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Abstract

The promising energy saving and quality of service (QoS) gains of Predictive Resource

Allocation (PRA) for video streaming have recently been recognized in the wireless net-

work research community. The PRA relies on future channel conditions to strategically

deliver the video content of the mobile users. For instance,the whole video is pushed to

the users moving towards the cell edge while prebuffering ispostponed for others heading

to the cell center in order to minimize the transmission energy. The focus of this thesis

is to present a Robust Predictive Resource Allocation (R-PRA) framework to tackle prac-

tical uncertainties in the predicted information. In essence, the R-PRA adopts stochastic

optimization techniques such as chance-constrained and recourse programming to model

the uncertainties in the problem constraints and objectives. Although deterministic convex

approximations are feasible, guided heuristic algorithmsare introduced to provide real-

time allocation. Moreover, Bayesian filtering methods (e.g. Kalman Filter) are adopted

to continuously learn the degree of uncertainty which decreases the cost of robustness and

maintains the prediction gains. Different variants for therobust framework are proposed

such as energy-minimization and predictive adaptive streaming under erroneous prediction

of channel rate, user demand and network resources. The variants unleash various design

challenges for the network operators such as the trade-off between the complexity of un-

certainty modelling and the prediction gains. All the variants are evaluated using a standard
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compliant simulation environment that comprises a networksimulator 3 (ns-3) integrated

with commercial solvers to obtain benchmark solutions. Theresults demonstrated the abil-

ity of R-PRA to meet the QoS level while maintaining the prediction gains over the op-

portunistic schemes employed in current networks. We believe that this framework set the

groundwork for future robust predictive content delivery in which time horizon decisions

are taken under practical uncertainties.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Evolution of Mobile Video Traffic

Mobile phones and data applications are undergoing a constant development that drives

forces for cellular network expansion. As expected, the number of mobile devices has in-

creased exponentially over the last decade and already surpassed the world’s population in

2014 with a total of 7.4 billion devices [11]. Such growth is expected to continue in the

next few years reaching 11.6 billion by 2021. In addition, the upsurge in multimedia ser-

vices and social networking applications, among others, will cause an exponential increase

in total wireless data traffic of 49 Exabytes per month in 2021. This will put network op-

erators under huge pressure as they strive to manage user experience with minimal capital

and operational expenditures.

Concurrently, mobile video traffic is experiencing substantial growth as more than78%

of the global mobile data traffic is expected to be video content in 2021 [11]. This is at-

tributed to the high bit rates required by video content compared to other data applications.
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Ongoing development of mobile devices, streaming servers such as YouTube, and adaptive

streaming protocols are supporting the availability and delivery of video content at different

quality levels that improve the user experience [12, 13]. This large volume of traffic, how-

ever, must be delivered to users at a certain quality of service (QoS) level, e.g. maximum

delay and service interruptions, using the available resources. To that end, the cellular

operators focus on Resource Allocation (RA) that provides proficient usage of available

network resources such as the licensed spectrum and access nodes.

1.1.2 Challenges and Ongoing Efforts

Among the network elements, the Radio Access Network (RAN) accounts for more than

50% of the network energy consumption [14]. As such, designing novel energy-efficient

RAN frameworks is paramount to reducing the network carbon footprint while satisfying

the increasing Telecom market demands. This includes techniques such as efficient Power

Amplifier (PA) design [15], cell switch off [16, 17], and traffic-aware scheduling [18],

among others.

A more efficient RAN is also beneficial for operators as it can postpone investment in

equipment installations and new spectrum. Thus, in addition to minimizing the energy-

related operational expenditures (OpEx), the capital expenditures (CapEx) can also be

reduced since radio equipment installations can make up to 70% of CapEx [19]. To ad-

dress these recent developments,energy-efficientRA schemes for wireless video streaming

are gaining momentum. Such schemes are also important for future wireless paradigms

such as Vehicular Ad-hoc Networks (VANETs) in which energy saving remains a chal-

lenge [20,21].

Another advancement in video streaming protocols is the adaptive selection of quality
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(i.e. video definition) [13,22]. Dynamic Adaptive Streaming over HTTP (DASH) refers to

one type of these protocols which has been standardized in the 3GPP [23]. Each video file

is encoded at multiple bit rates within the server, and thus enables channel aware quality

selection. This selection is currently user-driven, yet increases the risk of buffer underrun

and video stops when users greedily request high bitrates that require more resources than

the amount calculated by the resource allocator. Hence, a shift towards selection becoming

network-centric is getting attention in current research thereby to include the decisions of

radio resource allocator especially in multi-user scenarios [24]. In essence, DASH schemes

aim to maximize the Quality of Service (QoS) by minimizing the number and durations of

video stops, and initial buffer delays while maximizing thevideo quality measured by the

bitrate [13].

These stringent requirements on energy consumption and QoSnecessitate novel design

of RA schemes to optimally calculate the resources and select the video quality. The pre-

dictability of user’s behaviour and mobility, and wirelesschannels enabled a new paradigm

referred to as Predictive Resource Allocation (PRA) [25–30]. Extensive network measure-

ments demonstrated the predictability of users’ behaviourup to 93 % [31], including human

mobility and activity [32]. Meanwhile, the radio signal strength and available bandwidth

are found to follow repetitive spatio-temporal patterns [33–35]. The availability of naviga-

tion systems (e.g. Global Positioning System (GPS)) at current user devices has enabled

mobile operators to correlate the radio measurements (e.g.channel rates) with geographical

locations, and constructs the Radio Environment Map (REM) [36].

PRA that exploits these patterns of signal strength and mobility prediction over a time

horizon has recently been recognized as a promising approach to improve video streaming

QoS [26,37,38], and minimize transmission energy [25,27,29]. In essence, the PRA avoids
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allocating resources to users during poor radio conditions, that consume more airtime per

byte, while maximizes the allocation during peak conditions by leveraging the content

availability and prebuffering capabilities at the Base Station (BS) and user devices. To de-

rive performance gains over non-predictive schemes, the PRA literature [25–29] assumed

perfect prediction of future information. However, real-world uncertainty should be taken

into consideration to support the implementation of PRA in practice. Prediction techniques

typically rely on real-time channel measurements characterized by spatio-temporal varia-

tions [33]. This is in addition to adopting low-cost and low-power filters at user devices

which decreases the prediction accuracy over the time horizon. Nevertheless, dynamics

in the environment will result in changes of user behaviour,mobility and demands which

make perfect prediction infeasible. All these sources of uncertainties prompt a change in

the PRA design to achieve arobustsolution that guarantees QoS satisfaction and maintains

the reported prediction gains.

1.2 Objective and Thesis Contribution

In this thesis, we address the problem of imperfect predictions and handle the resultant

uncertainties to limit their impact on the PRA performance.The main focus is on the

following research questions:

What is the impact of information uncertainties on the prediction gains?
How to develop a robust-PRA scheme to model and handle these uncertainties?
What is the cost of robustness?

The first question aims to quantify and analyze the impact of uncertainties on the user

satisfaction and prediction gains while adopting existingPRA under typical error models.
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The second question is related to introducing a novel PRA design that isrobust to errors

in the predicted information. Finally, the third question will assess whether the reported

performance gains in the PRA literature are still attainable by therobustforms. We believe

this work provides a practical direction towards the development of deployable PRAs in

future generation networks.

We summarize the contributions of this thesis, to tackle theabove questions, as follows:

• We propose, for the first time in literature, aRobustPredictive Resource Alloca-

tion (R-PRA) framework that handles prediction uncertainties over a time horizon

throughprobabilisticmodelling,stochasticoptimization,Bayesianlearning, and guided

heuristic search. The framework comprises the following main stages:

– Modelling the future information as random variables in order to capture the

impact of prediction errors. This is unlike the existing PRAapproaches that

adopts the average values of predicted information and ignored their variations

and uncertainties.

– We adoptstochasticoptimization techniques such as Chance Constrained Pro-

gramming (CCP) and Recourse Programming (RP) to limit the degree of vi-

olation in QoS constraints and minimize the expected loss innetwork gains,

respectively. Such probabilistic modelling allows the framework to strike a bal-

ance between providing high network gains when predictionsare accurate, and

minimizing the risks associated with erroneous predictions during periods of

uncertainty. Unlike traditionalrobustoptimization, new models are proposed

here to capture the interdependency between the time slot decisions and guar-

anteejoint QoS satisfaction over the time horizon.
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– The main challenges in such probabilistic model is the lack of non-closed form

solution. A deterministic equivalent formulation is therefore derived using

the statistics of predicted information such as variance and Probability Den-

sity Function (PDF). Thus, a tractable solution can be obtained and solved by

commercial solvers.

– Although the statistics of random variables can be calculated off-line, radio

measurement studies reveal that the degree of predictability varies significantly

with geographical location and time of day [33]. Therefore,a mechanism to

track the uncertainty level in predicted information is proposedfor a practical

solution. This is as opposed to thestochasticliterature in which the uncertainty

level was constant and thus provided suboptimal or non-robust decisions when

the degree of predictability varies over time.

– We propose a low-complexity guided heuristic search algorithm to obtain real-

time solutions for the deterministic equivalent formulation. Although the for-

mulated model is convex and can be optimized by commercial solvers, real-time

solutions are not attainable by conventional numerical methods whose complex-

ity increases with the time horizon length and number of users.

• We propose four variants of the R-PRA framework for video streaming under differ-

ent network objectives and sources of uncertainties summarized as follows:

– Energy-efficiency under Gaussian uncertainty: We introduce a novel model

for video streaming QoS over a time horizon that accounts foruncertainty in the

predicted user rates. Herein, the objective is to minimize BS energy consump-

tion while guaranteeing a long-term QoS. As recent practical and theoretical
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findings indicate that the variations in predicted rates canbe modeled as multi-

variate Gaussian random numbers [34], we employ probabilistic Joint Chance

Constrained Programming (JCCP) to formulate the problem mathematically.

We then show that the resultant formulation is non-convex and apply propor-

tional risk allocation for joint chance constraints. The problem is decomposed

into two convex sub-problems, where the first stage optimizes the individual

risk levels at each time slot, which are subsequently used bythe second stage to

solve the robust RA problem. By applying such anon-uniformrisk allocation,

we generalize the solution to achieve less conservative (i.e, energy-efficient) and

more practical QoS aware RA decisions. We develop an efficient low complex-

ity guided search heuristic that guarantees the satisfaction of joint QoS levels.

Due to the inconsistency in the rate variance over time and location, we adopt

Kalman Filter (KF) to accurately track such variations, providing an additional

degree of robustness to the statistical parameters. With such a framework, QoS

guarantees can be ensured during high variance while energyminimization is

achieved during low varying cases.

– Energy-efficiency under Generic uncertainty: Unlike the first variant, this

one provides a solution that is not dependent on a particularerror Probability

Density Function (PDF) in order to save the cost of error modelling. We adopt

the Bernstein Approximation (BA) which only requires errorbounds to satisfy

the QoS constraint. Under such uncertainty model, we also demonstrate how

a Particle Filter (PF) can be adopted to effectively achievethe channel track-

ing functionality, and adapt the BA rate bounds. Finally, wepresent a guided

heuristic algorithm based on local search to provide a real-time solution for the
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BA formulation.

– Energy-efficiency under Demand and Resource uncertainty: While the first

two variants tackle errors in predicted rate, we capture here uncertainties in

both the demand and radio resources. The model relies on Recourse Program-

ming (RP) to consider the risk of wasting resources due to users terminating

the video session before watching the prebuffered content [39, 40]. Similarly,

a CCP is adopted to control the QoS degradations under resources fluctuations

due to the random arrival of real-time traffic. The deterministic equivalent is

derived using the PDF of video watching durations to quantify both the possi-

bility of energy-saving and the risk of wasting resources. Similarly, the PDF

of users arrival and their traffic load are used to obtain a deterministic form for

the CCP model. The proposed guided heuristic algorithm allows the network

to prebuffer future demands with high likelihood of watching, and delay the

delivery of upcoming uncertain content, while accounting for the fluctuations

in the network resources. In addition, the trade-off between energy-savings and

the risk of QoS violation during resources uncertainty is modelled and ensures

that the QoS degradations does not surpass predefined level in CCP.

– QoS-Aware DASH under Rate Uncertainty: Unlike the previous variants that

solve only for resources at a fixed quality, to save energy in low load scenario,

this last approach seeks joint optimization of radio resources and video quality

selection to maintain prediction gains in high load scenarios. The main objec-

tive is to achievelong-termquality fairness among users over the time horizon

while avoiding the video stops due to buffer underrun. Unlike non-predictive

counterparts, the proposed approach allows the network to prebuffer upcoming
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video content in high quality to users with poor future rates. The deterministic

equivalent of CCP is based on Scenario Approximation (SA) that adopts the

discrete PDF of predicted rates. As the decision is taken over a time horizon

and for both resources and quality, conventional SA resultsin a combinato-

rial complexity. As such, we introduce a linear approximation to aggregate the

dependency between the time horizon constraints which reduces the formula-

tion to a polynomial model. While SA provides benchmark solutions for the

robust approach, mobile operators strive to minimize the effort of obtaining

the discrete PDF. Hence, we propose a second deterministic model based on

Gaussian Approximation (GA) that only require the varianceand the inverse

Cumulative Density Function (CDF) of predicted rate. We also propose a low-

complexity guided heuristic search algorithm to obtain real-time solutions for

the deterministic GA formulation.

• We evaluate the performance of all proposed variants to unleash the impact of uncer-

tainties and robustness on the reported prediction gains. The evaluation framework

is summarized as:

– We modify the scheduling module in a Long Term Evolution (LTE) standard

compliant network simulator (ns-3) and integrate it with optimal solvers such

as MATLAB and Gurobi to evaluate the proposed algorithms andstate of the

art solutions.

– Typical error models, reported in the literature based on measurement cam-

paigns, are adopted by the simulator to perform sensitivityanalysis and assess

the performance gains.
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– New performance metrics are defined to quantify and model thetrade-off be-

tween the network and QoS gains. In particular,Cost of Robustness, prediction

gains, optimality gaps and complexity, among others, are examples of such met-

rics that help operators in measuring the rewards of Robust Predictive Resource

Allocation (R-PRA).

1.3 Organization of Thesis

The thesis is organized as follows:

In Chapter 2, we provide a background on PRA and review the state of the art. In

addition, we discuss the sources of prediction uncertainties which were overlooked in PRA

literature and review the resulting limitations.

In Chapter 3, a background on bothRobust optimizationanduncertainty trackingtech-

niques is provided. The focus is onStochasticoptimization and the deterministic equivalent

forms. In addition, Bayesian inference techniques used in this thesis will be also reviewed.

In Chapter 4, our generalRobust-PRA framework is proposed and the main building

blocks are summarized. This is in addition to the system model and a Monte-Carlo frame-

work for estimating the statistics of prediction errors.

In Chapter 5, Chapter 6 and Chapter 7 we propose the differentvariants of the robust

framework. Each variant contains a problem description, system model, mathematical for-

mulation, heuristic search, and simulation results.

Finally, in Chapter 8, we summarize and conclude the thesis,and highlight the main

findings of this work. Future directions are then recommended to support the momentum

of implementing the PRA in next generation wireless networks.
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Chapter 2

Existing Predictive Resource Allocation

(PRA)

2.1 Conceptual Overview

Today’s wireless networks adopt opportunistic resource allocation schemes based on re-

ported measurements from the user devices [41–43]. The channel conditions at each user

device are reported periodically in the form of Channel Quality Indicator (CQI) which

guides the network to select the appropriate Modulation andCoding Scheme (MCS). For

instance, users experiencing poor channel conditions, i.e. low Signal to Interference plus

Noise Ratio (SINR), due to low signal strength or high interference will report low CQI

values. As a consequence, the network will select a low orderMCS that is robust to such

low SINR values and thus user can receive and decode his content at a target Bit Error

Rate (BER) value. Although such adaptive transmission provides optimal utilization of

radio resources, it poses new challenges to network operators while designing the strategy

of opportunistic resource allocation. Each user experiences different radio conditions and
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served by an MCS that differs from other users. Thus, optimizing network resources such as

minimizing energy consumption or maximizing bandwidth utilization while achieving fair

QoS among users is not attainable by existing opportunisticresource allocation schemes.

Achieving fair QoS would typically result in allocating more resources to users with poor

conditions (i.e. low MCS), yet this increases the energy consumption and minimizes the

bandwidth utilization. Future wireless networks as such should employ a new paradigm

that handles the conflict between network objectives and QoSrequirements.

Predictiveresource allocation (PRA) has recently been recognized as apromising ap-

proach to improve the resource utilization for video content delivery [25–27,37,38,44,45].

This is accomplished by leveraging the knowledge of the future link capacity users are

expected to experience, and then performinglong-termpredictive RA plans over several

seconds. By doing so, BSs can prioritize users heading to poor channel conditions (i.e. low

MCS), or delay transmission until a user reaches better channel conditions (i.e. high MCS).

Prioritizing users allows the BS to prebuffer the future content and thus maintains the tar-

get QoS, while delaying the transmission results in optimalbandwidth utilization. Stored

video content such as YouTube and Netflix is well suited for such approaches as it can

be strategically prebuffered and cached locally at the mobile device. In-network caching

enables the content availability at the BS under user mobility [46–50].

2.2 Mobility and Channel Prediction

Radio signal measurement studies indicate that cellular network users moving along the

same path will typically experience similar signal strength variations as reported in [33,

44]. The PRA relies on long-term prediction of future channel conditions over a duration

that extends to some tens of seconds and may be minutes. In that period, user locations
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(a)

(b)

Figure 2.1: Illustrative example for the a) regression and b) location based predictions [10]

significantly change the channel conditions which remove the correlation between future

and past signal samples. This makes traditional regressionmethods [51], Fig. 2.1 (a),

unsuitable for PRA, as such the location based prediction inFig. 2.1 (b) is typically used

[10]. This technique relies on the user’s future location, mobility and motion behaviour

for modelling the upcoming large scale shadowing. This enabled the estimation of radio

conditions in urban, suburban or rural areas which are characterized with time disjointed

measurements and high user mobility as illustrated in Fig. 2.1.

The Radio Environment Map (REM) has been introduced as a mainbuilding block of

the location based channel prediction. In essence, REM is a database that stores the users’
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reported channel measurements at different locations in the network. These measurements

will be used afterwards to retrieve either the received power or rate values at given loca-

tion. The REM was firstly developed in cognitive radio networks to store medium access

information and statistics of users to control the spectrumusage [52]. In cellular networks,

the REM is also exploited to detect coverage holes [53] and construct automatic neighbour

relations [54] without the need of manual drive test. The REMis frequently updated by the

users’ measurement reports according to the 3GPP Drive TestMinimization Standard [55]

which enables autonomous construction of REM and its application in PRA.

REM Construction

The REM construction undergoes two main stages: user location estimation and RAN

measurement collection [36].

• User location estimation

Current 3GPP LTE standard adopts the Evolved Serving MobileLocation Centre

(E-SMLC) to localize the user device upon request from RAN [55]. The E-SMLC

calculates the position using one or a combination of the available localization sys-

tems at the user device.

In [56], cellular network positioning was adopted based on:1) observed time differ-

ence (OTDs) between consecutive messages at the BSs , and 2) relative time differ-

ence (RTD) between BSs. The scheme has four main inputs: 1) measurement report

message (MRM) that contains channel measurements (e.g. signal power) along with

time stamp, 2) cell configuration which comprises the base station physical param-

eters (e.g. location), 3) Round trip time (RTT) and 4) Elevation data and thus only

2-D positioning is done using RTT or the difference between the trigger and arrival
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of the MRM. The RTD is then calculated based on both the OTD received at two

BSs and the propagation delays. The resulted position is further filtered using KF

to remove incorrect positions relative to the average pedestrian or vehicular speed.

The filter prevents a sudden increase or decrease in the velocity and thus eliminates

disruptions in the estimated user location over short time interval.

Other approaches used satellite signal to calculate more accurate user locations by

leveraging the GPS in today’s user devices [36, 55]. Moreover, the GPS can be

also integrated with other localization systems that have complimentary features to

improve the positioning accuracy. Integration can take place in a loosely coupled

form [57, 58] in which two positions are obtained, one from GPS and another from

LTE reference positioning signal, and then aggregated to one final position. Aggrega-

tion is done by weighting both positions based on the trustiness of each localization

system. Another example of the tight integration is the assisted GPS (A-GPS) which

is currently implemented in user devices. In particular, the device can communicate

with the cellular network to acquire the available satellite information at the BS. This

speeds up the satellite signal acquisition at the mobile device, thus saves energy and

decreases latency.

• RAN measurement collection

Network information such as load and interference between different BSs are col-

lected and stored in the REM. Such measurements are used to create and update

the REM in one of two ways: Pixel Update or Propagation Model Tuning. In the

former, the REM is represented as a geographical area, divided into square grids,

and the reported user device measurements are mapped to the nearest grid. In the

second type, the reported measurements are used to tune a selected empirical path
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loss model. Tuning is done periodically through calculating correction variables that

minimize the difference between the measurements and the model based values. The

tuned model can then be used to estimate the received power and interference in all

the geographical locations.

Mobility Prediction

After constructing the REM, the network will predict the future user locations based on

both current user location, velocity and routine.

The user mobility behaviour is classified into two types: macroscopic and microscopic.

The former includes the daily activities such as going from home to office or from desk to

a meeting room. In the microscopic behaviour, the motion is restricted to certain locations

such as the office locations or corridors, in case of indoor, or defined routes in case of

outdoor or road network [59]. Moreover, the human velocity is highly predictable either

as a pedestrian or a driver. The velocity is probably 2 m/s in the former case, while in the

second case it depends on the road information. Such motionsfollow a pattern that can be

used to estimate the future mobility traces.

The vehicle trajectory can be mainly predicted using information about: vehicle, envi-

ronment and driver [60]. The vehicle’s velocity, acceleration and angular speed can be used

for providing a short term prediction of user’s location. Onthe other hand, the environment

information can provide a longer term prediction for the user’s trajectory.

REM Based Channel Prediction

After calculating the anticipated user locations, the corresponding future channel rates can

be retrieved from the REM either directly or through geographical/spatial interpolation
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techniques. These techniques are fitting methods used to complete a 2-D surface by in-

terpolating the missing points using the stored values in the REM. Different interpolation

functions are used to model the relation between the points comprising the same curve.

Surveys on different methods, their accuracy and complexity can be found in [61, 62].

One possible classification is in [63] which proposes three interpolation categories: Local

Neighbourhood, Geostatistical, and Variational.

In the first category, the interpolated data is a weighted sumof the surrounding neigh-

bourhood measurements. Among its types are: Inverse Distance Weighted, Natural Neigh-

bour Interpolation [64] and Triangular Irregular Network [65]. Inverse Distance Weighted

assumes that near points are more correlated than the far ones. Accordingly, the location

with missing measurements is predicted (interpolated) as aweighted sum of the surround-

ing measured points, each one is weighted by the inverse of its distance. In Triangulated

Irregular Network, triangles are formed such that the circumcirlce of each triangle should

contain a maximum of one measurement point. The three vertices of the same triangle are

chosen such that the smallest angle in all triangles is maximized [66]. The geostatistical

interpolation technique is based on the channel statisticsthat model the randomness and

uncertainties in the measurements. The most commonly knownmethod is called Krig-

ing [66, 67] that guarantees the minimum mean square error. The method constructs an

empirical semivariogram that uses the semivariance to reflect the spatial correlation be-

tween the different points. A theoretical semivariogram model (e.g. exponential, Gaussian

or spherical) is then selected to approximate the empiricalmodel using appropriate fit-

ting technique such as least square method [68]. The variational interpolation introduces a

smooth small varying function called Splin. The most well-known technique of this class is

the Thin Plate Splin (TPS) which uses a radial basis functioncentred at every measurement
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and the point to be predicted [67].

2.3 PRA Schemes and Potential Gains

Under perfect knowledge of the future network conditions (i.e. error-free REM), the PRA

techniques in [25–29, 38] demonstrated how the total BS energy can be significantly re-

duced, compared to opportunistic allocation, without any buffer underrun at the user device.

In [26,69], the PRA achieved long-term QoS fairness over thetime horizon resulting in uni-

form user experience. Moreover, the PRA was extended toPredictive-DASH (P-DASH)

in order to jointly select the video quality and resources devoted to users over the time

horizon. Thus, maximizes the total quality for each user during the streaming session and

minimizes the total BS energy [28].

2.3.1 Energy Savings

The first gain achieved by PRA is the minimization of total energy consumed by both the

BS and user device in transmitting and receiving the video content, respectively. The PRA

work in [25, 27, 29, 37, 38] has focused on energy minimization under QoS constraints. In

particular, the QoS level is said to be satisfied when the video is played back without stops.

Quantitatively, this is achieved when total amount of data delivered to the user at a certain

time slot is not less than thecumulativedemanded data at a fixed streaming rate to avoid

buffer underrun. In order to achieve energy savings, the total airtime allocated to the users

over the time horizon has to be minimized.

When the user experiences poor radio conditions, e.g. near the cell edge, the BS will

adopt low order MCS. This results in low transmission rate that consumes more resources



2.3. PRA SCHEMES AND POTENTIAL GAINS 19

per bit and increases the energy consumption. As such, the PRA will devote the bare min-

imum amount of resources to the user such that the video does not freeze. The BS can

go into sleep mode, to minimize energy, or allocate the remaining amount of resources to

other users. On the contrary, the BS waits until this user reaches his peak radio conditions,

e.g. near the cell center, to leverage the high order MCS. Theattained peak transmission

rates motivate the BS to allocate large amount of resources and exploit the storage capabil-

ities in user devices by transmitting large portion of the video. Thus the whole video can

be delivered before the user experiences poor conditions inthe future. The BS can also

go into sleep mode while the user plays back the prebuffered content in the future. Such

strategy allows the PRA to transmit the video content with fewer resources compared to the

traditional opportunistic RA technique. The latter overlooks the future radio conditions and

thus neither delays prebuffering, for cell edge user, nor prioritizes users at the cell center

experiencing peak radio conditions.

An example of such an energy-efficient PRA is illustrated in Fig. 2.2(a). In that exam-

ple, the user started moving from the cell edge at t = 0 experiencing the lowest channel

rate as shown in Fig. 2.2(b). This user is also expected to move towards the cell center

reaching the peak channel rate at t = 40. With these future rates in mind, the PRA will

strategically serve the user with the minimum airtime to barely satisfy his demand. This

allocation will guarantee an optimal balance between QoS satisfaction and energy con-

sumption. Allocating less airtime will result in video stops, while more airtime increases

the energy consumption. The PRA adopts this strategy until the user reaches the peak chan-

nel conditions at t =40 where the video is prebuffered by maximizing airtime allocated to

that user. The main aim of this greedy allocation is to download the whole video before

the user leaves the cell center and reaches the poor radio conditions again at t > 50. As
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Figure 2.2: Illustration of PRA for energy saving under QoS satisfaction

opposed to PRA, opportunistic (Non-PRA) that is unaware of the future peak rates will

greedily allocate the whole airtime to the user at the early time slots (near t = 0) resulting

in more energy consumption.

2.3.2 Long-Term QoS Fairness

The second gain achievable by PRA is the long-term fairness for video streaming users.

While energy-saving can be attained during low load scenarios, fair QoS among users can

be accomplished during high load scenarios. This includes strategic allocation of video

freezes [26,69] and selection of video quality over a time horizon [37,70].

Similar to the energy saving PRA techniques, the predictivefair resource allocation

was introduced in [26, 69] in which the future rates are exploited to prioritize users. In

particular, the predictive proportional fair (PPF) scheduler in [26] considers distributing

all the available resources (i.e. airtime) among the users proportional to their anticipated

channel rates. Thus, a user experiencing his peak rates and moving towards location with

poor radio conditions shall be prioritized. More resourcesare allocated to that user to
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prebuffer a large amount of video which can be watched duringfuture poor conditions.

Avoiding allocation during poor conditions will save resources that can be utilized by other

users. In particular, lower priority is assigned to users located in bad radio conditions

(might experience video stops), yet will be prioritized later when they reach their peak

radio conditions.

Such allocation is similar to the opportunistic non-predictive proportional fair sched-

uler. However, the gain of PPF is emphasized when users are experiencing similar data

rates at the same time but their future rates are different. Thus, users with low rates in the

future will have a higher priority than the other users with high rates, although both are

currently experiencing the same peak rates. As a result, optimal resource utilization and

fairness are achieved by the PPF compared to the non-predictive scheme. Moreover, other

objective functions that consider fairness such as max-min, α− fair and Jain’s index [69]

can still be applied to achieve similar gains as the above-mentioned PPF.

2.3.3 Maximizing DASH Quality

Dynamic Adaptive Streaming over HTTP (DASH) was essentially introduced to improve

the user experience and resource utilization under wireless channel fluctuations [12]. The

video file is split and delivered in the form of small segmentswhere the quality of each

segment is adapted proportionally to the user’s channel condition. In particular, low-quality

segments are selected when the user is experiencing low channel rates (e.g. user at the cell

edge) in order to avoid video freezes. On the contrary, high-quality segments are delivered

when peak channel rates are observed (e.g. user at the cell center) to exploit the available

radio resources and improve the user’s experience.

The original DASH protocol relies on user device, aware of available video bitrates,
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and the channel conditions to select the segment quality andrequest it from the streaming

server. Such user-centric approach, however, is unaware ofthe total network load and other

users demands which are considered by the resource allocator. Therefore, a user might

select a high-quality level, due to the measured high channel rate, although the network

resource allocator will not necessarily devote the whole radio resources to that user in

the next time slot. Such limited resources, selected by resource allocator, might not be

sufficient to deliver the high-quality segment, requested by the user, and thus increases the

risk of video freeze [24].

Research efforts are currently concerned with shifting theDASH from a user-centric

decision to a network driven decision in order to bridge the gap between the decisions of

individual users and the resource allocator [71]. To that end, the network jointly optimizes

the segments qualities and the resource sharing among the users. Thus, avoids the greedy

quality selection by the users when they overestimate the available radio resources. Differ-

ent implementations of network-centric DASH, with minimalchanges to the current user-

centric strategy, were proposed in [24, 71]. At the BS, the resource allocator overwrites

the user’s requested quality before forwarding it to the server [71]. Recent BS storage

capability provides another implementation flexibility where the video is locally cached

with different quality representations, and the segments are sent at the resource allocator’s

quality.

Conventional network-centric DASH [72–74] adopts recent channel measurements, re-

ported by the user’s device, to opportunistically optimizethe network resources (e.g. re-

source utilization) and QoS (e.g. quality and interruptions). Each user reports the current

channel conditions to the network which in turn calculates both the segment’s quality and

the amount of resource share for each user at a certain time slot. These reactive decisions
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only achieve local optimal network performance without QoSguarantees due to overlook-

ing the users’ future radio conditions.Predictive-DASH (P-DASH) [25, 26, 28, 44, 70],

oppositely, relies on future radio conditions to derive long-term policy while allocating the

current resources. For example, two users at the cell center(i.e. good radio conditions),

one is heading towards the cell edge while the other will stayfor longer time. As the former

experiences poor radio conditions in the future, the resource allocator must prioritize this

user by allocating more resources during peak radio conditions. Long-term fairness with

regards to quality and stalls can be achieved by either prebuffering the future content or

increasing the current video quality. This strategy allowsthe user to stream the prebuffered

high quality content during poor radio conditions resulting in higher fairness. On the con-

trary, users in poor conditions and moving towards high channel rates will be allocated a

small amount of resources until reaching their peak conditions.

2.4 Sources and Limitations of Prediction Uncertainty

In wireless medium, channel rates and network resources cannot be perfectly predicted

and thus typically modelled as random variables. Similarly, users demands are subjected to

variations according to the user experience and behaviour,and type of content. Although

users future locations can be accurately predicted by advanced positioning techniques [75–

79], other sources of uncertainties such as users skipping the video session and arrival of

real-time traffic are envisioned in future networks irrespective of mobility. Existing PRA

strategies in [25–27, 37, 38] modelled each of these uncertain components by the expected

(average) value to obtain a deterministic formulation. However, this approach results in

non-robustand suboptimal allocations when network conditions deviate from the expected

value. Despite these reported gains in the literature, the following practical challenges
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related to prediction uncertainty must be addressed:

• Channel Rate Fluctuations:The first parameter used in PRA is the future channel

rate of mobile users based on their trajectory. In practice,channel predictions are

typically associated with uncertainties due to the low-power filters used in the mo-

bile devices [34] and the random behaviour of the received signal level as shown in

Fig. 2.2(b). Deterministic decisions by existing PRA [25–28] do not guarantee QoS

satisfaction when predicted future rates fall below the expected values. In this case,

the minimal airtime fraction allocated to the cell edge users will not be sufficient

to meet their demand and buffer underrun occurs causing video stalls as depicted in

Fig. 2.2(a). In addition, when peak rates exhibit lower values than expected, energy

savings will be suboptimal as the large allocated airtime will deliver a small amount

of video content.

• Demand Uncertainty: The user demand is represented by both the streaming bi-

trate (i.e. video quality) and the watching duration. Userscan frequently change

the quality of video, skip some frames or terminate the session without watching the

entire video [40]. Fig. 2.3(a) depicts an example of energy wastage under the PRA

literature, which assumed perfect prediction of streamingduration, however the user

terminates the session at t=5. The risk of wasting resourcesincreases as PRA maxi-

mizes prebuffering for users at the cell center (i.e. experiencing peak rates). Existing

robust non-PRA techniques [80, 81] decide when to be prebuffer the video at the

current slot, to save the tail energy, or postpone the delivery. The PRA, however, re-

quires further efforts to consider the trade-off over the time horizon since postponing

full video delivery requires more resources to transmit theremaining content during
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(a) Existing PRA under uncertain demand
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Figure 2.3: Illustration of high energy consumption and QoSdegradations

future poor channel conditions. The impact of demand uncertainty is thus more se-

vere in case of PRA, to strike a balance between both the risk of wasting resources

if the prebuffered content is skipped and the likelihood of energy consumption if

prebuffering is delayed till poor conditions.

• Radio Resources Variation: The stochastic arrival of users with stringent service

delay requirements, such as voice calls, will decrease the total available resources

for streaming users. Such random arrival will increase the risk of violating QoS re-

quirements of video users at poor conditions who are allocated a small portion of

the available resources. Fig. 2.3(b) depicts this scenariowhere the network follows

a minimal allocation strategy for a cell-edge user to minimize the energy consump-

tion. The risk of violating the demand, when the user does notreceive the minimum

amount of data, has to be modelled by the R-PRA. Thus, minimalallocation can be

only followed during resources stability while an opportunistic risk-aware strategy is

adopted in uncertain conditions.
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RobustPRA frameworks are therefore paramount to unleash the gainsof predictions

under real-life constraints. This involves 1) modeling therate, resources and demand un-

certainty, 2) developing models to provide probabilistic QoS guarantees, and 3) efficiently

tracking the prediction uncertainty in real-time. Integrating these functionalities should

enable PRAs to strike a balance between providing network gains such as energy savings

when predictions are accurate, and minimizing the risks associated with erroneous predic-

tions during periods of uncertainty.
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Chapter 3

Stochastic Optimization and

Uncertainty Tracking

In this chapter, we provide a background on the robust optimization techniques that will be

used in our R-PRA framework. Robust optimization refers to aclass of decision making

problems in which input information are erroneous. In essence, a certain level of constraint

satisfaction has to be met by the decision maker while solving a problem accommodating

uncertain information. Mathematically, the coefficients and bounds of objective function

and constraints are modelled as uncertain variables ratherthan constants in the determinis-

tic optimization problems.

3.1 Robust Optimization

Robustnon-predictive RA techniques have been discussed in the literature in the context of

handling both uncertainties and delays in the user reportedmeasurements [43,82,83]. Two

fundamental optimization techniques namelyFuzzyandStochasticare used to provide a
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robust formulation of the RA problem. In the former, the varying predicted information is

represented as fuzzy numbers associated by a membership function [84]. On the other hand,

Stochasticoptimization represents the uncertain values as random variables characterized

by their probability density functions [85]. Commonly, these two techniques provide a

closed form representation of the robust formulation referred to asdeterministic equivalent

or robust counterpart. Although theFuzzyresults in a deterministic form that does not

change the order of complexity of the original non-robust formulation [84], an unsustain-

able conservatism is attained, resulting in suboptimal RA decisions [85,86]. Conservatism

means over-satisfying the constraints at the expense of theobjective function optimality.

Stochasticoptimization, which is less conservative, was thus extensively adopted in non-

predictive RA schemes. The main drawback compared to fuzzy approach is the increased

complexity. Hence we adopt the stochastic optimization to avoid the effect of conservatism

on resource allocation and prediction gains, while the complexity is handled through con-

vex decompositions or linear approximations, and supported by guided heuristic search to

obtain real-time solutions.

3.2 Stochastic Optimization

Stochasticoptimization utilizes two main techniques: Chance Constrained Programming

(CCP) and Recourse Programming (RP) to handle the uncertainty in constraints and objec-

tive functions coefficients, respectively [85].
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3.2.1 Recourse Programming

Two-Stage Recourse Programming

In Recourse Programming (RP), resource allocator takes some actions as a first stage, after

that a random event is observed and impacts the optimality ofthe first-stage decision. A

recourse decision is thus needed in the second stage to compensates for any suboptimal

effects experienced by the network as a result of the first-stage decision [85]. The RP

model consists of both first-stage decision variables and recourse decision variables (i.e.

second-stage variables).

A standard formulation of stochastic two-stage RP is depicted as:

minimize
x,y

{

∑

∀t∈T

(

F (xt) + E
[

H(yt, ηt)
])

}

(3.1)

whereE is the expectation with respect to the random vectorηt that represents uncertain

resources or demands.x andy are vectors of the first and second stage decision variables,

respectively.H(.) is the recourse function that calculates the second-stage actions after the

random component is unveiled.

Deterministic Equivalent

The first approach to obtain a closed form solution for Eq. 3.1is the continuous PDF where

integration is adopted to calculate the expectation operator over the probability space. Al-

though the model size remains the same (i.e. no extra variables are defined), non-linearities

are introduced which increases the computational effort. The integration of PDF in some

cases is very challenging which make this approach intractable. Another approach is the

SA in which the event space is considered to be discrete. The main challenge of such an

approach is the additional decision variables in the problem. Planning over a time horizon
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will make such an approach more difficult as a tree of events iscreated from the discrete

variables of each time slot. As the PDF integration is very challenging, in the first approach,

while the problem size increases exponentially with the SA,searching and simulation based

methods can be applied such as Sample Average Approximation(SAA) [87].

3.2.2 Chance Constraint Programming

CCP was initially introduced in [88] to handle uncertainties and randomness in the con-

straints, and used in one of the two forms described below.

Individual Chance Constraint Programming (ICCP)

The individual chance constraint can be formulated as:

Pr {F (xt, ηt) ≥ Dt} ≥ β, ∀t ∈ T , (3.2)

wherext is the resource allocation variable at time slott, andηt denotes the random infor-

mation (e.g. channel rate). The functionF (xt, ηt) models the relation betweenxt, ηt and

the demandDt for each time slott in the time horizonT . The above formulation guaran-

tees that the allocation at each time slot satisfies the corresponding demand with at least

probabilityβ. This represents the QoS level, where a higher value resultsin allocating more

resources (e.g., more energy consumption) to ensure demandsatisfaction. The above form

of CCP has been applied in several applications of non-predictive resource allocation such

as OFDM scheduling [89,90], channel assignment [91], and power assignment in wireless

networks [92].
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Joint Chance Constraint Programming (JCCP)

The aforementioned form of chance constraints can only guarantee the QoS satisfaction

level during each time slot, and does not model the satisfaction over thetime horizon. In

particular, allocating less resources in one time slot willresult in the demand violation of

both the current and the future instances. Thus, satisfyingβ% of the demand of one time

slot will not guarantee the same satisfaction degree in the coming time slot, since each

time slot does not account for the partial satisfaction of the preceding slot demands. This

is because the demand across the time slots is cumulative andallocation should be able to

recover from outages in the previous slots. To avoid the propagation of such outages, allo-

cation of all the time slots in the horizon should be jointly considered. This is typically done

using Joint Chance Constrained Programming (JCCP) [93] andexpressed mathematically

as follows

Pr {F (xt, ηt) ≥ Dt, ∀t ∈ T } ≥ β. (3.3)

JCCP has been successfully adopted in the literature to solve numerous networking prob-

lems where the decision made on one constraint affects the satisfaction of the others.

Among these, application to routing and bandwidth assignment is discussed in [94], and

uplink resource allocation in OFDM networks in [95] where the QoS satisfaction of one

user might affect the others. In such models, the chance constraints are found to be inde-

pendent and their joint probability is simply the product oftheir individual probabilities.

However, such an independence is not applicable in PRA sincethe constraints are no longer

independent due to the cumulative demand at each time slot.

Due to the difficulty of obtaining the pairs of joint probabilities, Boole’s inequality [96]
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can be used to bound this joint probability. However, applying such a bound is very con-

servative and can result in suboptimal allocations that deteriorate the network optimization

objective. Therefore, the individual probabilities of each constraint should be optimized

to result in less conservative solutions. Example of applications that apply time dependent

JCCP are model predictive control [97, 98] and the unit commitment in power generation

systems [99, 100] in which the demand is cumulative among thetime slots and therefore

joint satisfaction is needed. Individual probabilities ofchance constraints can be either

determined optimally if the RA problem with unknown individual probabilities remains

affine or convex, as in [101]. Otherwise, both individual probabilities and RA decisions

are jointly determined using simulation based or iterativesearch techniques as in [99]. In

summary, the joint chance constraint solves for two decision vectors: 1) the individual

probabilities of each time slot QoS constraint, and 2) the resource allocation among the

users. The former is subjected to Boole’s inequality while the latter is subjected to user

QoS satisfaction at each time slot in order to satisfy the overall QoS level over the time

horizon.

Deterministic Equivalent

The common challenge in both types of CCP is that the problem does not have a closed

form solution Eq. 3.2 or Eq. 3.3. As such, the problem is either solved using simulation

based approaches or analytical methods. In the former type,realizations of the random

component are generated [85] and allocation is decided to satisfy βth percentile of the

scenarios [89]. On the other hand, analytical methods replace the chance constraints either

with its CDF, PDF or Moment Generating Function (MGF) [89, 90]. These methods are

found to provide better accuracy [102] when the CDF is invertible, unimodal and results in
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affine or convex optimization.

We focus on analytical methods in which a deterministic equivalent form is derived to

obtain a closed form RA formulation, and provide a solution in real-time. Such determin-

istic form should handle three main challenges: conservatism, safety and complexity. The

first ensures that the constraints should not be over satisfied to avoid suboptimal network

gains. The second challenge, safety, refers to the ability of capping the maximum violation

probability by a certain degree denoted byǫ = 1 − β. With regards to complexity, the

robustness typically converts the linear RA formulation toa non-linear or a discrete form.

Hence, only convex continuous or linear formulations should be considered to obtain opti-

mal robust solutions.

To derive the CCP deterministic form, robust stochastic work utilizes different tech-

niques such as Scenario Approximation (SA), Gaussian Approximation (GA), Bernstein

Approximation (BA) and Markov inequality [43, 103], among others. The GA assumes

that all the random variables, in the formulation, follow a normal distribution. Their sum-

mation results in a multivariate random variable whose meanand covariance is a function of

the statistical parameters of each single random variable.This derives a Second order Cone

Programming (SoCP) formulation which also incorporates the inverse of the Gaussian Cu-

mulative Density Function (CDF) and the QoS degradation level ǫ = 1 − β. Similarly,

the BA adopts the MGF to develop a SoCP deterministic form that only depends on the

support of random variables and the QoS degradation levelǫ as well. TheMarkov inequal-

ity [83] on the other hand provides a linear empirical approximation. However, the optimal

coefficients for such approximation are not easily attainable and do not model the trade-off

between optimality and degree of constraint satisfaction.The SA utilizes the discrete PDF

of the random variables to create a scenario tree using all the combinations. The allocator
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has to ensure that the calculated resources satisfy the scenarios with total probability more

thanβ.

In general, the GA and BA deterministic forms will have a higher complexity order than

the non-robust form. For instance, the BA will transform a linear CCP into a SoCP which

increases the computational burden [104]; due to the typically used convex optimization

techniques such as Interior Point Method (IPM) [105, 106]. The robust non-predictive RA

in [83] adopted the Markov inequality to approximate the CCPusing a linear formulation.

Previous approaches in [43] and [82] tackled the complexityof both GA and BA’s SoCP by

adopting either the first or the infinite order norms to obtainlinear low-complexity deter-

ministic forms for uplink non-predictive RA. However, bothnorms resulted in conservative

solutions that are acceptable only for single time slot allocations (i.e. non predictive RA)

to maximize the bandwidth efficiency.

3.3 Uncertainty Tracking

Both the feasibility and optimality of the obtained resource allocation solution are highly

sensitive to the parameters of random variables such as variance. Applying the determinis-

tic equivalent form with low error variance results inunsafesolution that does not guarantee

the constraint satisfaction since less resources will be allocated to the user (e.g. when the

channel rate falls below the average value). On the other hand, using a large variance re-

sults in a conservative solution that allocates too many resources especially in relatively

high data rate time slots. Due to the fluctuation of prediction error variance with the user

location and time of the day as reported in [33], a fixed variance becomes suboptimal. We

therefore propose to adaptively track the variance based onthe user’s previous measure-

ments. The tracking procedure is implemented using Bayesian based inference such as
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Kalman Filter (KF) and Particle Filter (PF).

3.3.1 Kalman Filter

Kalman Filter (KF) is known to be the optimal linear estimator in the mean square error

sense in case of Gaussian noise. In essence, KF is composed oftwo stages as summarized

below [107]:

Prediction Phase:

X−
t = ΦtX+

t−1. (3.4)

P−
t = ΦtP+

t−1Φ
′

t +Q. (3.5)

Measurement Phase:

Kt = P−
t H

′

t(HtP−
t H

′

t +R)−1. (3.6)

X+
t = X−

t +Kt(zt −HtX−
t ). (3.7)

P+
t = P−

t −KtHtP−
t . (3.8)

whereX−
t andX+

t are the priori and posterior state vectors respectively.P−
t andP+

t are

the priori and posterior state estimation covariance matrices respectively.H andΦ are the

observation (design) and state transition matrices respectively, whileK is the KF gain.Q

andR are the process and the measurement noise covariance matrices respectively.

The Kalman filter performs state vector estimation using twophases: Prediction and

Measurement. In first phase, the predicted state valueX−
t is calculated using the previously

estimated valueX+
t−1 in time slott− 1 as indicated in Eq. 3.4. In the measurement phase,
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the new state is calculated using a weighted difference between the observed measurements

zt and the predicted state Eq. 3.7. This weighting is done usingKalman gainKt calculated

in Eq. 3.6, that is dependent on both the measurement noise covarianceR and the predicted

state estimation covarianceP−
t in Eq. 3.6.

3.3.2 Particle Filter

The Particle Filter (PF) is typically adopted when the system noise is non-Gaussian. Ini-

tially, the PF generates a set of values (i.e., particles) following a proposed distribution

and assigns them equal weights. These weights are then tunedbased on the reported user

measurements according to a predefined likelihood function. A final estimate of the PF

state is a weighted sum of the particles’ values. The measurements represent the reported

deviation between the predicted and the measured channel rates.

p(yt+1|Zt) denotes the unknown posterior distribution of the state variable y given a

set of previous measurements/observationsZ at time t. This probability distribution is

calculated based on a Bayesian method called Chapman-Kolmogorov defined as [108]

p(yt+1|Zt) =

∫

p(yt+1|yt)p(yt|Zt)dyt (3.9)

wherep(yt+1|yt) is used to calculate the evolution of statey over the time horizon, while

p(yt|Zt) is an initial estimate of the posteriori probability at the current time slot and cal-

culated as follows using Bayes’ rule

p(yt|Zt) =
p(Zt|yt)p(yt|Zt−1)

∫

p(Zt+1|yt+1)p(yt+1|Zt)dyt
(3.10)

wherep(Zt|yt) represents the likelihood probability of receiving measurements asZt while
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assuming stateyt. The denominator in Eq. 3.10 ensures that the estimated posteriori PDF

will sum up to 1 over the time horizon.

The best estimate of the stateyt in the mean square error sense is denoted byȳt and

calculated as

ȳt =

∫

ytp(yt|Zt)dyt (3.11)

In order to provide a tractable solution for the above equations, different techniques can be

applied such asSequential Importance Sampling (SIS)technique [109].
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Chapter 4

Problem Statement and Proposed

Robust-PRA Framework

In this chapter, we introduce the preliminaries, system model and the main building blocks

of the proposedRobust-Predictive Resource Allocation (R-PRA) framework.

4.1 Preliminaries

We use the following notational conventions throughout thethesis:X denotes a set and

its cardinality is denoted byX. Matrices are denoted with subscripts, e.g.x = (xa,b :

a ∈ Z+, b ∈ Z+). r̃ represents a random variable (r.v.) and its expectation is denoted

by E[·]. Pr

(

⋂

∀S
si

)

andPr

(

⋃

∀S
si

)

denote the joint and disjoint probabilities of all events

in setS. The gradient and Hessian of functionf(·) are denoted by∇f(·) and∇2f(·) in

order. r̃ represents a random variable, whose probability density function follows normal

distribution, while its cumulative density function is theQ-function denoted asQ. Thenth

percentile of a zero mean and unit variance normal random variable is denoted byQ−1
1−n.
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The log(·) denotes the natural logarithmic function and1y is an indicator function which

equals 1 ify is satisfied and 0 otherwise.

4.2 System Model

Each BS serves an active user setM where the user index is denoted byi ∈ M. At

every time slott, each mobile user requests video segment with a streaming rate vi,t that

corresponds to a certain quality level.

4.2.1 Resource Allocation Model

Radio Resources

The active users can share the BS resources (airtime fractions) at each time slott. The

resource allocation matrixx = (xi,t ∈ [0, 1] : i ∈ M, t ∈ T ) gives the fraction of time slot

t during which BS’s bandwidth is assigned to useri.

Video Quality Selection

Each video segment can be transmitted and streamed by quality level q ∈ Q, whereQ is

the set of possible segment qualities. The binary decision variableκ(q)
i,t is equal to1 if the

video segment transmitted to useri at time slott is encoded in qualityq, and0 otherwise.

Each segment consists ofvq bytes of data, which depends on the selected quality levelq.
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4.2.2 Future Information

Predicted Channel Rate and Radio Resources

We assume that user’s mobility trace is known for the nextT seconds, called the prediction

windowT , and at a per second granularity whereT = {1, 2, · · · , T}. Future rate predic-

tion is obtained by mapping the user’s trace to the REM available at the service provider.

The REM contains the average rate for useri at time slott and denoted as̄ri,t [110].

Predicted Demand

The average demand of useri at time slott is denoted byvi,t which corresponds to the data

content played back with fixed quality during the time slot. The cumulative user demand

at each time slot is denoted byDi,t =
∑t

t′=1 vi,t′. Although current streaming standards

are user driven, the network can access the file between the user and streaming server to

overwrite the video quality selected by the user device [24,71].

4.2.3 Prediction Uncertainty

At each time slot, the resources are shared among both the streaming users (considered

by the R-PRA) and other real-time users. The traffic of the latter is modeled using their

arrival rate and demanded resources. Accordingly, we modelthe uncertainty associated

with network resources as the total load of users requestingreal-time service. This load

depends on both the per user demand and the total number of users whose probability is

calculated using the PDF of users arrival denoted byPA. Similarly, the channel rates are

subjected to uncertainties and thus modelled as random variables that can take a value

according to the available MCSs at the BS, and the PDF of random rates, denoted byPR.

Herein, we assume that the demand is uncertain as the user canterminate the video at
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any time slot. Accordingly, the per slot demand is modeled asa random variablẽvi,t that

is equal to 0 (user terminated the video) orvi,t (user streaming the video). The probability

of terminating the video at each time slot will be determinedby the PDF of the watching

time denoted byPW . Thus, the cumulative demand is also denoted as a random variable

D̃i,t =
∑t

t′=0 ṽi,t′ .

4.3 Problem Statement

The problem is to solve the resource allocation matrixx = (xi,t) and select the quality

matrix κ = κ
(q)
i,t to achieve a certain network metric such as minimizing energy or fair

allocation of quality among the user. The QoS is said to be satisfied when the cumulative

data allocated to the userRi,t =
t
∑

t′=0

xi,tri,t is not less than the cumulative demandDi,t at

each time slott. Both matrices are calculated under the uncertainty of all three predicted

information, future rate, demand and radio resources. The R-PRA variants in Chapter 5 and

Chapter 6 solve only for the resource allocation matrix while assuming a predefined quality

level that minimizes energy consumption. This is unlike theDASH variant in Chapter 7

that solves for both decision variables to achieve fair QoS among the users.

4.4 Framework Overview

The proposed R-PRA framework aims to provide a real-time adaptive robust predictive

allocation, and consists of four main blocks (see Fig. 4.1):
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Figure 4.1: Schematic Diagram of Proposed R-PRA Framework

4.4.1 Stochastic Formulation

The first block provides a mathematical representation comprising of the resource alloca-

tion variables (i.e. airtime fractions and quality) and thefuture information represented

as random variables to account for the prediction uncertainty. In essence, the formulation

should model the trade-off between the network gains (e.g. energy) and the user satisfac-

tion, which is governed by the QoS levelβ. The network resources and QoS constraints

appear in a probabilistic form, i.e. CCP, and are bounded by predefined violation levels.

The network gains are typically captured by objective function whose optimality can be

impacted by the prediction uncertainties. Thus, RP will be used in this block to maintain

the prediction gains over the time horizon. This first block typically consists of two types

of input: the predicted information and the QoS levelβ. The former represents the future

channel rates, capacity (i.e. radio resources) and demandsof the video streaming users.

The user’s QoS satisfaction level is represented byβ over the considered time horizon.
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The operator has the flexibility to assign different QoS levels to the users reflecting their

priorities in the network. Moreover, this value can be changed over the time horizon to

strike a balance between network objectives (i.e. prediction gains) and the degree of user

satisfaction. The variants in Chapter 5 and Chapter 7 adopted the CCP to satisfy the QoS

constraint at a certain probabilistic level under uncertain channel rates. In Chapter 6, both

CCP and RP are adopted to handle uncertainties in network resources and users demands,

respectively.

4.4.2 Deterministic Equivalent

In the second block, the formulated probabilistic model is transformed into a deterministic

representation using the properties of random variables tocapture uncertainties in predicted

information (i.e. rate, resources and demand). In particular, these variations can be rep-

resented by the random variables properties such as PDF, support (i.e. limits) and the

variance. Such properties are typically obtained either from extensive measurements or

using Monte-Carlo simulations while adopting typical analytical error models. The main

challenge in such module is how to choose the best approximation that handles the trade-

off between conservatism, safety and complexity, as highlighted in Chapter 3, and the error

modelling cost which depends on the type of random variables. For example, using the

exact PDF will have a higher modelling cost than adopting only the variance. Another

challenge is to specify the properties of random variables according to spatio-temporal

changes and environments. For instance, a user moving in urban areas can suffer from rate

variations characterized by larger error variance compared to another user in rural area.

Similarly, the variance in both channel rate and network capacity during rush hours (e.g.

afternoon) is very high compared to the evening of the same day [33].
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Moreover, this module has to consider the joint uncertainties of predicted information

over consecutive time slots. In particular, errors in both the mobility trace and variations in

the wireless channel have to be jointly considered while modelling the uncertainness in the

future rates. Handling these challenges will allow the framework to obtain a closed form

model that can be solved by the optimizer in the next stage, and satisfies the QoS level.

The proposed two variants in Chapter 5 adopted GA and BA to obtain a deterministic

equivalent in the case of normally distributed or unknown error model, respectively. In

Chapter 6, SA is used due to the small dimension of the networkresource constraint. In

Chapter 7, both linearized SA and GA are proposed to obtain a closed form representation

with non-polynomial complexity. Different conclusions oneach equivalent form are drawn

in the variants as their performance vary with the network objectives and type of constraint.

4.4.3 Real-time Optimizer

Although the deterministic form is convex, optimal gradient search methods cannot be

adopted due to their high complexity. This module implements a low complexity local

search guided algorithm that starts by satisfying the constraints and then moves on for

optimizing the objective. The outcome is a real-time solution provided to schedulers and

channel assignment modules in the access network.

In particular, the optimizer solves for the airtime fractions and video quality, and some-

times also solves for the QoS level. The main challenge of theoptimizer is to obtain such

optimal solutions in real-time (e.g. within 1 ms, which is the scheduling interval) that are

also scalable with the system load and length of prediction window. Thus, this module

will adopt guided heuristic algorithms that exploit the problem structure to generate feasi-

ble solutions and further enhance them to reach near-optimal values within the scheduling
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interval. A near-optimal solution refers to an allocation decision whose objective function

value is close to the value obtained by commercial solvers, while a feasible solution is the

one that satisfies all the constraints. Moreover, this optimizer has to be adapted according

to the considered constraints and the objective with a stable performance for different QoS

levels, statistical parameters and problem dimensions.

All the R-PRA variants in the next chapters will develop a problem specific guided

heuristic technique that initially satisfies the QoS constraints and then sequentially im-

proves the value of objective function without changing thesatisfaction of resource con-

straints.

4.4.4 Channel Tracking

The optimality of the robust deterministic form depends to agreat extent on on the accuracy

of rate deviations which differ with time and location [33].This module uses Bayesian

inference techniques to track the degree of uncertainty andadapt the statistical parameters

such as variances based on the reported user measurements without prior knowledge of

the channel statistics. In addition, it also allows cooperative uncertainty tracking among

users and thus provides real-time updates for new arriving users to the network. The two

variants in Chapter 5 adopt KF and PF to track the degree of uncertainty in predicted rates

under Gaussian and generic error models, respectively.

4.5 Monte Carlo Framework for Statistical Parameters Estimation

The optimality of resultant allocation depends on the accurate calculation of random vari-

able parameters. In this section we show one variant of determining the statistical measures

of the rate (i.e., varianceσr
i,t

2 and maximum deviation̂ri,t). Lower values ofσr
i,t

2 or r̂i,t than
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the actual measurements will result in low level of robustness which increases the risk of

violating the QoS constraint, and the converse is true. To address this, off-line Monte Carlo

simulations are adopted prior to solving the RA problem. Thesimulation generates all

the possible channel rates and adds random errors to them to build the rate distribution

function.

Different values of the signal to interference plus noise ratio (SINR) are generated. For

each value, the corresponding rate is calculated and denoted asR. Concurrently,N random

samples are generated and added to the current SINR, resulting in erroneous SINR denoted

asSINRe. Then,N rates are constructed fromSINRe and denoted asRe. These rates

are used to construct the probability distributionP of rateR. The simulation continues to

generate a new value of SINR and repeats the above procedure until the maximum rate is

generated. Finally, the bounds of each distribution and thevariance are calculated while

consideringR to be the mean value. It is worth noting that the SINR is mappedto the

corresponding CQI level using formulas in [111]. The latteris then converted to the channel

SINR-CQI 
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CQI-Rate
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BW

CQISINR

BW

R

Error 

Generation

SINR-CQI 
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CQIe+
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u
]

CQI-Rate

Mapping
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Figure 4.2: Block diagram for generating statistical parameters of the predicted rates using
offline Monte-Carlo simulations
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rate using the bandwidth (BW) and bit error rate (BER) valuesaccording to [112], and the

generated error follows the 3GPP correlated fading model in[113]. All the above steps are

summarized in Fig. 4.2. The main advantage of performing theabove estimation off-line

is to generate large samples of both the SINR and the added random variables. This results

in accurate statistical estimation of the parameters used in the robust PRA.
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Chapter 5

Green Robust-PRA under Rate

Uncertainty

In this chapter we propose the design details of two variantsof the Robust Predictive Re-

source Allocation (R-PRA) framework. Both variants tackleenergy savings under rate

uncertainty. In particular, the only source of uncertaintyis assumed to be the channel

rate, which impacts the QoS constraint satisfaction and thus Chance Constrained Program-

ming (CCP) is adopted. The schemes solve only for the radio resource sharing (i.e. airtime

fractions) at a predefined video quality level. The general block diagram of the two schemes

is depicted in Fig. 5.1. The only main difference between thetwo schemes is the assump-

tion of the rate error model. In the first scheme, we assume Gaussian distribution which

will be handled by GA based deterministic equivalent and adopts KF for tracking the error

variance. For generic or unknown rate error models, the second scheme is proposed and

adopts BA which only requires the error bounds providing a solution at less modelling cost.

The first section provides the system model, the two schemes are proposed in the second

and third sections, while the last section is devoted for discussion and comparison between
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Figure 5.1: Block diagram of energy-saving R-PRA schemes under rate uncertainty

both GA and BA in the light of energy-saving problem at hand.

5.1 System Model

5.1.1 Predicted Mobility and Demand

In both variants, we assume that the users’ mobility is knownfor the coming T time slots

and the average rate is predicted and denoted byr̄i,t for each useri at time slott. At each

time slot, the demand of the user is assumed to be fixed at a certain streaming rate which

requires a specific amount of bits per second, denoted byvi,t, that achieves a compromise

between energy minimization and user satisfaction.
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5.1.2 BS Energy Model

Studies on BS energy consumption and sleeping strategies [17, 112, 114], reveal that the

energy consumptionE is approximately linearly proportional to the airtime fraction of the

BS [27,115]. This is commonly referred to as time duty-cycling. In essence,E = P ×∆T

whereP is the total transmitted power by the BS and∆T is the time during which the

BS was switched ON. The dominant part of the power is that transmitted over the wireless

channel, which is largely constant as downlink power control is not employed in the current

3GPP standards [112,116,117]. Accordingly, the energy consumption can be expressed in

terms of the airtime∆T to avoid dependencies on the constant power fraction that varies

with BS type [115]. Therefore, as in [27, 38], we minimize theenergy consumption by

minimizing the total time air fractionsxi,t allocated to all the users.

5.1.3 QoS Satisfaction

To achieve energy savings under QoS satisfaction, the BS should use the minimum re-

sources needed to guarantee the video delivery at the targetuser quality over a time hori-

zon. Existing energy-efficient RA approaches reveal that playback interruptions, due to

buffer underrun, are among the primary sources of user dissatisfaction with video delivery

services [25, 118–120]. In essence, video freezing occurs when the allocated airtime up to

time slott results in delivering a total amount of video less than the corresponding cumu-

lative streaming demand. This demand is denoted asDi,t =
∑t

t′=1 vi,t′ . The number of

video stops can therefore provide a sound QoS metric when modeling RA to optimize the

trade-off between energy-minimization and QoS satisfaction.
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5.2 Robust Model for Gaussian Uncertainty

5.2.1 Rate Uncertainty Model

In this first variant, we adopt the Gaussian distribution error model for the predicted rate in-

troduced in [103], and used in recent robust non-PRA works [121]. In particular, predicting

the future rates using autoregressive filters, resulted in aGaussian distributed error model

compared to the actual set of collected data as reported in measurement campaigns [103].

This is supported by the same distribution attained while applying the 3GPP correlated

shadowing on the average value of predicted rates [113]. In our model, the rate is predicted

at a 1 s granularity, which is generally deduced from a large number of samples due to the

small feedback interval (1 ms) of the users participating inchannel prediction [112]. Such

a scenario supports the Central limit theorem (CLT) which approximates the PDF of users’

predicted rate as a Gaussian distribution [121]. Nevertheless, resultant formulations are

applicable for other error models with closed form and invertible CDF.1

5.2.2 Problem Formulation

We first model the robust PRA framework for video streaming using traditionalindivid-

ual chance constraints which is found to be a convex optimization problem. Thereafter,

the problem is extended to the non-convexjoint chance constraint model to enable QoS

satisfaction of the cumulative demand over the time horizon. To provide a tractable solu-

tion, the problem is then decomposed into two convex stages that can be optimally solved

individually.

1It has to be noted that the total probability of negative realizations for the normally distributed random
rate has a non-significant value (≈ 0). This is attributed to the high average rate values that maintain a positive
distribution under typical variances in the 3GPP models andstandards [112,113,122].
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Individual Chance Constraint Programming

The robust energy-efficient form is attained by representing the QoS constraint with the

individual chance constraint, where predicted rates are replaced by random variables, and

a probabilistic constraint is developed as follows

minimize
x

T
∑

t=1

M
∑

i=1

xi,t (5.1)

subject to: C1: Pr

{

t
∑

t′=0

r̃i,t′xi,t′ ≥ Di,t

}

≥ β, ∀ i ∈ M, t ∈ T ,

C2:
M
∑

i=1

xi,t ≤ 1, ∀t ∈ T ,

C3: xi,t ≥ 0 ∀ i ∈ M, t ∈ T .

Herein, the predicted data ratẽri,t′ is modeled as a random variable following a normal

distribution:r̃i,t′∼N(r̄i,t, σ2
i,t), andβ ∈ [0, 1] is the QoS satisfaction level.

Accordingly, the summation of the normally distributed random data rates in C1 of

Eq. 5.1 is a multivariate normal distribution whose mean is the summation of means of

all single random variables, which we denote asµ. The corresponding variance is the

covariance matrix denoted byΣ, and can be evaluated as follows

µ =
t

∑

t′=0

r̄i,t, Σ =



















σ2
i,0 ... σi,0,t

... σ2
i,1 ...

σi,t,0 ... σ2
i,t



















, (5.2)

whereσi,t,h = E[(r̃i,t − r̄i,t)(r̃i,h − r̄i,h)] andσ2
i,t = σi,t,h, ∀t = h.
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The deterministic closed form of Eq. 5.1 can be expressed using the multivariate ran-

dom variables and normal cumulative distribution functionas shown below.

Q(
Di,t −

∑t
t′=0 r̄i,t′xi,t′

√

∑t
t′=0

∑t
h=0 x

2
i,t′σi,t′,h

) ≥β, ∀ i ∈ M, t ∈ T , (5.3)

t
∑

t′=0

r̄i,t′xi,t′ +Q−1
β

√

√

√

√

t
∑

t′=0

t
∑

h=0

x2
i,t′σi,t′,h ≥Di,t, ∀ i ∈ M, t ∈ T .

The independence between the realizations of random predicted channel rate at each time

slot implies thatσi,t′,h = 0, ∀t′ 6= h. Accordingly, the chance constraint is represented as

follows

t
∑

t′=0

r̄i,t′xi,t′ +Q−1
β

√

√

√

√

t
∑

t′=0

x2
i,t′σ

2
i,t′ ≥ Di,t.∀ i ∈ M, t ∈ T . (5.4)

The above constraint representation is a second order cone programming (SOCP) model

which is convex [123] forβ > 0.5 and results in a negative value for the inverse of the

Q-function. Finally, the deterministic closed form of Eq. 5.1 using individual chance con-

straint with the preceding assumptions can be summarized below

minimize
x

T
∑

t=1

M
∑

i=1

xi,t (5.5)

subject to: C1:
t

∑

t′=0

r̄i,t′xi,t′ +Q−1
β

√

√

√

√

t
∑

t′=0

x2
i,t′σ

2
i,t′ ≥ Di,t, ∀ i ∈ M, t ∈ T ,

C2:
M
∑

i=1

xi,t ≤ 1, ∀t ∈ T ,

C3: xi,t ≥ 0 ∀ i ∈ M, t ∈ T .

As mentioned in Chapter 3, this type of chance constraint formulation ensures that the
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QoS is satisfied at each time slot at a certain levelβ. However, it does not model the joint

satisfaction for each user over the time horizon in which theper slot demand satisfaction

is dependent on the total data delivered in the preceding time slots. In order to avoid

future buffer starvation, the allocation in each time slot should compensate the unsatisfied

previous demands. This is why the joint chance constraint model is needed.

Joint Chance Constraint Programming

The joint chance constraint form for the QoS constraint can be expressed as follows

Pr

{

⋂

∀t∈T

t
∑

t′=0

r̃i,t′xi,t′ ≥ Di,t

}

≥ β, ∀ i ∈ M. (5.6)

We denote the event of individual QoS satisfaction bySi,t
∆
=

{
∑t

t′=0 r̃i,t′xi,t′ ≥ Di,t

}

.

Similarly, the event of individual QoS dissatisfaction is denoted bySc
i,t. The probability of

joint satisfaction of eventSi,t is represented as the complement of disjoint probability of

the dissatisfaction event as in Eq. 5.7

Pr

{

⋂

∀t∈T
Si,t

}

= 1− Pr

{

⋃

∀t∈T
Sc
i,t

}

, ∀ i ∈ M. (5.7)

According to Boole’s inequality, the disjoint probabilityis tightly bounded from above by

the total probability of all individual events [96] as follows

Pr

{

⋃

∀t∈T
Sc
i,t

}

≤
∑

∀t∈T
Pr

{

Sc
i,t

}

, ∀ i ∈ M. (5.8)
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The joint probability of the QoS satisfaction event is therefore bounded as below

Pr

{

⋂

∀t∈T
Si,t

}

≥1−
∑

∀t∈T
Pr

{

Sc
i,t

}

, ∀ i ∈ M,

P r

{

⋂

∀t∈T
Si,t

}

≥β, ∀ i ∈ M, (5.9)

∑

∀t∈T
Pr

{

Sc
i,t

}

≤1− β, ∀ i ∈ M.

The above equation implies that the joint probability is satisfied if the summation of

individual probabilities of the compliment event is kept below the probability of QoS dis-

satisfaction (i.e.,1−β). Accordingly, the joint chance constraint in Eq. 5.6 can bereplaced

by the two constraints in Eq. 5.10 and Eq. 5.11

Pr

{

t
∑

t′=0

r̃i,t′xi,t′ < Di,t

}

< ζi,t, ∀ i ∈ M, t ∈ T . (5.10)

∑

∀t∈T
ζi,t ≤ 1− β, ∀ i ∈ M. (5.11)

whereζi,t is denoted as the probability for not satisfying the individual QoS constraint (i.e.,

Pr
{

Sc
i,t

}

) and is called the probability ofrisk [97].

Each probabilistic constraint in Eq. 5.10 will have the samedeterministic equivalent

form as the individual chance constraint but withβ replaced byζi,t. After incorporating

Eq. 5.10 and Eq. 5.11, this JCCP formulation becomes a function of both variables:ζi,t and

xi,t as summarized below

minimize
x,ζ

T
∑

t=1

M
∑

i=1

xi,t (5.12)
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subject to: C1:
t

∑

t′=0

r̄i,t′xi,t′ +Q−1
1−ζi,t

√

√

√

√

t
∑

t′=0

x2
i,t′σ

2
i,t′ ≥ Di,t, ∀ i ∈ M, t ∈ T ,

C2:
M
∑

i=1

xi,t ≤ 1, ∀t ∈ T ,

C3: xi,t ≥ 0 ∀ i ∈ M, t ∈ T ,

C4:
∑

∀t∈T
ζi,t ≤ 1− β, ∀ i ∈ M.

Indeed the above formulation is no longer convex and thus theoptimal solution can

not be guaranteed by traditional optimization techniques.A proof of its non-convexity is

provided in Appendix A. Therefore, to provide a tractable solution, the above formulation

is split into two stages:Risk AllocationandRobust PRA. The first stage determines the

optimal values for each risk level (i.e., solves forζi,t), while the second stage solves the

PRA problem given the calculated QoS satisfaction levels inthe prior stage (i.e., solves for

xi,t).

Stage A: Risk Allocation

In this stage, the value of risk probabilities for each constraint is determined such that

Boole’s inequality Eq. 5.11 is satisfied to guarantee the joint probability satisfaction of

Eq. 5.6. An initial feasible solution is to uniformly distribute the probability of risk (1− β)

over all the time horizon. In other words, assign an equal risk probabilityζi,t among all the

time slots of each user as below

ζi,t =
1− β

T
, ∀i ∈ M. (5.13)

However, such equal risk allocation was proven to be very conservative [97] and results in

suboptimal resource allocation that compromises the energy savings of the PRA obtained
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in the second stage. Hence, optimal risk allocation is applied to consider the optimality of

the second stage in addition to the Boole’s inequality constraint C4 in Eq. 5.12.

Note that lower risk probabilityζi,t results in higher airtimexi,t and thatxi,t is inversely

proportional to its corresponding average rater̄i,t as depicted in Eq. 5.5. Therefore, the risk

of each time slot is allocated proportionally to the corresponding average ratēri,t in order

to minimize the energy consumption during the resource allocation stage. In other words,

time slots with low average data rate will suffer from high airtime for QoS satisfaction.

Thus, assigning low risk probability to these slots will result in additional airtime. To that

end, the following risk allocation optimization is introduced in Eq. 5.14 to achieve the

optimality of the second stage as well

minimize
y

T
∑

t=1

(
r̂i
r̄i,t

)n yi,t ∀ i ∈ M, (5.14)

subject to:
∑

∀t∈T
Q(yi,t) ≤ 1− β, ∀ i ∈ M.

where:yi,t = Q−1
ζi,t

to represent the constraint in a differentiable form,r̂i = maxt r̄i,t andn

is the risk proportionality parameter whose value is positive. The value ofn captures the

trade-off between the risk of not satisfying the QoS at a certain time slot and the energy

savings. For very small values ofn, the risk is fairly distributed among the time slots

and the user will not suffer from successive video degradations. On the other hand, more

energy savings are obtained when the value ofn increases since high risk is allowed at low

data rate values. The mobile operator then may tunen based on the maximum allowable

consecutive degradation, or the desired energy savings. The above problem is convex given

that β ≥ 0.5, which is valid for practical considerations. A proof of this convexity is

provided in Appendix B.
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Stage B: Robust PRA

After solving the first stage in Eq. 5.14, and determining therisk probabilitiesζi,t for

each constraint, the problem in Eq. 5.12 can be solved without constraint C4. The resulting

formulation preserves the form of SoCP, which is still convex due to the positiveness of the

calculated risk probabilities.

5.2.3 Gradient Based and Guided Heuristic Solution Methods

After decomposing the joint chance constraint programminginto two convex optimization

stages, the solution methods for each stage are introduced in this section.

Risk Allocation Solution

The constrained proportional risk allocation in Eq. 5.14 issolved by calculating the La-

grange formulation and then using Newton’s method to searchfor the saddle points that

satisfy the Karush–Kuhn–Tucker (KKT) optimality conditions as follows

L(y, λ) =
T
∑

t=1

( r̂i
r̄i,t

)n
yi,t − λ

(

∑

∀t∈T
Q(yi,t)− (1− β)

)

∀ i ∈ M, (5.15)

whereλ ≥ 0 is the Lagrange multiplier associated with the constraint in Eq. 5.14.

Since the above problem is optimized for each user separately and performed only

once at the beginning of the time horizon, optimal path searching methods provide ac-

ceptable performance. We therefore apply Newton’s method as summarized in Algorithm

1. The algorithm starts with the uniform risk allocation andthen iteratively searches for

the saddle points along the gradient while the step size is guided by the Hessian ma-

trix. The calculated step value∆L contains the change in both the decision vectoryi

and the Lagrange multiplierλ which are denoted as∆yi and∆λ, respectively. In each
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iteration, both decision vectors are updated using the calculated step, and the algorithm

stops when the iterations no longer result in a significant enhancement, denoted byǫ.

Algorithm 1: Newton’s Method for Proportional Risk Allocation
Input : Time Horizon:Ti, Average Predicted Rates:r̄i,

QoS Level:β and Risk Proportionality Factor:n

Output : yi;

Initialization : : ζi,t =
1−β
Ti , yi,t = Q−1

ζi,t
, ∀t ∈ T , λ = λ0, ǫ = 0.001, ∆yi = ∆y0 and

L = [yi λ]
T

1 while ∆yi ≥ ǫ do

2
∂L(yi,t, λ)

∂yi,t
=

( r̂i

r̄i,t

)n
+ λ

1√
2π

e
−y2i,t

2 ;

3
∂L(yi,t, λ)

∂λ
= −

(
∑

∀t′∈T Q(yi,t)− (1− β)
)

;

4
∂2L(yi,t,λ)

∂yi,t2
= −λ 1√

2π
yi,te

−y2i,t
2 ;

5
∂2L(yi,t,λ)
∂yi,t∂λ

=
1√
2π

e
−y2i,t

2 ;

6 Construct:∇L(yi, λ) and∇2L(yi, λ);

7 Calculate(∇2L(yi, λ))−1;

8 ∆L = −(∇2L(yi, λ))−1∇L(yi, λ);

9 L = L+∆L ;

10 ∆yi = ∆L(1 : T );

11 ∆λ = ∆L(T + 1) ;

12 yi = yi +∆yi;

13 λ = λ+∆λ;

14 end

15 returnyi



5.2. ROBUST MODEL FOR GAUSSIAN UNCERTAINTY 60

Robust Real-time optimizer

The calculated risk probabilities for each user at every time slot are now readily available

to the robust PRA stage from the risk allocation solution. The objective of this stage is

to solve for the airtime allocation formulated in Eq. 5.12. The solution of this stage is

much more complex compared to the risk allocation since herethe airtime is determined

jointly for all the users over the total time horizon. Based on the users’ feedback, this stage

is recomputed everyτ seconds according to the received amount of data. To addressthe

resulting impractical complexity, a guided heuristic is also introduced to provide a real-time

resource allocation solution, while the derivative based and line search methods are used to

provide benchmark solutions.

The formulation in Eq. 5.12 is a SoCP, thus convex and continuous [123]. Its optimal

solution can be obtained using Interior Point Method (IPM) [105] which is efficiently im-

plemented in many commercial solvers such as Gurobi [124]. In particular, IPM searches

within the set of feasible solutions for the optimal value where the latter is recognized due

to its zero (or very small) duality gap. Although the IPM was proved to reach the opti-

mality conditions in fixed number of iterations [106], the complexity per iteration hinders

real-time solutions and still depends on the number of constraints. As seen from Eq. 5.12,

the dimension of constraints increases with both the numberof users M and the length

of the time horizon T. In addition, the resource limitation constraint (C3) might cause the

dissatisfaction of the QoS constraint (C2) especially at small values ofǫ. In this case, the

QoS constraint has to be relaxed which requires extra computations. Our framework hence

relies on a suboptimal heuristic algorithm to provide a real-time solution, while optimal

techniques (e.g. IPM) are used for benchmarking only.

The introduced guided heuristic search algorithm exploitsthe problem’s features rather
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than the direct gradient based iterative search. The algorithm first calculates the minimum

allocation for the users to ensure constraint satisfaction(i.e., satisfy C1 in Eq. 5.12) given

the calculated risk probabilities and the requested demands. In case of radio resource limit

violations (i.e., C2 in Eq. 5.12), airtime reallocation of users is done by granting the excess

user requirement in other time slots. In order to achieve energy minimization, users are

allocated the residual airtime when they reach the peak average rate location. Residual

airtime is the remaining airtime after satisfying the QoS constraints (first step) for all users.

The heuristic is summarized in Algorithm 2

Minimal airtime allocation: To ensure the satisfaction of QoS constraint, C1 in Eq. 5.12

is turned to equality in the quadratic formax2 + bx + c = 0 and solved using Eq. 5.16

(Lines 4-11) of Algorithm 2. This is achieved as follows

xi,t′ =
−bi,t′ +

√

b2i,t′ − 4ai,t′ci,t′

2ai,t′
, (5.16)

Where: ai,t′ = r̄2i,t′ − (yi,t′σi,t′)
2,

bi,t′ = −2Ki,t′ r̄
2
i,t′,

ci,t′ = K2
i,t′ − (yi,t′Li,t′)

2,

Ki,t′ = Di,t′ −
t′−1
∑

h=0

xi,t′ r̄i,t′ ,

Li,t′ =
t′−1
∑

h=0

x2
i,t′ r̄

2
i,t′ .

Allocation Repair: The total allocated airtime to all users in each time slot is calculated

and the radio resource limitation constraint, C2 in Eq. 5.12, is checked. In case of any

violations, the excess airtime is allocated in other time slots with unused resources. Par-

ticularly, the heuristic compensates (recovers) any time slot t ∈ T with a total allocated
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Algorithm 2: Guided Heuristic Robust Green Allocation

Input : Users:M, Time Horizon:Ti, Mean of Predicted Rates:̄R, Rate
Variances:Σ, Risk Levels:Y and Demand:D

Output : X;

Initialization : x = ∅, t(p)i = argmax
t∈T

{

R̄i

}

, ∀i ∈ M
1 /* time slot with maximum average rate (cell center) */ ;
2 forall the t ∈ T do
3 τt = 0 /* total airtime fraction allocated in time slott */ ;
4 forall the i ∈ M do
5 if t < t

(p)
i then

6 Calculatexi,t using Eq. 5.16 /* minimal airtime allocation*/ ;
7 τt = τt + xi,t ;
8 end
9 else

10 M := M \ i /* remove user from minimal allocation after reaching cell
center*/ ;

11 end
12 end
13 if τt > 1 then
14 i(∗) := argmax

i∈M
{xi,t}, /*choose the user with maximum airtime violating the

constraint*/ ;
15 δxi∗,t = τt + xi∗,t − 1 /*violating airtime excess fraction*/ ;
16 for n := t− 1 to 0 do
17 if τn + δxi∗,t < 1 then
18 xi∗,n := xi∗,n + δxi∗,t /*Repair the solution*/ ;
19 τn := τn + δxi∗,t ;
20 τt = 1 ;
21 end
22 end
23 end
24 end
25 forall the i ∈ M do
26 AllocatePeaks(τt, t

p
i ) ;

27 end
28 returnX ;
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airtime fractions (i.e.,τt =
∑

∀i∈I xi,t∀t) more than the slot duration (1 sec.) which occurs

due to 1) an increased number of users, 2) high traffic per useror, 3) high QoS level (β).

The heuristic solves this case by iteratively picking the user with the maximum airtime

fraction in this time slot and prebuffering his video content in advance to ensure airtime

minimization under demand satisfaction (Lines 12-21) in Algorithm 2.

Peak Average Rate Allocation:The above allocation strategy guarantees the satisfaction

of both QoS and resource constraints. Thus, it continues until the peak data rate time slot

is reached. The allocation strategy is then changed (Line 24) to allocate the demand of the

future time slots in advance, to minimize the airtime. This follows the following steps for

each useri

• Calculate the residual demand for useri: δDi,t′ = Di,T −∑t=t′

t=0 Di,t

• Repeat the allocation strategy in step 1 until either the total residual demand is allo-

cated or the peak rate time slot is full.

• In case of remaining demand while the peak rate time slot is fully loaded, the sec-

ond peak average rate with remaining airtime is selected andthe above procedure

continues.

• In each iteration, the residual demand is decremented byxi,t′ × (r̄i,t′ − yi,t′σi,t′),

which is a conservative method since it assumes the worst case channel capacity of

the current rate.

• The algorithm terminates when all users received their total demand denoted asDi,T .

Both the feasibility and optimality of the obtained resource allocation solution are

highly sensitive to the varianceσ2. Applying the second stage with low variance does
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not guarantee the constraint satisfaction since less airtime will be allocated to the user ac-

cording to Eq. 5.16, especially during low data rates when high risk probability is allowed.

On the other hand, using a large varianceσ2 results in a conservative solution that

allocates too much airtime especially in relatively high data rate time slots when low risk is

applied. Due to the fluctuation ofσ2 with the user location and time of the day as previously

mentioned, a fixed value ofσ2 becomes suboptimal. We therefore propose to adaptively

track the varianceσ2 based on the user’s previous measurements. The tracking procedure

is implemented using Kalman Filter (KF) described in detailin the following section.

5.2.4 Kalman Filter Based Variance Estimation

The variances of the random predicted rates are updated using the channel measurements

by the user in the previous time slot. The measured rate variance by useri during the

previous time slott− 1 is denoted as̄σ2
i,t−1 and calculated as follows

σ̄2
i,t−1 = (r̄i,t−1 − r̄i,t−1)

2, (5.17)

wherer̄i,t−1 is the average measured data rate by useri during the previous time slott− 1.

δ̄σ2
i,t is the ratio between the measured and the initial theoretical variances denoted as̄σ2

i,t−1

andσ2
i,t−1, respectively, and calculated using the Monte-Carlo framework. Although the

variance ratio represents the actual deviations from the initial variance, the former still

varies from one time slot to another. Accordingly, the change in the variance over time is

modelled as a Gaussian process and thus can be accurately estimated using Kalman Filter,

which is known to be the optimal linear estimator in the mean square error sense.

In our problem, the priori stateX−
t represents the variance ratioδσ2

i,t and equals the

corrected state of the previous time epochX+
t−1 by setting the state transition to unity.
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The observationzt represents the measured variance ratioδ̄σ2
i,t shown in Eq. 5.17. The

observed measurementszt and the predicted stateX−
t represent different values for the

same quantity (i.e., variance ratio), and therefore the state observation matrixH is set to

unity. In summary, our KF model for variance ratio estimation is represented as follows

Prediction Phase:

δσ2
i,t

−
= δσ2

i,t
+
. (5.18)

P−
t = P+

t−1 +Q. (5.19)

Measurement Phase:

Kt = P−
t (P−

t +R)−1. (5.20)

δσ2
i,t

+
= δσ2

i,t
−
+Kt(δ̄σ

2
i,t − δσ2

i,t
−
). (5.21)

P+
t = P−

t −KtP−
t . (5.22)

The updated ratioδσ2
i,t

+ will be then used to update the predicted variances in the remaining

time slots, denoted asσ2
i,t+δt

+, while simultaneously considering their correlation withthe

current measurement as follows

σ2
i,t+δt

+
=

(

1 + ρt,t+δt(δσ
2
i,t+δt

+ − 1)
)

σ2
i,t, ∀ δt ∈ [1, T − t], (5.23)

whereρt,t+δt is the channel correlation coefficient between the channel fading at timet and

t+ δt.

According to Eq. 5.23, in case of high correlation (i.e.,ρt,t+δt ≈ 1), the future variance
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will be multiplied by the value of current updated ratio and the term in the brackets becomes

1. On the other hand, very low correlation results in no updates of the future variance. In our

model, we calculate the correlation coefficient using an exponentially decaying function

with the correlation distancedcor according to the 3GPP slow fading model [113].

5.2.5 Performance Evaluation

Simulation Set-up

The presented robust PRA techniques are simulated for an LTEnetwork using Network

Simulator (ns-3) which is a standard compliant simulator [125], with model parameters

and initial values of KF (i.e.,P0, Q, R andδσ0) as indicated in Table 5.1. The Gurobi

optimization solver is integrated in ns-3 [126] and used to solve the SoCP in Eq. 5.5 and

Eq. 5.12 with an efficiently implemented barrier and Interior Point Method (IPM) [127].

The solver exits when it reaches a duality gap less than0.01%. The 3GPP correlated slow

fading model and its parameters [113] are incorporated in the received UE power and thus

provide predicted rate variations. Simulation results areaveraged over 50 runs for statistical

validation. Users follow different predefined paths withinthe cell at varying velocities from

25 to 60 Km/h and request a video stream at a fixed quality. Although the allocation is done

at each base station separately, neighbouring BSs are considered at an inter-cell distance of

600 m for practical calculation of SINR and channel rates.

Evaluation Metrics and Scheme Notations

In order to assess the introduced Robust Predictive Resource Allocation (R-PRA) frame-

work, we use the two metrics previously discussed in Section5.1. The first is the percentage

of videos stops which reflects the user QoS level. Mathematically, it is calculated as the
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percentage of time slots in which the QoS constraint is violated. Existing predictive RA

approaches revealed that playback interruptions, due to buffer under-run, are among the

primary sources of user dissatisfaction with video delivery services [25, 118]. Thus video

stops metric perfectly models the ability of RA to optimize the trade-off between energy-

minimization and QoS satisfaction. The percentage of videostops, denoted as VD, is used

to quantify the QoS degradation and calculated as the percentage of time slots in which the

cumulative transmitted content (Ri,t) is less than the demand (Di,t) per Eq. 5.24.

V D =

M
∑

i=1

T
∑

t=0

1Ri,t<Di,t

M × T
× 100, (5.24)

whereRi,t =
∑t

t′=0 ri,t′xi,t′ is the cumulative video content received by useri till time slot

t while ri,t is the experienced channel rate by useri at timeslott. A maximum allowable

degradation level is defined as the boundary for the metric, and is equal to(1 − β) ×

100%. The second metric is the average BS airtime which is used to measure the energy

consumption in the network. During resource allocation, both the BS and UE consume

energy in transmission and reception of data. Therefore, minimizing airtime reduces the

energy consumption proportionally [115]. The objective function in Eq. 5.1 is used to

quantitatively measure this metric.

In this evaluation study, we denote the proposed optimal ICCP and JCCP, and their

corresponding heuristics with the following abbreviations:

• Optimal-ICCP: refers to formulation in Eq. 5.5 whose solution is obtained using the

IPM implemented in Gurobi.

• Heuristic-ICCP: refers to formulation in Eq. 5.5 whose solution is obtained using

the guided heuristic in Algorithm 2.
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• Optimal-JCCP: based on the original non-convex JCCP formulation in Eq. 5.12 and

solved using the sequential quadratic programming in MATLAB for a global optimal

risk and airtime allocations [128].

• Optimal-ERA-JCCP: uses the two stage JCCP in which the first stage solution is

obtained with equal risk values Eq. 5.13 and the second stageEq. 5.5 is solved using

the IPM implemented in Gurobi.

• Heuristic-ERA-JCCP: similar to the Optimal-ERA-JCCP but the second stage is

solved using the guided heuristic in Algorithm 2.

• Optimal-PRA-JCCP: similar to the Optimal-ERA-JCCP with first stage formulated

as in Eq. 5.14 and solved with Lagrangian Newton in Algorithm1.

• Heuristic-PRA-JCCP: similar to the Heuristic-ERA-JCCP with the first stage for-

mulated as in Eq. 5.14 and solved with Lagrangian Newton in Algorithm 1.

The optimal techniques are used to 1) evaluate the robustness of the introduced frame-

work, and 2) assess the developed real-time guided heuristic in Algorithm 2. The non-

convex Optimal-JCCP is used to evaluate the feasibility of the decomposed two-stage JCCP.

Simulation Results

Comparison with Existing Non-Predictive and Non-Robust RA

The first simulated scenario is for one user moving across thecell from one edge to the

other. Both the predicted average and the actual experienced rates are shown in Fig. 5.2(a).

We consider three typical classes of RA:
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Table 5.1: Summary of Model Parameters in the First Variant

Parameter Value
BS transmit power 43dBm
Bandwidth 5MHz
Time HorizonT 60 s
Streaming rate V 0.5, 1, 1.5 [Mbps]
Bit Error Rate 5× 10−5

Shadow correlation distance(dcor) [113] 50m
Shadow standard deviation(σ) [113] 6dB
Velocity From25 km/h to60 km/h
P0 1
Q 0.1
R 1
δσ0 1
Risk Proportionality Factorn 4
Feedback intervalτ 5s.
Packet size 103 [bytes]
Packet rate (from core network to BS) 103s−1

Total number of packets 7.5× 103

Buffer size 109 [bits]

• NP-RA: refers to opportunistic Non-predictive Resource Allocation and the widely

used Proportional Fairness [129] will be adopted as a type ofthis class.

• NR-PRA: refers to the existing energy-efficient Non-Robust Predictive Resource

Allocation in [27], which assumed perfect prediction and represented the future rate

by its average value.

• R-PRA: refers to the energy-efficient Robust Predictive Resource Allocation intro-

duced in this work in its two main forms (ICCP and JCCP).

The NR-PRA assumes perfect prediction of the future channelrates and results in the

minimum energy consumption compared to both the NP-RA and the R-PRA as illustrated

in Fig. 5.3(a). This is because, NR-PRA strategically allocates the minimal airtime that

satisfies the demand based on the average predicted rate until the user reaches the cell
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Figure 5.2: Illustrative allocation and rate variations examples for the considered tech-
niques
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Figure 5.3: Percentage of video stops and average BS airtimefor varying QoS degreesβ
for 1 user experiencing rate variations
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center. On the other hand, the introduced R-PRA conservatively allocates more airtime than

the NR-PRA to guarantee QoS satisfaction under rate variations. The NP-RA, however,

greedily assigns all the available resources and thus delivers the video to the user during

the initial low rates regardless of the future high rates as shown in Fig. 5.2(b). On the other

hand, Fig. 5.3(b) shows that the low-energy NR-PRA failed tosatisfy the QoS demand as

we can see that the user suffered from a large percentage of video stops. On the contrary, the

proposed R-PRA (ICCP and JCCP) was able to compensate the variations by strategically

allocating more airtime and the result is much fewer video stops. The traditional non-

energy aware NP-RA filled the buffer of the user in the first fewseconds, resulting in the

highest QoS satisfaction with a negligible number of stops,but at the cost of high energy

consumption.

To summarize, the NR-PRA previously introduced in [27] provides large energy sav-

ings, denoted as thePrediction Gain, compared to the NP-RA. However, this gain was

achieved with unacceptable QoS violations under imperfectpredictions. To overcome this

limitation, the introduced R-PRA is designed to simultaneously satisfy the QoS require-

ments and energy minimization. This comes at the cost of slightly decreasing the prediction

gain by an amount referred to as thePrice/Cost of Robustnessthat accounts for rate varia-

tions. The above conclusions can also be drawn from the higher load scenario in Fig. 5.5,

and indicate that robust PRA can provide significant gains under practical considerations

of imperfect predictions. These results are obtained for the optimal forms of the introduced

R-PRA (i.e., Optimal-ICCP and Optimal-JCCP) to assess their performance bounds, and

the developed real-time heuristic which will be assessed separately. We first compare the

performance of the optimal ICCP and JCCP.
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Performance of R-PRA: ICCP and JCCP

Under the aforementioned low load scenario, the Optimal-ICCP violates the maximum al-

lowable video degradation in case of large QoS levels (i.e.,β ≥ 0.9) as shown in Fig. 5.3(b).

This is attributed to the ignored dependency between the allocations in the time slots. More

specifically, the demand violation occurred att = 20 s in Fig. 5.2(b) due to the low rate

(shown in Fig. 5.2(a)), resulting in cumulative degradations in the following time slots.

This is because the potential outage was not accounted for beforehand. We can see that the

buffer occupancy remained below the demand fromt = 20 s to t = 25 s in Fig. 5.2(b) until

the reallocation is done and the unmet demand is compensated. This violation was avoided

for lower values ofβ due to the continuous feedback from the user everyτ seconds that

enabled the network to recover video outages.

On the other hand, all the JCCP forms: Optimal-JCCP, Optimal-ERA-JCCP and Optimal-

PRA-JCCP were able to avoid the above propagation of video stops and thus did not violate

the maximum allowed degradation at all QoS levels as shown inFig. 5.3(b). This was done

at the expense of energy savings (i.e., a higher price of robustness) compared to ICCP as

depicted in Fig. 5.3(a). The results also demonstrate the ability of the decomposed convex

forms of JCCP (Optimal-ERA-JCCP and Optimal-PRA-JCCP) to obtain a solution that

satisfies the QoS level. However, compared to the global optimal solution, the Optimal-

PRA-JCCP was able to satisfy the QoS level with less energy compared to the Optimal-

ERA-JCCP. This result emphasizes the importance of optimizing the risk values over the

time horizon to control the conservatism of JCCP, especially when the user is located near

the cell edge.

The performance results also indicate that the energy saving gap between the Optimal-

PRA-JCCP and Optimal-ERA-JCCP increases with higher QoS levels (β), number of users
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and higher streaming rates as shown in Fig. 5.4(a), Fig. 5.5(a) and Fig. 5.5(b), respectively.

In particular, asβ increases, lower risk values are attained and the value of the inverse Q-

function decreases exponentially which results in more airtime to satisfy C1 in Eq. 5.12.

Similarly, increasing the number of users or streaming ratewill result in more conservative

RA for the cell edge users which decreases the BS airtime available for the cell center

users to pre-buffer the video. It should be noted that the range of airtime varies across the

scenarios since users follow different paths and velocities in each case.

Optimality and Complexity Analysis

In order to evaluate the introduced guided heuristic, the optimality gapZ is measured

between the heuristic based solutions and the optimal results asZ = M(x)−M(x∗)
M(x∗)

× 100,

whereM(x) andM(x∗) are the values of objective functions corresponding to the heuristic

and optimal solutions, respectively. A small optimality gap indicates that the heuristic

solution is very close to the optimal one.

From Table 5.2 we observe that the heuristic solutions can provide the energy savings

with small optimality gaps. This performance degrades withan increased competition at

the cell center due to either a large number of users located in the cell peak during the

same slot or few residual airtime due to conservative allocation of cell edge users (the case

of ERA-JCCP). In particular, increasing the number of usersat the cell peak will increase

the optimality gap since the residual resources (after allocating the cell edge users) need

Table 5.2: Optimality Gap of Heuristic Algorithms

Technique
Optimality Gap

1 User 4 Users 8 Users 12 Users
Heuristic-ICCP 0.1 % 0.15 % 0.25 % 0.3 %

Heuristic-ERA-JCCP 0.1 % 0.2 % 0.5 % 1.2 %
Heuristic-PRA-JCCP 0.1 % 0.15 % 0.32 % 0.45 %
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Figure 5.6: Percentage of video stops and average BS airtimefor varying QoS degreesβ
for 4 Users rate variations. Allocation is done using Heuristic-PRA-JCCP.
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Table 5.3: Complexity Measures for Introduced Robust Techniques

Technique Order of Magnitude
Execution Time

1 User 12 Users
Optimal-ICCP O(

√
MT (M3T 4)) 90 s. 980 s.

Heuristic-ICCP O(MT + T 2) < 1ms. < 1ms.

Optimal JCCP O(
√
MT (M3T 4)) 140s. 1560s.

Optimal-ERA-JCCP O(
√
MT (M3T 4)) 90s. 980s.

Heuristic-ERA-JCCP O(MT + T 2) < 1ms. < 1ms.

Optimal-PRA-JCCP O(
√
MT (M3T 4)) 90s. 980s.

Heuristic-PRA-JCCP O(M(T )3) < 1ms. < 1ms.

to be proportionally allocated while considering the future rates. This was not handled

by the heuristic algorithm to maintain its low complexity. Instead, the heuristic performs

a greedy allocation to the users with the maximum rates. As for QoS satisfaction, the

guided heuristic solutions follow the same performance trends as their corresponding opti-

mal counterparts, i.e., the ICCP forms fail to satisfy the maximum degradation at high QoS

levels while the JCCP forms succeed for all values.

We next analyze the computational complexity of the different allocation strategies. For

SOCP formulations, the optimal solution techniques (e.g.,interior point method) require a

maximum ofO(
√
K) iterations [123] whereK is the number of constraints. Each iteration

has a complexity ofO(m2
∑K

i=1 ni) [106], wherem denotes the total number of decision

variables andni is the dimension of theith constraint. For the Newton’s method, the main

complexity lies in the calculation of the Hessian matrix inverse with a dimensionm ×m.

This gives a complexity ofO(m3) for each step in Newton’s method. Table 5.3 summarizes

the two complexity measures for all the considered techniques as a function of the problem

dimensions, i.e., number usersM and time slotsT . For the heuristic in Algorithm 2, the

QoS satisfaction has a complexity ofO(MT ). The peak allocations and solution repairing
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have complexities ofO(M(T − tp)) andO(MT ), respectively. We also report the execu-

tion time measured within the simulation environment on a Quad Core i7-Processor, 3.2

GHz machine. These results highlight the incapability of the optimal solution methods to

facilitate real-time implementation. It should be noted that increasing the number of users

does not result in a proportional increase in execution timesince the algorithms can be

executed on multiple threads when there are multiple users.Moreover, the complexity of

Newton’s method which was executed for each user individually completes in less than 1

ms.

Adaptive Variance Estimation

The simulations were extended to test the robustness of the PRA framework to thevaria-

tions in the channel variance. Such variations in the rate variance are typically observed in

practical measurements due to the different landscapes anddegrees of urbanization [33].

A conservative approach to tackle such variabilities is to optimize with a constantly large

value (highest value revealed in simulations) for the rate variance. This will ensure meet-

ing the QoS satisfaction level using JCCP as in Fig. 5.6(a). However, it compromises the

energy efficiency as shown in Fig. 5.6(b). On the other hand, starting with a fixed lower

value (smallest value revealed in simulations) of variancewill result in less energy con-

sumption but at the expense of QoS degradation even when JCCPis applied. The KF based

tracking algorithm starts either with an arbitrary value ofvariance, and then continuously

adapts its value based on the error between the channel measurements and initial values. It

is therefore able to satisfy the QoS for all values ofβ, and with a lower airtime compared

to the high variance case. In this scenario, the evaluation is based on the Heuristic-PRA-

JCCP since it has a practical complexity and results in more energy savings compared to
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the Heuristic-ERA-JCCP as highlighted previously.

5.3 Robust Model for Generic Uncertainty

5.3.1 Rate Uncertainty Model

In this second variant, the predicted uncertain rate is modelled as a random variablẽri,t ∈

[rli,t, r
u
i,t], whererli,t and rui,t are the lower and upper rate bounds, respectively, and the

average value is̄ri,t = E[r̃i,t]. Herein, we assume that the PDF of such random rate is

unavailable and only the bounds are used.

5.3.2 Problem Formulation

To obtain a robust deterministic form that is equivalent to Eq. 5.1, irrespective of thẽri,t

distribution, Bernstein Approximation (BA) is used. In essence, BA utilizes the marginal

distribution and the moment generating function of the random variable. Generally, the

chance constraint is represented as a linear summation of random variables as follows

Pr

(

f0(x) +
t′
∑

t=1

ηtft(x) ≤ 0

)

≥ 1− ǫ, ∀ t′ ∈ T . (5.25)

Hereηt is a random variable with marginal distributionPt, andft(x) is a convex function

containing the decision vectorx. ǫ is the maximum allowed level of QoS violation and

equals to1 − β. Assuming that all the random variablesηt are independent,Pt has a

bounded support on the interval[−1, 1] ∀t and the functionft(x) is affine in the decision

vectorx, a convex deterministic equivalent for Eq. 5.25 can be obtained as follows

inf
λ>0

[

f0(x) +

t
∑

t=1

λΛt(λ
−1ft(x)) + λ log

1

ǫ

]

≤ 0,∀t ∈ T . (5.26)
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Herein,Λt(z) is the logarithm of the moment generating functionMt(z) for r.v. z as de-

picted in Eq. 5.27

Λt(z) =logMt(z) (5.27)

Mt(z) =E
[

ekz
]

=

∫

ekzdPt(k)

Instead of computing the exact value of the logarithmic moment generating function in

Eq. 5.27, in addition to solving for the auxiliary variableλ, a conservative approximation

using the upper bound can be adopted as in Eq. 5.28 [130].

Λt(z) ≤ max
{

µ+
t z, µ

−
t z

}

+
σ2
t

2
z2, ∀t ∈ T (5.28)

−1 ≤ µ−
t ≤ µ+

t ≤ 1

The variablesµ+
t , µ−

t andσt are used to approximate the bounded support [130]. There-

fore, a conservative deterministic equivalent for Eq. 5.26is attained using Eq. 5.28 and the

arithmetic inequality as follows

f0(x) +
t′
∑

t=1

max
{

µ+
t ft(x), µ

−
t ft(x)

}

+

√

√

√

√2log(
1

ǫ
)

( t′
∑

t=1

σ2
t ft(x)

2

)

≤ 0, ∀t′ ∈ T .

(5.29)

Finally, the robust PRA chance constraint C1 in Eq. 5.1 is replaced by Eq. 5.29 as

depicted in Eq. 5.30

t
∑

t=1

r̄i,txi,t +

t′
∑

t=1

µ−
i,tr̂i,txi,t −

√

√

√

√2log(
1

ǫ
)

( t′
∑

t=1

(σi,tr̂i,txi,t)2
)

≥ Di,t′, ∀t′ ∈ T ,

(5.30)
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where the random predicted rater̃i,t is assumed bounded in[rli,t, r
u
i,t]. To satisfy the as-

sumptions for Eq. 5.26, this rate is normalized in[−1, 1] by using the maximum deviation

and the average values denoted byr̂i,t andr̄i,t, respectively per

r̂i,t =
rui,t − rli,t

2
, rui,t > rli,t

r̄i,t =
rui,t + rli,t

2
(5.31)

The constraint in Eq. 5.30 is a SoCP model which is convex forǫ < 0.5 andxi,t ∈ [0, 1]

[123].

5.3.3 Real-time Guided Local Search Heuristic

The guided search algorithm proceeds by allocating the airtime that ensures exact satis-

faction of QoS constraint (i.e., solves C1 in Eq. 5.30 as equality) to minimize the airtime.

The radio capacity constraint is then checked (i.e., C2 in Eq. 5.30) and reallocation is done

in case of violating the maximum time slot duration. Finally, the algorithm pushes all the

remaining video content when the user reaches his peak radioconditions (i.e. maximum

r̄) to avoid allocation in future time slots with lower rates. The second and third steps are

very challenging in multi-user scenarios where different users might experience their peak

radio conditions simultaneously. The heuristic is summarized in Algorithm 3 and detailed

as follows

QoS satisfaction:To minimize the energy consumption while guaranteeing QoS satisfac-

tion, C1 in Eq. 5.30 is turned to equality so that the airtime exactly satisfies the demand

without violating the maximum degreeǫ. This step is calculated for every time slot for each

user until the peak radio conditions are reached (lines 1-8).



5.3. ROBUST MODEL FOR GENERIC UNCERTAINTY 83

Algorithm 3: Local-Search Guided Heuristic For Robust Allocation

Input : Users:M, Time Horizon:T , Average Predicted Rates:̄R, Rate
Bounds:R̂, Maximum Violation:ǫ and Streaming Demand:D;

Output : X;
Initialization : X = ∅, Nt = 0 ∀t ∈ T

1 for i ∈ M do
2 t̂i = argmax

t∈T

{

R̄i

}

, ∀i ∈ M;

3 t = 0;
4 while t < t̂i do
5 Transform Eq. 5.30 to equality and solve forxi,t;
6 Nt = Nt + xi,t;
7 end
8 end
9 for t ∈ T do

10 if Nt > 1 then

11 j = argmax
i∈M

{

r̄i,t

max
∀t′

{R̄i}
t′<t

}

;

12 ∆xj,t = Nt − 1, k = t− 1;
13 while k > 0 do
14 ∆xj,k = ∆xj,t × r̄j,t

r̄j,k
;

15 if Nk +∆xj,k ≤ 1 then
16 xj,k = xj,k +∆xj,k;
17 Nk = Nk +∆xj,k;Nt = 1; k = 0;
18 else
19 k = k − 1;
20 end
21 end
22 end
23 end
24 for t ∈ T do
25 L =

{

M|t̂i = t ∀i ∈ M
}

;
26 for i ∈ L do

27 yi,t = min

{

1−Nt,
Di,T−Di,t

max{R̄i}

}

;

28 t′ = argmax
T \t

{

R̄i

}

, ∀i ∈ M;

29 yi,t′ = min

{

1−N ′
t ,

Di,T−Di,t

max
T \t

{R̄i}

}

;

30 δF = yi,t − yi,t′;
31 if δF > δF̂ then
32 δF̂ = δF ;
33 î = i;
34 end
35 end
36 end
37 returnX
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Resource Limitation Satisfaction: After calculating the airtime fractions for all users in

each time slot, the resource constraint, C2 in Eq. 5.1, is checked. In case of violation, the

excess airtime is prebuffered in a preceding time slot with vacant resources. To ensure

airtime minimization, the user with the highest average predicted rate in a previous vacant

time slot is chosen (lines 9-23).

Peak Local Search Allocation:The above allocation strategy guarantees the satisfaction

of both QoS and resource constraints. Thus, minimal allocation is used until the peak data

rate time slot is reached. The challenging part in this stageoccurs when more than one

user competes on the same time slot. Accordingly, local search is applied to select the user

who will result in the highest power consumption if he is not granted this time slot. As

such, the local search calculates the difference in airtimebetween the two scenarios: If he

is allocated to this peak time slot or if the second maximum peak is selected (lines 31-34).

The user with less airtime in the first scenario is selected tobe served in the current slot.

The algorithm terminates when all the users’ cumulative demands are satisfied.

For the heuristic in Algorithm 3, the QoS satisfaction step has a complexity ofO(MT ).

The peak allocations and solution repairing have complexities ofO(MT ) andO(T 2), re-

spectively. Thus, the total complexity of the heuristic isO(MT + T 2).

5.3.4 Particle Filter Based Rate Deviation Learning

We extend the robustness to scenarios in which the channel variance changes over the

time and location [33]. A Particle Filter (PF) is used to tunethe rate deviations (initially

obtained off-line or theoretically) in order to reflect the channel variance based on the

users’ measurements. This is done on two steps: Rate deviation update and PF estimation.

In particular, the PF estimates the error between the measured variance and its assumed

value. This error is then used to update the theoretical variance for the future allocations.
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Rate Deviation Update

We denote the off-line calculated deviations (e.g., using Monte-Carlo in Chapter 4) aŝr(M)
i,t ,

while the final tuned deviations using PF are denoted byr̂
(P )
i,t and calculated as follows

r̂
(P )
i,t = αi,t × r̂

(M)
i,t , (5.32)

whereαi,t ≥ 0 is the proportionality factor between the off-line and measured rate devi-

ations. As the channel variance changes over time and location, the value ofα has to be

adapted accordingly using the particle filter as shown in thenext subsection.

In multi-user scenarios, cooperative tuning can also be performed where existing users

in the network can propagate their estimated value ofαi,t to the recent users admitted to

the same BS. Such cooperation is done using the channel correlation coefficients between

the users based on their distances per Eq. 5.33

αi,t = αi,t−1 + max
j∈M,j 6=i

{ρi,j,t}
(

αj,t−1 − αi,t−1

)

,

ρi,j,t = e−
di,j,t

dcor ,

(5.33)

wheredi,j,t andρi,j,t are the distance and distance-dependent channel correlation coefficient

between useri andj at time slott, whiledcor is the correlation distance. The above formula

is adopted from the 3GPP channel fading model [113].

PF Estimation

The PF initially generates a set of values (i.e., particles)following a proposed distribution

and assigns them equal weights. These weights are then tunedbased on the reported user

measurements according to a predefined likelihood function. A final estimate of the PF

state (i.e.,α) is a weighted sum of the particles’ values. The measurements represent

the reported deviation between the predicted and the measured channel rates. We apply
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the Sequential Importance Sampling (SIS)technique [109] to obtain the best estimate of

for the PF states. SIS approximates the unknown posteriori distribution by a group of

generated particles where each particle is weighted by its conformity to the measurements.

Such particles are drawn from a proposed distribution, based on the problem structure,

that approximates the original unknown distribution usinglarge number of particles. The

particle filter methodology based on SIS is summarized as follows

1 Initialization

i Define the proposed distributionp(Q).

ii Generate a set ofN particles denoted byQt=0 using the distributionp(Qt=0).

iii Initialize equal weights (ωi
t=0) for all particles.

ωi
t=0 = 1/N, ∀i = 1, ..., N, (5.34)

iv Define the likelihood functionF (Q,Z).

2 Measurement Phase

i Update the weights of each particle using the measurementZt and the likeli-

hood functionF (Q,Z):

ωj
t = ωj

t−1F (Q,Z), ∀j ∈ 1, ..., N, (5.35)

ii Normalize the weights:

ω̄j
t =

ωj
t

∑N
j=1 ω

j
t

, (5.36)
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iii Calculate the best estimate:

ȳt =

N
∑

j=1

ztω̄
j
t , (5.37)

3 Prediction Phase

i Calculate the gradient:

δyt =
∂zt
∂t

, (5.38)

ii Predict the future state:

yt+1 = Aȳt +Bδytδt : (5.39)

4 Importance Sampling

i Calculate effective samples:

Neff =
1

∑N
j=1(ω

j
t )

2
, (5.40)

ii Check degeneracy then resample: IfNeff < N̂ then, resample particles and setωj
t =

1/N ∀j ∈ 1, ..., N,

In essence, the calculated weightsωj
t in Eq. 5.35 approximate the posteriori PDF in

Eq. 3.10, while the priori PDF in Eq. 3.9 is evaluated using the likelihoodF (Q,Z) in the

initialization phase. In addition, Eq. 5.37 in the measurement phase implements the best

estimate of the state (Eq. 3.11). In the prediction phase, the future stateyt+1 in Eq. 5.39 is

a linear weighted combination of both the best estimated state ȳt and the integral of its rate

of changeδytδt from the available measurementszt. In Eq. 5.39, A and B are the weights

of both the best estimate and integral of the rate of change, respectively.
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As the PF updates the weightsωj
t in Eq. 5.35 every time slot, their values may con-

verge and few number of particles will have non-zero weights. Such situation is called

degeneracy, which has to be avoided as it deviates the weight’s distribution from the actual

posteriori probability. Thus, the number of effective particlesNeff is calculated to check

for the degeneracy and in case of dropping below the maximum thresholdN̂ , resampling

is done. Each particle contributes, based on its weight, in generating a new particle [109].

The newly generated set of particles will not contain the ones with very low weights. The

new weights are equally redistributed similar to the initialization phase.

In our rate deviation tracking, the PF stateyt is the proportionality factorαt while the

measurementzt is the reported proportionality factor̄αt calculated as

ᾱt =
|r̄i,t − E[ri,t]|

r̂
(M)
i,t

(5.41)

whereE[ri,t] is the measured channel rate by useri in the duration from slott− 1 to slott.

5.3.5 Performance Evaluation

Simulation Set-up

We adopt the same simulation set-up as the previous variant,yet with different random

mobility traces. All the parameters and their values are presented in Table 5.4.

Comparative Schemes and Evaluation Metrics

In this evaluation study, we compare the proposed robust predictive scheme against the

existing non-robust PRA and non-predictive RA schemes denoted as follows

• N-PRA (MT): refers to a type of non-predictive RA called maximum throughput

(MT) [131]. In essence, MT allocates the whole resources to the user with the current

maximum channel rate regardless his future channel conditions.
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Table 5.4: Summary of Model Parameters in the Second Variant

Parameter Value
BS transmit power 43dBm
Bandwidth 5MHz
Time HorizonT 60 s
Streaming rate V 0.25, 0.5 and1 [Mbps]
Bit Error Rate 5× 10−5

Shadow correlation distance(dcor) [113] 50m
Shadow standard deviation [113] 4
Velocity From25 km/h to40 km/h
p(Q) U(0, 4)
N 10000

N̂ N/3
A = B 0.5
µ− −0.5
σ′
t

1√
12

Feedback intervalτ 5s.
Packet size 103 [bytes]
Packet rate (from core network to BS) 103s−1

Total number of packets 7.5× 103

Buffer size 109 [bits]

• NR-PRA: refers to the existing non-robust PRA in [27] which only usesthe average

value of the predicted rate resulting in a deterministic linear formulation. The optimal

solution is obtained using the simplex method implemented in Gurobi [124].

• OR-PRA (l2): refers to the introduced BA based robust PRA in this work and for-

mulated in Eq. 5.30. The solution is obtained optimally using the IPM in Gurobi

optimizer [124].

• HR-PRA (l 2): the same asOR-PRA (l2), but its solution is obtained using the guided

local search heuristic in Algorithm 3.

• R-PRA (l1): refers to the introduced BA robust PRA in this work but linearized

similar to [43] and the solution is obtained optimally usingthe simplex method in
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Gurobi optimizer [124].

All the above schemes are assessed using two main metrics: percentage of video stops,

referred to as VD, and average airtime to measure the QoS satisfaction and the energy

consumption, respectively. The maximum allowed value of VD, calculated per Eq. 5.24,

is set to the predefined constraint violation level(ǫ) × 100%. The second metric is the

average BS airtime which is used to measure the energy consumption in the network, and

calculated using the objective function in Eq. 5.1.

Comparison with Other Resource Allocators

We assume that the rate deviationr̂ is accurately known and the focus is to show the impor-

tance of robust PRA and the heuristic solution. The first scenario considered a high quality

video (i.e. Vi = 1Mbps) which is a high load scenario relative to the available average

channel rate. The non-predictive MT continues to satisfy the QoS level independent on

the channel variance as shown in Fig. 5.7(a). This is becausethe MT schedules the users

based on their current reported channel rate irrespective of the variance and the future rates.

The non-robust predictive technique [27] fails to satisfy the maximum VD set to 0.1 (i.e.

ǫ = 0.1). This QoS performance degrades with the channel variance since the measured

rate deviates from the average value. The allocated minimalairtime will not be sufficient to

satisfy the demand. Such deterioration is avoided by all therobust forms as the percentage

of stops did not passǫ× 100% for the considered variances.

Although the non-predictive MT prioritizes users with maximum rates, its energy con-

sumption is higher than the predictive strategies as depicted in Fig. 5.7(b). The MT buffers

the video content for the cell peak users, which saves energy, but then turns to push the

video for other users located near the cell edge rather than applying minimal allocation.

On the other hand, the predictive strategy is able to minimize the energy even in the robust
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Figure 5.7: Performance evaluation for different channel variances at QoS levels(1− ǫ) =
0.9 and 8 users requesting high quality video
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forms. The results also demonstrate the conservatism of thelinearized BA used in [43],

which decreases the energy saving gain especially at very high channel variances. The

energy consumption thus increases and becomes comparable to that of the non-predictive

strategy.

Both the load per user and the moving speed are then decreasedto medium quality

videos (i.e.Vi = 0.5Mbps) and 25 Km/h, respectively, to allow more users and higher QoS

levels in the simulation scenario. The conservatism of the linearized BA becomes more

significant as it consumes more energy than the non-predictive MT at high QoS level (i.e.

low ǫ) and high channel variances as in Fig. 5.8(b) and Fig. 5.9(b). The BA in its original

SoCP form, however, is able to preserve the prediction gain at these high load conditions.

While the energy savings gap between, the predictive and non-predictive schemes decrease

for this scenario, the latter fails to meet the QoS level as shown in Fig. 5.8(a) and Fig. 5.9(a).

This is because such non-predictive strategy greedily allocated the resources to the cell

peak users and ignored serving the cell edge users in order tomaximize the total system

throughput.

Similar observations are noted for the conservative linearized BA, NR-PRA and MT

when the number of users and the QoS level are increased as shown in Fig. 5.9(b). The dis-

tributions of QoS satisfaction and degradation are reported in Fig. 5.10(a) and Fig. 5.10(b),

respectively. The percentage of users with violated QoS levels mainly depends on their

mobility traces and experienced channel rates. In Fig. 5.10(a), the percentage of users with

violated QoS levels was around50% in case of the non-robust PRA. This was found to be

the same percentage of users who started the video streamingat the cell edge, and thus

were subjected to minimal allocation strategy resulting inbuffer underrun. In Fig. 5.10(b),
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Figure 5.9: Performance evaluation for different channel variances at high QoS levels and
12 users requesting MQ video
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Figure 5.10: Performance evaluation for different channelvariances and number of users
at QoS levels(1− ǫ) = 0.95 requesting high quality video



5.3. ROBUST MODEL FOR GENERIC UNCERTAINTY 96

the distribution of video degradation, and its maximum value, illustrate the QoS viola-

tion of non-robust PRA. Note that the robust PRA schemes experienced stable QoS per-

formance over the system load and variance. The scenarios above demonstrate that the

adopted BA SoCP based PRA formulation: 1) satisfies all QoS levels for different system

loads (Fig. 5.8(a)) and 2) preserves the energy-saving gains of the prediction (Fig. 5.8(b)).

In addition, the introduced heuristic shows stable performance with a very low optimality

gap (< 0.1 %) with respect to the optimal solution’s airtime and QoS levels in all considered

cases.

Performance of Particle Filter

In this scenario, we assess the ability of the PF to track the rate deviations while adopt-

ing the SoCP BA formulation. We compare the PF based varianceis compared with both

the maximum and optimal theoretical variances denoted byMax. Dev. andOpt., respec-

tively. TheMax. Dev.corresponds to the maximum variance [113] that guarantees the QoS

satisfaction under the highest prediction errors. TheOpt. adopts the exact rate deviation

corresponding to the current channel variance. This optimal value satisfies the QoS level

without compromising the energy savings. On the other hand,the PF initially assumes

the highest variance as theMax. Dev., but continuously monitors the channel variance and

adapts the rate deviation accordingly.

With regards to QoS satisfaction, theMax. Dev. provides a very conservative allo-

cation that greedily satisfies the QoS at the expense of the energy saving as depicted in

Fig. 5.11(a) and Fig. 5.11(b), respectively. This is not thecase forPF which has met the

constraint at nearly the exact level as theOpt., resulting in high energy savings. The PF, in

essence, decreases the initial maximum rate deviation to reach the lower optimal value and

sometimes below. Although going below the optimal rate deviation value increases the risk
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Figure 5.11: Performance evaluation for the robust framework with channel tracking for
different number of users experiencingσ = 2 and requesting MQ video with
high QoS level(1− ǫ) = 0.95
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Figure 5.12: Performance evaluation for the robust framework with channel tracking for
different number of users experiencingσ = 2 and requesting LQ video with
high QoS level
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Table 5.5: Execution Time of the Simulated Schemes

Technique
Number of Users Streaming Rate (V) [Mbps]

2 4 8 12 0.25 0.5 1

N-PRA (MT) <0.1 ms <0.1 ms <0.1 ms <0.1 ms <0.1 ms <0.1 ms <0.1 ms

NR-PRA 1 s. 1.5 s. 2.3 s. 4 s. 4 s. 4 s. 4 s.

OR-PRA (l2) 50 s. 80 s. 150 s. 250 s. 200 s. 250 s. 290 s.

HR-PRA (l2) <0.1 ms <0.1 ms <0.1 ms <0.1 ms <0.1 ms <0.1 ms <0.1 ms

OR-PRA (l1) 1 s. 1.5 s. 2.3 s. 4 s. 4 s. 5 s. 5.5 s.

of constraint violation, the conservative BA based allocation in early timeslots avoids such

QoS degradation case. The energy gain of the PF-based channel tracking relative to the

maximum deviation has increased in the high load scenarios (i.e. more number of users) at

high QoS levels and reached up to 15 % as shown in Fig. 5.12(b).This adaptation mecha-

nism results in nearly the same energy savings as the optimaldeviation case and with better

QoS satisfaction as less video stops have been experienced in the early slots as shown in

Fig. 5.12(a) and Fig. 5.12(b).

Runtime Complexity

We also report the execution time of all the examined RA schemes in Table 5.5, and mea-

sured within the simulation environment on a Quad Core i7-Processor, 3.2 GHz machine.

These results highlight the efficiency of the guided heuristic solution methods for provid-

ing real-time implementation under different load scenarios. The complexity of the opti-

mal solver increases withboth the number of users (i.e. the problem dimensions) and the

streaming rate (V) since more iterations are required to reach a feasible solution. As op-

posed to the solver, the guided heuristic resulted in a stable scalable performance regardless
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the value of the aforementioned two parameters and with a delay less than the duration of

Time Transmission Interval (TTI).

5.4 Discussion and Comparison between GA and BA

The Gaussian approximation, in the ICCP form, is theoretically the optimal deterministic

representation for the chance constraint where the QoS satisfaction is guaranteed with prob-

ability (1 − ǫ). However, this performance is attained while assuming that the variations

in the predicted rates follow the normal distribution entirely. Such assumption does not

sustain practically when other imperfect predictions are considered (e.g. user’s trajectory).

In that case, new rate distributions need to be computed, which neither guarantee to follow

the Gaussian nor provide an invertible CDF. Consequently, Bernstein approximation has to

be applied to approximate variations by the bounds and thus avoids both the computational

effort of deriving new distribution or calculating the inverse of CDF. Nevertheless, this ap-

proximation is at the expense of the solution’s optimality due to the fact that the logarithmic

moment generating function, and its upper bound, are more conservative than the inverse

of CDF. Therefore, one might be interested in finding the costof robustness in applying the

Bernstein approximation rather than the Gaussian one. As a result, the trade-off between

saving the effort of deriving the inverse CDF for the Gaussian and the extra conservatism

cost of the Bernstein has to be compared.

5.4.1 Analytical Comparison

Assuming the case when the Gaussian is the optimal theoretical approximate (i.e. predicted

rate variations follow a normal distribution), the conservatism cost of the Bernstein is cal-

culated as a function of the difference in their safety terms. In particular, Gaussian and

Bernstein safety terms are denoted asSG andSB, and deduced from Eq. 5.5 and Eq. 5.30
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respectively as shown below.

SG = Q−1
ǫ

√
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√

√

t′
∑
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r
i,t)

2,
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√2log(
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ǫ
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(5.42)

The difference between the above terms is denoted asSB−G and calculated in Eq. 5.43:

SB−G =SB − SG

=−
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√2log(
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(5.43)

From [130],µ−
i,t andσi,t are set to−0.5 and1/

√
12 respectively. For simplicity, the first

time slot for the first user is considered and thus the summation is removed as well as the

subscripts i and t. Moreover, the bounds of99.7% of the samples in case of Gaussian can

be expressed in terms of the standard deviationσr as: r̂G = 3σ. Accordingly, Eq. 5.43 can

be expressed as depicted below:

SB−G = r̂x

(

1 +

√

1

6
log(

1

ǫ
)− Q−1

ǫ

3

)

(5.44)

The positivity of Eq. 5.44 indicates that more airtime is assigned by the Bernstein ap-

proximation (i.e. high conservatism) than the Gaussian forall practical value of QoS (i.e.

ǫ < 0.5). This gap increases with both the QoS level (i.e.ǫ decreases) and the absolute

deviationr̂ in the predicted rate. PF based tracking is a potential solution for minimizing
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such gap, and so the conservatism cost. Nevertheless, changing the feedback interval to

decrease the conservatism is tested in the next subsection.

5.4.2 Numerical Comparison

We define the feedback intervalτ in which the solver performs reallocation of all users

while considering their total transmitted data. For generating the shadowing based rate

variations, the 3GPP slow fading correlated model is used [113]. Simulation results are

averaged over 50 runs with different shadowing values. Two mobility scenarios were con-

sidered; urban and rural. Users move at a low speed with smallinter-vehicle distances

in the urban scenario, and thus experience similar average rate values at the same time

interval. The rural scenario models high speed moving vehicles with large inter-vehicle

distances. Consequently, users experience different datarates from each other at the same

time interval. Video content is then requested by all users at a fixed streaming rate over

the considered time horizon. The numerical values of all theparameters are summarized

in Table 5.1 and Table 5.4, while the variance and bounds of each rate are calculated using

the previously discussed Monte-Carlo simulation.

Robustness in the Urban Scenario

In urban areas, users start moving from the cell edge towardsthe centre. In order to decrease

computational complexity of the solver, the feedback timeτ was set firstly to a relatively

long interval equal to10 s. This is the interval over which the solver recalculates the

allocation of all users for the remaining future time slots.In case of GA, the maximum

degradation was surpassed for high QoS (i.e.,1 − ǫ ≥ 0.9) as shown in Fig. 5.13(a).

This performance is attributed to the overlooked dependency between the QoS constraints

over time. Consequently, demand violation at a certain slotwill propagate and affects
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the satisfaction in the next slots within the feedback interval. Such violations last until

reallocation is done for the next slots. The value ofτ was set to lower valuesτ = 1 and5s.

where less degradation occurs Fig. 5.13(a), but at the expense of both: increased airtime

Fig. 5.13(b) and the computational complexity.

The BA approach is very conservative, and thus the percentage of stops was kept be-

low the maximum threshold for all the QoS levels and feedbackvalues ofτ as shown in

Fig. 5.13(a). However, the airtime performance withτ is opposite to that of GA. This is

due to the fact that users are moving from a region of low rate towards the cell peak, and

BA requires fast feedback to decrease the conservative allocation at the cell edge which

consumes more airtime. Large feedback durations continue to allocate large amounts of

data at the cell edge.

BA requires small feedback durations to correct its conservative allocation. Similarly,

GA also requires the same small feedback time but to recover the degradation in any times-

lot and prevent it from affecting the coming ones. The allocation for user 1 in Fig. 5.14(a)

demonstrates the aforementioned properties. In GA Fig. 5.14(a) where degradation occurs

at the first time slot, the small feedback (τ = 1 s) was able to recover this by recalculating

the allocation at the next time slot (t = 2 s.). On the other hand, Bernstein’s conservatism

avoided the degradation in any of the time slots. However, conservative airtime allocation

at early slots (where the rate is minimal) was avoided by frequent feedback, while alloca-

tion continues conservatively (large gap above the demand)for the case ofτ = 10 s as

depicted in Fig. 5.14(b).

Robustness in Rural Scenario

The above conclusions were drawn for the case of users experiencing similar radio con-

ditions at the same time. Thus, very conservative solutionsonly affects the optimality of
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each user individually. We now consider the rural scenario where some users are located

as the cell edge while others are at the cell peak and moving towards the edge. Minimal

allocation, to satisfy the QoS, is performed for the users atthe cell edge while prebuffering

is done for the cell peak users to avoid allocation at future low rate locations. In this sce-

nario, the conservatism of cell edge users is more severe andaffects the optimality of cell

peak users as well due to the provided small airtime for prebufffering. An example of such

a case is shown for user 2 (located at cell peak) in Fig. 5.14(b). Due to the conservative

allocation of user 1 located at cell edge forτ = 10s., user 2 was unable to prebuffer in

the first 10 seconds while located at the cell peak. Thus, the peak user had to wait until

reallocation of the cell edge user att = 10s. so more airtime is provided for the former to

prebuffer at relatively lower rates.

Accordingly, the cost of conservatism in the rural scenariohas increased and thus the

energy gap expanded between Bernstein at (τ = 5 and10 s.) and the less conservative

cases: i.e., Bernstein (τ = 1 s.) and Gaussian as shown in Fig. 5.15(a). The frequent

feedback of Bernstein (i.e.τ = 1 s.) was able to overcome its expected conservatism

and thus results in nearly equal energy consumption compared to the Gaussian case at the

same feedback interval. Moreover, the QoS satisfaction of large feedback intervals (τ = 5

and 10 s.) is slightly enhanced for the Gaussian case where violationof the maximum

degradation occurs only at the highest QoS level forτ = 5 s, and at the highest two QoS

values forτ = 10 s. as depicted in Fig. 5.15(b). This is attributed to the prebuffering

strategy for the cell peak users and thus their QoS satisfaction never fails resulting in lower

average violation.
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Figure 5.13: Percentage of video stops and average BS airtime for varying QoS levels
(1 − ǫ) for 2 users experiencing slow fading with Non Line of Sight (NLoS)
variance in urban area
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Figure 5.14: Allocation at different feedback intervals for 2 users experiencing slow fading
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Figure 5.15: Performance of the robust framework for varying QoS levels(1 − ǫ) for 2
users experiencing LoS variance in rural area.
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Chapter 6

Robust-Green PRA under Demand and
Resources Uncertainty

In the two variants of previous chapter, we showed how the rate uncertainties impact the

QoS satisfaction for cell edge users, and demonstrated the importance ofrobustscheme.

This chapter introduces the third variant which handles theuncertainties in both the de-

mand and resources. Hence, avoids energy consumption in thecase of cell center users

terminating the session, and achieves QoS satisfaction to all users when network resources

fluctuates due to arrival of real-time traffic. This variant is referred to asRobust-Green

Predictive Resource Allocation (R-GPRA) and adopts both CCP and RP as illustrated in

Fig. 6.1. Similar to the previous two variants, the R-GRPA aims to minimize the total

energy and delivers the video at a predefined quality level.

6.1 System Model

6.1.1 Resource Allocation

The users of the same BS share the available radio resources every time slott, where each

useri is allocated a fraction of the slot’s airtime denoted byxi,t ∈ [0, 1]. Other real-time

users are sharing the same resources, but their allocation is not handled by the R-GPRA.
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Figure 6.1: Block diagram of energy-saving R-PRA scheme under demand and resource
uncertainty

6.1.2 Demand Uncertainty Model

The average demand of useri at time slott is denoted byvi,t which corresponds to the data

content played back with fixed quality. Herein, we assume that the demand is uncertain

as the user can terminate the video at any time slot. Accordingly, the per slot demand

is modeled as a random variableṽi,t that is equal to 0 (user terminated the video) orvi,t

(user streaming the video). The cumulative demand is thus denoted as a random variable

D̃i,t =
∑t

t′=0 ṽi,t′ .

6.1.3 Radio Network Resources Uncertainty Model

At each time slot, the resources are shared among both the streaming users (considered

by the R-GPRA) and other real-time users. The traffic of the latter is modeled using their

arrival rate and demanded resources. The arrival of real-time users is modeled as a Poisson

distribution with meanλ, and the demand per user is denoted byCi,t. The total airtime share
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allocated to real-time users at time slott is denoted by the random variablẽCt =
∑Ñ

i=0Ci,t,

whereÑ is a random variable representing the number of real-time traffic users at time slot

t.

6.1.4 Problem Description

The R-GPRA scheme aims to calculate the airtime fractionsxi,t for each user at time slott

such that the total allocated resources are minimized to achieve energy-saving or efficient

bandwidth utilization. The possibility of terminating thevideo by the user at a certain time

slot is taken into account. By doing so, this prevents the PRAfrom prebuffering future

content to users who might terminate the video at any time slot with a certain probability.

Typically, this probabilistic strategy results in more energy savings and optimal bandwidth

utilization compared to existingnon-robustPRA that assumed perfect demand prediction.

As illustrated in Fig. 6.2 (a), the values of predicted ratesfor three time slots would typ-

ically drive a non-robust GPRA to prebuffer the whole content during the first slot to save

energy as depicted in Fig. 6.2 (c). However, as shown in Fig. 6.2 (b), the high probability

of terminating the video at the third time slot prevents therobustGPRA from prebuffering

the future content due to the high risk of wasting energy. As such, only the content of the

second slot, with low probability of video termination, is prebuffered whereas the delivery

of the third slot’s content will be postponed as illustratedin Fig. 6.2 (d). To summarize the

example, delivering the rest of the video content in the third time slot costs more energy,

in case of non-termination, while prebuffering all the contents causes a waste of resources

in case of a termination of viewing. The proposed robust GPRAcalculates this trade-off

based on both the predicted rates and the probability of termination to perform the energy-

efficient and QoS-aware allocation.

The uncertainty of future network resources, due to random user arrival, will interfere
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with the strategy mentioned earlier. Delaying the transmission in case of high termination

probability might be considered suboptimal if the future network resources are scarce. The

network, in that case, will miss the chance of exploiting thecurrent channel peaks and

vacant resources, thus will not be able to satisfy the user demand with the future anticipated

limited resources. As a result, fewer energy-savings are attained in case of future peaks

with low resources, while video stops are observed if futurelow channel rates are further

reduced by real-time users arrival.

6.2 Problem Formulation

In this section we mathematically formulate the problem ofrobustGPRA (R-GPRA) using

stochastic optimization, and then adopt recourse and chance constraint programming to

obtain deterministic equivalent forms.

6.2.1 Stochastic Model

The introducedenergy-efficient robustGPRA is formulated using stochastic optimization.

In particular, the uncertain demand and future network resources are represented by random

variables as follows:

minimize
x

{

∑

∀i∈M

∑

∀t∈T
xi,t

}

(6.1)

subject to:

C1:
t

∑

t′=0

ri,t′xi,t′ ≥
t

∑

t′=0

D̃i,t, ∀ i ∈ M, ∀t ∈ T ,

C2:
M
∑

i=1

xi,t ≤ 1− C̃t, ∀t ∈ T ,

C3: xi,t ≥ 0, ∀ i ∈ M, t ∈ T .
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The objective function aims to minimize the total consumed energy represented as a func-

tion of the total BS airtime [115]. The QoS constraint in C1 guarantees that the total deliv-

ered content to the user satisfies the anticipated cumulative random demand. C2 models the

limited resources at each BS by ensuring that the sum of allocated airtime is less than the

total available network resources (allocation slot duration) while considering the random

resources allocated to the real-time users. The last constraint C3 ensures the non-negativity

of the decision variables. The main difference between the proposedrobust formulation

and the existing PRA work is the first and second constraints that now incorporate random

demand and network resources. Such randomness has an impacton both objective function

value and QoS satisfaction. In particular, when the random demand equals tovi,t, the ob-

jective function is minimized by prebuffering the future content during slots of peak rates.

On the other hand, when the random demand becomes0 (due to session termination) the

objective function is minimized by avoiding prebuffering of future content. Similarly, allo-

cating more resources than the available capacity, after accounting for the real-time users,

will result in video stops since the users will not be able to receive the minimal data amount

calculated by the R-GPRA. As such, the network should avoid prebuffering when available

resources are low due to periodic arrival of real-time users.

6.2.2 Recourse and Chance Constrained Model

To represent the relation mentioned above between constraints C1, C2 and the objective

function in a deterministic form, Recourse Programming (RP) and Chance Constrained

Programming (CCP) models are used as depicted below:

minimize
x,y

{

∑

∀i∈M

∑

∀t∈T
xi,t + E

[

H(y, D̃)
]

}

(6.2)
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Figure 6.2: Illustration of Robust-GPRA under uncertain video streaming demand

subject to:

C1:
t

∑

t′=0

ri,t′xi,t′ ≥
t

∑

t′=0

vi,t, ∀ i ∈ M, ∀t ∈ T ,

C2: Pr(

M
∑

i=1

xi,t ≤ 1− C̃t) ≥ β, ∀t ∈ T ,

C3: xi,t ≥ 0, ∀ i ∈ M, t ∈ T .

The objective function herein comprises of two terms whose summation must be mini-

mized. The first term represents the total allocated resources (similar to the non-robust

approach) while the second term corresponds to the total amount of wasted resources as a

result of terminating the video before watching the prebuffered content. In C2, the proba-

bility of satisfying the network resource constraint by thecalculated airtime fractions is set
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above the QoS levelβ. Whereβ ∈ [0, 1] represents the minimal probability of satisfying

the QoS. In the following, we show how to obtain a closed form representation for both the

recourse model in the objective function, and the probabilistic constraint in C2.

Recourse Stage

The second term of the objective function in Eq. 6.2, i.e.E
[

H(y, D̃)
]

, is the optimal

solution of the recourse stage and formulated as follows:

minimize
y,x

{

ζ
∑

∀i∈M

∑

∀t∈T
pWi,tyi,t

}

(6.3)

subject to:

C4: ri,t−1yi,t−1 + ri,txi,t − vi,t ≤ ri,tyi,t, ∀ i ∈ M, ∀t ∈ T ,

C5: yi,t ≥ 0, ∀ i ∈ M, t ∈ T .

The objective function of the recourse stage in Eq. 6.3 minimizes the expected value of

excess allocated resources (i.e. prebuffered) and calculated as a function of both the second

stage decision variableyi,t and the probability of terminating the video denoted bypWi,t . The

variableζ is used to model the trade-off between the values of the two stages, and its value

is typically less than one. The constraint in C4 is used to calculate the excess resources

ri,tyi,t after every time slott. The first two terms on the left hand-side represent the total

prebuffered and newly allocated resources in this time slot, respectively. The third term

represents the per slot demand. The right hand-side shows the amount of excess resources

after slott which corresponds to the prebuffered future content.
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Deterministic Equivalent

The probabilistic constraint in C2 is replaced by the following deterministic equivalent

form which adopts the probability of arrival of real-time traffic users and their load.

C6:
M
∑

i=1

xi,t ≤ 1− (Ct,ωδt,ω) ∀t ∈ T , ∀ω ∈ Ω,

C7:
∑

∀ω∈Ω
δt,ωp

A
t,ω ≥ β ∀ t ∈ T .

C8: δt,ω ∈ {0, 1} ∀ t ∈ T , ∀ω ∈ Ω,

(6.4)

The binary decision variableδt,ω equals 1 if scenarioω at time slott has to be satis-

fied by the airtime allocation, and equals 0 otherwise. The PDF of user arrival is used to

construct the scenarios of network resources at each time slot as a result of real-time traffic

user arrival. At each time slott, the scenarioω represents the existence ofω real-time traf-

fic users. The constraint inC6 demonstrates the scenarios in which the calculated airtime

fractions must satisfy the vacant network resources denoted by 1 − Ct,ω. In C7, the total

probability of satisfied scenarios must exceed the predefined QoS levelβ. The probability

of user arrival scenarioω at time slott is denoted bypAt,ω. When the scenario is ignored

(i.e. δt,ω = 0), the right hand-side ofC6 will be the maximum slot duration (i.e. all net-

work resources are available), and the QoS levelβ will avoid ignoring the most probable

scenarios.

6.2.3 Deterministic R-GPRA Formulation

The complete deterministic formulation of the proposed R-GPRA can be summarized in

the following closed form representation:

minimize
x,y,δ

{

∑

∀i∈M

∑

∀t∈T
xi,t + ζ

∑

∀i∈M

∑

∀t∈T
pWi,tyi,t

}

(6.5)
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subject to:

C1:
t

∑

t′=0

ri,t′xi,t′ ≥
t

∑

t′=0

vi,t, ∀ i ∈ M, ∀t ∈ T ,

C3: xi,t ≥ 0, ∀ i ∈ M, t ∈ T .

C4: ri,t−1yi,t−1 + ri,txi,t − vi,t ≤ ri,tyi,t, ∀ i ∈ M, ∀t ∈ T ,

C5: yi,t ≥ 0, ∀ i ∈ M, t ∈ T .

C6:
M
∑

i=1

xi,t ≤ 1− (Ct,ωδt,ω) ∀t ∈ T , ∀ω ∈ Ω,

C7:
∑

∀ω∈Ω
δt,ωp

A
t,ω ≥ β ∀ t ∈ T .

C8: δt,ω ∈ {0, 1} ∀ t ∈ T , ∀ω ∈ Ω,

The above formulation is obtained after combining Eq. 6.3 and Eq. 6.4, resulting in

a mixed integer linear programming model. In the next section we explore the possibil-

ities and challenges of solving this NP-complete model, andpropose a guided heuristic

algorithm for real-time allocation.

6.3 Real-time Optimizer

This section reviews the numerical optimization methods that can be used to solve the

formulated problem, and introduces the details of heuristic search algorithm followed by

analysis of its computational complexity.

6.3.1 Optimal Solution

The robust formulation in Eq. 6.5 is a mixed integer linear programming model. As such,

an optimal solution, which satisfies all the constraints, can be obtained using branch-and-

bound, branch-and-cut or similar techniques in commercialsolvers (e.g. Gurobi [124]).
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These techniques are capable of reaching the optimal solution with a very small duality

gap while satisfying all the constraints. However, the problem at hand requires obtaining

an optimal solution in real-time which is unattainable by the commercial solvers or nu-

merical methods that suffer from low scalability and slow convergence. In particular, the

complexity of numerical optimization techniques grows exponentially with the number of

decision variables [132]. These limitations are due to overlooking the problem structure

and exploring a large area of the search space to avoid local optimal solutions. A guided

heuristic algorithm is therefore proposed to provide a real-time feasible solution with low

optimality gap compared to commercial solvers solutions.

6.3.2 Guided Real-time Heuristic

The proposed guided search heuristic algorithm utilizes knowledge about the problem’s

structure such as the interdependency and conflicts betweenthe constraints, and their im-

pact on the optimality of objective function. In essence, the algorithm starts by satisfying all

the QoS constraints using the available radio resources while considering the distribution

of user arrival and the predefined QoS level. To achieve energy minimization, resources

are allocated to streaming users that have not reached peak channel conditions. Then, the

algorithm exploits the prebuffering capabilities of the mobile device for users experiencing

peak channel conditions. By doing so, the video content can be pushed in advance to avoid

allocation during time slots with low channel rates or high congestion. In the next step, the

value of the objective function is further minimized while examining the trade-off between

possible energy savings during peak radio conditions, and the risk of wasting resources due

to video termination in future time slots. The heuristic is summarized in Algorithm 4 and

Algorithm 5, and detailed as follows:

In the first stage, minimal radio resources are calculated (line 2-18) in order to satisfy
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the QoS constraintC1 in Eq. 6.2 for each slot while considering the network resources

uncertainties. The available network resources at each time slot are calculated as follows

(lines 2-12):

1. The amount of resources in each scenario are initially sorted in ascending order and

probability mass function is sorted accordingly.

2. The scenarios are considered iteratively until the totalprobability reaches the QoS

level β. Including more scenarios will result in a conservative solution that over-

satisfies the QoS and deteriorates the value of the objectivefunction.

3. The resources of the last considered scenario (i.e. the scenario that needs the maxi-

mum resources) are selected.

4. The total vacant capacityC ′
t remaining for video streaming users is calculated and

used in the next stage.

After satisfying constraintsC7 − C8, the algorithm proceeds to fulfil the per slot demand

constraintC1. This is accomplished by settingC1 to an equality and calculate the resource

sharingxi,t that guarantee the satisfaction of demand. Such minimal allocation continues

until the user reaches peak radio conditions (line 14). In high load scenarios, due to the

large number of users or high streaming rates, the total allocated resources in a certain

time slot might violate the airtime constraintC6 in Eq. 6.5. Accordingly, the preceding

time slots with vacant resources will be used to prebuffer the content of the highly loaded

time slots as depicted in lines 19-37 of Algorithm 4. While efficient exploitation of the

radio resources is mandatory for these scenarios, the algorithm prebuffers the content of

the user with the highest achievable rate. Thus, less airtime is consumed which increases
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the chance of satisfying the radio resource constraintC2. In case of non-vacant resources,

to accommodate the excess demand, the problem is said to be infeasible (lines 34-36).

To further minimize energy consumption, a calculated risk prebuffering strategy is ap-

plied by Algorithm 5. In essence, the possibility of prebuffering is checked based on the

probability of terminating the video and the difference in channel rates. For each time slot

following this peak, the amount of resources in case of prebuffering and non-prebuffering

is checked while considering the probability of video termination (lines 3-5) which ap-

proximates the objective function in Eq. 6.3. In case of moreresource saving (line 7),

prebuffering is done (line 8-10). Otherwise, the risk of wasting resources is found to be

high and minimal allocation is done for the demand of this slot without prebuffering in the

previous slots (lines 13-16).

6.3.3 Algorithm Complexity

The first stage of the heuristic consists of sorting the scenarios and calculating the total

probability which have complexity ofO(2 × N2). This stage is repeated for a maximum

of T time slots. Thus, the complexity of lines 2-12 isO(2T ×N2), the minimal allocation

in lines 13-18 has complexity ofO(MT ), while the repairing of resources in lines 19-

37 has a complexity ofO(MT 2) due to revisiting the preceding time slots to check the

possibility of prebuffering. Similarly, the second part ofthe heuristic has a complexity of

O(MT 2) in which previous slots are also revisited for prebufferingany of the future slots

with lower rates. Thus, the complexity of the whole proposedheuristic isO(MT 2) which

is significantly lower than the mathematical optimization methods whose complexity is

non-polynomial and depends on the number of decision variables and constraints.
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Algorithm 4: QoS Satisfaction under Network Resource Uncertainty
Input : Users:M, Time Horizon:T , Predicted Rates:R, Demand

Distribution:P , Streaming Rate:V ;
Output : X;
Initialization : X = ∅, B = ∅, Y = ∅, Z = ∅ Nt = 0 ∀t ∈ T ;

1 Define: t′i = argmax {ri,t, ∀t ∈ T};
2 for t ∈ T do
3 Ĉ ′

t = Sort(PA
t ∀ω ∈ Ω);

4 Initialize St = 0;
5 Set minimum capacityC ′

t = 1 ;
6 while St ≤ β do
7 for ω ∈ Ω do
8 Update probability sum:St = St + P̂A

t,ω;

9 Update minimum capacity:̂C ′
t = 1− Ĉt,ω;

10 end
11 end
12 end
13 for i ∈ M do
14 for t ∈ T |t ≤ t′i do
15 Calculate minimal airtimexi,t = vi,t/ri,t;
16 Update used slot fractionNt = Nt + xi,t;
17 end
18 end
19 for t ∈ T do
20 if Nt > 1 then
21 Setk = t− 1;
22 while k > 0 &Nt > C ′

t do
23 if xi,t > 0|i = argmax {ri,k, ∀i ∈ M} then
24 Calculate the violated airtime∆xi,t = Nt − 1;
25 Calculate the demanded airtime∆xi,k = ∆xi,t × ri,t

ri,k
;

26 if Nk +∆xi,k ≤ 1 then
27 Updatexi,k, xi,t, Nt andNk ;
28 break;
29 end
30 end
31 k = k − 1;
32 end
33 end
34 if Nt > C ′

t then
35 Return Infeasible Problem;
36 end
37 end
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Algorithm 5: Calculated Risk Prebuffering for Energy Minimization
Input : Users:M, Time Horizon:T , Predicted Rates:R, Demand

Distribution:P , Streaming Rate:V ;
Output : X;
Initialization : X = ∅, B = ∅, Y = ∅, Z = ∅ Nt = 0 ∀t ∈ T ;

1 Define: t′i = argmax {ri,t, ∀t ∈ T};
2 for t ∈ T |t > t′i do
3 Calculate airtime without Prebufferingx′

i,t = vi,t/ri,t;
4 for τ ∈ T |τ < t, ri,τ > ri,t, Bi,t 6= 1 do
5 Calculate airtime with prebufferingzi,τ = vi,t/ri,τ ;
6 Calculate excess resourcesyi,τ = γ × pWi,t × zi,t;
7 if x′

i,t > zi,τ + yi,τ then
8 Updatexi,τ = xi,τ + zi,τ ;
9 Update used slot fractionNt = Nt + zi,τ ;

10 Update prebuffering statusBi,t = 1;
11 end
12 end
13 if Bi,t 6= 1 then
14 Update airtime without prebufferingxi,t = vi,t/ri,t;
15 Update used slot fractionNt = Nt + xi,t;
16 end
17 end
18 returnX

6.4 Performance Evaluation

6.4.1 Simulation Environment

The proposed R-GPRA is developed in Network Simulator 3 (ns-3) LTE module where

Gurobi (a commercial solver) is integrated to obtain benchmark solutions [124]. The prob-

ability of terminating the video at any time slott is calculated using the model in [40].

Users follow random mobility traces within the cell coverage region at a constant velocity

typical for suburban areas. The simulation parameters and numerical values are shown in

Table 6.1. The simulation is performed 25 times, and the average results of all runs are

reported in the next subsections.
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The main metric to assess the energy consumption is the totalBS airtime [27], and the

QoS of video streaming is quantified by the number and duration of video stops [119],

denoted byη andτ and calculated as per Eq. 5.24 and Eq. 6.6 respectively.

τi =

T
∫

0

τi,κdκ/

T
∫

0

dκ. (6.6)

whereτi,κ equals to 1 if useri experienced a video stop at time instantκ whereκ << t.

While the network performance is calculated by the average of each QoS metric, the

resultant Quality of Experience (QoE) is also reported to model the users’ perception. QoE,

in essence, is a subjective metric that represents the service end-to-end performance level

from the user’s perspective, and can calculated using the Mean Opinion Score (MOS) for-

mula in [133] and [134] depicted below:

MOSV S =
1

M

M
∑

i=1

(2.99 ∗ e−0.96ηi) + 2.01. (6.7)

MOSV D =
1

M

M
∑

i=1

4.59 ∗ e−3.44τi . (6.8)

WhereMOSV S andMOSV D are the MOS values due to number and duration of video

stops, respectively. The value of MOS varies from 1 to 5 whichrepresents very poor to

excellent service, respectively.

We adopt these metrics to evaluate the proposed R-GPRA, the existing non-robust PRA

and the opportunistic RA (i.e. non-predictive). The following abbreviations are used in the

next subsection:

• PF (Non-PRA): the traditional opportunistic proportional fair scheduler is used to

represent the class of non-predictive schemes. It allocates the resources to the users
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based on their current channel measurements and cumulativeserved traffic in previ-

ous slots [135].

• NR-GPRA: is the existing energy-efficient predictive resource allocation that as-

sumes perfect prediction and adopts the deterministic formulations in [27]. This

scheme is simulated by setting the values ofγ andCi,t to zero in Eq. 6.5, and the

resultant formulation is solved using Gurobi optimizer [124].

• PK-GPRA: this refers to a hypothetical PRA with perfect knowledge of uncertain

demand and network resources. As such it is aware of exact watching duration and

amount of available resources. This is achieved by replacing the random variables in

Eq. 6.1 by the exact values from the random generator in ns-3.

• OR-GPRA: this represents the proposedrobustgreen predictive resource allocation

as formulated in Eq. 6.5. The probability of video termination follows the distribution

in [40]. The optimal solution is obtained by the branch and cut methods in Gurobi

optimizer [124].

• HR-GPRA: this refers to the heuristic version ofOR-GPRA in which the solution

is obtained by the proposed guided search in Algorithm 4 and Algorithm 5.

6.4.2 Simulation Results

Evaluating Demand Uncertainties

We initially evaluate the impact of uncertain demand solelyon the prediction gains (i.e.

energy savings). The system load, in terms of number of usersand streaming rates, was

configured and set below the available radio resources. Hence, no video stops were ob-

served, and thus the QoS was satisfied by all the schemes, while the main focus remains on
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Table 6.1: Summary of Model Parameters in the Third Variant

Parameter Value/Definition
BS transmit power 43dBm
Bandwidth 5MHz
Time HorizonT 60 s
ζ 0.99
Bit Error Rate 5× 10−5

Velocity 60 [kmph]
QoS levelβ 0.95
Packet size 103 [bytes]
Packet rate (from core network to BS) 103s−1

Buffer size 109 [bits]
Probability of watching ratiopWi,t/T 2/σφ( t−µ

σ
)Φ(α t−µ

σ
), ∀i ∈

M

Probability of user arrivalpAω,t
λωe−λ

ω!
∀t ∈ T

Standard deviation of watching time ratioσ 0.18
Skew parameterα 0.84
Mean of watching time ratioµ 0.27
User arrival rateλ 0.5
φ(x) PDF of normal distribution
Φ(x) CDF of normal distribution

energy consumption. The maximum energy saving gap, referred to as prediction gain, is

observed between the opportunistic non-predictive RA and hypothetical perfect knowledge

PRA. As reported in the PRA literature, and shown in Fig. 6.3(a), the gain can reach up to

400 % due to the minimal allocation strategy adopted for cell edge users moving to peak

radio conditions. This is in addition to maximizing the allocation for users exiting the cell.

The existing non-robust PRA (NR-GPRA), however, has diminished the gain to 150 %

as a result of the greedy prebuffering for cell center users exiting the cell, as yet not watch-

ing the full buffered video. On the contrary, the proposedrobustGPRA has strategically

prebuffered the video content to the users exiting the cell region, rather than transmit-

ting their full content. Such risk-aware prebuffering strategy avoids greedy prebuffering

of the future content whose delivery can be postponed until the corresponding time slots
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are reached, or the user arrives at time slots which have a lowprobability of terminating

the video. This is in addition to following the minimal allocation to users experiencing

poor conditions until they reach peak rate values. As such, the robust scheme was able to

maintain the prediction gain at320 %.

The same impact of uncertainty on the prediction gain was observed while increasing

the streaming rate for fewer users Fig. 6.3(b). In this scenario, the maximum prediction

gap can reach up to 150 %, however, the uncertainties resulted in a 25 % prediction gap

as depicted by the non-robust scheme. The gain was retained to 100 % by adopting the

stochastic based robust scheme.

Evaluating Joint Demand and Resources Uncertainties

The simulations are extended to incorporate the resources uncertainties, where the QoS

and QoE performance are depicted in Fig. 6.4(a)-Fig. 6.4(b)and Fig. 6.5(a)-Fig. 6.5(b),

respectively.

The resources uncertainties violated the QoS level under the existing non-robust predic-

tive scheme for different number of users. Due to the arrivalof real-time users, the network

was unable to deliver the video content with the pre-calculated amount of resources. As

such, the demand of cell edge users is not met by the minimal allocated resources that

might be occupied by the real-time traffic users. The cell center video streaming users

were not impacted due to the prebuffered content that surpasses the demand. Nevertheless,

the substantial increase in the normalized number and durations of stops is attributed to

the short video segments watched by the streaming users (i.e. demand uncertainty). The

corresponding QoS demonstrates the exponential decay of users’ experience as a result of

encountering a large number and durations of stops.

Unlike the non-robust scheme, the proposed optimal robust technique has satisfied the
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predefined QoS level (β) for all number of users. The robust scheme balances the amount

of allocated resource to the cell edge and cell center users.Prebuffering is minimized for

the cell center users and thus reserved more resources for the real-time users. As a result,

the amount of allocated resources to cell edge users will be secured during the arrival of

real-time users.

The performance of non-robust and robust predictive schemes is compared at different

streaming rates and real-time traffic load as shown in Fig. 6.6(a) and Fig. 6.6(b). As the

traffic load (streaming or real-time) increases, so does thenumber of unsatisfied users. With

regards to energy savings and the prediction gain, the ability of robust scheme to maintain

a high value was observed. Thus, the cost of robustness is said to be very low as the robust

scheme avoided generating conservative solutions.

Performance of Heuristic

The above-mentioned observations over different system and streaming loads are also re-

ported for the proposed heuristic. In essence, the heuristic was capable of satisfying the

QoS level and maintain the prediction gap under demand and network uncertainties. The

complexity of both the optimal and heuristic techniques is measured in terms of the com-

putation time of a Quad Core i7-Processor, 3.2 GHz machine. The heuristic algorithm

requires less than0.1ms. to solve the robust PRA formulation for all the network configu-

rations (i.e. number of users and streaming rate values). Onthe other hand, the performance

of Gurobi is sensitive to network load and capacity. The execution time varies from1s. to

15s. depending on the number of unsatisfied users in previous timeslots, streaming rate,

and available channel capacity. Requests of high streamingrates during low channel ca-

pacity will result in a narrow feasibility region. Such situations are very challenging for the

solver that overlooks the problem structure and generates alarge number of branches and
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nodes to solve the integer programming model.
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Figure 6.3: Airtime-based energy consumption with uncertain demand only
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Figure 6.4: QoS for number and duration of stops with uncertain demand and network
resources at v=0.5 Mbps
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Figure 6.5: QoE for number and duration of stops with uncertain demand and network
resources at v=0.5 Mbps
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Figure 6.6: Distribution of QoS values for robust and non-robust GPRA
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Chapter 7

QoS-Aware Robust-DASH under Rate
Uncertainty

The three variants in Chapter 5 and Chapter 6 aimed to minimize the energy consumption

which is only achievable during low load scenarios as the BS can go into sleep mode.

This chapter introduces the fourth variant, in Fig. 7.1, which exploits all the available radio

resources (i.e. no energy saving) to achievefair QoS during high load scenarios, and solves

for both video quality and airtime fractions over a time-horizon. This is unlike the previous

three variants in which the video quality was predefined at each time slot and thus treated as

constant in the optimization stage. The scheme in this chapter is an application of network-

centric DASH in which the network selects the video quality to achieve fairness among the

users, and calculates the corresponding amount of resources (airtime fractions) required to

avoid video stops while considering uncertainties in predicted channel rates. The schemes

is referred to asRobust Predictive-DASH (RP-DASH).
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Figure 7.1: Block diagram of RP-DASH scheme under rate uncertainty

7.1 System Model

7.1.1 Predicted Rate Error Model

In order to model prediction uncertainties, future rate is modelled as random variable de-

noted byr̃i,t. This random variable is either described by 1) its discretePDF when the

realizations and their probabilities are known or 2) the Gaussian distribution in which the

standard deviation is denoted byσi,t and calculated using the framework in Chapter 4. This

Gaussian distribution error model is motivated by the findings in [34, 43] and will be used

to quantify the trade-off between error PDF modelling and robustness. In both cases, the

per slot rate errors are assumed to be independent. Particularly, the error of predicting the

rate is function of erroneous rate in REM, variations in the wireless signal (which changes

the SINR) and user location uncertainty. These parameters are calculated at each slot based

on the independent channel gains [43,90].
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7.1.2 Demand Model

In this scheme, we assume that the total video duration the user is going to watch is known

(i.e. no demand uncertainty). Yet, the scheme has to decide on the quality of each video

segment.

7.2 Problem Statement

The RP-DASH scheme aims to calculate both the airtime fractionsxi,t and segments quality

κ
(q)
i,t for each useri at time slott such that all users experience fair video qualities while

meeting the QoS level. Particularly, QoS is said to be satisfied when users experience video

stops, due to buffer underrun, with probability belowǫ = (1− β).

7.3 Problem Formulation

The introduced robust P-DASH and fair quality selection is formulated based on Chance

Constrained Programming (CCP) as follows:

maximize
x,κ

{

min
∀i∈M

∑

∀t∈T

∑

∀q∈Qi

κ
(q)
i,t vq

}

(7.1)
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subject to:

C1: Pr

{

t
∑

t′=0

r̃i,t′xi,t′ ≥
t

∑

t′=0

∑

∀q∈Qi

κ
(q)
i,t′vq

}

≥ 1− ǫi,t,

∀ i ∈ M, ∀t ∈ T ,

C2:
t

∑

t′=0

∑

∀q∈Qi

κ
(q)
i,t′τi,t′ ≥ t, ∀ i ∈ M, ∀t ∈ T ,

C3:
∑

q∈Qi

κ
(q)
i,t ≤ 1, ∀ i ∈ M, t ∈ T ,

C4: κ
(q)
i,t ∈ {0, 1} , ∀ i ∈ M, t ∈ T ,

C5:
|M|
∑

i=1

xi,t ≤ 1, ∀t ∈ T ,

C6: xi,t ≥ 0, ∀ i ∈ M, t ∈ T .

ǫi,t ∈ [0, 1] is the probability that the QoS of useri is unsatisfied at time slott, where

ǫi,t = 1 is the maximum QoS violation. The objective function aims tomaximize the

minimum total quality of each user to attain the fairness among the users over the time

horizon. The QoS chance constraint in C1 guarantees that thetotal delivered content to

the user satisfies the anticipated demand (function of the selected quality) by a minimum

probability of1 − ǫ while considering uncertainties in future rates. The constraint in C2

complements C1 to ensure that the total duration of the selected segments should be greater

than the elapsed playback time to avoid video stops. C3 and C4ensure that, for each user,

only one quality level is selected at a given time slot. The fifth constraint C5 models the

limited resources at each base station by ensuring that the sum of the airtime fractions is less

than 1 second which is the duration of the allocation slot. The last constraint C6 ensures

the non-negativity of the decision variable. Indeed the above formulation does not have a

closed form solution due to the probabilistic constraint C1. As such, we will initially adopt



7.4. NOMINAL SCENARIO APPROXIMATION EQUIVALENT 136

0.5

0.1

0.2

0.18

0.01

Rate Realizations ( )

0.01

P
ro

b
a
b
ili

ty
 o

f 
O

c
c
u
rr

e
n
c
e
 (

)

Selected rate 

by GA

Selected rate 

by SA

(a) Example of GA more conservative than SA

0.5

0.1

0.15

0.05

0.1

Rate Realizations ( )

0.1

P
ro

b
a
b
ili

ty
 o

f 
O

c
c
u
rr

e
n
c
e
 (

)

Selected rate 

by GA and SA

(b) Example of GA equal conservative to SA

(c) Conventional SA (d) Linear lookback SA

Figure 7.2: Illustration of SA and GA operations

the SA to obtain a deterministic equivalent form in the next section.

7.4 Nominal Scenario Approximation Equivalent

The Scenario approximation adopts the discrete Probability Density Function (PDF) of the

uncertain rates to derive a deterministic representation for the probabilistic constraint. The

PDF of every ratẽri,t contains all the realizationsr(j)i,t and their probabilitiesp(j)i,t to construct

the scenarios over the time horizon. The approximation ensures that resource allocations
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and quality selections satisfy the scenarios whose total probability of occurrence is more

than the defined QoS level (i.e.1 − ǫ). Each scenario corresponds to one combination of

the possible realizations of the uncertain rates in C1. For example, the constraint in the

second time slot includes the rates in both the first and second time slot. The scenarios will

comprise all the possible combinations of the realizationsof these two rates. As illustrated

in Fig. 7.2(c), the first scenario consists ofr
(1)
1,1 andr(1)1,2. Wherer(1)1,1 represents the first

realization of the rate at t=1, andr(1)1,2 is the first realization of the rate at t=2, both for the

first user. The probability of this scenario will be the product of the individual probabilities

(i.e. s(1)1,2 = p
(1)
1,1× p

(1)
1,2). The deterministic equivalent of C1 in Eq. 7.1 is captured by C7-C9

below

maximize
x,κ,δ

{

min
∀i∈M

∑

∀t∈T

∑

∀q∈Qi

κ
(q)
i,t vq

}

(7.2)

subject to:

C7:
t

∑

t′=0

r
(j)
i,t′xi,t′ ≥ δ

(j)
i,t

t
∑

t′=0

∑

∀q∈Qi

κ
(q)
i,t′vq, ∀ i ∈ M, ∀t ∈ T , ∀j ∈ Ji,t,

C8:
∑

j∈Ji,t

s
(j)
i,t δ

(j)
i,t ≥ 1− ǫi,t, ∀ i ∈ M, t ∈ T ,

C9: δ
(j)
i,t ∈ {0, 1} , ∀ i ∈ M, t ∈ T , j ∈ Ji,t,

(C2 - C6)

wherer(j)i,t is thejth realization of the uncertain predicted rate at time slott for useri.

s
(j)
i,t is the probability of thejth scenario at time slott for useri. δ

(j)
i,t is a binary decision

variable which equals to 1 if thejth scenario at slott must be satisfied by the decision

variable and equals 0 otherwise (C9). Constraint C8 guarantees that the total probability of

all the satisfied scenarios exceeds the minimal QoS level1− ǫ.
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Although the above formulation is deterministic and robust, it poses the following three

main challenges to the solver:

1. Non-linearity: due to the joint optimization of quality and airtime fractions, the right

hand side in C7 will be non-linear (both decision variables are multiplied). Despite

the dimensions of C7, the problem is NP-hard and reaching theoptimal solution is

not guaranteed.

2. Exponential complexity: the QoS constraint at each time slot is a function of the rate

in both the current and preceding slots (C7 in Eq. 7.2 and Fig.7.2). Thus, at each

time slot t the number of considered scenarios will be
∏t

t′=0 |Ji,t′|, where|Ji,t′| is

the number of realizations of the uncertain rateri,t′ . Assuming that all the rates have

equal number of realizations (i.e.|Ji,t′| = |Ji|), thus the total number of scenarios

for each time slot constraint per user will be(|Ji|)(t).

3. Explicit rate information: the scenario-based approximation requires the exact values

of realizations for all the rates and their corresponding probabilities. This requires

collecting large number of samples for each achievable channel rate value in order to

construct an accurate discrete PDF. Due to the large number of physical layer config-

urations such as Multiple Input Multiple Output (MIMO) and MCS, more possible

rates can be achieved. Hence, increases the burdens of prediction and error mod-

elling.

In the next subsection we address the first two challenges while the third challenge is

tackled separately in the next section by the Gaussian basedapproximation.
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7.5 Linear Look-Back Scenario Approximation Equivalent

The nonlinearity of QoS constraint C7 is solved by exploiting the problem’s structure. The

scenario decision variableδ(j)i,t is governed by the QoS constraint C8, as such a minimal

number of scenarios should be satisfied (i.e.δ
(j)
i,t = 1). For each satisfied scenario (i.e.

δ
(j)
i,t = 1), the corresponding airtime allocation (i.e. left hand side of C7) should guarantee

the satisfaction of the selected demand (i.e. video quality) while considering the worst

case of the selected scenario. The objective function playsthe main role in discarding the

scenarios (i.e.δ(j)i,t = 0) whose realizations have very low values. In that case, bothsides

of C7 are equal to zero, and the scenario is not satisfied by thecalculated airtime fractions.

A new linear representation for C7 in Eq. 7.2 is introduced tocapture the above strategy

and avoid the exponential complexity due to considering therealizations of all previous

time slots. Instead, the new formulation considers a linearlook-back on the preceding

rate realizations to decrease the large number of scenariosat each time slot. Only one

conservative realization denoted byr(γ)i,t is selected to represent each of the rates in the

previous slots. The number of scenarios at slott will depend only on the realizations in

this slot (|Ji,t|) and the number of previous slots (t− 1) instead of all the realizations of the

latter. In order words,|Ji,t| × (t− 1) scenarios are considered instead of(|Ji|)(t). The new

linear formulation is represented as follows:

maximize
x,κ,δ,Y

M
∑

i=1

Yi (7.3)
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subject to:

C10:
t

∑

t′=0

∑

∀q∈Qi

κ
(q)
i,t′vq − (

t−1
∑

t′=0

r
(γ)
i,t′xi,t′ + r

(j)
i,t xi,t) ≤ B(1− δ

(j)
i,t ), ∀ i ∈ M, t ∈ T ,

C11:
∑

j∈Ji,t

p
(j)
i,t δ

(j)
i,t ≥ 1− ǫi,t, ∀ i ∈ M, t ∈ T ,

C12:
t

∑

t′=0

∑

∀q∈Qi

κ
(q)
i,t vq ≥ Yi, ∀i ∈ M,

(C2 - C6, C9)

The minimum function operator in the objective function of Eq. 7.2 was replaced by in-

troducing auxiliary variableYi and the fairness constraint C12 which must be satisfied for

all users. C10 represents the linear look-back constraint in whichp(j)i,t is the probability of

realizationj of channel rateri,t andB is a very large number that forces the airtime allo-

cation to satisfy the demand when scenarioj is considered.r(γ)i,t approximates the channel

rates of the preceding timeslots and can be calculated as follows

minimize
θ,r

(γ)
i,t

r
(γ)
i,t (7.4)

subject to:

r
(γ)
i,t ≥

∑

j∈Ji,t

r
(j)
i,t θj

θj

j
∑

j′=1

p
(j′)
i,t ≥ ǫ , ∀j ∈ Ji,t

θj ∈ {0, 1}
The objective function in Eq. 7.4 aims to select the optimal value of the aggregated

raterγi,t for the slot realizations such that very low values with conservative solutions and

high values with non-robust solutions are ignored. The firstconstraint ensures that the
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calculated value ofrγi,t surpasses some realizations due to their low values; where ignoring

such realizations avoid conservative solutions. The second constraint guarantees that the

sum of probability of the ignored realizations is below the degradation levelǫ, to achieve

robustness. The last constraint definesθ as a binary decision variable. Since the objective

function is minimization which is subjected to the second constraint, the decision variable

is
∑

j θj = 1. Thus only one realization value is selected from the first constraint.

7.6 Linearized Gaussian Approximation Equivalent

The third challenge of Scenario Approximation (SA) is tackled by adopting the Gaussian

Approximation (GA) which does not require the explicit realizations and their probabilities

for all future rates. Instead, GA obtains a deterministic closed form for C1 using the CDF

of multivariate random variables denoted byΦ. Thus the probabilistic constraint C1 is

replaced by the following deterministic form

Pr

{

t
∑

t′=0

r̃i,t′xi,t′ ≥
t

∑

t′=0

∑

∀q∈Qi

κ
(q)
i,t′vq

}

= 1−
∫ Di,t

−∞
N(r, µ,Σ)dr

= 1−
Φ(

Di,t−µi,t

Σi,t
)− Φ(

−µi,t

Σi,t
)

Si,t
≥ 1− ǫi,t,

(7.5)

Using the inverse CDF, the following closed form can be obtained:

µi,t + Si,tΦ
−1
ǫi,t

Σi,t ≥ Di,t, ∀ i ∈ M, t ∈ T , (7.6)
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where:

Si,t =

t
∏

t′=0

(

Φ(
r
(u)
i,t′ − r̄i,t′

σi,t′
)− Φ(

r
(l)
i,t′ − r̄i,t′

σi,t′
)
)

µi,t =
t

∑

t′=0

r̄i,t′xi,t′ ,

Σi,t =

√

√

√

√

t
∑

t′=0

x2
i,t′σ

2
i,t′ ,

σ2
i,t′ = E[(r̃i,t′ − r̄i,t′)

2],

Di,t =
t

∑

t′=0

∑

∀q∈Qi

κ
(q)
i,t′vq

r
(l)
i,t andr(u)i,t are the lower and upper bounds of the realizations of future predicted rate

r̃i,t (i.e. the support). Typical values of the channel rates in the current and future networks

are more than the corresponding variance values (i.e.µi,t >> Σi,t) and thusΦ(−µi,t

Σi,t
) ≈ 0.

Si,t is used to normalize the truncated probability distribution of the random rates.

The above deterministic form, however, is a mixed integer quadratic constrained pro-

gramming which is NP-hard. A linear approximation is adopted, which turns the problem

to NP-complete. This is done by the budgeted robust approximation of [82] on Eq. 7.6 as

follows. LetΣ(L)
i,t =

∑t
t′=0 |xi,t′σi,t′ |, thusΣi,t < Σ

(L)
i,t , andΦ( 1

Σi,t
) > Φ( 1

Σ
(L)
i,t

). This guar-

antees the satisfaction of C1 by substitutingΣi,t with Σ
(L)
i,t . Such approximation will result

in a linear but conservative formulation compared to the original Gaussian approximation.

The final deterministic mixed integer linear equivalent forthe RP-DASH in Eq. 7.1 is

summarized as

maximize
x,κ,δ,Y

M
∑

i=1

Yi (7.7)
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subject to:

C13: µi,t + Si,tΦ
−1
ǫi,t

ΣL
i,t ≥ Di,t, ∀ i ∈ M, t ∈ T ,

(C2 - C6, C9)

7.7 Real-Time Guided Heuristic

This section introduces the guided heuristic algorithm to obtain real-time solutions for the

formulated RP-DASH problem. This is in addition to analyzing its computational com-

plexity.

7.7.1 Limitations of Optimal Commercial Solvers

The Scenario-and Gaussian-based robust formulations in Eq. 7.3 and Eq. 7.7 are repre-

sented in mixed integer linear programming forms. The main advantage of these forms

is that an optimal feasible solution can be obtained using branch and bound or simplex

techniques. Such conventional techniques are currently well developed and implemented

in many commercial solvers such as Gurobi [124]. These solvers use their own developed

heuristic algorithms to calculate an initial feasible solution which satisfies the constraints.

Other neighbouring solutions are then explored by means of branch and bound or simplex

algorithms, while using the duality gap to evaluate the optimality of each solution. Al-

though zero or low duality gaps (i.e. optimal solutions) canbe achieved by commercial

solvers, the execution time highly increases with the problem’s dimensions (i.e. number of

constraints and decision variables). A guided heuristic algorithm is proposed to provide a

real-time feasible solution with low optimality gap from commercial solvers solutions.
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7.7.2 Guided Real-time Heuristic

The introduced guided heuristic search algorithm is aware of the problem’s structure that

includes the interdependency between the constraints and their impact on the value of ob-

jective function. This is in addition to considering the motive of robust and predictive

allocation in calculating the airtime fractions and video qualities. In essence, the algorithm

starts by satisfying all the QoS constraints using the available radio resources while ig-

noring the objective function in that stage. This first stagecontains two problem specific

knowledge: 1) the buffering capabilities of the users, and 2) the direct relation between the

QoS and the resource limitation constraints. The former knowledge can be used to push the

video content in advance and thus avoids stalling in congested time slots. In the next step,

the value of objective function is maximized while exploiting three other problem features:

1) the trade-off between the fairness (i.e. the objective function) and the above-mentioned

two constraints, 2) the time horizon and the buffer status ofeach user, and 3) the competi-

tion between the users, experiencing different channels rates, on the radio resources of one

time slot.

The heuristic implements two main consecutive stages summarized in Algorithm 6 and

Algorithm 7, respectively and are detailed as follows:

Satisfaction of Minimal Quality

In this initial stage (Algorithm 1), the lowest video quality is assigned to all users over the

time horizon (Algorithm 1, line 3). Then, the amount of airtime that satisfies this quality

level is calculated (line 4) and used to update the total amount of allocated resources at

each time slot (line 5). Such allocation guarantees the satisfaction of QoS constraint C13

in Eq. 7.7.
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However, in high load scenarios, due to high QoS levels (i.e.1−ǫ) or a large number of

users, the total allocated resources in a certain time slot might violate the airtime constraint

C5 in Eq. 7.1. Accordingly, the preceding time slots with vacant resources will be used to

prebuffer the content of the highly loaded time slots as depicted in lines 11-21 of Algorithm

6. While efficient exploitation of the radio resources is mandatory, the algorithm selects the

user with the highest achievable rate in this preceding slotand prebuffers the content (lines

13-16). Thus, less airtime is consumed and the chance of satisfying the radio resource

constraint C5 is increased. In case of non-vacant resources, the problem is said to be

infeasible (lines 23-25). Other bounding and streaming constraints are implicitly satisfied

by the above iterative procedure.

Optimizing Long-term Fairness

This stage (Algorithm 2) aims to maximize the value of objective function without violating

any of the aforementioned satisfied constraints. While the objective is to maximize the

long-term quality for each user, the algorithm tries to achieve this on both the current

and the future time slots. In each time slot with vacant resources, both the cumulative

quality and the required airtime to increase the current slot’s quality are calculated for each

user (lines 3-7). The user with minimal quality (both cumulative and increased values)

is selected as long as the required airtime is less than the available vacant resources (line

9). In case of more than one user with the same quality, the onethat requires less airtime

is selected (line 10). This procedure is repeated for all users as long as there are vacant

resources in the current slot and the video quality is improving.

For low-load scenarios, due to either a small number of usersor high achievable rates,

the resources at a certain time slot might not be fully utilized. As such, predictive allocation
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is performed in order to maximize the quality of the users experiencing their highest chan-

nel conditions in the current time slot. This is modelled by calculating the ratio between

the achievable rate in this time slot and the minimal future rate. Thus, users with peak radio

conditions who are heading towards the cell edge (line 14) will have the highest ratio and

thus can use these vacant resources to increase the quality of future video content (lines

13-16). The achievable rate used to calculate all the airtime allocations as a function of the

rate average value, variance, CDF and QoS level as derived inC13 of Eq. 7.7.

7.7.3 Algorithm Complexity

The first part of the heuristic (i.e. Algorithm 6) consists oftwo successive loops, the first is

in lines 1-9 and has a complexityO(MT ). The second loop, however, has a higher com-

plexity of O(MT 2) due to revisiting the preceding time slots in lines 9-27. Similarly, the

second part of the heuristic (i.e. Algorithm 7) has a complexity of O(QMT 2) ≈ O(MT 2)

due to the relatively small number of available quality levels compared to the length of the

time horizon. The complexity of the whole proposed heuristic isO(MT 2) which is lower

than numerical optimization methods.

7.8 Performance Evaluation

7.8.1 Simulation Setup

We simulate the proposed RP-DASH using the LTE module in ns-3[125] which is inte-

grated with Gurobi commercial solver [124] to obtain optimal solutions for all the for-

mulated problems. The fading model of 3GPP defined in [113] isadded to the received



7.8. PERFORMANCE EVALUATION 147

Algorithm 6: Initialization and QoS Satisfaction Stages of Guided Heuristic

Input : Users:M, Time Horizon:T , Average Predicted Rates:̄R, Rate
Variances:Σ, Maximum Violation:ǫ and Video Qualities:Q;

Output : X;
Initialization : X = ∅, κ = ∅ Nt = 0 ∀t ∈ T

1 Define: Ri,t = r̄i,t − Si,tΦ
−1
ǫi,t

σi,t;
2 for i ∈ M do
3 for t ∈ T do
4 Setκ0

i,t = 1 ;
5 Set C13 of Eq. 7.7 to an equality and solve forxi,t;
6 Nt = Nt + xi,t;
7 end
8 end
9 for t ∈ T do

10 if Nt > 1 then
11 Setk = t− 1;
12 while k > 0 do
13 Calculate the residual airtime∆xi,t = Nt − 1;

14 Calculate the demanded airtime∆xi,k = ∆xi,t × Ri,t

Ri,k
;

15 i∗ = argmaxxi,k∀i ∈ M;
16 if Nk +∆xi∗,k ≤ 1 then
17 Updatexi∗,k, xi∗,t, Nt andNk ;
18 break;
19 end
20 k = k − 1;
21 end
22 end
23 if Nt > 1 then
24 Return Infeasible Problem;
25 end
26 end
27 returnX
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Algorithm 7: Optimization Stages of Guided Heuristic

Output : X andκ;
1 Define: Ri,t = r̄i,t − Si,tΦ

−1
ǫi,t

σi,t;
2 for t ∈ T do
3 while Nt < 1 do
4 CalculateVi,t =

∑t
t′=0

∑

∀q∈Q κ
(q)
i,t′vq for all users;

5 for i ∈ M do
6 Calculate a possible higher quality levelκ

(q′)
i,t vq′ ;

7 Calculate the required airtime∆xi,t to satisfyκ(q′)
i,t vq′;

8 UpdateVi,t usingκ(q′)
i,t vq′ ;

9 end
10 Select the set of usersl with minimumVi,t;
11 Select userk from l with minimal∆xi,t;

12 UpdateNt, xk,t, andκ(q)
k,t ;

13 if l is emptythen
14 while t′ < T do
15 Select useri with maximum(Ri,t)× (ri,t′ − ri,t);
16 Repeat lines5− 6 and line11 for useri with t = t′;
17 end
18 end
19 end
20 end
21 returnX andκ

power at the user device to apply variations in predicted rate. Users follow random prede-

fined paths within the cell coverage region at varying velocities from 25 to 40 km/h, which

correspond to typical values in urban areas. All the simulation parameters and values are

presented in Table 7.1, and the average of all output results, over 50 simulation runs, is re-

ported in the following subsections. We compare the introduced RP-DASH scheme with an

existing non-robust P-DASH technique. The abbreviations,definitions and solution meth-

ods of the comparative schemes are summarized in Table 7.2. Existing non-robust P-DASH

techniques, referred to asP-DASH, are simulated by replacing the random rates in Eq. 7.1
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Table 7.1: Summary of Model Parameters in the Fourth Variant

Parameter Value
BS transmit power 43dBm
Bandwidth 5MHz
Time HorizonT 60 s
Streaming rates 0.5, 1, 1.5, 2, 2.5 [Mbps]
Bit Error Rate 5× 10−5

Shadow correlation distance(dcor) [113] 50m
Shadow standard deviation [113] 4, 6
Velocity 25 - 40 [km/h]
Packet size 103 [bytes]
Packet rate (from core network to BS) 103s−1

Buffer size 109 [bits]

Table 7.2: Comparative Schemes

Notation Definition Solution Method
P-DASH Non-robust P-DASH in [26,136] Gurobi [124].

PP-DASH P-DASH with perfect channel knowledge Gurobi [124].
SRP-DASH SA based RP-DASH in Eq. 7.3 Gurobi [124].
GRP-DASH GA based RP-DASH in Eq. 7.7 Gurobi [124].
HRP-DASH GA based RP-DASH in Eq. 7.7 Heuristic in Algorithm 6-7.

with the average rate values. The performance bounds are obtained byPP-DASHwhich

assumes perfect prediction of channel rates (without errors) to replace the random variable

in C1 Eq. 7.1.

7.8.2 Evaluation Metrics

QoS Satisfaction and QoE levels

In order to assess the robustness of the simulated schemes, we measure the QoS satisfaction

using the number and duration of video stops denoted byη andτ , respectively and calcu-

lated as in Eq. 5.24 and Eq. 6.6. Similar to Chapter 6, the resultant QoE is also reported to

model the users’ perception using the MOS formula in [133] and [134].



7.8. PERFORMANCE EVALUATION 150

Video Streaming Quality

A key performance parameter of DASH is the selected quality of all the segments over the

time horizon for each useri, denoted byVi, and calculated as a function of the segment size

as follows

Vi =
∑

∀t∈T

∑

∀q∈Qi

κ
(q)
i,t vq ∀i ∈ M (7.8)

TheVi metric is averaged over all users to assess the conservatismof the schemes, while

the optimality of the objective function is measured by the fairness using the Jain’s index

below

J =

(
M
∑

i=1

Vi)
2

M
M
∑

i=1

Vi
2

(7.9)

7.8.3 Simulation Results

Comparison with non-Robust P-DASH

We firstly compare both the SA and GA formulations of the introduced robust P-DASH

against the existingnon-robust P-DASHfor different values of QoS degradations and stan-

dard deviations. The existing non-robustP-DASHsuffered from an increased number and

durations of video stops with the standard deviations of shadowing as depicted in Fig. 7.3(a)

and Fig. 7.3(b), respectively. Although only four users areconsidered, this QoS degrada-

tion resulted in average and poor MOS values due to frequent stops with long durations as

shown in Fig. 7.4(a) and Fig. 7.4(b), respectively. This is attributed to the average predicted

values of rates adopted by theP-DASHwhich did not account for the rate variations and

uncertainties. As such, the highest quality levels were always selected by the non-robust
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scheme as depicted in Fig. 7.5(a). This is as opposed to the introducedGRP-DASHand

SRP-DASHformulations which were able to keep the percentage of stopsand durations

below the QoS degradation levelǫ × 100%. An increasing trade-off between the QoS and

QoE improvements on one hand and the quality degradation on the other hand is deduced

over differentǫ levels as in Fig. 7.3(a)-Fig. 7.4(b) and Fig. 7.5(a), respectively. The main

objective (i.e. quality fairness), did not suffer a significant degradation as reported by the

Jain’s index in Fig. 7.5(b).

By increasing the number of users, more and longer video stops are observed which re-

sulted thus in low MOS values when using theP-DASHas shown in Fig. 7.6(a)-Fig. 7.7(b).

This degradation is caused by the optimistic strategy of theP-DASHwhich tries to maxi-

mize the quality at the expense of prebuffering and thus increases the chance of stops during

channel variations. This was avoided by theGRP-DASHwhich, in essence, allocates more

airtime than theP-DASHbased on the standard deviation and the QoS degradation level ǫ.

The optimality gap between theP-DASHandRP-DASH(GA and SA) also decreases with

the increased load as shown in Fig. 7.8(a)-Fig. 7.8(b) sincethe former has to retroactively

allocate extra airtime after detecting the video stops.

Gaussian and Scenario Based Comparisons

Comparing theSRP-DASHwith GRP-DASH, the latter is found to be less robust, in terms

of average stops, during the low standard deviations and high QoS degradation levelsǫ as

shown in Fig. 7.3(a)-Fig. 7.3(b). However, this is not the case when the MOS is considered

which illustrates that GA is equal or more robust than the SA as discussed in Section 7.4

especially at very low values ofǫ. Since the MOS is calculated by an exponential function,

it reveals that the GA provides a fair robustness across the users unlike the SA which
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Figure 7.3: QoS performance of RP-DASH (SA and GA) for 4 usersat different degrada-
tion levels
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Figure 7.4: QoE performance of RP-DASH (SA and GA) for 4 usersat different degrada-
tion levels
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Figure 7.5: Quality performance of RP-DASH (SA and GA) for 4 users at different degra-
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decreases the average degradation and conservatism. The optimality gap in Fig. 7.5(a)-

Fig. 7.5(b) reveals another trade-off between the amount ofinformation, required by the

SA, and the lower quality obtained by the GA.

Evaluation of the Heuristic and Complexity

The performance of the introduced heuristic is reported fordifferent numbers of users in

Fig. 7.6(a)-Fig. 7.7(b). Similar to theGRP-DASH, the HRP-DASHwas able to satisfy

the maximum QoS degradation levelǫ and provided a stable QoS performance over the

load and the channel standard deviation. It can be also seen that theHRP-DASHwas

slightly more conservative than theGRP-DASHand thus reported a smaller optimality gap

in Fig. 7.8(a)-Fig. 7.8(b). This demonstrates the ability of the heuristic to exploit the prob-

lem structure and obtain near-optimal solutions that also satisfy the defined QoS degrada-

tion level ǫ. The complexity of the both optimal and heuristic techniques is measured in

terms of the execution time as reported in Table 7.3. The heuristic algorithm only requires

less than0.1ms. to solve the RP-DASH formulation irrespective of the network load (i.e.

number of users) and the QoS degradation levelǫ. This is unlike the commercial solver

which required tens or hundreds of seconds to reach the target duality gap. The execution

time increases with both the number of users, due to the larger problem dimension, and the

QoS level (1 − ǫ) due to the tight feasibility region. When the optimal SA is used, more

execution time is required compared to the GA due to the addedauxiliary decision vari-

ables, thus, presenting a new trade-off between the complexity of SA and the conservatism

of GA.
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Figure 7.6: QoS performance for different number of users atǫ = 0.1
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Figure 7.7: QoE performance for different number of users atǫ = 0.1
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Figure 7.8: Video quality performance for different numberof users atǫ = 0.1
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Table 7.3: Execution Time of the Simulated Schemes

Technique
Number of Users QoS Degrad. Level (ǫ)

4 8 12 16 0.3 0.2 0.1 0.05

P-DASH 50s. 120s. 290s. 600s. 30s. 30s. 30s. 30s.

SRP-DASH 60s. 200s. 320s. 600s. 50s. 55s. 60s. 80s.

GRP-DASH 50s. 120s. 260s. 560s. 30s. 40s. 50s. 55s.

HRP-DASH <0.1ms. <0.1ms. <0.1ms. <0.1ms. <0.1ms. <0.1ms. <0.1ms. <0.1ms.
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Chapter 8

Conclusions and Future Directions

8.1 Summary and Conclusions

In this thesis, we addressed the problem ofpredictiveresource allocation (PRA) for video

streaming under imperfect prediction. In contrast to previous efforts [25–27, 37, 38], we

developed arobust-PRA framework with uncertainty in mind that providesjoint proba-

bilistic QoS guarantees and risk-aware prebuffering over a time-horizon. By offering a

mechanism to control the probability of constraint satisfaction, operators may strike a bal-

ance between network utilities such as energy and the risks associated with erroneous pre-

dictions. Furthermore, in order to facilitate practical deployment, near-optimal real-time

solutions coupled with a channel variation tracking technique were developed. Different

variants of R-PRA framework are introduced for energy-efficiency and QoS-aware adaptive

streaming. Stochastic optimization Chance Constrained Programming (CCP) and Recourse

Programming (RP) techniques are adopted, and tested under rate, demand and resource un-

certainties. Results, obtained by a standard compliant simulator, indicate the resilience

of R-PRA framework in meeting QoS constraints, while significantly reducing BS energy

and achieve QoS fairness under practical prediction uncertainty. To summarize, for the

first time in literature, a robust framework is introduced fo r taking decisions over a
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time horizon while considering the interdependency between the time slot constraints

and the demand accumulation. This is further integrated with adaptive tracking of

uncertainty degree to control the robustness level.

The first two variants introducedenergy-efficient robustschemes under rate uncertain-

ties. The first solution assumed Gaussian distributed rate error model and integrated the

Gaussian Approximation (GA) for chance-constraint QoS modeling, a Kalman Filter (KF)

for prediction uncertainty tracking, and a guided heuristic that enables real-time implemen-

tation. The second variant, on the other hand, adopted Bernstein Approximation (BA) com-

bined with Particle Filter (PF) to handle uncertainty with unknown or complex rate error

models in which the Cumulative Density Function (CDF) is non-invertible. Such tracking

enables the operator to be greedy during periods of accuratepredictions, and thereby max-

imizes energy savings without compromising QoS. Using a guided heuristic enabled the

adoption of the GA and BA in their original less conservativeSecond order Cone Program-

ming (SoCP) form as opposed to linear approximations in the literature. These results are

unlike the existingnon-robustPRA that rely only onaveragefuture rates and thus suffered

from QoS violations due to increased number of video stops. The results further demon-

strated thatnon-predictiveRA either consumes excess energy or violates the QoS level

under low or high load scenarios, respectively.

Both Gaussian and Bernstein approximations are tested for meeting target QoS level.

At small feedback intervals that require frequent optimization via optimal solvers, both ap-

proaches were able to meet the QoS level while keeping the energy-saving gain close to

the benchmark. Less complex longer feedback intervals showed however different perfor-

mances in both QoS satisfaction and energy saving. In particular, Gaussian approximation

was not robust to avoid the accumulation of video stops over consecutive time slots. This
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necessitates eitherjoint probabilistic form with optimal risk allocation or short feedback

intervals. On the contrary, Bernstein approximation was able to satisfy the QoS level but

with high cost of robustness, i.e. more energy consumption,due to using the bounds rather

than the CDF of the prediction error.

The third variant focused also on energy-saving, but handled uncertainties in both user

demands and network resources over a time horizon. The RP andCCP models adopted the

probability of random video termination and arrival of real-time users. The performance

evaluation demonstrated the ability of the introduced scheme to maintain the energy-saving

gains of PRA while satisfying the QoS levels. An increase in system load underlines the

importance of having a robust scheme to avoid excessive allocation for users leaving the cell

center and with high probability of terminating the video before viewing the prebuffered

content. This is unlike existing PRA schemes that greedily exploit the peak radio conditions

by prebuffering the whole future content without taking into consideration the unstable user

demand. As such, high energy consumption is observed compared to the non-predictive

scheme employed in today’s network.

The last variant focused onRobust Predictive-DASH (RP-DASH) to jointly calculate

the resources and video quality while handling uncertainties in predicted rates and achiev-

ing streaming quality fairness among the users. New linear deterministic equivalent forms

are then proposed based on GA and SA to provide closed form solutions at a polynomial

complexity as opposed to traditional forms. Unlike the robust optimization literature, the

allocation over time-horizon will result in GA and SA with non-polynomial complexity and

non-convex approximations. As such, linearized and non-conservative yet robust approx-

imations are proposed in this work. The performance showed the ability of probabilistic

RP-DASH to satisfy the predefined QoS level. This is unlike the existing non-probabilistic
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P-DASH schemes which assume ideal prediction and thus experience high degradation in

users’ QoS and QoE. The results further revealed a trade-offbetween the risk of experi-

encing video stops and maximizing video quality, which increases the need for an explicit

modelling of user’s preferences. As such, users seeking high video qualities should be

assigned low QoS probabilistic levels at the expense of increased number and duration of

stops. In addition to satisfying the QoS level, the small optimality gap between the SA

and GA promises the adoption of the latter in RP-DASH with quality maximization. This

is unlike the existing conclusions on GA that doubted its robustness in long-term energy-

efficient predictive video delivery. Adopting the GA in robust predictive DASH will de-

crease the cost of uncertainty modelling as the network operator will not rely on the exact

realizations of future rates. Moreover, near-optimal real-time robust solutions are obtain-

able for the energy-saving and DASH scheme through a low complexity guided heuristic

algorithm that exploits the problem structure. All the above performance improvements

and design flexibilities envision the implementation of R-PRA in future wireless networks

under practical uncertainties.

Compared to non-predictive schemes in today’s networks, the R-PRA demon-

strates that significant prediction gains are still achievable under all kinds of uncer-

tainties.

8.2 Future Directions

The future work considers the following enhancements to thesystem model, R-PRA frame-

work and the performance evaluation:

1. System Model:

– Backhaul and Application: The main focus in this thesis is the wireless link.
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However, the uncertainties and limitations of the backhaulnetwork have to be

taken into consideration. This includes the delivery of thevideo content from

the application server to the BS cache. The delays in the application server re-

sponse to the user requests, maximum caching capacity in theBS and user de-

vice, and the backhaul link capacities have to be explicitlymodelled to achieve

an optimized end-to-end performance.

– Multi-cell Environment: While each BS individually executes the R-PRA so-

lutions, cooperative scheduling has to be introduced. In particular, neighbour-

ing BSs can jointly exchange future information and calculate resource alloca-

tion that controls the inter-cell interference. For instance, the interfering BSs

can schedule their sleep interval to void simultaneous transmission and thus

increase the total channel capacity.

2. R-PRA Framework:

– Robust Optimization: the proposed work typically relied onstochastic opti-

mization to handle uncertainties. Other robust techniquessuch as Fuzzy and

decision under uncertainty such as Markov decision processor belief networks

can be also introduced. The fuzzy is known for its low complexity but high con-

servatism which can be handled by real-time tracking of error variance. Other

probabilistic decision making techniques such as Markov decision process can

provide simple uncertainty modelling as it only requires conditional probability

among the system states rather than the error CDF.

– Real-time Prediction: the future information can be recomputed frequently over
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the time horizon to correct the previous predictions while leveraging the un-

veiled randomness over time. In particular, the KF and PF used to track the

degree of uncertainty, can be extended to correct the predicted information us-

ing the measurements. This will eventually lead to low uncertainty degree and

thus low safety term (i.e. cost of robustness).

3. Performance Evaluation and Optimization:

– Probabilistic QoE Models: Existing user experience models, i.e. QoE, can be

extended to capture the trade-off between video stops and selected quality using

the probabilistic metric. Particularly, a new QoE model is needed to consider

the user’s preference, i.e. both quality and stops, as a function of the QoS level

ǫ. Such model would guide the operator while selecting the value of ǫ jointly

with the resources and quality of segments to reflect the userpreference.

– Dynamic Objective: Existing PRA focused on optimizing either the QoS (e.g.

video quality), in high load scenarios, or decreasing the energy-consumption

in low load cases. A joint optimization model is desirable toautonomously

evaluate the network load and select the objective functionto optimize (e.g.

energy or QoS parameter).

– Testbed Implementation: An experimental evaluation is needed to assess the R-

PRA under real network conditions. Thus, assess the performance gains of both

PRA literature and robust techniques while considering practical uncertainness.

This is in addition to discovering implementation challenges and verifying the

assumptions on system model of the PRA literature and the proposed frame-

work.
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Appendix

Appendix A

The objective function and all constraints in Eq. 5.12 are linear except the QoS one. The

convexity of this first constraint will be checked using the Hessian matrix, which should be

positive semidefinite [123]. Let the QoS constraint for the first user (i = 0) at timet = 1 be

denoted asf(x0,0, x0,1, ζ0,1). In the standard form, the constraint is represented as follows

f(x0,0, x0,1, ζ0,1) = −
1

∑

t′=0

r̄0,t′x0,t′ −Q−1
1−ζ0,1

√

√

√

√

1
∑

t′=0

x2
0,t′σ

2
0,t′

(1)

For the ease of representation, letf(x0,0, x0,1, ζ0,1), x0,0, x0,1 andζ0,1 be denoted asF ,

x0, x1 andζ respectively. The Hessian matrixH can then be defined as follows

H = ∇2F =



































∂2F
∂x2

0

∂2F
∂x0∂x1

∂2F
∂x0∂ζ

∂2F
∂x1∂x0

∂2F
∂x2

1

∂2F
∂x1∂ζ

∂2F
∂ζ∂x0

∂2F
∂ζ∂x1

∂2F
∂ζ2



































(2)
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∂2F
∂x2

0

= −Q−1
1−ζσ

2
0,0

x2
1σ

2
0,1

(

√

∑1
t′=0 x

2
t′σ

2
0,t′

)3 (3)

∂2F
∂x2

1

= −Q−1
1−ζσ

2
0,1

x2
0σ

2
0,0

(

√

∑1
t′=0 x

2
t′σ

2
0,t′

)3 (4)

∂2F
∂ζ2

= −
∂2Q−1

1−ζ

∂ζ2

√

√

√

√

1
∑

t′=0

x2
t′σ

2
0,t′

(5)

∂2F
∂x0∂x1

=
∂2F

∂x1∂x0

= Q−1
1−ζσ

2
0,0σ

2
0,1

x0x0,σ
2
0,0σ

2
0,1

(

√

∑1
t′=0 x

2
t′σ

2
0,t′

)3 (6)

∂2F
∂x0∂ζ

=
∂2F
∂ζ∂x0

= −
∂Q−1

1−ζ

∂ζ

x0σ
2
0,0

√

∑1
t′=0 x

2
t′σ

2
0,t′

(7)

∂2F
∂x1∂ζ

=
∂2F
∂ζ∂x1

= −
∂Q−1

1−ζ

∂ζ

x1σ
2
0,1

√

∑1
t′=0 x

2
t′σ

2
0,t′

(8)

The function (F) is convex if the Hessian matrix is positive semidefinite. In particular,

all the principle minors should be positive or zero.

• The value of satisfaction degree of individual chance constraint (i.e.,ζ) should be

less than 0.5 to satisfy the constraint (summation ofζ) for β > 0.5. Accordingly, the

inverse of Q functionQ−1
1−ζ is less than 0. Thus, all the first order principle minors

are positive.

• The first second order principle minor (constructed by deleting the third row and

column) is always positive for all the values ofx0 andx1, σ0,0 andσ0,0. However,

this is not the case for the other second order principle minors whose positiveness

depend on the actual values ofx0 andx1, σ0,0 andσ0,0. For illustration, the value
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of a second order principle (constructed by deleting the second row and column) is

calculated as follows

∆5 =

(

−Q−1
1−ζσ

2
0,0

x2
1σ

2
0,1

(

√

∑1
t′=0 x

2
t′σ

2
0,t′

)3

)

(9)

(

−
∂2Q−1

1−ζ

∂ζ2

√

√

√

√

1
∑

t′=0

x2
t′σ

2
0,t′

)

−
(

−
∂Q−1

1−ζ

∂ζ

x0σ
2
0,0

√

∑1
t′=0 x

2
0,t′σ

2
0,t′

)2

It can be observed that∆5 is only positive for specific values of allocation deci-

sions and the variance. For instance, by assuming the varianceσ0 is greater than the

varianceσ1, the second term will be greater than the first term, and thus∆5 < 0. Ac-

cordingly, the Hessian matrix is neither positive nor negative semidefinite and hence

the problem is non-convex.

Appendix B

All the equations in Eq. 5.14 are linear and thus convex except the second constraint whose

convexity is checked as follows

F (y, β) =
∑

∀t∈T
Q(yi,t)− 1 + β

∇F (y, β) = Q′(yi,t) = − 1√
2π

e
−y2i,t

2 (10)

∇2F (y, β) = Q′′(yi,t) =
1√
2π

yi,te
−y2i,t

2 .

Since we assumeβ ≥ 0.5 for practical QoS levels, the constraint holds iff
∑

∀t∈T Q(yi,t) ≤

0.5. This implies thatQ(yi,t) ≤ 0.5 which occurs whenyi,t ≥ 0. The Hessian matrix is a

diagonal matrix of positive entries that represents its eigenvalues. Accordingly, the Hessian

matrix is positive semidefinite and this proves the convexity of function.


