
At the Edge? Wait no More: Immediate Placement
of Time-Critical SFCs with VNF Sharing

Amir Mohamad∗§ and Hossam S. Hassanein∗
∗Queen’s University, Canada, §Cairo University, Egypt

Email: a.mohamad@queensu.ca, hossam@cs.queensu.ca

Abstract—The increasing demand on real-time and time-
critical applications such as augmented reality, virtual reality,
collision avoidance and industrial IoT, is fuelled by the low-
latency promised by next-generation mobile networks (5G). Time-
critical applications and services are real-time software whose
failure could result in catastrophic consequences such as fatalities,
damage to property, even financial losses. Edge computing is the
main enabler of 5G ultra-low latency use cases. Edge resources
are limited compared to the abundant cloud computing resources.
As such, provisioning time-critical applications at the edge is
more challenging and demanding. Even though virtual network
function (VNF) sharing improves the utilization of the service
providers’ resources, service requests -including time-critical
ones- can still be rejected due to insufficient resources. This
paper proposes IPTSV, an immediate placement scheme for
time-critical services with VNF sharing. The proposed scheme
prioritizes time-critical premium (Pr) services over best-effort
(BE) services. In cases when no resources are available for Pr
services, a preemption mechanism preempts resources for the
Pr service, by deporting one or more deployed BE services. The
experimental results show that IPTSV can reduce the Pr services
rejection rate to ∼ 0%, while minimizing the disturbance that
BE services might witness such as prolonged waiting and turn-
around times.

Index Terms—Edge, SFC, NFV, VNF

I. INTRODUCTION

Recently, there is a growing interest in edge computing

both on the industry and academia fronts. Communication

service providers (CSPs) are capitalizing on edge computing

to host their own services, core and radio access network

(RAN) disaggregated virtualized network functions (VNFs),

in addition to third-party services such as over-the-top (OTT)

services. The edge computing market is projected to grow from

$36.5 billion in 2021 to $87.3 billion by 2026, at a growth rate

of 19% during the forecast period [1].
With the agility that network function virtualization (NFV)

brings, CSPs can now provision functions and services when-

ever they need over NFV infrastructure (NFVI) [2]. To do so,

unlike the middle boxes era, a placement decision is needed

to determine which physical node/server will host each VNF.

Since the introduction of NFV in 2012, there has been a huge

body of research addressing VNF placement and resource

allocation. Most enterprise and network services consist of

component functions/VNFs that are stitched together in a

specific order to form service function chains (SFCs). As
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shown in Figure 1 (b), SFCs may have common VNFs, for

example sfc1 and sfc2 have V3 in common and V4 is common

between sfc2 and sfc3.
The majority of emerging 5G use cases are time-critical in

nature, such as real-time media (augmented reality (AR) and

virtual reality (VR)), industrial control, remote control, and

mobility automation [3]. Time-critical, henceforth premium

(Pr), services and applications are a class of software that

have stringent time constraints and a service would fail if such

constraints were not met [4]–[6]. Catastrophic consequences

might follow as a result of service failure, for example, a col-

lision warning service failure might result in more collisions

and more fatalities. Edge computing is a distributed version of

cloud and its resources are limited compared to cloud’s. The

demand generated by time-critical applications necessitates

efficient utilization of edge resources. With the stringent time

constraints of time-critical applications and services, there

must be a mechanism by which time-critical service requests

are immediately satisfied.
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Fig. 1. Compute resources savings when sharing VNFs among SFCs

To address these two needs, efficient utilization of edge re-

sources and immediate satisfaction of Pr service/SFC requests,

this paper proposes IPTSV, an immediate placement scheme of
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time-critical SFCs with VNF sharing. This is accomplished by

taking advantage of the common VNFs across SFCs and the

operations dynamics that might leave some deployed VNFs

underutilized. The IPTSV satisfies sequential SFC requests by

sharing underutilized shareable VNFs. With limited resource

at the edge, when a Pr SFC request cannot be satisfied, a

preemption criterion is used to stop and deport some or all of

the deployed best-effort (BE) lower priority SFCs to release

resources and successfully deploy the Pr SFC. The preemption

criterion is designed to address the trade-off between releasing

the resources to deploy a Pr SFC and minimizing the number

of disturbed BE SFCs.

The main contributions of this paper are:

• Introduction of preemptive placement scheme that re-

duces Pr SFC requests rejection rate to near zero.

• Defining the baseline performance of preemption-based

service placement.

• Recommending which preemption criterion to use given

the service domain context and provider’s policies and

priorities.

The remainder of this paper is structured as follows. Section

II covers related work. Proposed time-critical SFC placement,

system model, and problem formulation are detailed in Section

III. In Section IV we detail the simulation framework. Perfor-

mance evaluation and results analysis are covered in Section

V. Conclusions and future work is presented in Section VI.

II. RELATED WORK

A. VNF/SFC Placement Decision Levels

The placement of SFC is challenging due to orderliness

and other constraints that a placement scheme has to consider

compared to the placement of a single VNF. Unlike inter-

dependent VNFs in an SFC, microservices components in

a cloud-native application need not be deployed all at once

and the components could be pro-actively deployed, which

is extremely beneficial in resource-limited environments like

edge computing [7]. Unlike the work in [8] that treats SFCs

as a compute task that has a sequence of executions, to start

processing traffic flow, all VNFs of any SFC must be deployed

and running.
Depending on the architecture and scale of the NFV envi-

ronment, the placement decision is made at different levels.

Some techniques propose the placement of VNFs/SFCs at the

server level, i.e., which server hosts each VNF, such as the

proposed placement techniques in [9]–[12]. Authors in [13]

proposed Octans in which they address the SFC placement

at a CPU core level in many-core systems. Authors in [14]

proposed Finedge which allocates resources at the CPU core

time/share level and it dynamically monitors and reacts to the

possible performance degradation.

B. VNF Sharing

“VNF sharing” is one of the techniques used to reduce the

cost and efficiently utilize resources. For example, as shown

in Figure 1, the required resources to satisfy sfc1, sfc2 and

sfc3 are 26 cpu cores compared to only 17 cores when VNF

sharing is used. Unlike some surveyed VNF sharing papers

which consider all VNFs are shareable, in this example having

V4 as non-shareable, the VNF sharing is still able to use 35%
less resources.

We remark that in the literature more than one term is used

to refer to VNF sharing concept. For example, the authors

of [15] and [16] used the term “multi-tenancy” and “VNF

merging”, in [17] authors used “VNF reuse” (VM reuse), task

and request scheduling are used in [7] and [18], and the most

common term was VNF sharing, used in [19]–[23].

There is an increasing interest in VNF sharing among CSPs

and OTT service providers. For example, deploying evolved

packet core (EPC) VNFs on public cloud used to be a deserted

and excluded idea, however, there is increasing deployment

of EPC VNFs on the public cloud. Moreover, sharing non-

security-critical VNFs such as mobility management across

end-to-end 5G slices is getting attention [20]. In [19], au-

thors proposed sharing the same CDN cache VNF (vCache)

among ISPs with common infrastructure. Consequently, VNF

sharing can play an imperative role in reducing the cost-of-

service provisioning by efficiently utilizing resource-limited

edge environments. Excluding security reasons, not sharing

VNFs may result in inefficient resource utilization because of

the idle/redundant capacity that is never used and resource

fragmentation [22].

The work in [11], proposes sharing VNF among SFC flows

and specifies predefined number of flows that a VNF can serve,

which ignores the operations dynamics and may leave VNFs

over-/under-utilized. The authors of [17] mix the concepts of

infrastructure VM and VNF sharing, yet they assume that a

VM can only host one VNF. However, the VNF container,

VM or container, should not be treated as an infrastructure

asset, it should be an ephemeral component that is instantiated,

deployed, replicated, and terminated.

C. Priority-based Placement

In the literature of priority-based SFC and VNF placement,

the concept and handling of priority is diverse. The work in

[23] utilizes priority that is dynamically assigned to SFCs,

VNFs or flows, depending on the situation, rather than a

predetermined priority before deployment. In [24], the priority

is determined after receiving the SFC request and is based on

the resources required by SFC, the more resources required the

higher the priority. While these priority assignment techniques

may sound practical, we believe that the SFC request priority

should be the same for all SFC’s VNFs, the priority should

not change and should be known before satisfying the SFC

request. For example, for a time-critical SFC request the same

higher priority should be assigned to all its VNFs before

arriving at an orchestrator, the priority should not change and

should be agnostic to required resources.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In NFV-based service domain, some services, of both CSPs

and third-party service providers come in different quality of

service (QoS) categories. Indeed, there could be more than two
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service categories, however, for simplicity, in this paper two

service categories have been chosen. Pr service that is pro-

visioned with highest expected load, not oversubscribed, and

served with dedicated high-priority queues; and BE service is

sent and queued with lower priority.
Due to operations dynamics, traffic processed by SFC’s

VNFs vary and VNFs can be underutilized at times. VNF

sharing-based SFC placement scheme takes advantage of

operations dynamics and shareable VNFs to enhance resource

utilization, reduce SFC deployment cost and rejection rate.

To satisfy a new SFC request, VNF sharing-based placement

scheme scans deployed VNFs for underutilized similar VNF(s)

that can manage the expected load of the SFC request at hand.

A new VNF is only instantiated in cases where: the VNF is

non-shareable, there are no similar previously deployed VNFs,

or a similar VNF(s) are deployed but fully utilized.
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Fig. 2. Rejection rate of Pr SFC requests (sfcpr) of VNF-sharing-based
scheme vs no-sharing-based scheme for different system loads. (Experiment
duration is 200 TSs, arrival rate λ = 2 requests/TS. VarDur.: duration of SFCs
is variable, the average is 10 TSs. 7-20: duration is fixed, sfcpr=7 TSs &
sfcbe=20 TSs). Results are based on the same setup as in Sec. IV.

Despite using VNF sharing, there is a possibility that a

received Pr SFC request cannot be satisfied due to insufficient

resources. Based on results of our VNF sharing-based place-

ment scheme in [21] (used same setup as in Section IV), the

rejection rate of Pr SFCs is unavoidable and concerning. As

shown in Figure 2, the best-case scenario is ‘lightly-loaded’

system. Utilizing VNF sharing resulted in a 50% reduction

in Pr SFCs rejection rate; however, the rejection rate of the

VNF sharing-based placement scheme is still about 19%. It

is even worse for higher system loads, where there are either

longer duration BE SFCs or more BE SFCs. These rejections

represent unsatisfied customers and lost revenue for CSPs.
In response to this, we propose immediate placement of

time-critical SFCs with VNF sharing (IPTSV) to help CSPs

manage their resource utilization in an efficient manner and

seize revenue opportunities. In situations where resources are

not available to satisfy Pr SFCs, a criterion should be in-place

to preempt resources for Pr SFC by deporting lower-priority

BE SFC(s). The preemption criterion should strive to balance

between, immediately satisfying Pr SFCs and minimizing

number of disturbed BE SFCs, by preemption. Priority-aware

preemptive-scheduling is not a new idea, it has been used

extensively, especially in the context of process scheduling

for CPU . To the best of our knowledge, priority-aware

preemptive-scheduling was never been used in the context of

SFC placement with VNF sharing at the resource-limited edge

environment.

In our system, Pr SFCs can be in one of these states:

received, rejected, running, or completed. Due to their lower

priority, BE SFC can be in states: received, running, pending

redeployment, or completed. The states and actions that trigger

state changes of SFCs are detailed in Figure 3.
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Fig. 3. States an SFC request can take in IPTSV and order of priority and
deployment of queues (1 → 2 → 3).

A. System Model

The list of on-boarded VNFs V is from where SFC’s VNFs

are selected. Each VNF vi ∈ V has resource requirements and

once these requirements are provided, the VNF is expected to

process a maximum flow of traffic Fmax(vi). S(vi) is a flag

to determine whether VNF vi is shareable or non-shareable.

Once selected in sfcj , the actual inflow and outflow (subject

to change due to operations dynamics) of VNFs should be

declared. The substrate network is represented as a graph

G(N,E), where N is the set of nodes and E is the set of

links. Each node n ∈ N has compute resources, cpu cores
and memory, and each link e ∈ E has bandwidth capacity

bwc and propagation delay Del. The topology of substrate

network is determined by a configurable connectivity matrix.

Table I lists detailed description of substrate network and SFC

parameters.

B. Problem Formulation

The IPTSV scheme, in Algorithm 1, hinges critically on

two main components, the placement algorithm, and the pre-

emption criterion. The different scores used in the preemption

criteria are detailed in Section III-B2. The VNF sharing-based

placement algorithm is modelled as an integer quadratically-

constrained program (IQCP) with binary decision variables.

The IPTSV scheme manages sequential SFC requests arriv-

ing at each time slot (TS). First, IPTSV looks for deployed

SFCs in list Runpr|be with time-to-live (TTL) value, in TSs,

equal to zero to terminate and release the resources, otherwise,

it decreases TTL value by one. Second, IPTSV considers

requests in received Pr queue (Recpr). After trying to satisfy

Pr SFC requests, IPTSV attempts to satisfy the BE SFCs in the

Penbe queue, which holds the BE SFCs that were previously

deported to accommodate a Pr SFC and were not successfully
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TABLE I. System Parameters Description

Parameter Description

cpuc(n) CPU capacity in cores of node n ∈ N,∼ U [8, 64]

ramc(n) RAM capacity in GBs of node n ∈ N,∼
U [16, 128]

cpuav(n) Available CPU cores at node n ∈ N

ramav(n) Available RAM GBs at node n ∈ N

enn′ A link exists from node n to node n′, n, n′ ∈ N

bwc(enn′ ) BW capacity in Gbps of link enn′ ,∼ U [2, 5]

bwav(enn′ ) Available BW at link enn′

Del(enn′ ) Propagation delay in µsec of link enn′ ,∼
U [0.5, 4]

V Set of available/on-boarded VNFs

vi Is a VNF, where vi ∈ V

cpu(vi) CPU cores required for VNF vi ∈ V,∼ U [2, 8]

ram(vi) RAM GBs required for VNF vi ∈ V,∼ U [4, 16]

Fmax(vi) Maximum inflow VNF vi can handle, function of
cpu(vi) and ram(vi)

S(vi) Flag to indicate VNF vi is shareable

Drop(vi) Flag to indicate that VNF vi drops/compresses
inflow

sfcj SFC request j

|sfcj| Number of VNFs in sfcj , ,∼ U [4, 7]

v
j
i The ith VNF of sfcj

Fin(v
j
i ) Actual inflow that VNF vi will be serving

Fout(v
j
i ) Outflow VNF v will produce

Del(sfcj)

Maximum end-to-end delay of sfcj =
(|sfcj | − 1) ∗AvgLinkDelay, where

AvgLinkDelay = 1

|E|

|N|∑

n=1

|N|∑

n′=1

Del(enn′ )

Vdiff (sfcj,k) number of VNFs in sfcj not in sfck

Gst(sfcj) total number SFCs hosted by sfcj

redeployed. Finally, IPTSV addresses those SFC requests in

the received queue Recbe. There is no Penpr queue because

Pr SFCs cannot tolerate being queued in a received waiting

queue (Recpr) beyond the TS they were received in, or being

deported and waiting for redeployment. There is no Rejbe list,

as we assume that BE queues are infinite, and the BE SFCs

are to stay in queues waiting for deployment or redeployment.

1) Placement Algorithm: With SFC request sfcj consist-

ing of VNFs vi, i ∈ [1 − |sfcj |], the decision variables are:

Xj
in, meaning a new instance of VNF vi belonging to sfcj is

to be placed at node n; and Rj
in means that VNF vi of sfcj

is to share and become the guest of a deployed underutilized

VNF of the same type at node n. Queues, decision variables,

and parameter descriptions are in Table II.

a) Objective Function: The objective is to select the

placement that minimizes the overall cost, hence optimize

resource utilization. The objective function in equation (1)

is formulated to prioritize sharing over deploying new VNF

Algorithm 1: IPTSV
// netModel: network Model, No.TSs: Simulation time in time-slots

Input : netModel, No.TSs

Init. : Recpr|be, Runpr|be, P enbe, Rejpr, Compr|be

Output: Different queues

1 for i← 1 to No.TSs do

2 Recpr ← receivedPr requests
3 RecBE ← receivedBE requests

// Update TTL of running SFCs

4 foreach sfcpr|be in Runpr|be do

5 if ttl(sfcpr|be) = 0 then

6 Compr|be ← sfcpr|be

7 else decTTL(sfcpr|be)

8 foreach sfcpr in Recpr do
// Using IQCP & Gurobi solver

9 sol ←satisfy(sfcpr,netModel)

10 if sol 6= ∅ then

11 deploy(sfcpr,netModel)

12 Runpr ← sfcpr

13 else // Check preemptCPU algorithm for details

// sfcpr is only used with ’similar’ preemption criterion

14 sol,Penbe ←preemptCPU(criterion,Runbe)

15 if sol 6= ∅ then

16 deploy(sfcpr,netModel)

17 Runpr ← sfcpr

18 else Rejpr ← sfcpr

19 foreach sfcbe in Penbe do

20 sol ←satisfy(sfcbe,netModel)

21 if sol 6= ∅ then

22 deploy(sfcbe,netModel)

23 Runbe ← sfcbe
// else sfc stays in Penbe

24 foreach sfcbe in Recbe do

25 sol ←satisfy(sfcbe,netModel)

26 if sol 6= ∅ then

27 deploy(sfcbe,netModel)

28 Runbe ← sfcbe
// else sfc stays in Recbe

instances.

min

|sfcj|
∑

i=1

∑

n∈N

[cpu(vji )U
c
cpu(n) + ram(vji )U

c
ram(n)]Xj

in+

Fout(v
j
i )Ucbw[X

j
in +Rj

in]
(1)

b) Constraints: A feasible solution must have each VNF

of SFC assigned only once to a substrate node, where each

VNF is realised by a new instance, or by sharing the free

capacity of a deployed VNF, equation (2). If sharing is the

decision, a shareable VNF of the same type must have been
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TABLE II. Queues, Decision Variables and Constants

Variable/Queue Description

Recpr A queue holding new Pr SFCs until deployed in the
same TS

Recbe A queue holding new BE SFCs until deployed

Rejpr A list of rejected Pr SFCs

Penbe A queue holding deported BE SFCs to be rede-
ployed

Runpr|be A list of deployed Pr or BE SFCs

Compr|be A list of finished Pr or BE SFCs

X
j
in Binary decision for placing VNF vi of sfcj at node

n

R
j
in Binary decision for sharing the flow of VNF vi of

sfcj with already deployed VNF of same type at
node n

Di
n VNF of same type as vi already deployed at node

n

Fav(Di
n) Available unused flow of vi at node n

Uc
cpu(n) Unit cost of cpu at node n

Uc
ram(n) Unit cost of ram at node n

Uc(bw) Unit cost of bw at all links

deployed, equation (3), and its free capacity is a sufficient

amount for SFC’s VNF inflow, equation (4). If a new instance

is to be deployed, Xj
in to be valid, substrate node n must

have the required resources i.e., cpu and ram, equations (5

& 6). Equations (7) and (8) are to ensure continuity of both

SFC’s VNFs and the substrate nodes hosting them, and make

sure that available bandwidth in the physical link enn′ is

enough for the outflow VNF vji . Finally, equation (9) is

to guarantee that the quality-of-services (QoS) requirements

(maximum end-to-end latency) of sfcj is satisfied. We assume

that both transmission and processing delays are negligible

and the delay of each placement solution is the summation of

propagation delay of solution’s links.

∑

n∈N

Xj
in + Rj

in = 1 , ∀i ∈ [1− |sfcj|] (2)

∑

n∈N

Xj
in + Dj

i S(vi) R
j
in = 1, ∀i ∈ [1− |sfcj|] (3)

Fin(v
j
i ) R

j
in ≤ Fav(D

i
n), ∀n ∈ N & ∀i ∈ [1− |sfcj |] (4)

|sfcj|
∑

i=1

cpu(vji ) X
j
in ≤ cpuav(n), ∀n ∈ N (5)

|sfcj |
∑

i=1

ram(vji ) X
j
in ≤ ramav(n), ∀n ∈ N (6)

enn′ (Xj
in + Rj

in)(X
j

(i+1)n′ + Rj

(i+1)n′) = 1

∀n, n′ ∈ N & ∀i ∈ [1− (|sfcj | − 1)]
(7)

∑

n∈N

∑

n′∈N

Fout(v
j
i )(X

j
in + Rj

in)(X
j

(i+1)n′ + Rj

(i+1)n′)

≤ bwav(enn′), ∀i ∈ [1− (|sfcj | − 1)]

(8)

|sfcj|−1
∑

i=1

∑

n∈N

∑

n′∈N

Del(enn′) (Xj
in + Rj

in)

(Xj

(i+1)n′ + Rj

(i+1)n′) ≤ Del(sfcj)

(9)

2) Preemption Criteria: In a conventional preemptive

resources allocation algorithm, deporting a running pro-

cess/service always releases a fixed number of resources. With

VNF sharing, deporting a running SFC does not necessarily

release the exact same number of resources that SFC is

utilizing. This is why we propose to study different number of

scoring and preemption criteria to produce a recommendation

for the best criterion for certain contexts.

As in Algorithm 2, IPTSV deports BE SFCs one at a

time from a list sorted according to the calculated scores.

The simplest preemption criterion that IPTSV could use is

‘All,’ in which all running BE SFCs are deported to release

resources for the Pr SFC at hand. This criterion represents

a baseline performance and will be used as a benchmark to

evaluate other criteria. Some of the deported BE SFCs will be

successfully redeployed, which means they were gratuitously

deported, while others cannot be deployed and will be put in a

redeployment-pending queue Penbe. On one hand, the ‘All’
criterion is very simple and does not require executing the

placement algorithm for the Pr SFC more than once. On the

other hand, it unnecessarily disturbs all running BE SFCs and

consequently, to redeploy BE SFCs, we have to execute the

placement algorithm as many times as the number of deported

BE SFCs.

Algorithm 2: preemptCPU

Input : netModel, criterion, sfcpr, Runbe

Output: sol, Penbe

1 if criterion 6= Random then
// sfcpr is needed for ’similar’ criterion

// sort() sorts ’as.’ ↑ or ’dec.’ ↓ based-on given criterion

2 Runbe ← sort(score(Runbe,criterion,

sfcpr),[as|dec])

3 sol ← ∅
4 while sol = ∅ and len(Runbe) 6= 0 do

5 if criterion = Random then
// Runbe isn’t sorted

6 sfcbe ← getRandSfc(Runbe)

7 else // Runbe is sorted

8 sfcbe ← Runbe[0]
9 deport(sfcbe)

10 Penbe ← sfcbe
11 sol ← satisfy(sfcpr,netModel)

12 return sol, Penbe

To solve the negative effects of the ‘All’ criterion, we

propose alternate preemption criteria. The main goal is to

minimize both number of disturbed BE SFCs (reduce gra-

tuitously deported SFCs) and number of placement algorithm

executions. First, a score is calculated per BE SFC then the
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list of scores is sorted in a descending or ascending order

depending on the criterion. Finally, BE SFCs are deported

one at a time until the Pr SFC is successfully deployed. The

best-case scenario is to deport only one BE SFC and the worst-

case scenario is to deport all BE SFCs. In the latter scenario,

there is a chance that the Pr SFC cannot be deployed, as the

resources utilized by BE SFCs were not enough for the Pr

SFC, or there were no deployed BE SFCs.

The successful deployment of SFC requests is depending on

the availability of resources, especially the cpu cores. That is

why, the score calculation should either directly or indirectly

involve cpu cores utilized by deployed BE SFCs and can use

cpu cores required by the new Pr SFC. The scores we decided

to use are: SFC-Length (number of VNFs in SFC), SFC-CPU

(number of cpu cores utilized by SFC), SFC&Node-CPU

(number of cpu cores utilized by SFC plus the number of

free cores at nodes hosting SFC’s VNFs), Similar (similarity

measure between deployed BE SFCs and the new Pr SFC),

and Random (no scores calculated, the list of deployed BE

SFCs used as-is).

The ‘longer-first’ and ‘shorter-first’ criteria sort the list of

length scores in descending and ascending order, respectively.

The ‘SFC-CPU-first’ and ‘SFC&Node-CPU-first’ criteria use

descending sorted CPU scores lists. The ‘most-similar-first’

criterion is the only one that depends on the new Pr SFC

in calculating the similarity score. The premise here is to

search for the most similar BE SFC to the new Pr SFC,

which should minimize the number of deported BE SFCs.

As in equation (10), the similarity score is the inverse of

difference score which includes: number of different VNFs,

Pr-length minus BE-length, Pr-max-outflow minus BE-max-

outflow, difference in required CPU cores, and total number

of SFCs that BE SFC is hosting. Each difference term in

equation (10) is normalized against its peers calculated for

all BE SFCs before calculating the similarity score.

SIM(sfcpr, sfcbe) = 1/{Vdiff(sfcpr,be)+

(|sfcpr| − |sfcbe|) + [max(fout(v
pr
i ))−max(fout(v

be
i ))]+

[

|sfcpr|
∑

i=1

cpu(vpri )−

|sfcbe|
∑

i=1

cpu(vbei ) +Gst(sfcbe)} (10)

The deport(sfcbe) procedure, in Algorithm 2 line 9, is

accomplished with VNF sharing considered. In VNF-sharing,

shareable VNFs are either host or guest. For example, in

Figure 4, VNF V2 of sfc1 is a host VNF sharing its unused

capacity with two similar guest VNFs belonging to sfc3 and

sfc4. In cases where a guest VNF’s SFC is to be deported,

the shared capacity is simply retuned to the host VNF. If the

host VNF’s SFC is to be deported, then a guest VNF must

be promoted to assume the host role. The simplest scenario is

when there is only one guest VNF, it will take the host role

automatically. If more than one guest VNFs exist, the one that

has the highest TTL will be promoted, to avoid the overhead

of frequent promotions if we have selected a shorter-living

VNF.

V2: Host VNF
SFC1 TTL=4

guest vnf

guest vnfSFC3 TTL=3

SFC4 TTL=7

Outflow 34  Inflow 44

Inflow 20 Inflow 20

Inflow 16+44+20  = 80 Outflow 16+34+20  = 70

V2: Host VNF
SFC4 TTL=7

guest vnfSFC3 TTL=3

Outflow 34  Inflow 44

Inflow 20+44  = 64 Outflow 20+34  = 54

Deport SFC1

MaxIn/OutFlow 100

MaxIn/OutFlow 100

Fig. 4. Promoting guest VNF to act as a host, part of sfcbe deportion

IV. SIMULATION FRAMEWORK

Because the development of edge computing and MEC is

relatively new, there are no edge/MEC demand and workload

traces that are publicly available and sufficiently suitable

for our system setup [7], [25]. Therefore, we decided to

synthetically generate SFC requests per each TS. The arrival

of SFC requests per TS follows a Poisson distribution with

average rate λ = 2.

We developed a Java-based simulation environment, in

which we generate substrate network model, synthetically gen-

erate demand by creating SFC requests at time slots, execute

the placement decisions, and track SFCs different state/queue

transitions. SFC length is drawn from a uniform distribution

|sfcj| ∼ U [4, 7] [26]. The service time, i.e., SFC duration

in TSs, is fixed, where sfcpr = 7 and sfcbe ∈ {5, 20}. If

SFC duration is to be variable, it is randomly sampled from

a uniform distribution U [5, 18]. The ratio of Pr to BE SFC

requests are either ‘50:50’ or ‘20:80,’ and the order of arrival

is randomly shuffled.

In our simulations, for all experiments, we used the same

NSFNET network model and the same topology that has 13

nodes and 32 directional links. With the simulation time set to

200 TSs, we generated around 415 SFCs, taking care of the

number of SFC requests per TS; type of VNFs of each SFC;

actual inflow and outflow of each VNF; and the cap end-to-end

delay of each SFC as the QoS requirement. This process was

repeated ten times and generated data are saved in files and

used to experiment with different preemption criteria. The list

of on-boarded VNFs contains 16 VNFs of different flavors and

requirements, where 60% of VNFs are shareable. The IQCP

model is solved using the Gurobi solver [27].

V. PERFORMANCE EVALUATION

A. Evaluation Metrics

Similar to other SFC placement schemes, IPTSV uses met-

rics such as resource utilization, rejection rate, and percentage

of SFCs waiting for deployment or pending for redeployment.

In addition, the preemption related metrics are the following:

the percentage of gratuitously deported BE SFCs; the average

number of deported BE SFCs to satisfy one Pr SFC; the

average number of deportations per BE SFC; the maximum
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Fig. 5. Resource utilization for different system loads for ‘All’ preemption
criterion

and minimum number of deportations of one BE SFC; and the

percentage of received Pr SFC requests that needed preemption

to be satisfied. To assess the impact on deported BE SFCs,

we use the average waiting time (AWT) and turn-around time

(TAT). AWT is the time an SFC spends in the system not

in the running state before completed and is calculated for

SFCs in Recbe, Penbe, and Combe queues and lists. The TAT

is the total time spent from reception to completion and is

calculated for and averaged over completed SFCs only. Due

to the sensitivity to uncontrollable processes running in the

background, we chose to use TS, instead of system time in

milliseconds, as the unit to report AWT and TAT.

The purpose of these experiments is not to crown a winning

preemption criterion, rather first, it is to demonstrate the

plausibility of preemption in the context of time-critical SFC

placement with VNF sharing (using the ‘All’ criterion). Sec-

ond, to study how successful other criteria are in addressing the

side effects of the ‘All’ criterion. Lastly, check if the almost

overhead free ‘Random’ criterion’s performance is comparable

to the best criterion, and in which circumstances.

B. Numerical Results and Analysis

To ensure that we are deriving results and conclusions

from a steady/stable system, we used different system loads,

by varying the Pr:BE ratio and SFC duration in TSs. We

experimented with the Pr:BE ratio of ‘50:50’ and ‘20:80,’ and

for the SFC duration, we experimented with variable duration

(average of 10 for both Pr and BE SFCs), Pr 7 and BE 5, 7

and 20 TSs. In this experiment, the preemption criterion used

is the ‘All’. For this experiment we reported the utilization

throughout the experiment duration (200 TSs).

As shown in Figure 5, the ‘Pr:BE% 50:50|7-5 TSs’ case

sustains the least utilization, that is because the system never

gets to the point where resources are used up. Deployed SFCs,

especially BE SFCs complete their job quickly and release

resources sooner. As we increase the duration of BE SFCs,

more resources will be used up, and hence, the queues Recbe
and Penbe, will start to build up and the rejection rate will

start to increase.

The idea here is: the longer SFCs will have to stay in the

system, the higher the rejection rate will be. As illustrated in

50:50|7,5TSs 50:50|VarDur. 50:50|7,20TSs 20:80|7,20TSs
System Configuration/Load
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Fig. 6. End-of-simulation queue sizes for different system loads for ‘All’
preemption criterion

Figure 6, the ‘Pr:BE% 50:50|7-5 TSs’ is a trivial case with

almost no Pr SFCs needing preemption to be satisfied and the

‘Pr:BE% 50:50| VarDuration’ is where we begin to see a rise

of Pr SFCs needing preemption. It is even more serious for

the ‘Pr:BE% 50:50|7-20 TSs’ and ‘Pr:BE% 20:80|7-20 TSs’

cases. As such, and due to the many configurable knobs in

our system, for the remaining experiments, we will be using

the ‘Pr:BE% 50:50|7-20 TSs’ as a moderately-loaded system,

and ‘Pr:BE% 20:80|7-20 TSs’ as a highly-loaded system.

To evaluate the performance of preemption criteria, we

measured the number of deported BE SFCs to deploy one Pr

SFC and the average number of deportations a BE SFC has

to endure. As detailed in Table III, taking the ‘All’ criterion

as a reference, the ‘SFC-CPU-first’ criterion is ahead in

most measures. This is attributed to the sometimes misguided

‘SFC&Node-CPU-first’ criterion when the number of utilized

cores by a BE SFC is low, but one of its VNFs’ hosting

node has a very high number of free cores. In such case,

this SFC will climb to the top of the sorted list and will

be deported first. The ‘Longer-first’ criterion is not as good,

since it depends on the length, in which longer SFCs do

not necessarily utilize more cpu cores. Moreover, the longer

the SFC, the higher the probability that more VNFs are

either host or guest VNFs. In either case, deporting those

VNFs, will not release any resources. The ‘most-similar-first’

criterion is closely competing, even better in one column

(average deportations/sfcbe), however, unlike other criteria,

it recalculates scores of BE SFCs for every Pr SFC. Yet, the

results does not parallel the burden of processing overhead.

Gratuitously deported BE SFCs are those SFCs deported

to satisfy a Pr SFC and were successfully redeployed in the

same TS. Figure 7a reports gratuitously deported SFCs as

a percentage of all deported BE SFCs. The ‘SFC-CPU-first’

criterion yields the best performance both in the moderately-

loaded and highly-loaded systems. When deporting the SFC

that utilizes the highest number of CPU cores, the probability

is higher that this is the best-case scenario, i.e., deporting only

one BE SFC or fewest number of BE SFCs. We are using

the word ‘probability’ since VNFs are shared and there is a

chance that an SFC utilizing the highest number of cpu cores,

but upon deportation, few to zero cpu cores are released. The
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TABLE III. Preemption Performance (Red the is worst, Green is the best)

Pr:BE 50:50,7-20 TSs Pr:BE 20:80,7-20 TSs

Avg
deported
BE/Pr

Avg depor-
tations/BE

Avg
deported
BE/Pr

Avg depor-
tations/BE

All 19.75±0.33 16.79±0.56 25.81±0.17 6.76±0.28

Longer 2.53±0.11 4.47±0.24 2.87±0.14 2.01±0.1

Shorter 4.55±0.2 6.2±0.26 5.66±0.23 2.97±0.09

SFC-CPU 1.94±0.07 2.59±0.11 2.37±0.09 1.35±0.03

SFC&Node

CPU

2.11±0.07 2.57±0.09 2.42±0.1 1.40±0.03

Similar 2.17±0.07 2.57±0.06 2.59±0.14 1.41±0.05

Random 2.72±0.07 2.70±0.1 3.45±0.15 1.45±0.03

reason being, (as explained in Section III-B2 and in Figure

4), when deporting a host VNF that has one or more guest

VNFs, the cpu cores will not be released. To prove this, we

measured the same metric with non-sharing, shown in Figure

7b. The overall percentage of gratuitously deported BE SFCs

significantly dropped about 79%− 81% in the ‘50:50’ system

and 69% − 89% in the ‘20:80’ system. This significant drop

is due to the absence of sharing and the guaranteed release

of resources once an SFC is deported. Furthermore, the non-

sharing version of ‘Shorter-first’ is better than that of IPTSV

version which is almost as bad as the ‘All’ criterion.

The AWT of BE SFCs, reported per TS, increases almost

linearly as time progresses and load increases. Results of ‘No-

preemption’ criterion is used as a reference lower-bound of

BE SFC AWT. In the concluding results of the experiment

shown in Figure 7c, the best, least, AWT is that of ‘No’ and

the worst as expected is that of ‘All’ criterion. In both ‘50:50’

and ‘20:80’ systems, the ‘Longer-first’ and ‘SFC-CPU-first’

exchange best AWT. In ‘20:80’ system, the AWT of ‘No’

criterion started to increase as a result of having more BE

SFCs staying 20 TSs, yet ‘SFC-CPU-first’ criterion maintains

consistent least AWT (second after the ‘No’ criterion). Since

the TAT is almost equal to SFC duration plus the AWT, we

did not include average TAT of BE SFCs figure.

We formulated equation (11) as the preemption cost func-

tion. It is a function of j and k, where j ∈ [0 − |Runbe|]
is number of deported BE SFCs to satisfy one Pr SFC and

k ∈ [4 ∗ |Runbe| − 7 ∗ |Runbe|] is total number of VNFs

in deported SFCs. The cost function has three components:

c1 the cost of lost revenue when deporting one BE SFC; c2
cost of a single execution of placement algorithm; and c3 cost

of caching the state of a single VNF until redeployment. For

simplicity, we used equal costs, c1 = c2 = c3 = 1.

Cost(j, k) =

{

c1.j + c2(1 + j) + c3.k , ‘All′ criterion
c1.j + 2c2.j + c3.k , otherwise

(11)
As shown in Figure 8, the criteria that has the least pre-

emption cost for ‘50:50’ system are ‘All’, ‘SFC-CPU-first’,

and ‘Most-similar-first’. Surprisingly, the ‘All’ criterion has

the least cost since it needs to run the placement algorithm

only once to deploy the Pr SFC and as many times as the

deported BE SFCs for redeployment. Other criteria, on the

other hand, will need to run the placement algorithm twice

the number of deported BE SFCs. One run to try deploying

the Pr SFC, and the other for redeploying the deported BE

SFC.
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Fig. 8. Preemption Cost of preemption criteria

As expected, because of the unpredictable nature of the

‘Random’ criterion, it fairly deports SFCs in Runbe, as shown

in Figure 9. Using the ‘Random’ criterion as a fairness

reference, for ‘50:50’ we can see that ‘SFC&Node-CPU-first’

is as good as for ‘Random’. The overall fairness of ‘20:80’

is way better than that of ‘50:50,’ because the number of BE

SFCs is 60% more in ‘20:80’.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed IPTSV for immediate placement of

time-critical services with VNF sharing. We found that ‘SFC-
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CPU-first’ is the least criterion to unnecessarily deport BE

SFCs even when VNF sharing is not used, ‘Most-similar-

first’ and ‘SFC&Node-CPU-first’ came as a close second and

third, respectively. Again ‘SFC-CPU-first’ is best for giving

the least BE SFC AWT and is in close competition with

‘Longer-first’ and ‘Most-similar-first’ for the least TAT. Using

equal costs, the ‘All’ gives the least cost for both moderate

and high loads, while the ‘SFC-CPU-first’ criterion performs

better in moderate load settings. The ‘SFC-CPU-first,’ ‘Most-

similar-first,’ and ‘SFC&Node-CPU’ deport BE SFCs as fair

as the ‘Random’ criterion. It is clear that the ‘SFC-CPU’

criterion is in the top-three if not the winner in all evaluation

metrics. Finally, in environments where compute resources

are scarce and would be preferably used to process actual

services/workloads, the ‘Random’ criterion works just fine.

We realized that the gratuitous deports of BE SFCs are

unavoidable, even when using the best preemption criterion,

because of VNF sharing and the unknown released resources

when deporting BE SFCs. For future work, we will diagnose

the failure of Pr SFC placement and use such diagnosis

to design a better, less-disturbing to BE SFCs, preemption

criterion. Moreover, to add the support of non-sequential SFCs

to IPTSV, some preprocessing steps are needed. First, decom-

pose the non-sequential chain into two or more sequential

chains. Second, use IPTSV to do the placement of sequential

chains. Finally, merge the individual placement solutions at the

branching VNFs to get the solution for non-sequential SFC.
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