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Abstract—In this study, we propose an anomaly detection
algorithm on sensor traffic data. The algorithm is composed
of three distinct steps: temporal detection, spatial detection,
and GPS calibration. The temporal detection is based on
time series analysis and detects anomalies in real-time when
measured sensor values are far offset from expected readings.
The spatial detector is used to prune the output of the temporal
detector, identifying those anomalies which are not consistent
with measurements from neighboring sensors. Both temporal
and spatial prediction use the widely adopted ARIMA model.
The final step is to compare the predicted speed with the
average speed gathered from vehicles equipped with GPS
devices and subscribed to provide their data. Experimental
results on real data demonstrate that the proposed algorithm
effectively differentiates between abnormal traffic events and
malicious manipulation of traffic data with an average accuracy
of 94%.
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I. INTRODUCTION

Traffic sensors are widely used all over the world to detect traffic
status. This data provides the primary information that affects
traffic control system strategies and decisions. Many applications,
such as automatic traffic light controller and variable speed limit,
adapt the control system according to the measurements of the
traffic sensors. Thus, ensuring the quality of the collected data is
essential to the reliable operation of the entire system. However,
traffic sensors deployed in the open and connected world may be
compromised, malfunction, or provide inaccurate measurements
due to lifetime issues. So, vital decisions may be made based on
false, imprecise, or faulty data [1]. Different factors may affect the
quality of traffic sensor data ranging from hardware faults such as
detector card broken to communication failures, systematic failures,
and electrical failures [2]. In addition to system-level errors, traffic
sensors that send their data to the nearest access point are at risk
of data manipulation attacks (e.g., a man in the middle attacks).
Either traditional traffic sensors such as inductive loop detectors
or recently developed Bluetooth-based traffic sensors are highly
subject to such kinds of attacks [3].

Although hackers cannot directly control vital traffic control
systems such as traffic light controllers, manipulating the data
measured and sent by traffic sensors could lead to a more prolonged
period of green or red lights that may cause traffic jams or even
accidents. Hence, it is fundamental to detect such attacks to avoid
these unsafe consequences.

To ensure high quality and integrity of the traffic measurements
and detect erroneous data, we propose a comprehensive ARIMA-
based machine learning approach to capture normal traffic con-
ditions and compare predictions with real-time measurements to
detect any anomalies. Auto-Regressive Integrated Moving Average
(ARIMA) [4] is typically applied for temporal-based predictions
(i.e., doesn’t capture the spatial status of the time series). In this

study, we apply ARIMA in both temporal and spatial domains
to capture the traffic status progressively over time as well as
the correlation with traffic conditions at neighboring segments
using sequence analysis. We also calibrate the model with probe
data gathered from vehicles equipped GPS devices to improve the
detection accuracy. The outcomes serve as an alarm for traffic
control systems fed with data from suspicious sensors to take
precautionary measures.

II. RELATED WORK

Short-term traffic prediction models can be grouped into para-
metric and nonparametric models. Nonparametric models include
artificial neural networks (ANNs), data mining, and clustering
algorithms. Park et al. [5] present a speed prediction algorithm
using a neural network model trained with historical traffic data
to predict the speed profile in the next 30 minutes. Li [6]
uses nonparametric regression to predict traffic flow and leverage
MapReduce on the cloud to reduce end-to-end latency to meet
real-time requirements. However, the focus was only on temporal
analysis at one intersection, ignoring the impact of neighboring
intersections.

Parametric models, such as Kalman filter and ARIMA, are based
on time series analysis and typically have tuning parameters to
adjust the behavior of the model. Kalman filter and its many
extensions have been used for short term traffic predictions [7].
Wang and Papageorgio [8] apply an extended version of the
Kalman filter to predict traffic flow at specific road segments
based on the correlation with neighboring segments. The main
constraint they apply though is that road segments should have
only either on-ramp or off-ramp, not both. Adaptive Kalman filter
[9] has also been used for multi-step ahead traffic flow prediction.
The authors propose using the average historical flow as the
system’s noisy measurements during the prediction interval. Since
the traffic volume can vary substantially depending on various
external factors, the major drawback in this approach is the high
dependency on historical data.

ARIMA models have been widely used for traffic flow prediction
due to its superior performance and less processing time [4, 11].
ARIMA also has multiple variations with varying performance
and requirements. A comparative study between standard ARIMA
and adaptive ARIMA-GARCH has been conducted in [11]. The
thesis of their research is that both algorithms provide comparable
accuracy, but the processing time of the standard ARIMA is
significantly less than that of the adaptive algorithm.

There have also been approaches that use a combination of
nonparametric and parametric techniques. For example, Wu et al.
[4] propose a hybrid prediction algorithm that uses both clustering
of historical data and time series analysis for runtime prediction.
The authors classified six clusters from historical data using
the K-means clustering algorithm and built an ARIMA model
corresponding to each cluster to predict the next flow value in
the next hour. Their experimental results show that their hybrid
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approach performs better than exclusively forecasting based on
either historical data or real-time sensor data. The main drawback
of their approach is that they did not take spatial correlation into
account.

In addition to parametric and nonparametric models, stochastic
approaches also have been used for traffic prediction. Qi et al.
[10] explored the use of Hidden Markov Models (HMMs) for
short-term freeway traffic prediction. They analyzed the sequence
of traffic speed observations to build a state transition probabil-
ity matrix to characterize the transition between different traffic
conditions. However, their approach requires long-term time series
and stretched transition windows to gather enough information for
acceptable prediction accuracy. Raiyn et al. [12] propose a hybrid
approach of moving average and exponential smoothing algorithm
to detect traffic anomalies. Also, authors in [13] take into account
surrounding factors such as weather, location, and the day off of
the week with traffic condition when building traffic models from
historical data.

Out of all objectives of traffic prediction, anomaly detection
stands out due to its paramount importance to traffic control.
Anomaly, in this context, is defined as a significant deviation (in-
crease or decrease) in traffic status from expected values. ARIMA
modeling has been used for anomaly detection of network segments
[14]. The model establishes a profile of the normal behavior of
a network segment and then detects any significant variation as
abnormal behavior.

All aforementioned detection algorithms consider traffic bursts,
such as incidents, as anomalies, which is actually true. However,
our approach distinguishes between such legitimate anomalies stem
from unexpected traffic events and malicious manipulation of data
that present untrue traffic conditions. This paper proposes a robust
anomaly detection algorithm on sensor traffic data. The algorithm
runs in three complementary phases: temporal detection, spatial
detection, and GPS calibration. The temporal detector captures
anomalies in real-time sensor values that are significantly offset
from historical readings. The spatial detector prunes the output of
the time detector, identifying anomalies that are inconsistent with
neighboring sensors. The final verification phase is to compare the
values with live GPS data collected from vehicles.

III. THE PROPOSED APPROACH

To ensure the integrity and high quality of the data collected
by traffic sensors, we propose a spatiotemporal anomaly detection
algorithm. Identifying anomaly is based on the deviation from
the normal behavior of the data. Thus, the main idea is to
identify temporal anomalies at the first phase, examine whether the
measured value at the point of interest correlates with values from
neighboring sensors. If it does, then it is a true condition caused
by an abnormal event; otherwise, the data is flagged suspicious.
Further, we can increase the decision confidence level by leveraging
data collected from GPS-equipped vehicles sharing their location
in real-time, pending data availability at the area of interest and a
reasonable penetration rate. While the first phase (temporal phase)
uses ARIMA as a time series analysis model to predict the traffic
status in the next time interval, the second phase (spatial phase),
uses ARIMA as sequence prediction model rather than its typical
use as a time series analysis. The phase aims to find the spatial
correlation between sensors to distinguish between real abnormal
conditions and fake/untrue conditions. Algorithm 1 illustrates this
process.

The steps of the proposed algorithm are outlined as follows.
1) Train a temporal ARIMA model on the historical time series

to predict the traffic follow in the next time interval.
2) Flag any suspicious sensor that provides real-time measure-

ments that are significantly offset from the predicted value.
The offset threshold can be determined experimentally or
mathematically from the standard deviation of the dataset
over respective intervals to determine reasonable values.

Algorithm 1: Anomaly Detection Algorithm
Input: Sensor Valuesflow, speed
Result: True/False

1 Begin
2 for each time interval T do
3 predict next value using last measurements of the

same sensor
4 predict next value using last measurements of

preceding sensor
5 if then
6 isValid = True;
7 else
8 mismatch between predicted and measured

values
9 if GPS probe data avaliable then

10 if sensor measurements within the range of
GPS data then

11 isValid = True;
12 else
13 isValid = False;
14 end
15 else
16 if mismatch between predicted and

measured values occurs at neighbored
sensors then

17 isValid = True;
18 else
19 isValid = False;
20 end
21 end
22 end
23 end

Note that it could be unusual traffic conditions caused traffic
jam after a significant event or sudden change in the weather.

3) Train a spatial ARIMA model using sequence analysis to
predict the correlation between neighboring sensors preced-
ing the traffic follow at the point of interest. This model
will determine the number of preceding sensors that have a
direct effect on the traffic volume at the current sensor. That
is determined by order of p and q of the AR and MA models,
respectively. The coefficient of each attribute determines the
weight of each of these sensors, on the measurements of the
sensor of interest.

4) Calculate the error margin of the spatial model using the
average and standard deviation of the training phase.

5) Calculate the absolute difference between the measured
value from the sensor and the expected value from the
prediction model.

6) If the difference is greater than or equal to the error margin,
then the decision is to confirm that this is a suspicious data.
The probe data from GPS-equipped vehicles will be used to
strengthen or weaken this decision.

7) Use GPS data collected from connected vehicles (given
we have a high penetration rate at the area of interest) to
confirm the traffic status reported by both the temporal and
spatial models. Then, we calculate the average speed and the
standard deviation to confirm the decision. We calculate the
error margin that allows the valid sensor data to be within
the error range with a 99% confidence interval.
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Fig. 1: The measured flow vs the predicted flow by both
temporal and spatial predictions.

For the majority of our tested sensors, ARIMA (0, 1, 1) gives
the best prediction results for time series data. In the spatial
domain, ARIMA (4, 1, 4) gives the best results, which means that
a sensor is highly correlated with the four preceding sensor. For
GPS calibration, we use the mean speed and standard deviation
to set the acceptable speed range. We first check the penetration
rate (the proportion of probe vehicles on the road). Yim et al. [15]
conclude that 5% is the minimum penetration rate for GPS devices
to obtain accurate estimates of the travel time. However, in a recent
study they found that only 3% penetration rate provides accuracy
comparable with roadside sensors for traffic monitoring. Thus, for
all experiments in this study, a minimum of 3% penetration rate
is used. Probe data under this level will not be enough for GPS
calibration as its values may imprecisely profile the actual traffic
status.

IV. EXPERIMENTAL ANALYSIS

Our dataset is collected by the Highway Performance Measure-
ment System (PeMS) which is maintained and operated by the
California Department of transportation [16]. The PeMS system
collects real-time data from loop detector stations installed at
different consequent road segments on the freeway. We train the
ARIMA models using the 80-20 data split rule, 80% for training,
and 20% for validation. The spatial and temporal models are trained
on the same dataset. The temporal model predicts the next value at
senor x from its previous time series, while the spatial model uses
sequence analysis to predict the next value at sensor x from the
values of several preceding sensors in the same traffic direction.
Then, the models are used to fit new data to perform prediction
and anomaly detection following our proposed algorithm. We use
the Mean Absolute Percentage Error (MAPE) to measure the
prediction accuracy of ARIMA models. Then, we run two use cases
to evaluate how the algorithm differentiates between tampered data
and abnormal traffic events.

Figure 1 plots the forecasting results of a 7-hours time horizon of
the testing data at one location. We observe that both the temporal
and spatial models produce similar results and are very close to the
actual measured traffic flow. The figure provides high confidence
of the trained models in real-time prediction.

Figure 2 shows the matching percentage (100 − MAPE)
between the predicted and actual values for nine sensors (S1-S9).
The average matching percentage for all the sensors is 94% with
a standard deviation of 1.8. It is noted that the prediction results
of the spatial model are very close to the results obtained from
traditional time series analysis. This validates our hypothesis that
ARIMA is a useful approach not only for time series analysis, but
also for spatial sequence analysis.

After validating the prediction accuracy of ARIMA, we now
decide on the best aggregation interval of our dataset that yields
a high prediction accuracy and provides a reasonable short-term
prediction. Typically, higher aggregation intervals provide more
transparent patterns of the data, as illustrated in Figure 1. On
the other hand, the shorter the prediction interval, the better it
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Fig. 2: The matching percentage between the predicted value and
the actual measured value.

is in assessing sensor quality. Thus, we calculate the MAPE for 5,
10, and 15 minutes aggregation intervals. Figure 3 shows a slight
improvement for the 15-minutes over the 5-minutes prediction
term. However, such a slight improvement does not worth the extra
10 minutes wait to get the prediction results. Therefore, we decided
to go with the 5-minutes short-term prediction, which is applied
to all the following experiments hereafter.

Besides the validation against measured sensor values, we also
conduct a second validation test using GPS probe data with 3%
penetration rate to detect traffic anomalies. However, it is essential
to ensure that the gathered samples of GPS speeds represent the
actual traffic population before the data is valid for verification.
In this experiment, we compare the average speed reported by
GPS data and the corresponding average speed measured by loop
detectors. Table I represents a sample data of speed measurements
reported from both GPS devices and loop detectors. For instance,
S21 measures a speed of 25.9 mile/hour while at the same time the
average speed gathered from 12 vehicles equipped by GPS is 19.9
mile/hour with a 7.7 standard deviation. Thus, for 95% confidence
interval, the average GPS speed ranges from 14.8 to 25.1 mile/hour,
in which the reported sensor speed (25.9) falls outside the range.
However, for a wider 99% confidence interval, the corresponding
t-score 1 is 3.1, and the range of speed is 13.1 to 26.8, in which the
reported sensor speed falls belong. The available data also shows
the at sensor S8 the average GPS speed is 66.5 with a 7.8 standard
deviation. Considering the 99% confidence interval ensures that the
speed reported by the loop detector is within the GPS speed range.

Figure 4 shows the matching percentage between measured
sensor speed and GPS average speed with two different confidence
intervals. The 99% confidence interval shows better matching at
almost all sensors. Thus, we argue that a high penetration rate is
needed to use probe GPS data for anomaly detection validation.

A. Anomaly Detection
The main objective of the proposed algorithm is to raise a flag

when data reported by a specific sensor is suspicious while avoiding
false alarms when unexpected traffic conditions occur, such as an
accident. To evaluate both cases, we study two test case scenarios.
In the first scenario, we inject false data to show a tampered
sensor reporting traffic congestion. The second use case shows
that an actual accident occurs and causes a sharp drop in speed
measurements between two sensors. Our algorithm is expected to
detect both anomalies, but distinguish between tampered data in the
first scenario and actual conditions caused by an abnormal event
in the second scenario.

1) Use Case 1: False traffic congestion: The objective of
this experiment is to measure the performance of the algorithm in

1The t-score is a statistical term used to estimate the population mean
from a sampling distribution when the population standard deviation is
missing.
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TABLE I: Example of loop detector’s measured speed and corresponding GPS range of speed.
Sensor ID Time LD Speed Avg. GPS

Speed
STDEV
GPS
Speed

# of GPS
Vehicles

Confidence
Interval

t-Score Min. GPS
Speed

Max.
GPS
Speed

LD Speed

S21 11:20 25.9 19.9 7.7 12 0.95 2.2 14.8 25.1 False
S21 11:20 25.9 19.9 7.7 12 0.99 3.1 13.1 26.8 True
S8 10:10 61.6 66.5 7.8 15 0.95 2.1 62.1 70.9 False
S8 10:10 61.6 66.5 7.8 15 0.99 2.9 60.4 72.2 True

Fig. 3: The MAPE percentage for different predication intervals.
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Fig. 4: Matching percentage between sensor speed and GPS
average speed with different confidence intervals.

assessing the quality of sensor data. We inject erroneous data at
sensor 7 and expect a positive alarm. Seven sensors (numbered 5
to 11) are used in this experiment. The average distance between
the sensors is 700 meter. For a time interval of 5 hours, data
from sensor 7 is tampered and injected with erroneous data that
represents traffic jams. The data reported by other sensors are
original and untampered. When the temporal model raises alarms
about sensor 7, the spatial analysis used for the following sensors
(8 to 11) drops the suspicious measurements from sensor 7 and
uses sensor 6 instead (i.e., the last known valid sensor).

Figure 5 illustrates the accuracy of the algorithm detecting the
correct state of the data at each of the seven sensors, despite S7
is faulty. We also report the Precision and Recall to measure the
sensitivity of the algorithm.

We noticed that the accuracy of the algorithm is consistent
with an average of 94% and standard deviation of 3 over the
tested sensors, which means that the algorithm can successfully
detect untrue conditions reported by tampered sensors (true positive
alarms) and normal conditions reported by genuine sensors (true
negative) with the same average accuracy. Both precision and recall
demonstrate a consistent level of sensitivity when on tampered and
untampered sensors, as illustrated in Figure 6. Thus, the proposed
approach is unbiased to either positive or negative data.
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Fig. 5: The accuracy of the algorithm identifying tampered and
valid measurements.
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Fig. 6: Precision, recall and accuracy.

We also investigate the effect of tampered data on the prediction
accuracy of the neighboring sensors of the corrupted S7. Typically,
the spatial model at neighboring sensors utilizes the preceding
sensor measurements to predict their expected measurements. How-
ever, in the case when one of these preceding sensors is flagged
as suspicious, the measurements of that sensor will be dropped
from the prediction calculation. Thus, we repeat the experiment by
dropping the data from S7 and compare the perdition results at the
neighboring sensors in both cases. Figure 7 show that the accuracy
in both cases is similar to most of the sensors. Hence, we conclude
that our algorithm is resistant to tampering or malfunctioning.

2) Use Case 2: Detecting abnormal traffic conditions:
The objective of this experiment is to study the performance of
the algorithm in distinguishing between incorrect or manipulated
data and correct but abnormal conditions from non-recurrent traffic
events such as accidents. In this experiment, an accident occurs dur-
ing the morning hours, which triggers a non-recurrent bottleneck at
this time of day. Eleven sensors (s14 to s24) are tested at the time of
the accident. The accident occurs between S20 and S21, leading
to a sudden slowdown in the reported speed. The effects of the
accident quickly build up a traffic jam at neighboring sensors for
two hours, as shown in our dataset. We expect that our prediction

Authorized licensed use limited to: Queen's University. Downloaded on April 03,2021 at 13:54:36 UTC from IEEE Xplore.  Restrictions apply. 



50

55

60

65

70

75

80

85

90

95

100

s8 s9 s10 s11

A
cc

u
ra

cy
 (
%

)

Sensors

HealthyS7 FaultyS7

Fig. 7: The detection accuracy at the neighbors of S7.
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Fig. 8: The true negative percentage reported from the sensors
affected by the accident.

algorithm should report no positive alarms as there is no malicious
manipulation of sensor data and the sudden traffic jam represents
the actual status of the traffic. Thus, this case basically tests the
true negative percentage.

Usually, when the algorithm experiences a positive alarm from
the temporal prediction model at a specific sensor, it runs the spatial
predictor to check the status from the neighbor sensors as well as
the temporal conditions reported by these sensors. If the neighbor
sensors experience a consistent mismatch between predicted and
measured values, the alarm goes negative, indicating an actual
status of true conditions.

Figure 8 illustrates the prediction accuracy in this case. The
sensors in the middle (19-23) have the highest accuracy as they
are the most ones experience a significant speed drop. We also
noticed that the propagation of the accident effect impacts the
consistency of speed drop between sensors, hence affecting the
accuracy at the preceding sensors. The overall average accuracy is
94.6% with a standard deviation of 2.5, which is very close to the
accuracy obtained with normal conditions. Hence, we conclude that
our algorithm is reliable, resilient to data tampering, and provides
high prediction accuracy in both normal and abnormal conditions.

V. CONCLUSION

In this study, we propose a novel approach that integrates spa-
tiotemporal prediction ARIMA modeling and probe data to detect
anomalies in traffic sensor measurements. The algorithm has been
evaluated against real-world sensor traffic data provided by Cal-
trans Performance Measurement System (PeMS). We demonstrate
the effectiveness of our algorithm by applying it on two test cases,
one contains true data but with a nonrecurring traffic condition such
as incidents and the other one contains tampered data. Performance
evaluation demonstrates that the proposed approach is able to detect

tampered data with high accuracy while maintaining low false
positive rates in the case of true data with nonrecurring conditions.
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