as follows: 

𝑠𝑖𝑛 ൬
θ

2
൰ =

𝑎/2

l
⇒ 𝑎/2 = 𝑠𝑖𝑛 ൬

θ

2
൰ × l 

and  

cos ൬
θ

2
൰ =

h

l
 

Hence, 

 

a
2ൗ  = h ×  tan ቀ

஘

ଶ
ቁ        (3.8) 

Initially, we are interested in finding the optimal placement of the cameras considering the 

horizontal field of view. For this reason, the value of the coordinates over the Y-axis of the 

covered area is equal to the value of the Y-axis of the camera. And the covered area on the 

X-axis is: 

a = 2 × h × tan ቀ
஘

ଶ
ቁ       (3.9) 
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Which is characterized by the part: [I' I''] such that I' and I'' are determined by the (6) and 

(7).  

3.4.3.1 Camera Placement Constraints 

 

1) The coordinate on the Z-axis: The position of the cameras cannot be too close to 

the sensed object as to interfere with the plant’s growth and cannot be too far from 

the sensed object to be able to analyse the captured images. If the camera is far from 

the object, we get a poor-quality image that will not allow track the growth of the 

plant and detect diseases.  

            The height of the cameras from the ground:  
 
                                 ∀i ∈ C,  h୫୧୬ ≤ d(I, I଴) ≤ h୫ୟ୶     (3.10) 
 
 

where d(I,𝐼଴) is the distance of the camera 𝑖 from the ground or the sensed object. 

𝐼଴ is the orthogonal projection of the point I on the X- axis, and ℎ௠௜௡ and ℎ௠௔௫ are 

the minimum and the maximum distance, respectively, of the camera from the 

object that we can not go beyond.  

2) The coordinate on the X-axis: The X-axis coordinate of a camera can take any value 

from the range determined by the X-axis coordinate of the monitored area. Hence, 

the X-axis coordinate of a camera 𝑖 must satisfy: 

 

∀i ∈ C,  xୟ ≤ x୧ ≤ xୢ     (3.11) 
 

 
where 𝑥௔ and 𝑥ௗ are the X-axis coordinates of points A and D, respectively. 
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3) The coordinate on the Y-axis: Since we are interested in monitoring linear area, the 

Y-axis coordinate for all the cameras is equal to the Y-axis coordinate of the line 

that we want to monitor, 

∀i ∈ C,  y୧ = yୟ    (3.12) 

 

4) Covering the entire area: Every point in the monitoring area must be covered by a 

single camera, i.e., every point is seen at least and at most by one camera. 

 

         ∀(x, y) ∈ [AD] ∃!  i ∈ C / (x, y) ∈ [Iᇱ Iᇱᇱ]             (3.13) 

 

5) The communication between the cameras: The distance between two consecutive 

cameras should be less than the transmission range of the cameras in order to 

guarantee good communication between the wireless cameras. We assume that all 

the cameras are homogeneous, i.e., the transmission range of a camera i ∈ C is t. 

 

                   ∀(i, i + 1) ∈ Cଶ  ,  d(i, i + 1) ≤ t               (3.14) 

 

d(𝑖, 𝑖 +1) is the distance between the cameras 𝑖 and 𝑖 +1. 

 

3.4.3.2 Objective Function Definition 

 

We consider the following objectives in the definition of the optimization problem.  

 Minimizing the number of cameras needed for covering the entire monitored area: 
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Min  {|C|}   (3.15) 

where |C| is the number of cameras. 

 Maximizing, over X, the covered area by each camera:  

 

                 Max ∑ 2
|େ|
୩ୀଵ × X × tan ቀ

஘

ଶ
ቁ   (3.16) 

 

 Maximizing, over X, and |C|, the quality of images: 

 

Max
|େ|×ୖ౞

∑ ଶ
|ి|
ౡసభ ×ଡ଼×୲ୟ୬ቀ

ಐ

మ
ቁ
     (3.17) 

By combining the three equations, the objective function of the optimization problem can 

be written as: 

Max{

∑ ଶ
|ి|
ౡసభ ×ଡ଼×୲ୟ୬ቀ

ಐ

మ
ቁା

|ి|×౎౞

∑ మ
|ి|
ౡసభ

×౔×౪౗౤൬
ಐ
మ൰

|େ|
}  (3.18) 

 

 

With considering the constrains, we can rephrase our optimization problem to be written  

 

Objective:𝑴𝑨𝑿{

∑ 𝟐
|𝑪|
𝒌స𝟏 ×𝑿×𝒕𝒂𝒏ቀ

𝛉

𝟐
ቁା

|𝑪|×𝑹𝒉

∑ 𝟐
|𝑪|
𝒌స𝟏

×𝑿×𝒕𝒂𝒏ቀ
𝛉
𝟐

ቁ

|𝑪|
} 

  Subject to: Eqs (3.10)-(3.14) 
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This problem is cast as an Integer Linear Program (ILP) optimization problem explained 

in the next subsection.  

 

3.5 ILP Optimization Problem Formulation 

 

We present in this section the ILP formulation of our defined optimization problem above. 

We call the ILP problem as Integer Linear Programming-Optimal Placement Camera 

Quality (ILP-OPCQ). To solve the ILP-OPCQ problem we identify the workspace as a grid 

map; the monitored area (i.e., the monitored green line in Figure 3.2) corresponds to a 

vector line with 𝐿 = 𝐸[𝑟2௫] lines. The space where the cameras can be placed is viewed 

as a grid map with 𝐿 = 𝐸[𝑟2௫]  lines and 𝐾 = 𝐸[ℎ௠௔௫] columns, denoted it by 𝑃(𝑘, 𝑙), 

where k =  0, . . . , K and l =  0, . . . , L. 

 

3.5.1 ILP-OPCQ Objective Function Definition 

We consider rephrasing the objective function as follows.  

 

 Minimizing the number of cameras needed for covering the entire monitored area: 

 

 

Min ∑ ∑ P(k, l)
୰ଶ౮
୪ୀ୰ଵ౮

୦ౣ౗౮
୩ୀ୦ౣ౟౤

  (3.19) 

 

where  𝑟1௫, 𝑟2௫ are the X-axis coordinates of the horizontal line of the area.  
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𝑃(𝑘, 𝑙) = ൜
 1,     𝑖𝑓 𝑎 𝑐𝑎𝑚𝑒𝑟𝑎 𝑝𝑙𝑎𝑐𝑒𝑑 𝑎𝑡 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 (𝑘, 𝑙)
 0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                    

 

 

 Maximizing k in the Eq. (3.20), which stands for maximizing the covered area by 

each camera. 

Max ∑ ∑ 2
୶మ
୪ୀ୶భ

୦ౣ౗౮
୩ୀ୦ౣ౟౤

× k × tan ቀ
஘

ଶ
ቁ × P(k, l)         (3.20) 

 

 Maximizing k in the Eq. (3.21), which stands for maximizing the resolution 

quality of images. 

Max{
∑   ∑ ୔(୩,୪)

౨మ౮
ౢస౨భ౮

౞ౣ౗౮
ౡస౞ౣ౟౤

×ୖ౞

  ∑ ∑ ଶ
౮మ
ౢస౮భ

౞ౣ౗౮       
ౡస౞ౣ౟౤

∗୩∗୲ୟ୬ቀ
ಐ

మ
ቁ 

}                   (3.21) 

 

By combining the three equations, the ILP-OPCQ objective function can be written as: 

Max{

∑ ∑ ଶ
౮మ
ౢస౮భ

౞ౣ౗౮
ౡస౞ౣ౟౤

×୩×୲ୟ୬ቀ
ಐ

మ
ቁ×୔(ౡ,ౢ)   ା   

∑ ∑ ౌ(ౡ,ౢ)
౨మ౮
ౢస౨భ౮

౞ౣ౗౮
ౡస౞ౣ౟౤

×౎౞

∑ ∑ మ
౮మ
ౡస౮భ

౞ౣ౗౮
ౡస౞ౣ౟౤

×ౡ×౪౗౤൬
ಐ
మ

൰

∑ ∑ ୔(୩,୪)
౮మ
ౢస౮భ

౞ౣ౗౮
ౡస౞ౣ౟౤

}        (3.22) 

 

3.5.2 Constraints of the ILP-OPCQ Problem 

 

1. The cameras cannot be placed at a height less than ℎ௠௜௡ and greater than ℎ௠௔௫, see 

constraint (3.10), which is equivalent to  

𝑃(𝑘, 𝑙) = 0,   ∀ k ∈ ⟦0 , E [h୫୧୬]  −  1⟧  ,    and   l ∈ ⟦ 0, L⟧     (3.23) 

2. We can place at most a single camera in a column 

∑ 𝑃(𝑘, 𝑙)୏
୩ୀ଴ ≤ 1 ,   ∀ l ∈ ⟦ 0 , L ⟧        (3.24) 
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3. The left sight covered area of any camera should be greater than the X-axis 

coordinate of the beginning of the covered area. 

 
∀(𝑘, l) ∈ ⟦1, 𝐾⟧ × ⟦1, 𝐿⟧ 

        P(k, l)  × ൬l −  k ×  tan ቀ
஘

ଶ
ቁ൰  ≥  E[r1୶]               (3.25) 

 
 

The right sight covered of any camera should be lower than the X-axis coordinate 

of the end of the covered area. 

 

∀(k, 𝑙)   ∈ ⟦1, 𝐾⟧ × ⟦1, 𝐿⟧    

𝑃(𝑘, 𝑙) ∗ ൬l + k × tan ቀ
θ

2
ቁ൰ ≤   E[r2x]                 (3.26) 

 

4. The constraint (13) is equivalent to 

∀(k, 𝑙)   ∈ ⟦1, 𝐾⟧ × ⟦1, 𝐿⟧    

   such that     

P(k, l − 1) × ൬l − 1 + k × tan ቀ
஘

ଶ
ቁ൰  ≤ P(k, l) × ൬l − k × tan ቀ

஘

ଶ
ቁ൰ × P(k, l) × ൬l + k ×

tan ቀ
஘

ଶ
ቁ൰ ≤ P(k, l + 1) × ൬l + 1 − k × tan ቀ

஘

ଶ
ቁ൰  

 

𝑃(𝑘, 𝑙) × ൬𝑙 + k × tan ቀ
஘

ଶ
ቁ൰ ≤ 𝑃(𝑘, 𝑙 + 1) × ൬𝑙 + 1 − k × tan ቀ

஘

ଶ
ቁ൰             (3.27)  

And 
 
∑ ∑ 2

୶మ
୪ୀ୶భ

 
୦ౣ౗౮
୩ୀ୦ౣ౟౤

×  k ×  tan ቀ
θ

2
ቁ  × P(k, l) = E [r2୶]  −  E [r1୶]  (3.28) 
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Consequently, with the aid of the constrains, the optimization problem can be rephrased 

as follows: 

 

Objective: 𝑀𝑎𝑥{

∑ ∑ ଶ
ೣమ
೗సೣభ

೓೘ೌೣ
ೖస೓೘೔೙

×௞×௧௔௡ቀ
ಐ

మ
ቁ×௉(௞,௟)   ା   

∑ ∑ ು(ೖ,೗)
ೝమೣ
೗సೝభೣ

೓೘ೌೣ
ೖస೓೘೔೙

×ೃ೓

∑ ∑ మ
ೣమ
೗సೣభ

೓೘ೌೣ
ೖస೓೘೔೙

×ೖ×೟ೌ೙൬
ಐ
మ

൰

∑ ∑ ௉(௞,௟)
ೣమ
೗సೣభ

೓೘ೌೣ
ೖస೓೘೔೙

} 

     Subject to: Eqs. (3.23)-(3.28) 

 

3.6 Implementation and Numerical Investigation 

In general, most attempts from the literature, for example [49] and [50], considered the 

placement optimization problem to be an NP-complete problem due to its complex 

constraints. Our formulation adds extra factors and constraints by considering the quality 

of images and the fact that each point must be seen by one and only one camera which 

previous works did not address. This adds more complexity to the problem, specifically, 

the fifth quadratic constraint of our problem Eq. (3.27). Thus, our problem is also 

considered to be an NP-complete problem due to its complexity. Our approach to solve the 

ILP-OPCQ problem is by solving it as two sub-problems sequentially: 

1) Maximizing the quality of images and the covered area: ILP-OPCQ problem gives 

us the optimal distance, between the cameras and the object, regarding the quality 

of the images while maximizing the HFOV (i.e., the horizontal axis of the LFOV) 

of the cameras. This problem is modelled as the maximization of a function without 

constraint as explained in the next subsection. 

2) Avoiding overlaps between images and determining the number of cameras: ILP-

OPCQ problem allows us to determine the exact position of each camera; thus, 
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minimizing the necessary number of cameras to cover the entire area and avoiding 

overlaps between the collected images. This problem is modelled as an Integer 

linear programming problem as detailed in the second part of this section. 

3.6.1 Maximizing the Quality of Images 

Our aim in this section is to find the cameras’ best placement to cover a large area while 

guaranteeing high-quality images. The objective function of this sub-problem is the same 

as the objective functions Eq. (3.16) and Eq. (3.17) of the main problem. In other words, 

the sub-problem definition includes finding the optimum of one variable X, which is the 

distance between the cameras and the sensed objects. This distance is defined as the 

perpendicular distance between the cameras and the sensed area. This distance is the 

optimal distance, which guarantees good quality images while maximizing the area 

covered by each camera. The following function illustrates the relationship between the 

covered area and the quality of images.  

Max  f(X) = 2 × X × tan ቀ
஘

ଶ
ቁ +

ୖ౞

ଶ×ଡ଼×୲ୟ୬ቀ
ಐ

మ
ቁ
      (3.29) 

 

where X is the distance between the object and the camera and 𝑅௛ is the horizontal 

resolution of the image. The first term of the Eq. (3.29) relates to the maximization of the 

sensed area, while the second term relates to the maximization of the image resolution. 

Figure 3.3, illustrates how the function 𝑓 varies in terms of the value of the distance X. We 

considered that  𝑅௛ = 1024 M pixel and θ =160o. We can see from the figure that both the 

sensed area and the image quality depend on the distance X. As X increases the sensed area 

increases, and the quality of the images decreases and vice versa.  
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Figure 3.3: The Relation Between the Distance X and Function f 

 

 

Overall, this function accepts one extremum point (a minimum), denote by 𝐸(௫೐,௬೐). Before 

this point, i.e., when 𝑥 < 𝑥௘, as long as 𝑥 decreases toward 0 the function increases towards 

+ꝏ. Meaning that we are maximizing the quality of the image and decreasing the covered 

area. On the other hand, when 𝑥 > 𝑥௘, as long as 𝑥 tends toward +ꝏ the function 𝑓 also 

tends toward +ꝏ which means that we are increasing the covered area, while the quality 

of the image is decreasing. 

Accordingly, the point 𝐸 presents a good compromise between the covered area and the 

quality of images. Thus, either we maximize the covered area and minimize the quality of 

images or we minimize the covered area and maximize the quality of images. 

The point E is the solution of the following equation: 
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f ᇱ(X) = 2 × tan ቀ
஘

ଶ
ቁ −

ୖ౞

ଶ×୲ୟ୬ቀ
ಐ

మ
ቁ×௑మ

 = 0 

 

which is: 

 

X =
ඥୖ౞

ଶ× ୲ୟ୬ቀ
ഇ

మ
ቁ
                  (3.30) 

 

Next, we consider studying the relationship between the cameras’ optimal position and the 

quality of the image function. There is a trade-off between the resolution of the image and 

the covered area. If the quality of the camera is high, then the camera covers a smaller area. 

Figure 3.4 shows this relationship. The X-axis represents the resolution of the camera 

which varies from 100 to 1024 pixels. The higher the resolution, the larger the optimal 

distance and the larger the sensed area. 

It is worth mentioning that the optimal distance obtained by maximizing the Eq. (3.29) may 

give a quality that is lower than the minimum acceptable quality to analyse the plants. To 

avoid this, we propose Algorithm 3.1 to determine the optimal distance between the 

cameras and the covered area that guarantees at least a minimum image quality.  
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Figure 3.4: The Optimal Distance in Function of the Image Resolution 

 

Algorithm 1 input parameters are the properties of the cameras, namely: 

 

  𝜃 , the AFOV of the cameras in degree 

 𝑅௛, the quality of the cameras, i.e., the number of pixels of the horizontal line of 

images taken by the cameras. 

 𝑄, image quality. We set 𝑄 = 𝑄௠௜௡, the minimum quality that we should guarantee 

to properly analyse the images. It is expressed as the number of pixels per unit 

distance, i.e., how many pixels represents the information that exists in a unit of 

distance in the area covered. Higher number of pixels means more detailed image. 

𝑄௠௜௡ is used only if the optimal distance X does not guarantee the minimum 

required resolution. 
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Algorithm 3.1: Determining the Optimal Distance Between the Cameras and the Area 

Covered 

Input: θ, 𝑅௛, 𝑄 = 𝑄௠௜௡      

Output: X, optimal distance between the cameras and area covered     

X =
ඥR୦

2 ×  tan ቀ
𝜃
2ቁ

 

if  ቆ
ோ೓

ଶ×௑×୲ୟ୬ቀ
ഇ

మ
ቁ

  <   𝑄௠௜௡ቇ    𝐭𝐡𝐞𝐧  

         𝑋 =   
ோ೓

ଶ × ொ೘೔೙ ×୲ୟ୬ቀ
ഇ

మ
ቁ
    

end if 

Return X 

 

3.6.2 Optimizing the Number of Cameras 

 

Knowing the optimal distance of the cameras from the ground of the greenhouse 

(Algorithm 3.1), we can calculate n, the number of cameras necessary to cover the entire 

greenhouse area as follows: 

n = H ቆ
ୈ

ଶ×ଡ଼×୲ୟ୬ቀ
ಐ

మ
ቁ
ቇ     (3.31) 

where X is the optimal distance calculated using Algorithm 1, 𝐷 = 𝑥௔  −  𝑥ௗ is the length 

of the covered area, and H(x) is the function defined by 

H(x) = ቊ
E(x)  +  1,              if (x  −  E(x)  ≥  

ଵ

ଶ 
)

E(x)       ,                    Otherwise        
    (3.32) 

 

The function H makes sure that the number of cameras is an integer. The choice of the 

number ½ in the function H is arbitrary, and in the real world it depends on which is the 
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case to address: tolerating uncovering the last part of the covered area or not tolerating 

uncovering the last part of the covered area. 

In our case, 𝑥 − 𝐸(𝑥) ≥
ଵ

ଶ
 , means that the field of view of the last camera will not fully 

exploitable. Since it will cover the last part belonging to the covered area and determined 

by: 𝐷 − 𝐸(𝑥)  × 2 × 𝑋 ×  tan ቀ
஘

ଶ
ቁ  and the rest of the field view will be inexplicable. In 

the case where 𝑥 − 𝐸(𝑥) <
ଵ

ଶ
  , the last part 𝐷 − 𝐸(𝑥)  × 2 × 𝑛 × tan ቀ

஘

ଶ
ቁ will be 

uncovered. Otherwise, if 𝑥 − 𝐸(𝑥) = 0. Hence, the entire area will be covered with the n 

cameras.  

 

Up to this point, we determined the minimum number of cameras to cover the whole area. 

Next is to determine the position of each camera. 

The position, on the X-axis, of camera 𝑖 is determined by the following sequence: 

 

ቐ
x୧  =  x୧ିଵ  +  2 ×  X ×  tan ቀ

஘

ଶ
ቁ

xଵ  =   xୟ   +    X   ×  tan ቀ
஘

ଶ
ቁ

    (3.33) 

 

Algorithm 3.2 combines the steps solution of the two sub-problems described above. Inputs 

for Algorithm 3.2 are the same inputs of Algorithm 3.1. The outputs of the algorithm are 

X, the optimal distance between a camera and the plant (i.e., the Y-axis coordinate of the 

cameras), and  𝑉௣ a vector which contains the exact position of each camera (i.e., the X-

axis coordinate of each camera).  
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Algorithm 3.2: Determining the Minimum Number of Cameras and Exact Position of each 

one  

Input: θ, 𝑅௛, 𝑄 = 𝑄௥௘௤      

Output: minimum number of cameras and position of each one     

X = call Algorithm 1 

  𝑛 =   𝐻 ቆ
஽

ଶ ×௑× ୲ୟ୬ቀ
θ

2
ቁ
ቇ   //𝑛, 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 𝑡𝑜 𝑐𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑎𝑟𝑒𝑎 

// The algorithm to determine the position of each camera 

𝑉௣[𝑛]; //vector of n elements to store the position of each camera 

𝑉௣[1] =  𝑥௔ + 𝑋 × tan ቆ
θ

2
ቇ   

For j ∶= 1 to n step 1     𝐝𝐨 

       𝑉௣[𝑖] =  𝑉௣[𝑖 − 1] + 2 × 𝑋 × tan ቀ
θ

2
ቁ 

end for 

 

 

In real life, sometimes a specific image quality is required in order to analyze the plants 

and extract information from the captured images. In this case, therefore, we need to 

determine the exact position of cameras with respect to a given image quality value, 𝑄௥௘௤. 

Steps of Algorithms 3.1 and 3.2 can be implemented to find those positions with using the 

same input parameters and set 𝑄 = 𝑄௥௘௤. 

3.7 Performance Evaluation 

In this section, we evaluate our proposed optimization problem in practical settings with 

different input conditions for the AFOV, image resolution, and image quality. We used 

MATLAB R2019b software for this evaluation.  
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3.7.1 Experimental Cases and Results  

 

Three test cases are considered in our experiments as explained below. For all the three 

cases, we consider a greenhouse with a grid area of side length L distance-unit. We set L 

= 1000 distance-unit. Our goal is to have a big number for L to show better results scale 

regardless of what unit can be assigned to L. Some camera sensors are deployed in each 

line of the grid area at the same height. The height will be determined in test case one, and 

the exact number of cameras will be determined in test case two. Sensor cameras capture 

images with the desired resolution once a day. Camera sensors transmit captured images 

to the base station.  Single-hop and/or multi-hop communication can be used depending on 

the number of cameras and their locations. The communication protocol can be based on 

standard WiFi or Zigbee.  

3.7.1.1 Test Case One  

 

In the first case, we determine the optimal distance between the cameras and the plants, 

while guaranteeing a good quality image and wider area coverage. In this case, we set the 

cameras AFOV, θ = 120o, and  the value of 𝑅௛ varies from 100 pixels to 1024 pixels, to 

study the effect of camera quality in terms of the resolution of the collected images on the 

number of cameras necessary to cover the entire area and the optimal distance between the 

cameras and the plants. 

In Figure 3.5, we plot the necessary number of cameras to cover the area L in function of 

the quality of cameras. The Y-axis represents the optimal number of cameras and the X-

axis represents the quality of cameras, i.e., the resolution (𝑅௛) of the collected images. We 
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observed that the optimal number of cameras varies from 38 cameras, for a resolution of 

100 pixels, to three cameras for resolution of 1024 pixels.  

 

 

Figure 3.5: The Minimum Number of Cameras to Cover the Area L in Function of the 

Quality Image 

 

Hence, if the quality of cameras increases, the number of cameras decreases. This is 

explained by looking at Eq. (3.30), increasing  𝑅௛ (the quality of cameras) will result in 

increasing the optimal distance X, therefore, decreasing the number of cameras. Increasing 

the distance between the cameras and the ground X will allow the coverage of a larger area 

and hence, decreases the number of cameras.  

This result is supported by the results plotted in Figure 3.6. It shows the optimal distance 

X as a function of the quality of cameras. As we can see, the optimal distance increases by 

increasing the quality of cameras; it goes from 8.33 distance-unit for the image quality 

resolution 100 pixels to 85 distance-unit for the image resolution quality 1024 pixels. So, 
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increasing the cameras’ quality will increase the covered area by each camera and hence, 

decrease the number of cameras. 

 

 

Figure 3.6: The Optimal Distance X in Function of the Quality of Camera 𝑅௛ 

 

3.7.1.2 Test Case Two  

In the second case, we find the exact positions of the needed cameras, n, taking into 

consideration of avoiding redundancy and overlapping views between the collected 

images. In this case, we set the horizontal coordinates of the side L to 𝑥௔ = 0 and 𝑥ௗ =

1000, the cameras AFOV, θ = 160o, and the value of 𝑅௛ to be either 1000 pixels or 1500 

pixels.  
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Figure 3.7 shows the obtained results where the green curve represents the exact position 

of the cameras that capture images of 𝑅௛=1000 pixels, and the blue curve represents the 

exact position of each of the cameras that capture images of 𝑅௛= 1500 pixels. 

 

 

Figure 3.7: The Distance from the Camera to the Ground of the Greenhouse in the Covered 

Area 

 

From the figure, we can see that in order to cover the entire area, we need either 11 cameras 

of quality 𝑅௛ = 1000 pixels (each camera covers an area of 88.16 distance-unit) or eight 

cameras of quality 𝑅௛ =  1500 pixels (each camera covers an area of 132.25 distance-unit). 

It is worth mentioning that the 8th camera will cover an extra part of area of approximately 

57.96 distance-unit (the blue highlighted section in Figure 3.7). This is explained by the 

fact that the number of cameras 𝑛 is equal to the integer part of ( 
ଵହ଴଴

ଶ×ଵଵ.଺଺×୲ୟ୬ ଼଴
) plus 1, 
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which is 𝐸(7.56) + 1 = 8. Whereas, if choosing the second type of camera, i.e., cameras 

of quality 𝑅௛ = 1000 pixels, an area of about 30.20 distance-unit will not be covered (the 

green highlighted section in Figure 3.7), since the number of cameras 𝑛 is equal to the 

integer part of  
ଵ଴଴଴

ଶ×଻.଻଻×୲ୟ୬ ଼଴
 = 11.34 which is 11. Summary of the obtained results is given 

in Table 3.2.  

 

Table 3.2: Cameras Position Properties 

𝑅௛ 

(pixels) 

X 

(distance-unit) 

Coverage area per 

camera 

(distance-unit square) 

Number of cameras 

1000 7.77 88.16 11 

1500 11.66 132.25 8 

 

3.7.1.3 Test Case Three  

 

In the third case, we consider finding the camera’s position with respect to a given image 

quality to satisfy the purpose. For this case, we set the image quality to a specific value, 

Qreq = 20 pixels per distance-unit. Other input parameters, θ and 𝑅௛ are set to the same 

values used in test case two (i.e., θ = 160o, and 𝑅௛ = 1000 pixels or 1500 pixels). Based on 

the 𝑅௛ value we consider two types of cameras:  

 Type 1: cameras that can capture images of 𝑅௛ = 1000 pixels 

 Type 2: cameras that can capture images of 𝑅௛ = 1500 pixels 
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Figure 3.8 shows the exact position of type 1 cameras in order to cover the area of L=1000 

distance-unit. Each camera is placed at X = 4.41 distance-unit from the ground of the 

greenhouse, and the necessary number of cameras needed to cover the whole area is 20. 

Thus, each camera covers an area of 50 distance-unit.  

 

 

Figure 3.8: The Exact Position of Cameras 

 

Figure 3.9 shows the exact position of type 2 cameras in order to the same area of L = 1000 

distance-unit. For this camera, type 2, X, for each camera, is found to be at X = 6.61 and 

13 cameras are needed to cover the whole area. This gives 75 distance-unit coverage area 

for each camera. 
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Comparing the two types of cameras, the first type of camera is closer to the ground of the 

greenhouse and can cover smaller areas compared to the second type of camera, which is 

higher up from the ground of the greenhouse and can cover larger areas. Hence, this 

confirms that the camera’s quality and the required image quality are two important factors 

for determining the cameras’ exact position.  

 

 

Figure 3.9: The Exact Position of Cameras in Function of the Required Quality 

 

3.8 Summary 

In this chapter, we discussed deploying WVSN in a greenhouse, aiming at finding the 

optimal number and position of the sensor cameras to cover the entire greenhouse area 

while maximizing both the quality of the images and the area covered by each camera. We 

formulated the problem as an ILP. We proposed two algorithms. Algorithm 1 for finding 
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the optimal position for the cameras and Algorithm 2 for determining the number of 

cameras needed with high-quality of images. Experimental results show the effectiveness 

of the proposed solution in finding the minimum number of cameras, the exact placement 

of each camera to cover the entire area being monitored in the greenhouse with the required 

image quality resolution to pick up any signs of plant disease. 
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Chapter 4 

Fungus Detection System Using Wireless Visual Sensor Network and 

Machine Learning 

 

4.1 Introduction 

 

Statistics Canada released the 2018 census data that “In 2018, there were a total of 866 

commercial greenhouse vegetable operations with 17.5 million square meters of 

production area, which produced over 660,535 metric tons of vegetables. There has been a 

steady increase in greenhouse vegetable production in Canada and it is anticipated that 

acreages in greenhouse vegetable production will continue the multi-decade growth trend. 

Ontario continued to lead the greenhouse vegetable sector in 2018, representing 68% of 

the total production in Canada, followed by British Columbia and Quebec with 18% and 

6%, respectively.” [116], shown in Table 4.1 and Figure 4.1. Also, the problem that 

concerns the labour cost of commercial greenhouse, as stated by Canada Agriculture, 

“Greenhouse operating expenses were up 1.6% in 2019 to $2.7 billion, largely driven by 

higher labour costs. Although the number of employees fell by 205 from a year earlier 

to 32,373 in 2019. As reported by Canada's Agriculture Sector Labour Market Forecast 

to 2025, the greenhouse industry was identified as the most problematic agriculture sector 

in terms of labour shortage.” [51]. There is a growing demand to automate greenhouse crop 

production due to the recent COVID-19 pandemic. 
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Table 4.1: Harvested Greenhouse in Canada (Square Metre) 

 

 

 

Figure 4.1: Provincial Distribution of Total Greenhouse Area, 2019  

 

Large production crop greenhouses are growing rapidly. With this growth, comes a 

significant need to maintain production for economic reasons. One efficient way to 

maintain production growth is by controlling the greenhouse atmosphere and monitoring 

the plants to remain healthy throughout the life cycle.  

Because the environment of a greenhouse is warm and humid, disease and pest issues can 

become particularly challenging for greenhouse growers. From fungus and rusts to viruses 

and root rots, disease can cause damage to plants. In this study and without loss of 

Canada 2014 2015 2016 2017 2018 

Greenhouse 
(square meter) 

14,216,767 14,592,933 15,928,094 16,878,194 17,438,325 
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generality, we will focus on detecting powdery mildew, which grows on the plant leaves. 

Powdery mildew is a fungal disease that looks like a dusty white coating on the leaves and 

stems of infected plants as shown in Figure 4.2. A powdery mildew infection usually begins 

as a few spores on the leaves but quickly spreads. The white powdery surface is a thick 

coating of the fungi spores [52]. This type of fungus increases in 99% humid conditions 

with moderate 25C temperatures. In a greenhouse when the summer is humid, powdery 

mildew almost always makes an appearance. It can affect any plant. In extreme cases, it 

results in leaf yellowing and dropping, stunted plant growth, distortion of buds, blooms, 

and fruit, and eventually, overall weakening of the plant.   

 

 

Figure 4.2: Powdery Mildew Fungus Disease 

 
It is well documented that powdery mildew diseases, which are caused by several species 

of fungi, will affect most if not all plants. These diseases can reduce crop production, which 

leads to economic losses. Several methods can be used to diagnose and determine what 

harmful agent is affecting the plant leaves. These methods are the following [53]: 
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 Visual inspection: methods to discover certain deficiencies of the crop; however, 

not all damage can be seen by the naked eye.  

 Soil analysis: measuring the amount of nutrient level in the soil. 

 Tissue analysis: measuring the nutrient level in the plant leaves, and stem.  

 Bioassays: a method for diagnosing nutrient deficiencies that combine tissue 

analysis and testing in pots. 

 Field Tests: are one of the efficient methods to diagnose nutrient deficiencies, but 

it is an expensive procedure. 

 

These methods are used as the first step in exploration; however, since field tests are 

expensive, difficult to administer, and can be done only in a laboratory we need an in-

house, inexpensive technology to detect and diagnose different diseases with minimal 

human interaction. The use of technology in agriculture has been increasing. Depending 

on its nature agriculture technology can be biochemical (pesticides and fertilizers) or 

implemented into farm management. Mechanical and information technology can be 

applied to agriculture, such as in monitoring growth and controlling pests, geophysical 

measurement systems, flood detection and precision agriculture [54][55]. Moreover, there 

are sensor systems for monitoring the environment, such as ambient temperature, humidity, 

wind [56]. Monitoring systems are based on WSN technology [57]. WSN technology will 

not create a new agricultural product but will help improve existing techniques to improve 

the diagnosis of plant diseases and ensure final product quality [58]. 

 



 

75 

 

WSNs have been used in countless applications [55]. One of these applications is 

measuring environmental parameters inside a greenhouse. Measuring these parameters is 

not enough to maintain healthy plants. To have healthy plants in greenhouses, we must 

carefully monitor the plants’ growth and the environmental parameters by using reliable 

and affordable technologies. Among these technologies are the Wireless Visual Sensor 

Networks (WVSNs) and intelligent detection techniques, including image processing 

methods.  

This chapter proposes developing an automated detection system to detect powdery mildew 

fungal disease and monitor the plant growth in a smart greenhouse, shown in Figure 4.3. 

We consider a greenhouse that is fully occluded and cluttered with varying degrees of light. 

The system utilizes four individual technologies, WVSN, WSN, a machine learning 

technique, and image processing methods. A WSN is deployed in a greenhouse to monitor 

the atmospheric conditions. A WVSN is deployed to monitor the plant growth via cameras, 

while image processing methods and machine learning techniques detect disease in the 

plant from the captured images from the camera sensors of the WVSN.  

 

The reminder of this chapter is organized as follows. In Sections 4.2, we review the related 

work. Section 4.3 defines the problem statement and highlights the research problem. 

Section 4.4 describes the automated fungus detection system. Section 4.5 includes the 

experiment results and performance evaluation for the system, lastly, Section 4.6, present 

our summary of the chapter.   
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Figure 4.3: Typical Smart Greenhouse 

 

4.2 Related Works 

 

There is very little research in combining WSNs with image processing and pattern 

recognition in agriculture. The authors in [59] mentioned two systems for image 

recognition. They explained the structure, the recognition algorithms, and the neural 

classifier. One of their applications was image recognition based on an adaptive control 

system for micromechanics where a neural classifier was used for texture recognition of 

metal surfaces. The authors also used pesticides to kill insects by using a web-camera based 

computer vision system to automate the recognition of larva. Their system sought to locate 

the insect and larvae early so that they could reduce the use of pesticides. The system 
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consisted of neural classifiers, which would detect the insect from a captured image. 

Recognizing the larvae and sensing warmth to indicate the larvae were active are not easy 

tasks because different species of larva have different colors, shapes, and sizes and can be 

under a leaf. They used pre-processing techniques, then trained the system. Their system 

was not able to distinguish between textures related to the larvae and those related to the 

background of the image. 

Research done by the authors in [60] had the same type of the system as in the previous 

work [59], but the purpose of this work was to use a back-propagation ANN model to 

distinguish between weeds and young corn plants. The authors used a series of cameras to 

obtain high-quality images. Each image was pre-processed from the bitmap format with 

image processing to indexed images based on the RGB color system. Then, each index 

color acted as input for the ANN. The output value was 0 or 1, representing whether the 

image was weeds or young corn plants. The processing time was 20 hours for training the 

network. This process can help reduce the use of herbicide sprays if it decreases the training 

time.  

Another work involved in recognizing weeds [61] used a fuzzy logic system to create a 

weed map to determine the location of the weed to use the right amount of herbicide. The 

authors also used a digital camera and a personal computer for more testing. Their system 

was able to locate some of the weeded areas, which resulted in using less herbicides, 

reduced soil and water pollution, and some cost savings.  

The authors of [62] used machine vision to detect a worm in maize plantings. They used a 

pre-processing technique that converted the image from grayscale to binary images using 

an iterative algorithm. First, the system segmented the leaves and divided them into pixels. 
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Second, the images were divided into blocks. Blocks that contained a more significant 

amount of leaf surface were selected. These selected blocks were recognized as damaged 

or undamaged by counting the objects in each block. Their system performed well overall. 

In [63], the authors merged three thresholding strategies, fuzzy method, Otsu method, and 

Isodata algorithm, to determine whether the field was covered with oat or frost. They stated 

that this merger provided better results than using each method separately.  

The work in [64] presented the use of image processing to measure the water droplet size 

and distribution of agricultural sprinklers. They used the properties of Fourier analysis and 

correlation in the frequency domain. The purpose of this paper was to obtain a direct 

measurement of sprinkler drops, which would help avoid exceeding the size of the drop 

that would lead to soil erosion, surface sealing, and infiltration, as well as to minimize the 

size of the drop not to be affected by wind drift and that alters the pattern of irrigation. This 

study would help the farmer control the size of the drops and maintain the right amount of 

water.   

Another use of visible light image processing and machine vision system was presented in 

[65] and [66] to detect diseases in the field. Their systems achieved a good detection rate 

with some restrictions on input, such as taking images only from the top view of the plant 

with uniform background and taking images only of a single centred leaf. These restrictions 

make the system unsuitable for autonomous detection. 

Using a camera provides more information and benefits over sensor networks alone as in 

[67]. The authors used a camera sensor network for recognition, tracking, and detection. 

Their work introduced low-latency detection, low power, and efficient recognition. 

However, their work depended on using light image processing, which would not be 
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efficient in detecting pests or disease. In [115], the authors used image recognition based 

on the Convolution Neural Network (CNN) to detect powdery mildew of tomato crop. 

They create artificial powdery images using image fusion techniques to prepare various 

forms of CNN learning data. The testing was applied in real images taken from the 

greenhouse. The performance of their system achieved 93%. The weakness of using CNN 

in this task is, CNN does not encode the position and the orientation of the powdery from 

the images; the noise in the image can affect the performance of CNN. Also, CNN is not 

invariant to large transformations of the input data, which means that CNN cannot 

distinguish the object when it is in different viewing angles. It is also highly computational 

cost, needs good GPU and large training data.  

Most of the previous works done on detecting diseases and pests used a digital camera with 

image processing. To the best of our knowledge, no work such as our proposed automated 

system has been done in a greenhouse.  

 

4.3 Problem Statement and Contributions 

 

Early and fast detection of any diseases or pests in a greenhouse is an essential step and 

part of an integrated management strategy needed to maintain the health of the plants and 

increase crop production. Automated plant disease detection in an environment like a 

greenhouse is complex because the surroundings are a fully cluttered, large-scale, and 

uncontrolled environment. In this chapter, we investigate a solution for solving the 

following problem: 
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Design and develop an automated detection system for observing disease, pest, or 

deficiency present on the leaves of plants in an occluded and/or cluttered greenhouse. 

 

To address this problem, we propose an automated detection system that utilizes WVSN, 

WSN, the Hough Forest machine learning technique, and image processing methods. 

WVSN and WSN are deployed to continually monitor the plant growth and the atmospheric 

conditions of the greenhouse for healthy crop production. The image processing methods 

and the Hough Forest technique are used to efficiently detect powdery mildew fungus in 

images of the plant’s leaves taken from a WVSN. Our contribution can be summarized as 

follows.  

Proposing an automated fungus detection system using WVSN, WSN, the Hough Forest 

machine learning technique, and image processing methods, to distinguish between healthy 

and unhealthy plants, and identify the powdery mildew fungus on the plants with a high 

level of accuracy. 

   

4.4 Automated Fungus Detection System 

 

The block diagram of the proposed detection system is presented in Figure 4.4. The system 

has the following four units: WVSN unit, WSN unit, image processing unit, and machine 

learning detection unit. In the WVSN unit, camera sensors are installed inside the 

greenhouse to capture images and transmit them to the image processing unit. The image 

processing unit processes the captured images using different methods: resizing, filtering, 
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segmentation, and noise removal. The image processing unit’s output images are used as 

input to the machine learning unit to detect mildew fungus. If fungus is detected, then the 

WVSN unit communicates with the WSN to send a job request to an actuator to do an 

action such as start the fan or open a window to reduce humidity. In the following 

subsections, we present the details of each unit.  

 

 

Figure 4.4: Block Diagram of the Proposed System 
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4.4.1 Wireless Visual Sensor Network Unit 

 

A WVSN has camera-equipped sensor nodes. The very small sensor camera nodes can 

capture visual data, and process and transmit image/video information [68]. The nodes 

capture images to monitor the growth of the plants, detect any fungal diseases, or pests that 

can adversely affect the plant. This type of communication network will minimize human 

interaction. In general, the monitored area is an immense place, which means we must deal 

with a large number of images. To improve the performance, in terms of storage and 

processing, and reduce the response time of the image processing unit, we consider placing 

the sensor camera nodes such that there is no overlap between images taken by those nodes. 

Optimum locations for the nodes are determined and explained in Chapter 3.  

 

Images are taken from different locations and angles of different camera sensor nodes in a 

greenhouse during the daytime. The sensor camera’s specifications are (12MP, 50mm focal 

length, 1/2.55-inch sensor, dual-pixel PDAF, and f/1.5-2.4 variable-aperture lens), as well 

as another camera sensor (12MP, 2x focal length, f/2.4 lens, 1/3.6-inch sensor, AF). Also, 

a single LED flash is in both cameras. The distance between the camera sensor and the 

plant achieves better resolution at the same time with no overlap explained in Chapter 3.  

 

Samples of the plant leaves in the greenhouse images are shown in Figure 4.5. The dataset 

consisted of 282 images at 1960 x 4032 pixels/image obtained from a greenhouse in Surrey, 

British Columbia, Canada [107]. Images were taken with different levels of occlusion. The 

levels varied between images from low to highly occluded and cluttered. The images were 
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visually inspected for powdery mildew fungus, which was observed in the images. Note 

that these images have different resolutions from the images used in Chapter 3. 

 

Figure 4.5: Plants Images Captured by Sensor Camera Nodes in the Greenhouse 
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4.4.2 Image Processing Unit 

 

In this unit, different image processing methods are used to prepare the images for the 

machine learning unit. One of the most prominent issues in disease detection techniques is 

background clutter in a greenhouse setting. The problem with background clutter is the 

high possibility of false detection, which will decrease efficiency and accuracy by 

searching to cover an area that does not contain the object of interest. The use of 

segmentation image processing for the fungus will remove the background clutter by 

applying the following six steps: 

1) Find the RGB color spaces from the image. RGB stands for red, green, blue channels. 

RGB is a composite of the independent grayscale images that correspond to the 

intensity of red, green, and blue light.   

2) Determine the difference between red color image and green color image. Get the 

difference between red channel and green channel 

3) Convert the images to grayscale.  

4) Create the mask for the foreground (i.e., the plant leaves) 

5) Apply a median filter over the mask to remove the noise. First sorting all pixel values 

from the window into numerical order, and then replacing the pixel being considered 

with the middle (median) pixel value. 

6) Extract the foreground from the image.  

Final results will have the Region of Interest (ROI) image, as shown in Figure 4.6. The 

prepared images will be used as input into the machine learning detection unit.   
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Figure 4.6: Preparing Captured Images 
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4.4.3 Machine Learning Detection Unit 

 

In this section, we propose using Hough Forest machine learning to detect powdery mildew 

fungus on the plant leaves. Hough Forest is chosen as the detection algorithm because of 

its robustness to occlusion and noise. Hough Forests combine random forests’ learning 

properties with the detection properties of Hough transforms [69]. Prepared images, from 

the image processing unit, are used to create labelled image samples in which each image 

sample is labelled either has fungus or no fungus. The sampling is performed using a 

cropping tool that is developed to crop and label images successfully. The tool allows a 

user to left-click-drag-and release or right-click, using a two-button computer mouse to 

point a portion of the image as leaves. We note that since the samples are picked from 

training images that are selected randomly, the number of training samples will vary among 

the various folds. After sampling the training set, patches are created using a semi-

automatic approach. P୧ training batches are created with a size of 16x16 pixels. Each batch 

is then represented by a feature P୧  = ( I୧ , C୧ ,  d୧) : 𝐼௜  is an appearance information which 

can includes image features (L*a*b color space), derivative filter (first and second 

differentials using Sobel operator), and three histograms of the oriented gradient, 𝐶௜  is an 

image class (leave, background), and 𝑑௜  is a distance vector from center of image to center 

of batch, as described in [70]. After that, the implementation of the Hough Forest described 

in [69] is used to train the classifier. Samples of the patch images used for training the 

decision tree. Each tree generates an output to create a prediction. A random subset of 

features was chosen for each split of tree branches. A training process is shown in Figure 
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4.7, and a detection process is shown in Figure 4.8. All the Hough Forest approach in Figure 

4.9. 

 

 

 
Figure 4.7: Hough Forests Training 

 
 
 
 

 

Figure 4.8: Hough Forests Detection 
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Figure 4.9: Hough Forest Approach 

 

4.4.4 Wireless Sensor Network Unit 

 

The greenhouse will have a WSN with actuators that communicate with the WVSN to 

control the greenhouse atmosphere. When the WVSN detects an unusual status in the plant 

leaves received from the machine learning detection unit, it will send a message to the BS 

of the WSN requesting the wireless sensor nodes to measure the humidity inside the 

greenhouse. If the humidity is high, the BS sends a message to the actuator to turn on a fan 

or open a window, for example, to decrease the humidity in the greenhouse (see Figure 

4.3).  

4.5 Experimental Results  

In this section, we evaluate the performance of our proposed automated detection system. 

We start by describing the dataset used. Then we explain the training process following by 

performance evaluation for the system, statistic results, and comparison and discussion. 



 

89 

 

4.5.1 Dataset 

Our dataset consists of 282 images at 1960 x 4032 pixels/image. Labelled sample images 

are prepared using a semi-automatic approach to create patches. Five hundred and two 

patches are created; 260 positive patches have fungus and 242 negative patches did not. 

All patches are re-sized to 256 x 256 pixels/image. A Hough Forest is trained with positive 

fungus images with the negative background removed. Samples of the patch images used 

for training are shown in Figure 4.10 and Figure 4.11. These images are not part of the 

testing set. More detailed results are included in the Appendix A. 

 

 
Figure 4.10: Positive Training Patches 
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Figure 4.11: Negative Training Patches 

 

4.5.2 Training Process 

 

General outlines of training and detection are shown in Figure 4.7 and Figure 4.8, 

respectively. Patches are extracted randomly from each image sample and carried different 

features. These features have the information used for constructing each tree that included 

each channel of the L*a*b color space, first and second discrete differentials, using the 

Sobel operator, as well as nine histograms of gradients, as described by Leibe et al. in [70]. 

J. Gall's re-implementation of the Hough Forest described in [69] is used to train the 

classifier. The patches are selected randomly with their location and image classification. 

Then they are passed along to the root node of the decision tree. Each patch is processed 
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through a tree until it reached a leaf node. The tree will split into two new nodes, which 

will maximize the information gain. Every node knows the position of the patches relative 

to the center of the image and image classification. The leaf node had the position and the 

class information about that patch, which would be used to create a vote into a Hough 

space. All trees have votes in Hough space. The highest number of votes indicates the 

correct location of the object (i.e., fungus). The process will keep repeating until it reaches 

the stopping point. Many trees are trained using the same steps, thus, creating a forest. The 

forest contained ten trees, each with a depth of 18 nodes, as shown in Figure 4.12. 

 

Figure 4.12: Hough Tree Forest 
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4.5.3 Performance Evaluation 

With a machine learning algorithm, it is necessary to divide the dataset into training and 

testing subsets. This process will be repeated many times. Each time, the data is randomly 

selected to create different training and testing subsets. We use k-fold cross-validation to 

divide the data into training and testing, with k = 5. This approach ensures that every image 

sample will be tested, and the testing subset will not overlap. We use MATLAB R2019b 

software with intel ® Core ™ i7-7500 CPU@ 2.70GHZ to apply 5-fold cross-validation 

on 282 images taken from inside the greenhouse. The results of the 5-fold cross-validation 

are presented in Figure 4.13. The results are averaged over 282 images. We use the 

Receiver Operating Characteristic (ROC) parameter. The ROC is calculated by comparing 

the True Positive (TP) rate to the False Positive (FP) rate. Also, in Figure 4.13, we calculate 

the area under ROC curve (AUC), which evaluates how good the classifier is, and how 

accurate the output is. In our case, the AUC is 96.96%.  

 
Figure 4.13: ROC for Hough Forest Trained with Fungus Image Patches 
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The results of testing 100 images are shown in Table 4.2. The results show detection rates 

of 71% True Positive (TP), and 23% True Negative (TN). The total of all true detection 

rates is 94%. The rate of False Negatives (FN) is low at 5%, and the rate of False Positives 

(FP) is much lower, at 1%.  

Table 4.2: Results of Fungus Detection on the Testing Dataset 

Test Fungus in image 

% 

No Fungus in image 

% 

Detected fungus TP (71) FP (1) 

No detected fungus FN (5) TN (23) 

 

Sample output results from applying the Hough Forest machine learning on the images 

were TN detection (healthy plant) and TP detection (fungus found), as shown in Figures 

4.14 and 4.15, respectively. FN detection and FP detection are shown in Figure 4.16 and 

4.17, respectively.  

 

Figure 4.14: True Negative Detection 
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Figure 4.15: True Positive Detection 

 

Figure 4.16: False Negative Detection 
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Figure 4.17: False Positive Detection 

 

4.5.4 Statistical Results 

 

In Table 4.3, statistical results show how well our system performed in predicting powdery 

mildew fungus based on the images.  

 

Table 4.3: Statistical Results 

Sensitivity 93.4% Specificity 95.8% 
Positive likelihood 

ratio 
22 Negative likelihood 

ratio 
0.06 

Positive predictive 
value 

98.6% Negative predictive 
value 

82.1% 
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 Sensitivity shows the probability that our test results are positive when the fungus 

is present. In our case, we have a high probability of 93.4%. 

 Specificity shows the probability that our test results are negative when the fungus 

is not present. In our case, we have a high probability of 95.8%. 

 A positive likelihood ratio of greater than 1 indicates that the test result is associated 

with fungus. In our case, the result was 22, which conforms our output results.  

 A negative likelihood ratio of less than 1 indicates that the test result is associated 

with an absence of fungus. In our case, the result was 0.06, which confirms with 

our output results. 

 Positive predictive value shows the probability that the fungus is present in the 

images when the test is positive. In our case, the probability value was 98.6% (very 

high). 

 Negative predictive value shows the probability that the fungus is not present in the 

images when the test is negative. In our case, the probability value was 82.1% (very 

high). 

 
 

4.5.5 Comparison and Discussion 

 

Table 4.4 shows a comparison of our proposed system applying Hough Forest machine 

learning on images taken from the WVSN, from different angles and placement, against 

each image process used in previous works [65], [66] and [115]. Images in [65] are taken 

from the top view, which minimizes the clutter from the background images. The work in 

[66] cropped the leaf images before applying color-texture detection, which reduced the 
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clutter of background images. In [115], they used artificial images in training while real 

images in testing; they could not deal with the real images that have noises and different 

viewing angles. Also, they used GPU to speed the training processes, but it was costly. 

 

Table 4.4: Comparison with Other Works 

Authors Method Images Detection Rates 

(%) 

L. Velzquez et al. 

[65] 

Color feature 

detection 

Images with top 

view 

70 

M. Zhang et al. [66] Color texture 

detection 

Images contain 

leaves only 

67-88 

H. Jung et al. [115] CNN Artificial Images 93 

A. Ali and H.S. 

Hassanein [71] 

Hough Forest, color 

and background 

removal 

Images with 

different view and 

varying light 

94 

 

 

4.6 Summary 

This chapter proposed an automated detection system for any disease or pests in an 

occluded and cluttered greenhouse. The system is designed to detect any type of diseases 

or pests on plant leaves. However, and without loss of generality, our study focused on 

detecting powdery mildew fungus disease as a proof of concept. Hough Forest machine 



 

98 

 

learning technique is applied to detect the powdery mildew fungus in images of the plant 

leaves taken from a WVSN. A detection rate of 94% is obtained, which confirms the 

performance strength of our proposed system. Also, our system obtained a low false 

positive rate, which is very important for maintaining a successful detection system, as 

each positive detection would require sending messages to sensor nodes to measure the 

humidity of the greenhouse and re-set accordingly.  
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Chapter 5 

Intelligent Framework for Predicting and Controlling the Greenhouse 

Microclimate  

5.1 Introduction  

 

Continuous monitoring of plant crops and frequent controlling of the microclimate inside 

a greenhouse using WSN increases the node’s energy consumption and, thus, shortens the 

network lifetime. Also, given the scale of commercial greenhouses and the scale of the 

network, the number of data transitions between sensor nodes and the BS in this specific 

environment will increase significantly, causing data congestion, a high rate of sensory 

data loss, and a low signal-noise ratio [72-76]. Moreover, the deployment and maintenance 

cost of a WSN is expensive. A smart greenhouse microclimate is a complex nonlinear 

system that provides an optimum environment for plant growth. Because of the complexity 

of the factors involved, the slow time variation, and the non-linearity of the smart 

greenhouse microclimate, it is challenging to build a precise mathematical model. The 

widely used current greenhouse microclimate modelling has the following three 

approaches: computational fluid dynamics model method, the mechanism by design 

modelling method, and the system identification method. These methods have several 

limitations and unknown parameters. They also require expensive instruments and tests 

[77-81]. A smart greenhouse requires intelligent technologies and tools to process data at 

a reasonable cost and translate it into better decisions and actions [82]. Thus, it is important 

to accurately predict a greenhouse microclimate for environmental control and crop 

management. Likewise, controlling the duty cycle (i.e., operational activities, wake-up and 
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sleep) of monitoring sensor nodes will reduce the consumed energy and prolong the 

network lifetime. When the weather background and the composition of the system’s 

greenhouse components are determined, the system’s unique agricultural microclimate 

characteristics will be relatively stable, which is conducive to prediction. Data prediction 

helps improve data quality, reduces unnecessary data transmission, and saves sensor nodes 

energy. Microclimate prediction is useful in the thermal analysis of a greenhouse for 

enabling the cooling and heating load calculation. The prediction and control of all the 

microclimate parameters will help reduce plant stress, decrease fungus growth, decrease 

the number of pests, foster an appropriate environment for growing crops, and prolong the 

network lifetime. However, the prediction of the microclimate in a greenhouse is a 

challenging task for researchers. Many methods use redundant and periodic sensory data 

based on historical data; this usually results in low prediction accuracy [83-85]. 

 

This chapter proposes an intelligent framework to predict and control the microclimate of 

a greenhouse and maintain its deployed WSN energy as efficiently as possible for a long 

time. The framework uses a deep learning model, Long Short-Term Memory (LSTM), to 

collect and predict five environmental factors: air temperature, relative humidity, air 

pressure, dew point, and wind data daily. LSTM is an artificial Recurrent Neural Network 

(RNN) architecture well-suited to classifying, processing, and making predictions based 

on time series data. There are many different types of classical time series prediction, but 

these techniques are not suitable in our case because they work well on short-term 

prediction and does not show its effectiveness for long term data. Also, these techniques 

are based on existing patterns that will continue in the future. But in the real dynamic nature 
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of time series data, these assumptions are not valid, which indicates to use deep learning 

techniques as LSTM. Besides, the input data sometimes in time series suffers from 

sequence dependence problem which LSTM can resolve it because it is easier to be trained 

on large hidden architecture and get better results. 

 

The remainder of this chapter is organized as follows. Section 5.2 reviews the recent related 

works. Section 5.3 states the research problem and lists our contributions. Section 5.4 

introduces our proposed framework. Section 5.5 explains the first phase of building a 

prediction model. The performance evaluation of the LSTM model is covered in Section 

5.6. Section 5.7 explains the second phase of the prediction duty cycle, based on the LSTM 

model, and gives our proposed algorithm. Lastly, in Section 5.8, the performance 

evaluation for the proposed algorithm is discussed.  

 

5.2 Related Works 

In recent years, intelligent solutions based on using machine learning and deep learning 

technologies have developed rapidly and have significantly contributed to the advancement 

of prediction models. These models were shown to enhance the quality, accuracy, 

generalization ability, and robustness of the conventional time series prediction tools.  

Many models based on regression and the neural network have been built [86-87]. 

Recurrent Neural Network (RNN) has many applications in speech recognition, machine 

translation, and time-series data prediction due to its memory capability. The Long Short-

Term Memory (LSTM) neural network is based on the development of RNN.  LSTM is 

based on time series of connecting previous information to the present task and having a 
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very large memory. LSTM can remember information for long periods, making LSTM a 

good candidate model to forecast the greenhouse microclimate. LSTM performs well when 

processing long-term dependencies of time series data and predicting long-interval events 

as in [88]. With the existence of the Internet of Things (IoT) and cloud services, a large 

amount of environmental data can be saved and accessed, facilitating LSTM model 

accuracy.   

In [89], the authors proposed a predictive solution for disaster monitoring using a neural 

network-based Multivariate Correspondence Analysis (MCA-NN). The MCA-NN model 

aims to improve the detection results by combining features from multivariate shallow 

learning models as described in [89]. Others utilized Cellular Neural Networks (CNN) to 

monitor desertification. Authors in [90] used CNN to predict the trend of land 

desertification from 2000 to 2011; the experiment showed that the CNN model is better 

when they used an exponential smoothing model first before the prediction. The authors in 

[91] proposed a method based on the Artificial Neural Network (ANN) to predict irrigation 

requirements using the multi-layer perceptron model to extract the climate information 

retrieved from the public weather forecast to predict current crop evapotranspiration. In 

[92], the authors built an Autoregressive Neural Network (AR-NN) model for the seasonal 

weather, to map the nonlinear relationship of the data collected to get reliable prediction 

results. 

All the previous works and applications mentioned above, depend basically on sensors for 

collecting data. The sensors deployed in various environments for numerous applications 

must have a long lifetime, long enough to fulfill the application requirements with high 

accuracy and efficiency to produce reliable predictions. There are many factors that affect 
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the quality of the wireless sensor network. One of these factors is energy consumption. 

Authors of [93] used experimental measurements to show that transmitting data will 

consume more energy than processing data. While authors in [94], claimed energy could 

be consumed by sensor components such as the CPU, radio, and microprocessor. Many 

schemes are proposing to conserve energy via communication [95]. Another approach to 

energy conservation was to reduce the amount of data transmitted either by compression 

[96] or aggregation [97]. In addition, many proposed works have been done to save energy 

by scheduling the sleep/wake-up duty cycle among sensor nodes in the network. In [98], 

the authors derived an algorithm to increase energy efficiency based on the node’s location 

and the scheduling of node activities. The simulation indicated that the network design was 

maximizing the lifetime of the sensor. In [99], the authors discussed the parameters that 

can affect the energy consumption and lifetime, their experiment focused on the effects of 

different data sizes and changing the duty cycle (sleep, idle, sleep). They concluded that 

sleep current is an important parameter that reduced the lifetime of the battery by 193 days. 

Furthermore, they reported that the increase in data packet size would decrease the lifetime 

of the battery. The authors in [100] proposed a method based on local traffic for the derived 

distance-duty cycle. They compared three methods: Traffic-adaptive Distance-based Duty 

Cycle Assignment (TDDCA), Distance-based Duty Cycle Assignment (DDCA) and 

Constant Duty Cycle (CDC), based on each method's packet delivery ratio (PDR). The 

results proved that the PDR is almost the same in the three methods for light traffic loads. 

However, for heavy traffic loads, each method performed differently. Another approach in 

[101] the authors provided different duty cycles based on the distance between the node 

and the BS to show the effect of traffic load on the amount of consumed energy. In [102], 
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the authors found node density impacted energy consumption with different numbers of 

nodes and duty cycles. In [103], the authors attempted to prolong the lifetime of the node; 

their experiment concluded that the node is in a wake-up mode when the energy level is 

above a certain threshold and can transmit, receive, and process data. When the energy 

level is under the threshold, the node enters sleep mode and is inactive. In [104], the authors 

determined that device placement cannot be feasible because of the environment or if the 

number of devices is large.  The work involved many attempts that assumed a device could 

be placed in the sensing field with the goal of optimizing the device placement with respect 

to system lifetime. In [105], the authors attempted to find the minimum number of relay 

nodes (RNs) and where the best location would be to meet the constraints of the network 

lifetime. They used a recursive algorithm by placing the RNs in the intersections of the 

communication range of the largest number of sensors. In [106], the authors proposed a 

way to decrease the energy consumption by using B-MAC carrier sense media protocol 

which reduced the duty cycle to achieve a low power operation.  

Some drawbacks we noted in the literature work above are as follows. Most of the works 

did not include all the microclimate factors that affect the growth of a plant. Most did not 

consider the prediction of the maximum, minimum, and average of all the microclimates, 

which helps establish boundaries for the prediction of weather values to enhance the 

accuracy of the prediction model. Besides, all the proposed works for decreasing the energy 

consumption of sensors were mostly covering location, the components in the sensor, 

communication, duty cycle, data size and data type that need to be transmitted. Our 

proposed framework uses a deep learning model to collect and predict the sensor’s duty 
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cycle which will change and control the sensor’s operation that monitors the microclimate 

inside the greenhouse, saving the energy and prolonging the lifetime of the network.  

 

5.3 Problem Statement and Contributions 

 

The microclimate inside each part of the greenhouse must be monitored frequently and 

kept under control to avoid any sudden environmental changes that affect the growth of the 

crop. However, such intensive use of sensors for monitoring will consume much energy 

and decrease the networks’ lifetime. In this chapter, we investigate a solution for solving 

the following problem:  

Determine an efficient solution for monitoring the microclimate to protect crop growth 

while increasing the lifetime of the WSN  

 

To address this problem, we propose an efficient two-phase framework. The first phase 

uses the LSTM model with data collected from WSN to control and stabilize the 

greenhouse atmosphere to ensure good quality crop production. In the second phase, the 

LSTM model will be used to control the duty cycles of the sensors which will decrease the 

energy consumption and cost production and increase the network’s lifetime. 

To this end, the major contributions of this work are listed as follows:  

 Proposing an intelligent prediction model Long Short-Term Memory (LSTM) to 

control and stabilize the microclimate in a greenhouse for better crop production. 
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The model succeeds in predicting the microclimate of the greenhouse for seven 

days, 30 days, and 90 days, ahead.   

 Designing a novel algorithm, based on our proposed intelligent prediction LSTM 

model, to predict the sensor nodes operational modes (wake-up and sleep) through 

their duty cycles. The algorithm succeeds in decreasing the consumed energy and 

prolonging the network lifetime.  

5.4 Proposed Framework 

 

In this section we present the two phases involved in the implementation of the proposed 

framework. Phase one, building an intelligent prediction model to control the microclimate 

inside the greenhouse is explained in Section 5.5. The second phase uses the predicted 

model to control the duty cycle of sensors and is described in Section 5.7. The proposed 

framework is shown in Figure 5.1.  

 

Figure 5.1: Proposed Framework 

 

5.5 Phase One: Intelligent Prediction Approach  

 

In this section, we present our novel approach for building an intelligent prediction model 

based on Long Short-Term Memory (LSTM) to control the microclimate inside a 

Intelligent 
Prediction 
Approach 

Prediction Duty 
Cycle Algorithm 

Predicted Output 
Data 

Actual Collected 
Data 

Phase One Phase Two 
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greenhouse. Phase one of our proposed approach has four stages as given in Figure 5.2. 

The first stage involves wireless sensor nodes to sense and transmit microclimate data from 

inside the greenhouse. The second stage involves collecting all the microclimate data and 

pre-processing these data. The third stage involves, building the prediction model (training, 

testing, and validation) until the model reaches a high level of accuracy and meets the 

requirements to be used inside the greenhouse. The fourth stage involves the prediction 

values used to control the greenhouse when the sensors are in sleep mode of their cycle 

and as input values to phase two. All four stages are described in more detail in the 

following subsections.  

 

 

 

Figure 5.2: Phase one Stages 

 

5.5.1 Deployment of the WSN in the Greenhouse 

 

We consider a two-dimensional greenhouse area of size A = L x W, where L and W 

represent the length and the width of the greenhouse. The WSN has a group of n sensors S 

= {𝑆ଵ , 𝑆ଶ,…,𝑆௡} connected and deployed in the greenhouse at different locations as shown 

in Figure 5.3. Without loss of generality, each sensor is connected to a BS in single hop 
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and transmit data using the Zigbee communication protocol3. All sensors have the 

following characteristics: a limited power supply, equal initial energy, and the same 

lifetime. We assume that the lifetime for all sensor nodes is known in advance. In our study, 

we assume that each sensor has the following two modes of operations: wake-up (or active) 

and sleep, during its duty cycle. Each sensor is responsible for sensing, processing, and 

transmitting the microclimate data.  

 

 

Figure 5.3: WSN Deployment in a Greenhouse 

5.5.1.1 Data Collection and Preparation 

Our proposed approach is based on a very large dataset of historical weather records. Data 

collection is the second operational stage of phase one. We utilize a dataset of 1826 records 

collected by many types of wireless sensor nodes that have been installed inside and outside 

 
3 Other network architectures/protocols could have been used.   
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a greenhouse in Surrey, British Columbia, Canada to monitor the microclimate [107]. From 

this point forward we will refer to air temperature, humidity, air pressure, dew point, and 

wind as five environmental factors, were recorded and analyzed with the help from 

Weather Underground, a community of volunteers reporting data taken from specific 

weather sensors, located in British Columbia. This data has been collected for five years 

from January 1, 2015 to December 30, 2019, on an hourly, daily, and weekly basis. From 

that dataset we calculate the maximum, minimum, and mean data for all five factors.  

 

In this study, we used the collected data to train and test our proposed model for weather 

prediction for 7/30/60 days. The prediction for 60 days ahead is an effective indicator 

before the sensor run out of battery and give the greenhouse manager the chance to replace 

the sensor without any damage can affect the greenhouse. The inputs for the model were 

the maximum, minimum, and mean of the five factors. The output weather predictions were 

for 7/30/60 days in the future. The sample of the microclimate data is shown in Figure 5.4. 

After collecting data from sensor nodes, we prepare the dataset to be fed to the model using 

a cleaning process. All records should not have missing values. The dataset must be in 

numerical value. Applying scaling transformation and then normalization on the dataset. 

LSTM generally improved its performance with the normalized data. We prepare the 

dataset to LSTM by normalizing the input variables. Normalization using Gaussian 

distribution is a rescaling of the data from the original range so that all values are within 

the range of 0 and 1. We accurately estimate the minimum and maximum values. The 

dataset already comes pre-processed by the community. Any data that has a missing value 

was replaced with NaN. Also, any duplicated data were discarded. All data are transformed 
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and scaled for easier use. Following data preparation, cleaned data is input into the LSTM 

model. The model consists of three steps explained next and illustrated in Figure 5.5. 

 

Figure 5.4: Sample Microclimate Data 
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Figure 5.5: Flowchart for Building the LSTM Model 

 

5.5.1.2 Building LSTM Model 

 

LSTM is a type of deep learning RNN architecture. The input of LSTM can be current data 

and data previously collected.   Thus, the input of the LSTM model at time t is the model 

output at time t-1 along with new input at time t. The model depends on time series to 

predict the future microclimate in the greenhouse, which is dependent on the previous 

microclimate of the greenhouse. Data has been collected and used to determine which 
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prediction is more accurate for the next 7/30/60 days. The prepared dataset is divided into 

training, testing, and validation sets (80% for training, 10% for testing, and 10% 

validation). These sets are then split into input and output variables. In LSTM the input 

changed to a 3D format [features, samples, timesteps]. For predicting all the weather 

conditions, we define the LSTM with 50 neurons in the first hidden layer and 15 neurons 

in the output layer. The input shape is a one-time step with 15 features. The model fits for 

1500 training epochs with different batch sizes and activation function (Relu). 

 

We can forecast for all the test dataset after fitting the model. We combine the forecast 

with the test dataset and invert the scaling. Calculating the error score for the model by 

using original scale of forecasts and actual values. We calculate the Mean Absolute Error 

(MAE) and the Mean Square Error (MSE). Based on our predictions, and to increase the 

accuracy of our proposed model, we apply two different gradient descent optimization 

algorithms Adam [108] and the Stochastic Gradient Descent (SGD) [109]. The LSTM 

model with those two optimization algorithms is tested, and the results compared by 

calculating the Root Mean Square Error (RMSE). The best-suited model is selected based 

on the minimized values of MSE and MAE and used to measure the performance of the 

model. 

After prediction, we can change any environmental factor inside the greenhouse to the 

desired level and control it by requesting an actuator to initiate an action such as open the 

windows, switch on the heater, or switch on the fan. Our model was tested on different 

datasets collected from wireless sensor monitoring. Additionally, our model can predict 

distinct lengths of time. 



 

113 

 

 

There are two parts of the LSTM model: the training part and the prediction part. 

 

A. Training Part 
 
 

The LSTM training model, shown in Figure 5.6, is used to predict the microclimate inside 

a greenhouse. Our LSTM model has three layers: an input layer, a hidden layer, and a dense 

layer. The input layer has 50 neurons and is used to provide input to the LSTM model. The 

LSTM model input is a vector containing the current (hour, day, or week) for the weather 

forecast data. This feature vector is denoted by 𝑥௜ , 0 ≤ 𝑖 ≤ 𝑛, in the diagram at time t. Our 

model has 16 hidden layers. The LSTM model’s output at time t is an initial parameter 

vector which is also an input for the model for time t+1. The hidden units are internally 

connected, where output ℎ௜ of LSTM at time t is the input of the next hidden unit, ℎ௜ାଵ. 

The hidden layer is used to adjust the weights assigned to the initial parameters based on 

the gradient descent difference. The LSTM model output at time t is also the input for the 

model for time t+1. This is because the LSTM behavior for that next hour’s, day’s, or 

week’s output is dependent on the previous hour’s, day’s, or week’s output. The last layer 

is the dense layer. The output of all units in the hidden layer ℎ௜ is connected to a dense 

layer whose output 𝑝௜ has 15 units, representing each microclimate forecast. These 

predicted values are then compared with the actual weather forecast’s value at that time. 
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Figure 5.6: LSTM Training Model with Input, Hidden, and Dense Layers 

 

 

B. Prediction Part 
 
 

In the prediction phase, we use the trained LSTM model to predict the microclimate 

forecast for the next 7/30/60 days. Let 𝑃௜
௧ denote the microclimate 𝑖 at time t. Let {𝐹௜

௧... 

𝐹௡
௧} be the climate features. Given a tuple (P,F), our goal is to predict 𝑃௜

௧ାଵ, 𝑃௜
௧ାଶ , . . . 𝑃௡

௧ା௠ 

, where m is the number of days for which prediction is required. The feature vector at time 

t is the input to the trained LSTM model that predicts the microclimate for the number of 

days, passed as an argument in the function. The next day’s predicted values are appended 

with the corresponding day’s weather forecast data to predict the next day’s microclimate. 

The whole function is recursively called n times, where n is the number of days for which 

prediction is required. We predict the next m number of days microclimate; instead of 

training a separate LSTM model for different values of n, one model is trained to predict 
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the next day’s values that are extrapolated for the next day’s prediction, as shown in Figure 

5.7. 

 

 

Figure 5.7: LSTM Prediction Model 

 

5.6 Performance Evaluation 

 

In this section, we present the performance evaluation and results’ comparisons of our 

intelligent LSTM model built in phase one. Our proposed model is implemented with 

multiple python packages including TensorFlow [110] and Keras [111] to perform label 

encoding and scaling on our dataset, respectively. The LSTM model predicts the five 

environmental factors over the next number of days. There are multiple parameters 

(number of epochs, hidden layers, hidden neurons) on which the LSTM model works. 

Tuning all these parameters results in different RMSE values. We performed several 

experiments to find the optimal value of the parameters to achieve the least RMSE.  
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The data is split into training, testing, and validation. To assess the performance of the 

proposed model, we compare the training data results and validation data in loss function. 

We used three loss functions to measure how accurately our model can predict the expected 

outcome. The loss function is a measure of how well our model did at predicting the 

outcome. A high value for the loss means our model performed poorly. A low value for the 

loss means our model performed very well. The three loss functions are explained below. 

 

5.6.1 Evaluation Metrics 

 

We used the following three loss functions, MAE, MSE, and RMSE, per Equations 5.1, 

5.2, and 5.3, respectively. RMSE is the difference between the microclimate weather values 

predicted by a model and the values observed. Because the model is trained on past data, 

we report the RMSE for future microclimate weather prediction values. In Equations 5.1-

5.3, s represents the test sample size. The MAE and MSE results are shown in Figure 5.8 

and Figure 5.9, respectively. From here on, we use the MAE in our results. Because the 

MSE loss function square the error and it will take time to reach the minimum, rather than 

MAE loss function is subtracting the error and will be faster to reach to the minimum.   

 

         𝑀𝐴𝐸 =  
ଵ

௦
 ∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑௜ − 𝐴𝑐𝑡𝑢𝑎𝑙௜|௦

௜ୀଵ                     (5.1)   

  

                 𝑀𝑆𝐸 =  
ଵ

௦
 ∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑௜ − 𝐴𝑐𝑡𝑢𝑎𝑙௜)ଶ௦

௜ୀଵ                    (5.2) 
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            𝑅𝑀𝑆𝐸 =  ට
ଵ

௦
 ∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑௜ − 𝐴𝑐𝑡𝑢𝑎𝑙௜)ଶ௦

௜ୀଵ                (5.3)   

 
 

 

Figure 5.8: MAE Result. 

 

 

Figure 5.9: MSE Result. 
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5.6.2 Results and Discussion 

 

Based on our predictions, and to increase the accuracy of our proposed model, we apply 

two different gradient descent optimization algorithms Adam [108] and the Stochastic 

Gradient Descent (SGD) [109]. The advantage of the Adam algorithm over SGD is that 

global minima are achieved faster with fewer epochs, as shown in Figures 5.10-5.13.  

 

Figure 5.10: 50 Neurons, SGD 

 

Figure 5.11: 5 Neurons, SGD 
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Figure 5.12: 50 Neurons, Adam 

 

 

Figure 5.13: 5 Neurons, Adam 
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Figures 5.10, 5.11, 5.12 and 5.13 show which optimization algorithm reaches global 

minima, with fewer epochs, faster when there is different neurons input. From the figures, 

the global minima are achieved with the least number of epochs when the number of 

neurons is higher. The figures also illustrate that 50 neurons perform better than five 

neurons in terms of achieving global minima. In Figure 5.12, the use of 50 neurons and the 

Adam algorithm achieved the global minima in fewer than 30 epochs, while in Figure 5.10, 

the use of 50 neurons and the SGD algorithm achieved the global minima in 200 epochs. 

We used the Adam algorithm with one hidden layer, 50 hidden units, and 150 epochs in 

our LSTM model to obtain the global minima. We did not define the learning rate in the 

Adam algorithm since it already calculates the individual adaptive learning rate for each 

parameter.  

 

The RMSE results for 7/30/60 days are shown in Figures 5.14, 5.15 and 5.16. Each figure 

represents the five environmental factors, for the predicted and actual data. From the results 

[112], we can see that the proposed model can predict the future weather inside the 

greenhouse with a high level of accuracy because the performance of the model is good on 

both the training and validation sets (good fit) as shown in Figure 5.8. It is noticeable that 

the prediction accuracy is almost the same in all the three figures. More detailed results are 

included in the Appendix B. 
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Figure 5.14: Prediction for Seven days Ahead 
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Figure 5.15: Prediction for 30 days Ahead 
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Figure 5.16: Prediction for 60 days Ahead 
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5.7 Phase Two: Prediction Wireless Sensor Nodes Duty Cycle  

 

In phase two of our proposed framework, we propose an algorithm called Prediction Duty 

Cycle Algorithm (DCPA) to decrease the consumed energy of the wireless sensor and 

camera sensor nodes and prolong the network lifetime by predicting and controlling the 

duty cycle of the nodes during the crop life cycle in a greenhouse. Data input for the DCPA 

is taken from the LSTM model, which is developed in phase one.   

In the remainder of this section, we first explain the plant growth cycle in a greenhouse to 

understanding of the natural growth cycle of a plant which is important when making 

decisions that affect the overall efficiency of greenhouse crop production. Without loss of 

generality, we explain this cycle using the growth of a tomato plant. We then explain in 

detail the steps of our proposed algorithm, DCPA.  

 

5.7.1 Case Study: Tomato Plant  

 

In this research, we focus on the tomato crop as a use case for understanding its growth 

cycle that help in building our model. The optimum microclimate levels for the best 

greenhouse cultivation of tomatoes depend on different growth stages and conditions. 

There are five stages of growth in a tomato: germination and early growth with initial 

leaves take between 25-35 days, the vegetative period between 20-25 days, the flowering 

period 20 to 30 days, the early fruiting period between 20 to 30 days, and the mature 

fruiting period between 15-20 days [113]. The exact period of days depends on the 

atmosphere inside the greenhouse. For most greenhouse tomatoes to reach maturity and 

ripeness is between 65 to 100 days. Shortening the production time can be done by 
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changing the conditions inside the greenhouse. The growth stages of a tomato plant are 

graphically presented in Figure 5.17 along with fruit maturity and ripeness levels. It should 

be noted that tomatoes are harvested when they have reached the mature green stage (vine-

ripe), which is just as they start to ripen. 

 

 

Figure 5.17: Five Growth Stages for Tomato Plants 

 

Air temperature higher or lower than the optimal values affects different stages of tomato 

growth and development. High temperatures cause the fruit to die because of improper 

transpiration and can destroy the plant. Tomato plants are notably sensitive to above 

optimal air temperatures during the reproductive stage and may face a reduction in the 

percentage of fruit set, which triggers a significant yield decrease in commercial 

cultivation. On the other hand, the decreasing temperature will affect respiration and 

photosynthesis, causing a hormone imbalance in the tomato plant. In addition, a very high 
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level of humidity in the greenhouse environment causes diseases and fungal pathogens to 

grow and spread rapidly infecting the plants. Pests also spread faster in high temperatures 

and humidity. Some of the diseases and physiological abnormalities associated with high 

humidity in greenhouse production include black spot, powdery mildew, leaf-edge burn 

and blossom-end rot of tomatoes. As well, plants evapotranspiration may be limited. 

Barometric pressure directly affects the water uptake by tomato plants and likewise the 

overall tomato fruit yield. Extremely high- or low-pressure values can result in leaf 

physiology disorders and the fruit to die. 

By knowing the duration of the plants’ growth, we can control the greenhouse environment 

to speed up the growth of the plants and also to protect them from diseases. Predicting 

greenhouse optimal parameters for seven days after seeding, which is when the seeds 

germinate (sprout), and 30 days is the duration of each stage in tomato growth, allowing 

growers to control the climate inside the greenhouse during these periods of growth. It will 

also reduce energy consumption for wireless sensor nodes which in return will reduce 

network deployment and maintenance costs.  

 

5.7.2 Proposed Duty Cycle Predicting Algorithm (DCPA) 

 

Based on the literature reviewed, there remains a gap in the research that answers the 

question: How can you decrease the amount of energy consumed by wireless sensor nodes. 

To solve this problem. We build the LSTM model as explained in section 5.5. Then, use 

our novel algorithm DCPA based on LSTM to predict and control the monitoring sensors’ 
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duty cycle. Using our proposed DCPA will regulate between wake-up/sleep mode for the 

sensors depending on the prediction model. 

Our proposed algorithm’s primary goal is to predict the operation of the sensor nodes 

through the duty cycle to make sure that the nodes are not active continuously when 

monitoring the greenhouse. Thus, reducing the consumed energy and prolonging the WSN 

lifetime. DCPA uses the output features’ values from the LSTM prediction model as an 

input. Each sensor can be in active mode or in sleep mode depending on the difference 

between the actual measured value and the predicted value. DCPA works as given in 

Algorithm 5.1.  

Sensors at time t start in an active mode and sense any of the features (i.e., environmental 

factors), At, inside the greenhouse and compare it with predicted value, Pt, from the model. 

All predicted values are stored in an array of size n, P[n]. The sensor node will calculate 

the absolute difference between actual value and predicted value at time t. If the difference 

is greater than a predefined threshold value, then the sensor will continue to be active and 

will send the new value to the BS to update the prediction model. For example, the 

threshold value equal to an acceptable temperature range as in [114]. The BS then will send 

a job request to an actuator to do an action to reduce the current feature value inside the 

greenhouse. For example, switch on the fan for a specific period of time if the air 

temperature or humidity levels exceed the threshold. The sensor node will continue sensing 

and comparing until sensor node runs out of energy or the difference is less than the 

threshold. If the difference is less than then threshold, then the sensor node will sleep for a 

period of time, STt. The value of STt is determined based on the feature value increase or 

decrease in the greenhouse. This can be calculated using a sleeping time indicator STI, 
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which is the difference between At and 𝑃௧ା௉ௌ ೟்
, where PSTt is  the proposed sleeping time 

at t and  𝑃௧ା௉ௌ ೟்
  is the predicted feature value  at (t + PSTt) from P[n]. If STI is less than 

zero, this means the feature value is decreasing and thus, the sensor node can sleep as 

proposed, i.e., sleeping time is equal to proposed sleeping time (𝑆𝑇௧  =  𝑃𝑆𝑇௧). While, if 

STI is greater than zero, this means the feature value is increasing and the sleeping time 

should be less than the proposed time as follow  𝑆𝑇௧ =  ඌ𝑒ି 
ೄ೅಺

భబ
 × 𝑃𝑆𝑇௧ඐ

 

.  

Table 5.1 defines the symbols used in Algorithm 5.1. 

 

Table 5.1: Algorithm 5.1 Symbol Definitions  

Symbol Definition 

P[n] Array of predicated features’ values for n hours 

Pt Predicted feature value at t 

At Actual feature value at t 

Difft Feature difference value between At and Pt 

PSTt Proposed sleeping time at t 

𝑃௧ା௉ௌ ೟்
 Predicted feature value at (t + PSTt) 

STI Sleeping time indicator, which is the difference between At and 𝑃௧ା௉ௌ ೟்
 

STt Sleeping time at t 

Th Predetermined threshold value 
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Algorithm 5.1: Predict Duty Cycle 

 

Input: Array of predicted features’ values for n hours, P[n], and actual feature value, At, at time t 

Output: Sleeping time at t 

// Do for each sensor at time t = 1:n 

do  

             Determine Pt from P[n] 

Sense and measure the current actual feature value, At 

Calculate Difft = At – Pt 

if (Difft <= Th) then // Sensor sleeping mode 

Calculate 𝑃𝑆𝑇௧ = Trunc | 𝐴௧ −  𝑃௧  | 

Determine 𝑃௧ା௉ௌ ೟்
 from P[n] 

Calculate STI = 𝑃௧ା௉ௌ ೟்
  -  𝐴௧ 

if (STI > 0) then // Feature value will increase 

𝑆𝑇௧ =  ඌ𝑒ି 
ೄ೅಺

భబ
 × 𝑃𝑆𝑇௧ඐ

 

 

else // Feature value will decrease 

𝑆𝑇௧  =  𝑃𝑆𝑇௧ 

t = t + STt 

end if-else 

else // Sensor active mode 

Transmit At to the BS 

BS sends a job request to the actuator to adjust the feature value inside the 

greenhouse 

Update the prediction model based on the value of At 

t = t + 1 

end if-else 

while (t <= n ||  Difft > Th) 

end do-while 
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5.8 Performance Evaluation 

 

In this section, we evaluate the performance of sensor node operation using our proposed 

algorithm, DCPA, and compare it with two different operational methods: Short Duty 

Cycle (SDC) and Long Duty Cycle (LDC). The sensor nodes in both methods, SDC and 

LDC, will alternate between the two operational modes, active and sleep, for different 

lengths of time. During the active period, the nodes can sense the microclimate factors of 

the greenhouse, process, and send data to the BS. In our study, we consider that the nodes 

in SDC in an active mode for an hour and then in sleep mode for the next hour. While, the 

nodes in the LDC sleep for six hours and wake up for one hour. Thus, on a period of 24 

hours, the SDC nodes are active for 12 hours and sleep for another 12 hours in total. On 

the other hand, the LDC nodes will sleep for 20 hours and be active for 4 hours.  

 

A WSN enabled greenhouse, shown in Figure 5.3, is considered in this simulation with the 

defined parameters and values given in Table 5.2. Figures 5.18-5.20 show the simulation 

comparison results between the three methods in terms of the following performance 

metrics running for 24 hours: 

 Total energy consumption: The estimated consumed energy, Ec, for sensing, 

computing, sending, receiving, and sleeping as in [41]. Thus, Ec is the summation 

of estimated energy consumed in sensing (SsE), energy consumed in computing 

(CpE), energy consumed in sending (SnE), energy consumed in receiving (RcE), 

and energy consumed in sleeping (SpE), for all n sensors. It can be calculated using 

the simple model in Eq. 5.6. Note that other more elaborate energy consumption 
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models could have been used, but we are more concerned with relative energy 

consumption as opposed to absolute values.  

𝐸௖ =  ∑ (𝑆𝑠𝐸 + 𝐶𝑝𝐸 + 𝑆𝑛𝐸 + 𝑅𝑐𝐸 + 𝑆𝑝𝐸)ௌ೔

௡
௜ୀଵ     (5.6) 

 Network lifetime (or remaining network energy): is defined as the total remaining 

energy of all sensor nodes of the network over a certain period of time. Let us 

assume that the initial network energy or energy of all nodes is equal to Ein. We 

estimate the energy consumptions of all sensor nodes in the network to be Ec for a 

certain period of time. Then, the network lifetime is estimated as Ein – Ec, the 

difference between Ec and Ein. 

 Unreported data: is number of significant changes in the environmental factor value 

that is not reported to the BS since the sensor node was in sleep mode according to 

its duty cycle activities.  

 

Table 5.2: Simulation Parameters. 

Parameters Values 

Greenhouse area 100m x 100m 

Number of sensor nodes 10 

Base station position (50, 50) 

Initial node energy 2 J 

Sensing energy 0.15 J 

Computing energy 0.2 J 

Sending energy 1.05 J 

Receiving energy 0.5 J 

Sleeping energy 0.01 J 
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5.8.1 Results and Discussion 

 

Figure 5.18 illustrates the total estimated energy consumption using the three methods. We 

note that the SDC operational method’s energy consumption is the highest, while energy 

consumption is the lowest for the LDC operational method. Sensor nodes consume more 

energy in the SDC method due to the frequent active every other hour for one hour for the 

sensor nodes where they have to sense, process, and transmit. While less energy is 

consumed using the LDC method since the sensor nodes are in sleep mode most of the time 

and thus, save more energy. It is noted that, in Figure 5.18, our proposed algorithm, DCPA, 

performs much better than the SCD and very close to the LDC method. The reason is that 

the sensor nodes will be active only when there are significant changes in the greenhouse 

microclimate conditions. Thus, more control over the operation of the nodes and thus, 

saving more energy.  

Figure 5.19 shows the total remaining energy using the three methods. The DCPA achieves 

a better network lifetime compared to the SDC method and very close to the LDC method. 

The results in this figure complement the results obtained in Figure 5.18 and based on our 

assumptions that all sensor nodes have equal initial energy and same lifetime, as explained 

in Section 5.5.1. The more time the sensor nodes sleep, as in the LDC case, the more energy 

is saved; thus, longer network lifetime is achieved. This is not the case when using the SDC 

method where more energy is consumed which shortens the network lifetime. Our 

algorithm shows reasonable results based on its ability to predict and control the sensor 

nodes’ operation based on real-time collected data making it a more practical solution to 

implement.  
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Figure 5.18: Energy Consumption of Node in each Round 

 

Figure 5.19: Lifetime of a Sensor Network 
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Figure 5.20: Reported and Unreported Comparison Results Between DCPA, SDC, LDC 

 

Figure 5.20 illustrates the comparison results between the methods based on three cases: 

(1) significant change occurs in the greenhouse microclimate condition but this change is 

not reported to the BS since the sensor node is in sleep mode, (2) significant change occurs 

in the greenhouse microclimate condition and this change is reported to the BS since the 

sensor node is in an active mode, and (3) no change occurs in the greenhouse microclimate 

condition when the sensor did the comparison between actual and predicted values, and 

thus, there is nothing to report to the BS. In case one, unreported data, the LDC method 

achieved the highest value since the sensor nodes are in sleep mode most of the time 

making them fail to report any significant changes in the greenhouse. While, the SDC has 

the lowest unreported data because the nodes are active most of the time and can report 

any significant changes that are happening in the greenhouse. Interestingly, the DCPA has 
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fewer missing data, since the nodes are operated by executing our intelligent algorithm 

with high accuracy to predict more realistic sleeping time based on the greenhouse 

microclimate conditions. The nodes using the DPCA are awake when there are significant 

changes in the greenhouse and sleep mode when no significant changes are happening. 

Results obtained in cases 2 and 3 are straightforward and confirm the ability of the three 

methods to report significant changes when sensors are in active mode and save energy 

when there are no significant changes to report efficiently. The DCPA result in case 2 is 

close to the result of the SDC. In addition, the summation of reported data and unreported 

data when there is a change for both methods, DCPA and SDC, have almost the same value. 

High result value for the DCPA in case 3 confirms the ability of the LSTM model to predict 

the microclimate changes in the greenhouse accurately.  

 

We conclude from the above results, Figures 5.18-5.20, that our proposed algorithm, 

DCPA, achieves better realistic and more robust performance results in terms of energy 

consumption and network lifetime than both SDC and LDC methods.  This is because 

sensor nodes using DCPA consume energy in an optimistic way; they are only in an active 

mode when there are changes in the greenhouse that require the nodes to send messages to 

the BS. As sensor nodes using DCPA know ahead what will happen in the greenhouse 

microclimate condition based on the proposed LSTM prediction model. In phase one, we 

showed that the LSTM model has a high level of accuracy where predicted values are 

almost the same as actual values most of the time. By using the predicted values from the 

LSTM model as input for the DCPA this ensures that sensor nodes will not miss reporting 

significant changes in the greenhouse microclimate conditions to the BS. This is because 
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the nodes will be for the majority of the time in the right mode of operation. Also, it is 

noted that sensor nodes that use DCPA consume energy wisely which means prolonging 

the lifetime of the sensors and thus, they can be used for longer periods of time ideally for 

longer than the lifecycle of the growing crop. This will reduce the cost of both WSN 

deployment and maintenance. Keep in mind that each location for each sensor is different. 

This means if some sensors are in sleep mode because they did not sense any changes, 

other sensors can detect the changes and report it and update the prediction model. This 

increases the efficiency of the network that have DCPA.  

 

These results confirm the ability of the sensor nodes to use DCPA to operate efficiently in 

different conditions and save time to fix any critical issues that may happen inside the 

greenhouse. Making it more practical than the other two methods SDC and LDC.  

 

5.9 Summary 

 

In this chapter, we introduced a prediction-based framework for monitoring microclimate 

parameters and controlling the sensor nodes in a greenhouse for having high-quality 

production of crops with less cost. WSN is deployed inside the greenhouse to collect the 

microclimate data. The LSTM model with different optimization algorithms are applied to 

the training and testing of environmental data that is collected over a five-year span. The 

accuracy of the model performance, as evaluated by measurements of AME, MSE and 

RMSE, is high. The obtained prediction results for 7/30/ 60 days ahead are promising and 

are significantly useful in predicting and controlling the sensor nodes’ duty cycles (active 
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mode and sleep mode) inside the greenhouse.  The proposed DCPA is used to control and 

predict the duty cycle of the nodes during the crop lifecycle. We showed through simulation 

that our proposed algorithm, DCPA, performance is robust and more practical than the 

existing two methods, SDC and LDC. The estimated energy consumption and network 

lifetime are better in DCPA compared to the SDC method. Also, the DCPA has fewer 

missing data reported compared to the LDC method.  

This research can efficiently facilitate the deployment of WSN and using intelligent 

prediction solution, in the greenhouses, not only to decrease the energy consumption of the 

WSN nodes and the production cost but also will predict, control, and moderate the 

microclimate inside the greenhouse and thereby prevent any incident that would adversely 

affect the crop from happening. We, therefore, advocate adopting the deployment of this 

framework whenever possible in practice. 
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Chapter 6 

Conclusions and Future Works 

The last decade has witnessed an increasing implementation of greenhouse applications 

using WSNs and WVSNs due to the combined potential of these two technologies, 

especially in monitoring, detection, and controlling applications. However, these essential 

tasks need particular efficiency in a greenhouse setting to ensure data availability, high-

quality image resolution, maintain the microclimate stability, and timeliness delivery, 

within a realistic cost. In literature, existing schemes in this research area are limited to 

specific cases and deliver results that are far from optimum. To the best of our knowledge, 

no cohesive framework exists that considers all the issues involved in a greenhouse 

application, including uncertainty in detecting plant diseases, prediction accuracy, 

optimizing placement, coverage, and resolution for monitoring and controlling devices. 

This chapter concludes the thesis with a summary of our research contributions in Section 

6.1, as well as future research directions outlined in Section 6.2. 

 

6.1 Research Contributions Summary 

 

The work in this thesis proposed a realistic and practical framework that utilizes WSN, 

WVSN, machine learning, deep learning, and image processing technologies to satisfy 

greenhouse-specific network properties. 

The framework is divided into three phases. In the first phase, we succeeded in finding the 

minimum number of camera sensors, and the optimal placement of each camera sensor, to 



 

139 

 

cover a large area in the greenhouse with high-resolution quality and no overlap between 

images. High-resolution images were enhanced, then image processing techniques were 

applied for the segmentation process and machine learning to recognize and identify 

powdery mildew fungus in our proposed automated system. Phase two achieved high levels 

of accuracy that confirmed the system’s ability for its intended purpose. In the last phase, 

our proposed prediction system efficiently demonstrated saving time and effort in 

preventing fungus or an infestation of pests by controlling and predicting the microclimate 

ahead of time. Thus, increasing the quality and quantity of the greenhouse crop. Also, our 

novel proposed algorithm, DCPA, at this phase, proved decreasing the extensive work of 

the wireless sensors, by predicting and controlling their duty cycle activities, which 

effectively decreases the consumed energy, prolong the network lifetime, and reduce 

deployment and maintenance costs.  

 

Our proposed framework is composed of three phases as presented in Chapter 3 (Phase 1), 

Chapter 4 (Phase 2), and Chapter 5 (Phase 3). In Chapter 3, we formulated an optimization 

problem for defining the optimal placement for the sensor cameras to satisfy four main 

criteria, minimizing the number of sensor cameras, maximizing the covered area, 

maximizing image resolution, and avoiding overlap image views. This problem is 

considered an NP-complete. We used ILP formulation and divided the objective function 

into two sub-functions to solve the problem. The first function considers maximizing the 

quality of the image and the area being covered. The second function considers avoiding 

the overlap between images and minimizing the number of deployed sensor cameras. The 
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experimental results for both functions were satisfactory, showing great promise as future 

applications.     

 

In Chapter 4, we proposed a novel automated detection system that used the high-resolution 

output images taken from the sensor cameras and good coverage of the area. The system 

used the Hough Forest machine learning technique and image processing methods to 

enhance these images. The system was able to identify and recognize the early signs of 

powdery mildew fungus from the images with high accuracy levels. The cross-validation 

result is 96.69%, which is high enough to show the excellent system performance. The fact 

that we achieved statistical results with a detection rate of 94% is another indication of the 

strength of the proposed system. 

In Chapter 5, we introduced a framework with two stages. In the first stage, we used deep 

learning with WSN to control and predict the microclimate. We proposed building the 

LSTM prediction model based on collected data from wireless sensors. Our proposed 

model’s accuracy was tested and validated using MAE, MSA, RMSE, and this showed that 

the data were accurately trained with great validation accuracy. The model examined two 

optimization functions with a different number of neurons to achieve the most accurate 

results in less time.  

In the second stage, we used the LSTM prediction model, from stage one, to propose our 

novel algorithm, DCPA, to predict and control the sensor duty cycle activities. We 

compared our proposed DCPA with SDC and LDC. The performance of the DCPA was 

better than the SDC in consuming energy and lifetime and better than the LDC in having 

fewer missing data. These results assure maintaining stability inside the greenhouse ahead 
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of time with minimum human interaction and saving the sensor’s power extending its 

lifetime considerably during its deployment.  

Merging WSN, WVSN, deep learning, machine learning, image processing technologies 

creates a complete monitoring framework for a greenhouse to increase the quality and 

quantity of crop production without human interaction and for less cost. The significance 

of the proposed framework deployment in this thesis moves beyond the scientific data 

collection to enable a smart, intelligent, and safe, productive environment. The framework 

provides automatic, fast and accurate detection capabilities with long life network 

interaction, which applies to greenhouses deployment and can be used in different 

locations, including: 

(1) Nursing homes, and home care for monitoring and reporting an emergency, 

(2) Airports, trains, and transportation systems to provide information such as identification 

and recognition in real-time for security purposes, and  

(3) Outdoor environment monitoring such as farms to monitor grazing animals and report 

their health. 

 

6.2 Future Work 

 

Several future research directions and open issues can be derived from our work thus far. 

In this section, we outline these directions. 

 We used the Hough Forest machine learning technique and image processing 

methods to recognize powdery mildew fungus in a tomato crop. We think using the 
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same technique and generalizing it to recognize any diseases that affect crops is 

possible. 

 We intend to expand our work in a more dynamic WSN and WVSN, where each 

smart camera and sensor node has a mobility feature and checks the effect on the 

network efficiency.  

 Deep learning networks proved their ability to learn any complex function between 

a given input and an output. This potential may be further investigated to 

understand the timing requirements and the delay model of connections. 

 Deep learning can be trained to solve the best placement, given an objective 

function. A deep learning model can be trained on the proposed problem, ILP-

OPCQ, and their corresponding placement solutions. Later this model could be 

generalized to generate a placement solution to new unseen data.  

 Developing a hybrid model including the CNN and ARIMA models for predicting 

the microclimate and diseases in a greenhouse.  
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Appendix A 

Samples of Greenhouse Images 

 

 

 



 

160 

 

 

 



 

161 

 

Sample patches (no fungus) 
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Sample patches (no fungus) 
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Appendix B 

Prediction Microclimate 

 

Prediction microclimate for seven days a head (min, max, avg) 
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Prediction microclimate for 30 days ahead (min, max, avg) 
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Prediction microclimate for 90 days ahead (min, max, avg) 


