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Abstract

The promising energy saving and quality of service (QoShgaf Predictive Resource
Allocation (PRA) for video streaming have recently beeromguzed in the wireless net-
work research community. The PRA relies on future channetitimns to strategically
deliver the video content of the mobile users. For instatfeewhole video is pushed to
the users moving towards the cell edge while prebufferirgpsponed for others heading
to the cell center in order to minimize the transmission gneimhe focus of this thesis
is to present a Robust Predictive Resource Allocation (R)FRamework to tackle prac-
tical uncertainties in the predicted information. In esserihe R-PRA adopts stochastic
optimization techniques such as chance-constrained a@odinge programming to model
the uncertainties in the problem constraints and objestidthough deterministic convex
approximations are feasible, guided heuristic algoritlares introduced to provide real-
time allocation. Moreover, Bayesian filtering methods (ek@alman Filter) are adopted
to continuously learn the degree of uncertainty which desee the cost of robustness and
maintains the prediction gains. Different variants for thbust framework are proposed
such as energy-minimization and predictive adaptive stieg under erroneous prediction
of channel rate, user demand and network resources. Thantartnleash various design
challenges for the network operators such as the tradeetffden the complexity of un-

certainty modelling and the prediction gains. All the vatgare evaluated using a standard



compliant simulation environment that comprises a netvgamkulator 3 (ns-3) integrated
with commercial solvers to obtain benchmark solutions. fEsellts demonstrated the abil-
ity of R-PRA to meet the QoS level while maintaining the podidin gains over the op-
portunistic schemes employed in current networks. We &elileat this framework set the
groundwork for future robust predictive content delivemywhich time horizon decisions

are taken under practical uncertainties.
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Chapter 1
Introduction

1.1 Motivation

1.1.1 Evolution of Mobile Video Traffic

Mobile phones and data applications are undergoing a aand&velopment that drives
forces for cellular network expansion. As expected, the memof mobile devices has in-
creased exponentially over the last decade and alreadgsseg the world’s population in
2014 with a total of 7.4 billion devices [11]. Such growth igected to continue in the
next few years reaching 11.6 billion by 2021. In additiore tipsurge in multimedia ser-
vices and social networking applications, among other$caiise an exponential increase
in total wireless data traffic of 49 Exabytes per month in 20PHis will put network op-
erators under huge pressure as they strive to manage usgresmqe with minimal capital
and operational expenditures.

Concurrently, mobile video traffic is experiencing substmrowth as more tham’%
of the global mobile data traffic is expected to be video cointe 2021 [11]. This is at-

tributed to the high bit rates required by video content carag to other data applications.
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Ongoing development of mobile devices, streaming serens &8s YouTube, and adaptive
streaming protocols are supporting the availability aritvdey of video content at different
quality levels that improve the user experience [12, 13]sTdrge volume of traffic, how-
ever, must be delivered to users at a certain quality of serf@oS) level, e.g. maximum
delay and service interruptions, using the available nessu To that end, the cellular
operators focus on Resource Allocation (RA) that providedigent usage of available

network resources such as the licensed spectrum and acmess n

1.1.2 Challenges and Ongoing Efforts

Among the network elements, the Radio Access Network (RAddpants for more than
50% of the network energy consumption [14]. As such, desgmiovel energy-efficient
RAN frameworks is paramount to reducing the network carlwaigrint while satisfying
the increasing Telecom market demands. This includes igabds such as efficient Power
Amplifier (PA) design [15], cell switch off [16, 17], and tfaf-aware scheduling [18],
among others.

A more efficient RAN is also beneficial for operators as it castpone investment in
equipment installations and new spectrum. Thus, in additominimizing the energy-
related operational expenditures (OpEXx), the capital edjperes (CapEx) can also be
reduced since radio equipment installations can make u@% @f CapEx [19]. To ad-
dress these recent developmeatgrgy-efficienRA schemes for wireless video streaming
are gaining momentum. Such schemes are also important timefwireless paradigms
such as Vehicular Ad-hoc Networks (VANETS) in which energyisg remains a chal-
lenge [20, 21].

Another advancement in video streaming protocols is thetadaselection of quality
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(i.e. video definition) [13, 22]. Dynamic Adaptive Streamiover HTTP (DASH) refers to
one type of these protocols which has been standardizeé BGIPP [23]. Each video file
is encoded at multiple bit rates within the server, and tmabkes channel aware quality
selection. This selection is currently user-driven, yet@ases the risk of buffer underrun
and video stops when users greedily request high bitratééseljuire more resources than
the amount calculated by the resource allocator. Henceftd®hards selection becoming
network-centric is getting attention in current reseat@reéby to include the decisions of
radio resource allocator especially in multi-user scersgd24]. In essence, DASH schemes
aim to maximize the Quality of Service (Qo0S) by minimizing thumber and durations of
video stops, and initial buffer delays while maximizing thdeo quality measured by the
bitrate [13].

These stringent requirements on energy consumption anch@essitate novel design
of RA schemes to optimally calculate the resources andtsilewideo quality. The pre-
dictability of user’s behaviour and mobility, and wireletgnnels enabled a new paradigm
referred to as Predictive Resource Allocation (PRA) [29-B@tensive network measure-
ments demonstrated the predictability of users’ behawpuo 93 % [31], including human
mobility and activity [32]. Meanwhile, the radio signalefigth and available bandwidth
are found to follow repetitive spatio-temporal pattern3435]. The availability of naviga-
tion systems (e.g. Global Positioning System (GPS)) atectiuser devices has enabled
mobile operators to correlate the radio measurementsdleagnel rates) with geographical
locations, and constructs the Radio Environment Map (RE).[

PRA that exploits these patterns of signal strength and litoprediction over a time
horizon has recently been recognized as a promising apgptoamprove video streaming

QoS [26,37,38], and minimize transmission energy [25,9]/,[&d essence, the PRA avoids
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allocating resources to users during poor radio condifithred consume more airtime per
byte, while maximizes the allocation during peak condgidoy leveraging the content
availability and prebuffering capabilities at the BasetiSta(BS) and user devices. To de-
rive performance gains over non-predictive schemes, the [R&ature [25-29] assumed
perfect prediction of future information. However, reabnd uncertainty should be taken
into consideration to support the implementation of PRArexctice. Prediction techniques
typically rely on real-time channel measurements charaet@ by spatio-temporal varia-
tions [33]. This is in addition to adopting low-cost and Ipawer filters at user devices
which decreases the prediction accuracy over the time droriNevertheless, dynamics
in the environment will result in changes of user behaviowbility and demands which
make perfect prediction infeasible. All these sources @eutainties prompt a change in
the PRA design to achieverabustsolution that guarantees QoS satisfaction and maintains

the reported prediction gains.

1.2 Objective and Thesis Contribution

In this thesis, we address the problem of imperfect preshstiand handle the resultant
uncertainties to limit their impact on the PRA performancehe main focus is on the

following research questions:

What is the impact of information uncertainties on the prediction gains?
How to develop a robust-PRA scheme to model and handle these uncertainties?
What is the cost of robustness?

The first question aims to quantify and analyze the impachotttainties on the user

satisfaction and prediction gains while adopting existfRA under typical error models.
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The second question is related to introducing a novel PRAgddkat isrobustto errors
in the predicted information. Finally, the third questioflwassess whether the reported
performance gains in the PRA literature are still attaiaddyl therobustforms. We believe
this work provides a practical direction towards the depgient of deployable PRAs in
future generation networks.

We summarize the contributions of this thesis, to tackleti®/e questions, as follows:

e We propose, for the first time in literature,RobustPredictive Resource Alloca-
tion (R-PRA) framework that handles prediction unceriamver a time horizon
throughprobabilisticmodelling,stochastioptimization Bayesiariearning, and guided

heuristic search. The framework comprises the followingrstages:

— Modelling the future information as random variables inesrtb capture the
impact of prediction errors. This is unlike the existing PRpproaches that
adopts the average values of predicted information and-éghieir variations

and uncertainties.

— We adoptstochastimptimization techniques such as Chance Constrained Pro-
gramming (CCP) and Recourse Programming (RP) to limit thgreseof vi-
olation in QoS constraints and minimize the expected losseiwork gains,
respectively. Such probabilistic modelling allows theniework to strike a bal-
ance between providing high network gains when predictewasaccurate, and
minimizing the risks associated with erroneous predididaring periods of
uncertainty. Unlike traditionalobustoptimization, new models are proposed
here to capture the interdependency between the time dtioies and guar-

antegjoint QoS satisfaction over the time horizon.
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— The main challenges in such probabilistic model is the |dakom-closed form
solution. A deterministic equivalent formulation is thiene derived using
the statistics of predicted information such as variana Rrobability Den-
sity Function (PDF). Thus, a tractable solution can be olethiand solved by

commercial solvers.

— Although the statistics of random variables can be caledlatff-line, radio
measurement studies reveal that the degree of predityalaties significantly
with geographical location and time of day [33]. Therefaxanechanism to
track the uncertainty level in predicted information is propo$&da practical
solution. This is as opposed to thchastiditerature in which the uncertainty
level was constant and thus provided suboptimal or nonstodbecisions when

the degree of predictability varies over time.

— We propose a low-complexity guided heuristic search allgorito obtain real-
time solutions for the deterministic equivalent formuwati Although the for-
mulated model is convex and can be optimized by commerdiass) real-time
solutions are not attainable by conventional numericahods whose complex-

ity increases with the time horizon length and number ofsiser

e We propose four variants of the R-PRA framework for videeatning under differ-

ent network objectives and sources of uncertainties sumathas follows:

— Energy-efficiency under Gaussian uncertainty We introduce a novel model
for video streaming QoS over a time horizon that accountarigertainty in the
predicted user rates. Herein, the objective is to minimiZecBergy consump-

tion while guaranteeing a long-term QoS. As recent practod theoretical
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findings indicate that the variations in predicted rateslimmodeled as multi-
variate Gaussian random numbers [34], we employ probabillsint Chance
Constrained Programming (JCCP) to formulate the problerthemaatically.
We then show that the resultant formulation is non-convek @oply propor-
tional risk allocation for joint chance constraints. Thelgem is decomposed
into two convex sub-problems, where the first stage optisntheindividual
risk levels at each time slot, which are subsequently usebdgecond stage to
solve the robust RA problem. By applying such@n-uniformrisk allocation,
we generalize the solution to achieve less conservateesergy-efficient) and
more practical QoS aware RA decisions. We develop an effibencomplex-
ity guided search heuristic that guarantees the satiefactijoint QoS levels.
Due to the inconsistency in the rate variance over time acatilon, we adopt
Kalman Filter (KF) to accurately track such variations,\ypding an additional
degree of robustness to the statistical parameters. With aframework, QoS
guarantees can be ensured during high variance while emg@rggnization is

achieved during low varying cases.

— Energy-efficiency under Generic uncertainty Unlike the first variant, this
one provides a solution that is not dependent on a partiemtar Probability
Density Function (PDF) in order to save the cost of error node We adopt
the Bernstein Approximation (BA) which only requires erbmunds to satisfy
the QoS constraint. Under such uncertainty model, we alswodstrate how
a Particle Filter (PF) can be adopted to effectively achieechannel track-
ing functionality, and adapt the BA rate bounds. Finally, pvesent a guided

heuristic algorithm based on local search to provide atiead-solution for the
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BA formulation.

— Energy-efficiency under Demand and Resource uncertaintyWhile the first
two variants tackle errors in predicted rate, we capture hercertainties in
both the demand and radio resources. The model relies oruRecBrogram-
ming (RP) to consider the risk of wasting resources due tosuseminating
the video session before watching the prebuffered con8hup]. Similarly,
a CCP is adopted to control the QoS degradations under Esofluctuations
due to the random arrival of real-time traffic. The deterstici equivalent is
derived using the PDF of video watching durations to qugriidth the possi-
bility of energy-saving and the risk of wasting resourcesnifarly, the PDF
of users arrival and their traffic load are used to obtain ardanistic form for
the CCP model. The proposed guided heuristic algorithnwalline network
to prebuffer future demands with high likelihood of watdirand delay the
delivery of upcoming uncertain content, while accountiogthe fluctuations
in the network resources. In addition, the trade-off betwaergy-savings and
the risk of QoS violation during resources uncertainty igelted and ensures

that the QoS degradations does not surpass predefinedrieév€R.

— Qo0S-Aware DASH under Rate Uncertainty Unlike the previous variants that
solve only for resources at a fixed quality, to save energgwnlbad scenario,
this last approach seeks joint optimization of radio resesitand video quality
selection to maintain prediction gains in high load scesgariThe main objec-
tive is to achievdong-termquality fairness among users over the time horizon
while avoiding the video stops due to buffer underrun. Umnliiton-predictive

counterparts, the proposed approach allows the netwonetmffer upcoming
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video content in high quality to users with poor future ratBse deterministic
equivalent of CCP is based on Scenario Approximation (SA&j) #uopts the
discrete PDF of predicted rates. As the decision is taken @wene horizon
and for both resources and quality, conventional SA resnlts combinato-
rial complexity. As such, we introduce a linear approxiroatio aggregate the
dependency between the time horizon constraints whichcesdthe formula-
tion to a polynomial model. While SA provides benchmark sohs for the
robust approach, mobile operators strive to minimize tlieriebf obtaining
the discrete PDF. Hence, we propose a second deterministielrbased on
Gaussian Approximation (GA) that only require the variaaod the inverse
Cumulative Density Function (CDF) of predicted rate. Wegsopose a low-
complexity guided heuristic search algorithm to obtairl-teme solutions for

the deterministic GA formulation.

¢ We evaluate the performance of all proposed variants taashléhe impact of uncer-
tainties and robustness on the reported prediction gaihe.eValuation framework

iS summarized as:

— We modify the scheduling module in a Long Term Evolution (I Efandard
compliant network simulator (ns-3) and integrate it withioml solvers such
as MATLAB and Gurobi to evaluate the proposed algorithms state of the

art solutions.

— Typical error models, reported in the literature based omasueement cam-
paigns, are adopted by the simulator to perform sensitaniglysis and assess

the performance gains.
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— New performance metrics are defined to quantify and modelrttue-off be-
tween the network and QoS gains. In particuzost of Robustnegsprediction
gains optimality gaps and complexity, among others, are exasmdlsuch met-
rics that help operators in measuring the rewards of Robesli€ive Resource

Allocation (R-PRA).

1.3 Organization of Thesis

The thesis is organized as follows:

In Chapter 2, we provide a background on PRA and review the sfathe art. In
addition, we discuss the sources of prediction unceresmihich were overlooked in PRA
literature and review the resulting limitations.

In Chapter 3, a background on bd®@obust optimizatioanduncertainty trackingech-
niques is provided. The focus is &ochastioptimization and the deterministic equivalent
forms. In addition, Bayesian inference techniques useligthesis will be also reviewed.

In Chapter 4, our gener&obustPRA framework is proposed and the main building
blocks are summarized. This is in addition to the system inaaid a Monte-Carlo frame-
work for estimating the statistics of prediction errors.

In Chapter 5, Chapter 6 and Chapter 7 we propose the diffeegrants of the robust
framework. Each variant contains a problem descriptiostesy model, mathematical for-
mulation, heuristic search, and simulation results.

Finally, in Chapter 8, we summarize and conclude the thesid,highlight the main
findings of this work. Future directions are then recommertdesupport the momentum

of implementing the PRA in next generation wireless network
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Chapter 2

Existing Predictive Resource Allocation

(PRA)

2.1 Conceptual Overview

Today’s wireless networks adopt opportunistic resourtecation schemes based on re-
ported measurements from the user devices [41-43]. Thenehaanditions at each user
device are reported periodically in the form of Channel @udhdicator (CQI) which
guides the network to select the appropriate Modulation@oding Scheme (MCS). For
instance, users experiencing poor channel conditionslave Signal to Interference plus
Noise Ratio (SINR), due to low signal strength or high irdezhce will report low CQI
values. As a consequence, the network will select a low dwig® that is robust to such
low SINR values and thus user can receive and decode hisntaatta target Bit Error
Rate (BER) value. Although such adaptive transmissionigesvoptimal utilization of
radio resources, it poses new challenges to network opsnattle designing the strategy

of opportunistic resource allocation. Each user expeegmifferent radio conditions and
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served by an MCS that differs from other users. Thus, optigizetwork resources such as
minimizing energy consumption or maximizing bandwidtHimétion while achieving fair
QoS among users is not attainable by existing opportunmssicurce allocation schemes.
Achieving fair QoS would typically result in allocating meresources to users with poor
conditions (i.e. low MCS), yet this increases the energysaamption and minimizes the
bandwidth utilization. Future wireless networks as sucbuthemploy a new paradigm
that handles the conflict between network objectives and i@q&irements.
Predictiveresource allocation (PRA) has recently been recognizedpasmising ap-
proach to improve the resource utilization for video contilivery [25-27,37,38,44,45].
This is accomplished by leveraging the knowledge of ther&utink capacity users are
expected to experience, and then performmgy-termpredictive RA plans over several
seconds. By doing so, BSs can prioritize users heading togh@mnel conditions (i.e. low
MCS), or delay transmission until a user reaches betteneia@onditions (i.e. high MCS).
Prioritizing users allows the BS to prebuffer the futuretem and thus maintains the tar-
get QoS, while delaying the transmission results in optibp@eldwidth utilization. Stored
video content such as YouTube and Netflix is well suited farthsapproaches as it can
be strategically prebuffered and cached locally at the teal@vice. In-network caching

enables the content availability at the BS under user nmplp6-50].

2.2 Mobility and Channel Prediction

Radio signal measurement studies indicate that cellulavork users moving along the
same path will typically experience similar signal stréngariations as reported in [33,
44]. The PRA relies on long-term prediction of future chdrsmnditions over a duration

that extends to some tens of seconds and may be minutes. tlpathad, user locations
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Figure 2.1: Illustrative example for the a) regression anldtation based predictions [10]

significantly change the channel conditions which remoeedbrrelation between future
and past signal samples. This makes traditional regressgthods [51], Fig. 2.1 (a),
unsuitable for PRA, as such the location based predictidfign2.1 (b) is typically used
[10]. This technigue relies on the user’s future locatiombitity and motion behaviour
for modelling the upcoming large scale shadowing. This Eththe estimation of radio
conditions in urban, suburban or rural areas which are cheniaed with time disjointed
measurements and high user mobility as illustrated in Fig. 2
The Radio Environment Map (REM) has been introduced as a lmaiding block of

the location based channel prediction. In essence, REM adabdse that stores the users’
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reported channel measurements at different locationsiné¢twork. These measurements
will be used afterwards to retrieve either the received paweate values at given loca-
tion. The REM was firstly developed in cognitive radio netksto store medium access
information and statistics of users to control the spectnsage [52]. In cellular networks,
the REM is also exploited to detect coverage holes [53] amdtcoct automatic neighbour
relations [54] without the need of manual drive test. The REfequently updated by the
users’ measurement reports according to the 3GPP DriveMiiaghization Standard [55]

which enables autonomous construction of REM and its agipdic in PRA.

REM Construction

The REM construction undergoes two main stages: user toctastimation and RAN

measurement collection [36].

e User location estimation

Current 3GPP LTE standard adopts the Evolved Serving Mdlmteation Centre
(E-SMLC) to localize the user device upon request from RAB][5The E-SMLC
calculates the position using one or a combination of thdaa localization sys-

tems at the user device.

In [56], cellular network positioning was adopted based Drobserved time differ-
ence (OTDs) between consecutive messages at the BSs , azldtRjertime differ-

ence (RTD) between BSs. The scheme has four main inputs: d9ur@ment report
message (MRM) that contains channel measurements (emgl pigwer) along with
time stamp, 2) cell configuration which comprises the baatost physical param-
eters (e.g. location), 3) Round trip time (RTT) and 4) Elevadata and thus only

2-D positioning is done using RTT or the difference betwdenttigger and arrival
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of the MRM. The RTD is then calculated based on both the OTI2ived at two
BSs and the propagation delays. The resulted position ibdufiltered using KF
to remove incorrect positions relative to the average gedesor vehicular speed.
The filter prevents a sudden increase or decrease in thetyedmd thus eliminates

disruptions in the estimated user location over short timerval.

Other approaches used satellite signal to calculate magrae user locations by
leveraging the GPS in today’s user devices [36, 55]. Moreave GPS can be
also integrated with other localization systems that haraplimentary features to
improve the positioning accuracy. Integration can takeela a loosely coupled
form [57, 58] in which two positions are obtained, one fromSz&hd another from
LTE reference positioning signal, and then aggregatededioal position. Aggrega-
tion is done by weighting both positions based on the tressrof each localization
system. Another example of the tight integration is thesaiediGPS (A-GPS) which
is currently implemented in user devices. In particulag, dievice can communicate
with the cellular network to acquire the available sateilitftormation at the BS. This
speeds up the satellite signal acquisition at the mobiledethus saves energy and

decreases latency.

¢ RAN measurement collection

Network information such as load and interference betweterent BSs are col-
lected and stored in the REM. Such measurements are useddie @nd update
the REM in one of two ways: Pixel Update or Propagation Modgtifmg. In the

former, the REM is represented as a geographical area,edivitto square grids,
and the reported user device measurements are mapped tedtesingrid. In the

second type, the reported measurements are used to tunectededmpirical path
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loss model. Tuning is done periodically through calculgtorrection variables that
minimize the difference between the measurements and tdelrhased values. The
tuned model can then be used to estimate the received podeéntanference in all

the geographical locations.

Mobility Prediction

After constructing the REM, the network will predict the du¢ user locations based on
both current user location, velocity and routine.

The user mobility behaviour is classified into two types: macopic and microscopic.
The former includes the daily activities such as going framk to office or from desk to
a meeting room. In the microscopic behaviour, the motioessricted to certain locations
such as the office locations or corridors, in case of indoodeadined routes in case of
outdoor or road network [59]. Moreover, the human velocsthighly predictable either
as a pedestrian or a driver. The velocity is probably 2 m/aénformer case, while in the
second case it depends on the road information. Such mdabow a pattern that can be
used to estimate the future mobility traces.

The vehicle trajectory can be mainly predicted using infation about: vehicle, envi-
ronment and driver [60]. The vehicle’s velocity, accelemaand angular speed can be used
for providing a short term prediction of user’s location. tha other hand, the environment

information can provide a longer term prediction for therisseeajectory.

REM Based Channel Prediction

After calculating the anticipated user locations, the esponding future channel rates can

be retrieved from the REM either directly or through geotregl/spatial interpolation
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techniques. These techniques are fitting methods used tpletara 2-D surface by in-
terpolating the missing points using the stored valueserREM. Different interpolation
functions are used to model the relation between the poongpdsing the same curve.
Surveys on different methods, their accuracy and complecan be found in [61, 62].
One possible classification is in [63] which proposes thnéerpolation categories: Local
Neighbourhood, Geostatistical, and Variational.

In the first category, the interpolated data is a weighted stuithe surrounding neigh-
bourhood measurements. Among its types are: Inverse Restdeighted, Natural Neigh-
bour Interpolation [64] and Triangular Irregular Netwo]. Inverse Distance Weighted
assumes that near points are more correlated than the far éceordingly, the location
with missing measurements is predicted (interpolated)wasighted sum of the surround-
ing measured points, each one is weighted by the inverse distance. In Triangulated
Irregular Network, triangles are formed such that the circinlce of each triangle should
contain a maximum of one measurement point. The three esrtitthe same triangle are
chosen such that the smallest angle in all triangles is mago66]. The geostatistical
interpolation technique is based on the channel statigtmismodel the randomness and
uncertainties in the measurements. The most commonly kmoethod is called Krig-
ing [66, 67] that guarantees the minimum mean square erroe riiethod constructs an
empirical semivariogram that uses the semivariance toctetftee spatial correlation be-
tween the different points. A theoretical semivariograndelde.g. exponential, Gaussian
or spherical) is then selected to approximate the empirncadliel using appropriate fit-
ting technique such as least square method [68]. The vametinterpolation introduces a
smooth small varying function called Splin. The most weiblvn technique of this class is

the Thin Plate Splin (TPS) which uses a radial basis funaterired at every measurement
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and the point to be predicted [67].

2.3 PRA Schemes and Potential Gains

Under perfect knowledge of the future network conditions. (error-free REM), the PRA
techniques in [25-29, 38] demonstrated how the total BSggnesn be significantly re-
duced, compared to opportunistic allocation, without aunyds underrun at the user device.
In [26,69], the PRA achieved long-term QoS fairness ovetithe horizon resulting in uni-
form user experience. Moreover, the PRA was extendderedictive DASH (P-DASH)

in order to jointly select the video quality and resourcegotied to users over the time
horizon. Thus, maximizes the total quality for each usermduthe streaming session and

minimizes the total BS energy [28].

2.3.1 Energy Savings

The first gain achieved by PRA is the minimization of total rggyeconsumed by both the
BS and user device in transmitting and receiving the videderd, respectively. The PRA
work in [25, 27,29, 37, 38] has focused on energy minimizatinder QoS constraints. In
particular, the QoS level is said to be satisfied when theossiplayed back without stops.
Quantitatively, this is achieved when total amount of davdred to the user at a certain
time slot is not less than theumulativedemanded data at a fixed streaming rate to avoid
buffer underrun. In order to achieve energy savings, tred tottime allocated to the users
over the time horizon has to be minimized.
When the user experiences poor radio conditions, e.g. heasdll edge, the BS will

adopt low order MCS. This results in low transmission ratg¢ tonsumes more resources
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per bit and increases the energy consumption. As such, thenfiRdevote the bare min-
imum amount of resources to the user such that the video duefseeze. The BS can
go into sleep mode, to minimize energy, or allocate the remgiamount of resources to
other users. On the contrary, the BS waits until this useshes his peak radio conditions,
e.g. near the cell center, to leverage the high order MCS. aflatned peak transmission
rates motivate the BS to allocate large amount of resourcgexploit the storage capabil-
ities in user devices by transmitting large portion of théea. Thus the whole video can
be delivered before the user experiences poor conditiotiseiiuture. The BS can also
go into sleep mode while the user plays back the prebuffepaeteat in the future. Such
strategy allows the PRA to transmit the video content witileresources compared to the
traditional opportunistic RA technique. The latter oveite the future radio conditions and
thus neither delays prebuffering, for cell edge user, narpizes users at the cell center
experiencing peak radio conditions.

An example of such an energy-efficient PRA is illustratedion B.2(a). In that exam-
ple, the user started moving from the cell edge at t = O expeirg the lowest channel
rate as shown in Fig. 2.2(b). This user is also expected toenmwards the cell center
reaching the peak channel rate at t = 40. With these futues iatmind, the PRA will
strategically serve the user with the minimum airtime toebasatisfy his demand. This
allocation will guarantee an optimal balance between QdiSfaetion and energy con-
sumption. Allocating less airtime will result in video s&pvhile more airtime increases
the energy consumption. The PRA adopts this strategy etiiser reaches the peak chan-
nel conditions at t =40 where the video is prebuffered by mézing airtime allocated to
that user. The main aim of this greedy allocation is to doadlthe whole video before

the user leaves the cell center and reaches the poor radditioos again at t > 50. As
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Figure 2.2: lllustration of PRA for energy saving under QagSsfaction

opposed to PRA, opportunistic (Non-PRA) that is unawareheffuture peak rates will
greedily allocate the whole airtime to the user at the eamte tslots (near t = 0) resulting

in more energy consumption.

2.3.2 Long-Term QoS Fairness

The second gain achievable by PRA is the long-term fairnaissifleo streaming users.
While energy-saving can be attained during low load scesafair Q0S among users can
be accomplished during high load scenarios. This inclutiegegjic allocation of video
freezes [26, 69] and selection of video quality over a timezom [37, 70].

Similar to the energy saving PRA techniques, the predidaweresource allocation
was introduced in [26, 69] in which the future rates are ex@tbto prioritize users. In
particular, the predictive proportional fair (PPF) schiedun [26] considers distributing
all the available resources (i.e. airtime) among the usexsgstional to their anticipated
channel rates. Thus, a user experiencing his peak rates avidgriowards location with

poor radio conditions shall be prioritized. More resouraes allocated to that user to
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prebuffer a large amount of video which can be watched duutgre poor conditions.
Avoiding allocation during poor conditions will save resoes that can be utilized by other
users. In particular, lower priority is assigned to usersated in bad radio conditions
(might experience video stops), yet will be prioritizedelatvhen they reach their peak
radio conditions.

Such allocation is similar to the opportunistic non-pré&se proportional fair sched-
uler. However, the gain of PPF is emphasized when users aexiercing similar data
rates at the same time but their future rates are differeémisTusers with low rates in the
future will have a higher priority than the other users witghhrates, although both are
currently experiencing the same peak rates. As a resuitnaptesource utilization and
fairness are achieved by the PPF compared to the non-prvedscheme. Moreover, other
objective functions that consider fairness such as max-nin fair and Jain’s index [69]

can still be applied to achieve similar gains as the abovetioeed PPF.

2.3.3 Maximizing DASH Quality

Dynamic Adaptive Streaming over HTTP (DASH) was essentiallroduced to improve
the user experience and resource utilization under wgalbannel fluctuations [12]. The
video file is split and delivered in the form of small segmenteere the quality of each
segment is adapted proportionally to the user’s channdlition. In particular, low-quality
segments are selected when the user is experiencing lomehates (e.g. user at the cell
edge) in order to avoid video freezes. On the contrary, ljghlity segments are delivered
when peak channel rates are observed (e.g. user at the et c® exploit the available
radio resources and improve the user’s experience.

The original DASH protocol relies on user device, aware dilable video bitrates,
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and the channel conditions to select the segment qualityemeest it from the streaming
server. Such user-centric approach, however, is unawdne odtal network load and other
users demands which are considered by the resource allocCEterefore, a user might
select a high-quality level, due to the measured high cHaate, although the network
resource allocator will not necessarily devote the wholaraesources to that user in
the next time slot. Such limited resources, selected byuresoallocator, might not be
sufficient to deliver the high-quality segment, requestgthle user, and thus increases the
risk of video freeze [24].

Research efforts are currently concerned with shiftingDA&H from a user-centric
decision to a network driven decision in order to bridge thp between the decisions of
individual users and the resource allocator [71]. To thal &me network jointly optimizes
the segments qualities and the resource sharing amongehe Ushus, avoids the greedy
quality selection by the users when they overestimate thigadole radio resources. Differ-
ent implementations of network-centric DASH, with minincalanges to the current user-
centric strategy, were proposed in [24,71]. At the BS, tleduece allocator overwrites
the user’s requested quality before forwarding it to thevese[71]. Recent BS storage
capability provides another implementation flexibility @k the video is locally cached
with different quality representations, and the segmergsant at the resource allocator’s
quality.

Conventional network-centric DASH [72—-74] adopts recdrarmel measurements, re-
ported by the user’s device, to opportunistically optimize network resources (e.g. re-
source utilization) and QoS (e.g. quality and interrupgjorEach user reports the current
channel conditions to the network which in turn calculatethlihe segment’s quality and

the amount of resource share for each user at a certain tohel$lese reactive decisions
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only achieve local optimal network performance without @u@rantees due to overlook-
ing the users’ future radio condition®redictiveDASH (P-DASH) [25, 26, 28, 44, 70],
oppositely, relies on future radio conditions to derivegdaarm policy while allocating the
current resources. For example, two users at the cell c@rgergood radio conditions),
one is heading towards the cell edge while the other will 83ajonger time. As the former
experiences poor radio conditions in the future, the resoalocator must prioritize this
user by allocating more resources during peak radio camditi Long-term fairness with
regards to quality and stalls can be achieved by either fiexing the future content or
increasing the current video quality. This strategy alltivesuser to stream the prebuffered
high quality content during poor radio conditions resugtin higher fairness. On the con-
trary, users in poor conditions and moving towards high okarates will be allocated a

small amount of resources until reaching their peak coorati

2.4 Sources and Limitations of Prediction Uncertainty

In wireless medium, channel rates and network resourcesiaahe perfectly predicted
and thus typically modelled as random variables. SimiJardgrs demands are subjected to
variations according to the user experience and behawaodrtype of content. Although
users future locations can be accurately predicted by agdhmositioning techniques [75—
79], other sources of uncertainties such as users skippagitleo session and arrival of
real-time traffic are envisioned in future networks irredpe of mobility. Existing PRA
strategies in [25-27, 37, 38] modelled each of these unoastenponents by the expected
(average) value to obtain a deterministic formulation. Idwer, this approach results in
non-robustand suboptimal allocations when network conditions deviiatm the expected

value. Despite these reported gains in the literature, ethewing practical challenges
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related to prediction uncertainty must be addressed:

e Channel Rate Fluctuations: The first parameter used in PRA is the future channel
rate of mobile users based on their trajectory. In practb@nnel predictions are
typically associated with uncertainties due to the low-po¥ilters used in the mo-
bile devices [34] and the random behaviour of the receivgdadilevel as shown in
Fig. 2.2(b). Deterministic decisions by existing PRA [2B}80 not guarantee QoS
satisfaction when predicted future rates fall below theeexgd values. In this case,
the minimal airtime fraction allocated to the cell edge aseill not be sufficient
to meet their demand and buffer underrun occurs causing\atidls as depicted in
Fig. 2.2(a). In addition, when peak rates exhibit lower ealthan expected, energy
savings will be suboptimal as the large allocated airtimiédeliver a small amount

of video content.

e Demand Uncertainty: The user demand is represented by both the streaming bi-
trate (i.e. video quality) and the watching duration. Useae frequently change
the quality of video, skip some frames or terminate the sassithout watching the
entire video [40]. Fig. 2.3(a) depicts an example of energgtage under the PRA
literature, which assumed perfect prediction of streandingation, however the user
terminates the session at t=5. The risk of wasting resoumncesases as PRA maxi-
mizes prebuffering for users at the cell center (i.e. exgp@ing peak rates). Existing
robust non-PRA techniques [80, 81] decide when to be prebtifie video at the
current slot, to save the tail energy, or postpone the dglividhe PRA, however, re-
quires further efforts to consider the trade-off over thegtihorizon since postponing

full video delivery requires more resources to transmitrémaaining content during
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Figure 2.3: lllustration of high energy consumption and @e§radations

future poor channel conditions. The impact of demand uausst is thus more se-
vere in case of PRA, to strike a balance between both the figlasting resources
if the prebuffered content is skipped and the likelihood oérgy consumption if

prebuffering is delayed till poor conditions.

e Radio Resources Variation: The stochastic arrival of users with stringent service
delay requirements, such as voice calls, will decreasedtad available resources
for streaming users. Such random arrival will increase igleaf violating QoS re-
quirements of video users at poor conditions who are akamtatsmall portion of
the available resources. Fig. 2.3(b) depicts this scendniere the network follows
a minimal allocation strategy for a cell-edge user to mizerthe energy consump-
tion. The risk of violating the demand, when the user doesex#ive the minimum
amount of data, has to be modelled by the R-PRA. Thus, mirath@atation can be
only followed during resources stability while an opporsiit risk-aware strategy is

adopted in uncertain conditions.
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RobustPRA frameworks are therefore paramount to unleash the géipsedictions
under real-life constraints. This involves 1) modeling thte, resources and demand un-
certainty, 2) developing models to provide probabilist@eSuarantees, and 3) efficiently
tracking the prediction uncertainty in real-time. Intdgrg these functionalities should
enable PRAs to strike a balance between providing netwarlsgaich as energy savings
when predictions are accurate, and minimizing the riske@ated with erroneous predic-

tions during periods of uncertainty.
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Chapter 3

Stochastic Optimization and

Uncertainty Tracking

In this chapter, we provide a background on the robust opéitian techniques that will be
used in our R-PRA framework. Robust optimization refers tass of decision making
problems in which input information are erroneous. In essga certain level of constraint
satisfaction has to be met by the decision maker while sglaiproblem accommodating
uncertain information. Mathematically, the coefficiente&ldounds of objective function
and constraints are modelled as uncertain variables rdthriconstants in the determinis-

tic optimization problems.

3.1 Robust Optimization

Robusmnon-predictive RA techniques have been discussed in graiitre in the context of
handling both uncertainties and delays in the user reponessurements [43,82,83]. Two

fundamental optimization techniques namEglyzzyand Stochasticare used to provide a
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robust formulation of the RA problem. In the former, the vagypredicted information is
represented as fuzzy numbers associated by a memberstifui84]. On the other hand,
Stochastioptimization represents the uncertain values as randoiables characterized
by their probability density functions [85]. Commonly, #eetwo techniques provide a
closed form representation of the robust formulation refto asleterministic equivalent
or robust counterpart Although theFuzzyresults in a deterministic form that does not
change the order of complexity of the original non-robustrfolation [84], an unsustain-
able conservatism is attained, resulting in suboptimal Réiglons [85, 86]. Conservatism
means over-satisfying the constraints at the expense aflijeetive function optimality.
Stochasti@ptimization, which is less conservative, was thus extatgiadopted in non-
predictive RA schemes. The main drawback compared to fugpyoach is the increased
complexity. Hence we adopt the stochastic optimizatiorvtodithe effect of conservatism
on resource allocation and prediction gains, while the derity is handled through con-
vex decompositions or linear approximations, and supddsyeguided heuristic search to

obtain real-time solutions.

3.2 Stochastic Optimization

Stochastioptimization utilizes two main techniques: Chance Coirséeh Programming
(CCP) and Recourse Programming (RP) to handle the undgrtaiconstraints and objec-

tive functions coefficients, respectively [85].
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3.2.1 Recourse Programming
Two-Stage Recourse Programming

In Recourse Programming (RP), resource allocator takes sotions as a first stage, after
that a random event is observed and impacts the optimalitiyeofirst-stage decision. A

recourse decision is thus needed in the second stage to neatps for any suboptimal

effects experienced by the network as a result of the fiegjesdecision [85]. The RP

model consists of both first-stage decision variables andurse decision variables (i.e.
second-stage variables).

A standard formulation of stochastic two-stage RP is dediets:

X,y
vteT

minimize{ > (F(x,) + E[H(ye,m)]) } (3.2)

wherekE is the expectation with respect to the random vegttinat represents uncertain
resources or demands.andy are vectors of the first and second stage decision variables,
respectively.H (.) is the recourse function that calculates the second-stagma after the

random component is unveiled.

Deterministic Equivalent

The first approach to obtain a closed form solution for EqiSthe continuous PDF where
integration is adopted to calculate the expectation opemater the probability space. Al-
though the model size remains the same (i.e. no extra vasapé defined), non-linearities
are introduced which increases the computational effane itegration of PDF in some
cases is very challenging which make this approach intoéetaAnother approach is the
SA in which the event space is considered to be discrete. Tdie ahallenge of such an

approach is the additional decision variables in the prablelanning over a time horizon
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will make such an approach more difficult as a tree of eventsaated from the discrete
variables of each time slot. As the PDF integration is vealleimging, in the first approach,
while the problem size increases exponentially with thesarching and simulation based

methods can be applied such as Sample Average Approxim@&hoh) [87].

3.2.2 Chance Constraint Programming

CCP was initially introduced in [88] to handle uncertaistend randomness in the con-

straints, and used in one of the two forms described below.

Individual Chance Constraint Programming (ICCP)

The individual chance constraint can be formulated as:

Pr{F(zy,n) > D> 5, VteT, (3.2)

wherez; is the resource allocation variable at time glaindr, denotes the random infor-
mation (e.g. channel rate). The functiéiiz,, n;) models the relation between, »n, and

the demand), for each time slot in the time horizori7. The above formulation guaran-
tees that the allocation at each time slot satisfies the sporeding demand with at least
probability 5. This represents the QoS level, where a higher value resdt®cating more

resources (e.g., more energy consumption) to ensure desasisthction. The above form
of CCP has been applied in several applications of non-ptigdiresource allocation such
as OFDM scheduling [89, 90], channel assignment [91], angepassignment in wireless

networks [92].
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Joint Chance Constraint Programming (JCCP)

The aforementioned form of chance constraints can onlyagiee the QoS satisfaction
level during each time slot, and does not model the satisfaciver thetime horizon In
particular, allocating less resources in one time slot sesiult in the demand violation of
both the current and the future instances. Thus, satisf§#@f the demand of one time
slot will not guarantee the same satisfaction degree in ¢tmeirtg time slot, since each
time slot does not account for the partial satisfaction efgheceding slot demands. This
is because the demand across the time slots is cumulativallacdtion should be able to
recover from outages in the previous slots. To avoid theggapon of such outages, allo-
cation of all the time slots in the horizon should be jointhynsidered. This is typically done
using Joint Chance Constrained Programming (JCCP) [93ka&pcessed mathematically

as follows

JCCP has been successfully adopted in the literature te solnerous networking prob-
lems where the decision made on one constraint affects tisfagtion of the others.
Among these, application to routing and bandwidth assignnsediscussed in [94], and
uplink resource allocation in OFDM networks in [95] where tQ0S satisfaction of one
user might affect the others. In such models, the chancdreams are found to be inde-
pendent and their joint probability is simply the producttleéir individual probabilities.
However, such an independence is not applicable in PRA #ir@ogonstraints are no longer
independent due to the cumulative demand at each time slot.

Due to the difficulty of obtaining the pairs of joint probabés, Boole’s inequality [96]
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can be used to bound this joint probability. However, apmysuch a bound is very con-
servative and can result in suboptimal allocations thagriwtate the network optimization
objective. Therefore, the individual probabilities of Ramonstraint should be optimized
to result in less conservative solutions. Example of apgibnis that apply time dependent
JCCP are model predictive control [97, 98] and the unit com@nt in power generation
systems [99, 100] in which the demand is cumulative amondithe slots and therefore
joint satisfaction is needed. Individual probabilitiesaifance constraints can be either
determined optimally if the RA problem with unknown indivial probabilities remains
affine or convex, as in [101]. Otherwise, both individual pmbilities and RA decisions
are jointly determined using simulation based or iterasigarch techniques as in [99]. In
summary, the joint chance constraint solves for two degisiectors: 1) the individual
probabilities of each time slot QoS constraint, and 2) tlsouece allocation among the
users. The former is subjected to Boole’s inequality while fatter is subjected to user
QoS satisfaction at each time slot in order to satisfy thealv@®oS level over the time

horizon.

Deterministic Equivalent

The common challenge in both types of CCP is that the problees shot have a closed
form solution Eq. 3.2 or Eq. 3.3. As such, the problem is eiwved using simulation
based approaches or analytical methods. In the former tgadizations of the random
component are generated [85] and allocation is decidedtishs@' percentile of the
scenarios [89]. On the other hand, analytical methods cefitae chance constraints either
with its CDF, PDF or Moment Generating Function (MGF) [89].9These methods are

found to provide better accuracy [102] when the CDF is inlségf unimodal and results in
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affine or convex optimization.

We focus on analytical methods in which a deterministic e@jent form is derived to
obtain a closed form RA formulation, and provide a solutiomgal-time. Such determin-
istic form should handle three main challenges: consemwatsafety and complexity. The
first ensures that the constraints should not be over sdtifiavoid suboptimal network
gains. The second challenge, safety, refers to the abflitgmping the maximum violation
probability by a certain degree denoted by= 1 — 5. With regards to complexity, the
robustness typically converts the linear RA formulatiomtoon-linear or a discrete form.
Hence, only convex continuous or linear formulations stidnd considered to obtain opti-
mal robust solutions.

To derive the CCP deterministic form, robust stochastickwdilizes different tech-
niques such as Scenario Approximation (SA), Gaussian Apmation (GA), Bernstein
Approximation (BA) and Markov inequality [43, 103], amonthers. The GA assumes
that all the random variables, in the formulation, follow@mal distribution. Their sum-
mation results in a multivariate random variable whose nagmihcovariance is a function of
the statistical parameters of each single random varidllis.derives a Second order Cone
Programming (SoCP) formulation which also incorporatesierse of the Gaussian Cu-
mulative Density Function (CDF) and the QoS degradatioellev= 1 — 5. Similarly,
the BA adopts the MGF to develop a SoCP deterministic fornh dindy depends on the
support of random variables and the QoS degradation tealvell. TheMarkovinequal-
ity [83] on the other hand provides a linear empirical appration. However, the optimal
coefficients for such approximation are not easily attdmahbd do not model the trade-off
between optimality and degree of constraint satisfacfidre SA utilizes the discrete PDF

of the random variables to create a scenario tree usingattdmbinations. The allocator
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has to ensure that the calculated resources satisfy tharszemwith total probability more
thang.

In general, the GA and BA deterministic forms will have a legbomplexity order than
the non-robust form. For instance, the BA will transformreear CCP into a SoCP which
increases the computational burden [104]; due to the tilpioaed convex optimization
techniques such as Interior Point Method (IPM) [105, 106je Tobust non-predictive RA
in [83] adopted the Markov inequality to approximate the GQ@Gihg a linear formulation.
Previous approaches in [43] and [82] tackled the complefityoth GA and BA’s SoCP by
adopting either the first or the infinite order norms to obtairar low-complexity deter-
ministic forms for uplink non-predictive RA. However, batbrms resulted in conservative
solutions that are acceptable only for single time slotca@tmns (i.e. non predictive RA)

to maximize the bandwidth efficiency.

3.3 Uncertainty Tracking

Both the feasibility and optimality of the obtained resauadlocation solution are highly
sensitive to the parameters of random variables such amneari Applying the determinis-
tic equivalent form with low error variance resultsinsafesolution that does not guarantee
the constraint satisfaction since less resources will lneated to the user (e.g. when the
channel rate falls below the average value). On the othedt,h#sing a large variance re-
sults in a conservative solution that allocates too mangwees especially in relatively
high data rate time slots. Due to the fluctuation of prediceoror variance with the user
location and time of the day as reported in [33], a fixed vanéapecomes suboptimal. We
therefore propose to adaptively track the variance basdti@nser’'s previous measure-

ments. The tracking procedure is implemented using Baydssged inference such as
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Kalman Filter (KF) and Particle Filter (PF).

3.3.1 Kalman Filter

Kalman Filter (KF) is known to be the optimal linear estimaito the mean square error
sense in case of Gaussian noise. In essence, KF is composea sthges as summarized
below [107]:

Prediction Phase:
X = o7 (3.4)

P =P D, + Q. (3.5)

Measurement Phase:

K, =P, H,(HP H, +R)". (3.6)
Xt+ = Xt_ + Ict(Zt - HtXt_)‘ (37)
P =P, — KHP; . (3.8)

where X, and X" are the priori and posterior state vectors respectivBly.andP," are
the priori and posterior state estimation covariance egrrespectivelyd and® are the
observation (design) and state transition matrices réispdc while K is the KF gain.Q
andR are the process and the measurement noise covarianceaaagspectively.

The Kalman filter performs state vector estimation using peases: Prediction and
Measurement. In first phase, the predicted state v&Juées calculated using the previously

estimated valueX,” | in time slott — 1 as indicated in Eq. 3.4. In the measurement phase,
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the new state is calculated using a weighted differencedsstvihe observed measurements
z; and the predicted state Eq. 3.7. This weighting is done usaigan gainC; calculated
in Eq. 3.6, that is dependent on both the measurement noiaei@oceR and the predicted

state estimation covarian& in Eq. 3.6.

3.3.2 Patrticle Filter

The Particle Filter (PF) is typically adopted when the systeise is non-Gaussian. Ini-
tially, the PF generates a set of values (i.e., particlepviing a proposed distribution
and assigns them equal weights. These weights are then based on the reported user
measurements according to a predefined likelihood functiriinal estimate of the PF
state is a weighted sum of the particles’ values. The measnts represent the reported
deviation between the predicted and the measured chanes! ra
p(yi+1|Z;) denotes the unknown posterior distribution of the statéabée y given a

set of previous measurements/observatignat timet. This probability distribution is

calculated based on a Bayesian method called Chapman-i§olmodefined as [108]

p(Yi1lZs) = /p(yt+1|yt)p(yt\Zt)dyt (3.9)

wherep(y;11|y:) is used to calculate the evolution of stagtever the time horizon, while
p(y:|Z;) is an initial estimate of the posteriori probability at therent time slot and cal-
culated as follows using Bayes' rule

p(Zt|?/t)p(?/t‘Zt71)

) = 3.10
p(yt| t> fp(ZtJrl|?/t+1)p(?/t+1‘Zt)d?/t ( )

wherep(Z,|y,) represents the likelihood probability of receiving measoents ag/; while
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assuming statg,. The denominator in Eq. 3.10 ensures that the estimateénmstPDF
will sum up to 1 over the time horizon.
The best estimate of the stajein the mean square error sense is denoteg;l@nd

calculated as

Yr = /ytp(yt|Zt)dyt (3.11)

In order to provide a tractable solution for the above equati different techniques can be

applied such aSequential Importance Sampling (St&hnique [109].
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Chapter 4

Problem Statement and Proposed

Robust-PRA Framework

In this chapter, we introduce the preliminaries, systemehadd the main building blocks

of the proposedobustPredictive Resource Allocation (R-PRA) framework.

4.1 Preliminaries

We use the following notational conventions throughoutttiesis: A denotes a set and
its cardinality is denoted byX. Matrices are denoted with subscripts, exg.= (z.; :

a € Z,,b € Z,). 7 represents a random variable (r.v.) and its expectatiormigd
by E[-]. Pr <ﬂsi) and Pr (Usi) denote the joint and disjoint probabilities of all events
in setS. Thgsgradient andvilessian of functi6f) are denoted byWf(-) and V2f(-) in
order. 7 represents a random variable, whose probability densitgtion follows normal
distribution, while its cumulative density function is t@efunction denoted a§. Then!”

percentile of a zero mean and unit variance normal randoiablaris denoted by); ", .
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Thelog(-) denotes the natural logarithmic function ahglis an indicator function which

equals 1 ify is satisfied and O otherwise.

4.2 System Model

Each BS serves an active user et where the user index is denoted by= M. At
every time slot, each mobile user requests video segment with a streanteg;jathat

corresponds to a certain quality level.
4.2.1 Resource Allocation Model

Radio Resources

The active users can share the BS resources (airtime fnagtad each time slat The
resource allocation matrix = (z;; € [0,1] : i € M, t € T) gives the fraction of time slot

t during which BS’s bandwidth is assigned to user

Video Quality Selection

Each video segment can be transmitted and streamed byygleakl ¢ € (), where( is
the set of possible segment qualities. The binary decisaimiablengflt) is equal tol if the
video segment transmitted to ugeat time slott is encoded in quality, and0 otherwise.

Each segment consistsqf bytes of data, which depends on the selected quality tevel
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4.2.2 Future Information
Predicted Channel Rate and Radio Resources

We assume that user’s mobility trace is known for the fiégeconds, called the prediction
window 7', and at a per second granularity whére= {1,2,---  T'}. Future rate predic-
tion is obtained by mapping the user’s trace to the REM abhglat the service provider.

The REM contains the average rate for usat time slott and denoted as , [110].

Predicted Demand

The average demand of ugeat time slott is denoted by, ; which corresponds to the data
content played back with fixed quality during the time sloheTcumulative user demand
at each time slot is denoted Wy, , = Zﬁ,zl v; . Although current streaming standards
are user driven, the network can access the file between #neand streaming server to

overwrite the video quality selected by the user device{24,

4.2.3 Prediction Uncertainty

At each time slot, the resources are shared among both #enstrg users (considered
by the R-PRA) and other real-time users. The traffic of theetas modeled using their
arrival rate and demanded resources. Accordingly, we mibdelincertainty associated
with network resources as the total load of users requestialgtime service. This load
depends on both the per user demand and the total numberrsfwisese probability is

calculated using the PDF of users arrival denoted®y Similarly, the channel rates are
subjected to uncertainties and thus modelled as randorablasi that can take a value
according to the available MCSs at the BS, and the PDF of rardtes, denoted bi~.

Herein, we assume that the demand is uncertain as the usteroanate the video at
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any time slot. Accordingly, the per slot demand is modeled esndom variable; ; that
is equal to O (user terminated the video)gr (user streaming the video). The probability
of terminating the video at each time slot will be determibgdhe PDF of the watching

time denoted by?". Thus, the cumulative demand is also denoted as a randoabiari

N .
Diy = y_o Ui

4.3 Problem Statement

The problem is to solve the resource allocation matrix (z;;) and select the quality
matrix x = nﬁ?t) to achieve a certain network metric such as minimizing gnergfair
allocation of quality among the user. The QoS is said to hefsat when the cumulative
data allocated to the usé; ; = th x; ;e 1S NOt less than the cumulative demahy, at
each time slot. Both matrices ta:rz:' calculated under the uncertainty ohadle predicted
information, future rate, demand and radio resources. FR&R variants in Chapter 5 and
Chapter 6 solve only for the resource allocation matrix agsuming a predefined quality

level that minimizes energy consumption. This is unlike ESH variant in Chapter 7

that solves for both decision variables to achieve fair Qu8rag the users.

4.4 Framework Overview

The proposed R-PRA framework aims to provide a real-timeptda robust predictive

allocation, and consists of four main blocks (see Fig. 4.1):
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Figure 4.1: Schematic Diagram of Proposed R-PRA Framework

4.4.1 Stochastic Formulation

The first block provides a mathematical representation cwmimg of the resource alloca-
tion variables (i.e. airtime fractions and quality) and thaure information represented
as random variables to account for the prediction uncdytain essence, the formulation
should model the trade-off between the network gains (engrgy) and the user satisfac-
tion, which is governed by the QoS leveél The network resources and QoS constraints
appear in a probabilistic form, i.e. CCP, and are boundedrbggdined violation levels.
The network gains are typically captured by objective fiorcwhose optimality can be
impacted by the prediction uncertainties. Thus, RP will beduin this block to maintain
the prediction gains over the time horizon. This first bloghi¢ally consists of two types
of input: the predicted information and the QoS lewelThe former represents the future
channel rates, capacity (i.e. radio resources) and denadrtie video streaming users.

The user’'s QoS satisfaction level is representedbyver the considered time horizon.
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The operator has the flexibility to assign different QoS leve the users reflecting their
priorities in the network. Moreover, this value can be clehgver the time horizon to
strike a balance between network objectives (i.e. premhiggains) and the degree of user
satisfaction. The variants in Chapter 5 and Chapter 7 addaheCCP to satisfy the QoS
constraint at a certain probabilistic level under uncertdiannel rates. In Chapter 6, both
CCP and RP are adopted to handle uncertainties in netwarkiness and users demands,

respectively.

4.4.2 Deterministic Equivalent

In the second block, the formulated probabilistic modetasisformed into a deterministic
representation using the properties of random variableagture uncertainties in predicted
information (i.e. rate, resources and demand). In padicthese variations can be rep-
resented by the random variables properties such as PDppdupe. limits) and the
variance. Such properties are typically obtained eith@mfextensive measurements or
using Monte-Carlo simulations while adopting typical asigal error models. The main
challenge in such module is how to choose the best approximtitat handles the trade-
off between conservatism, safety and complexity, as hagidid in Chapter 3, and the error
modelling cost which depends on the type of random varialbifes example, using the
exact PDF will have a higher modelling cost than adopting/ adhé variance. Another
challenge is to specify the properties of random variabEom@ing to spatio-temporal
changes and environments. For instance, a user movingamanteas can suffer from rate
variations characterized by larger error variance contb&weanother user in rural area.
Similarly, the variance in both channel rate and networkacép during rush hours (e.g.

afternoon) is very high compared to the evening of the sam¢3#.
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Moreover, this module has to consider the joint uncertamtif predicted information
over consecutive time slots. In particular, errors in bb#hmobility trace and variations in
the wireless channel have to be jointly considered whileefod the uncertainness in the
future rates. Handling these challenges will allow the fesmrk to obtain a closed form
model that can be solved by the optimizer in the next stagesatisfies the QoS level.

The proposed two variants in Chapter 5 adopted GA and BA taiolat deterministic
equivalent in the case of normally distributed or unknowroemodel, respectively. In
Chapter 6, SA is used due to the small dimension of the netwesturce constraint. In
Chapter 7, both linearized SA and GA are proposed to obtaiosad form representation
with non-polynomial complexity. Different conclusions each equivalent form are drawn

in the variants as their performance vary with the netwojkectives and type of constraint.

4.4.3 Real-time Optimizer

Although the deterministic form is convex, optimal gradisearch methods cannot be
adopted due to their high complexity. This module impleraemiow complexity local
search guided algorithm that starts by satisfying the caims and then moves on for
optimizing the objective. The outcome is a real-time solugprovided to schedulers and
channel assignment modules in the access network.

In particular, the optimizer solves for the airtime fractscand video quality, and some-
times also solves for the QoS level. The main challenge obghtenizer is to obtain such
optimal solutions in real-time (e.g. within 1 ms, which i€ tbcheduling interval) that are
also scalable with the system load and length of predictiordow. Thus, this module
will adopt guided heuristic algorithms that exploit the lplem structure to generate feasi-

ble solutions and further enhance them to reach near-optahses within the scheduling
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interval. A near-optimal solution refers to an allocatie@ction whose objective function
value is close to the value obtained by commercial solveiniieva feasible solution is the
one that satisfies all the constraints. Moreover, this dgémhas to be adapted according
to the considered constraints and the objective with astadaiformance for different QoS
levels, statistical parameters and problem dimensions.

All the R-PRA variants in the next chapters will develop alpeon specific guided
heuristic technique that initially satisfies the QoS camists and then sequentially im-
proves the value of objective function without changing shésfaction of resource con-

straints.

4.4.4 Channel Tracking

The optimality of the robust deterministic form depends ¢peat extent on on the accuracy
of rate deviations which differ with time and location [33This module uses Bayesian
inference techniques to track the degree of uncertaintyadagt the statistical parameters
such as variances based on the reported user measurem#raatvprior knowledge of
the channel statistics. In addition, it also allows coopesauncertainty tracking among
users and thus provides real-time updates for new arriveggsuto the network. The two
variants in Chapter 5 adopt KF and PF to track the degree @rtainty in predicted rates

under Gaussian and generic error models, respectively.

4.5 Monte Carlo Framework for Statistical Parameters Estination

The optimality of resultant allocation depends on the aaieucalculation of random vari-
able parameters. In this section we show one variant ofmétérg the statistical measures

of the rate (i.e., variancg/ ,> and maximum deviatiofy ;). Lower values ob7,” or 7;, than
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the actual measurements will result in low level of robussnehich increases the risk of
violating the QoS constraint, and the converse is true. Toess this, off-line Monte Carlo
simulations are adopted prior to solving the RA problem. $hmsulation generates all
the possible channel rates and adds random errors to themildbothe rate distribution

function.

Different values of the signal to interference plus nois®rgSINR) are generated. For
each value, the corresponding rate is calculated and diaste Concurrently,V random
samples are generated and added to the current SINR, ngsalgrroneous SINR denoted
asSINR,.. Then,N rates are constructed fro8Y N R, and denoted a&.. These rates
are used to construct the probability distributibiof rate k. The simulation continues to
generate a new value of SINR and repeats the above procegtiirthea maximum rate is
generated. Finally, the bounds of each distribution andvéit@nce are calculated while
consideringR to be the mean value. It is worth noting that the SINR is mappeithe

corresponding CQI level using formulas in [111]. The latsehen converted to the channel

7
SINR SINR-CQI [cQl | CQl-Rate | R | Statistical [ 07
Mapping Mapping Calculation —[R,R,]
T
BER
i
. SINR-cQl [€Qle | CQI-Rate | R
Mapping Mapping
2 !
“LSINR Error BW
Aeor Generation

Figure 4.2: Block diagram for generating statistical pagters of the predicted rates using
offline Monte-Carlo simulations
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rate using the bandwidth (BW) and bit error rate (BER) valesording to [112], and the
generated error follows the 3GPP correlated fading moddl1if]. All the above steps are
summarized in Fig. 4.2. The main advantage of performingatim/e estimation off-line
is to generate large samples of both the SINR and the addddmavariables. This results

in accurate statistical estimation of the parameters uséteirobust PRA.
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Chapter 5

Green Robust-PRA under Rate

Uncertainty

In this chapter we propose the design details of two variahtse Robust Predictive Re-
source Allocation (R-PRA) framework. Both variants tackieergy savings under rate
uncertainty. In particular, the only source of uncertaiigtyassumed to be the channel
rate, which impacts the QoS constraint satisfaction ansl @hance Constrained Program-
ming (CCP) is adopted. The schemes solve only for the radmuree sharing (i.e. airtime
fractions) at a predefined video quality level. The gendmdlbdiagram of the two schemes
is depicted in Fig. 5.1. The only main difference betweentitt@®schemes is the assump-
tion of the rate error model. In the first scheme, we assumesstau distribution which
will be handled by GA based deterministic equivalent andoésl&F for tracking the error
variance. For generic or unknown rate error models, thersesoheme is proposed and
adopts BA which only requires the error bounds providinglatgmn at less modelling cost.
The first section provides the system model, the two scheneegraposed in the second

and third sections, while the last section is devoted faruision and comparison between
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QoS level Demand Error
Model
Future ®)
Channel Rate [
(R) | Airtime Fractions (X) |
Stochastic Formulation Video Quality (V)
= Chance-Constraint Deterministic S ]
uture ¥ Programming > Equivalent [ ~ca-ume
Demand (D) ] Optimizer User
R Formulation
ecourse Device
Programming
Future Network | | T
Resources (C) | |
Resource Error Rate Error Model Channel Tracking
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Figure 5.1: Block diagram of energy-saving R-PRA schemeeurate uncertainty

both GA and BA in the light of energy-saving problem at hand.

5.1 System Model

5.1.1 Predicted Mobility and Demand

In both variants, we assume that the users’ mobility is knéwrihe coming T time slots

and the average rate is predicted and denoterd pfor each usef at time slott. At each

time slot, the demand of the user is assumed to be fixed ata@rcstteaming rate which

requires a specific amount of bits per second, denoted hyhat achieves a compromise

between energy minimization and user satisfaction.
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5.1.2 BS Energy Model

Studies on BS energy consumption and sleeping strategied 12, 114], reveal that the
energy consumptiof’ is approximately linearly proportional to the airtime ftian of the
BS [27,115]. This is commonly referred to as time duty-aygliln essencey = P x AT
where P is the total transmitted power by the BS aAd’ is the time during which the
BS was switched ON. The dominant part of the power is thastratted over the wireless
channel, which is largely constant as downlink power cdigroot employed in the current
3GPP standards [112,116,117]. Accordingly, the energguwamption can be expressed in
terms of the airtime\7" to avoid dependencies on the constant power fraction thiadsva
with BS type [115]. Therefore, as in [27, 38], we minimize #@ergy consumption by

minimizing the total time air fractions, ; allocated to all the users.

5.1.3 QoS Satisfaction

To achieve energy savings under QoS satisfaction, the BSldlise the minimum re-
sources needed to guarantee the video delivery at the @sgeguality over a time hori-
zon. Existing energy-efficient RA approaches reveal thaylphck interruptions, due to
buffer underrun, are among the primary sources of userttifsetion with video delivery
services [25,118-120]. In essence, video freezing occhenvhe allocated airtime up to
time slott results in delivering a total amount of video less than threeesponding cumu-
lative streaming demand. This demand is denote®as= 3;,_, v;». The number of
video stops can therefore provide a sound QoS metric wherelngdRA to optimize the

trade-off between energy-minimization and QoS satisfacti
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5.2 Robust Model for Gaussian Uncertainty

5.2.1 Rate Uncertainty Model

In this first variant, we adopt the Gaussian distributiooemodel for the predicted rate in-
troduced in [103], and used in recent robust non-PRA worR&].1In particular, predicting

the future rates using autoregressive filters, resultedGawassian distributed error model
compared to the actual set of collected data as reported asumement campaigns [103].
This is supported by the same distribution attained whilehapg the 3GPP correlated
shadowing on the average value of predicted rates [113Judimmdel, the rate is predicted
at a 1 s granularity, which is generally deduced from a largalver of samples due to the
small feedback interval (1 ms) of the users participatinghannel prediction [112]. Such
a scenario supports the Central limit theorem (CLT) whighrapimates the PDF of users’
predicted rate as a Gaussian distribution [121]. Nevesiglresultant formulations are

applicable for other error models with closed form and ititaée CDF*!

5.2.2 Problem Formulation

We first model the robust PRA framework for video streaminggigraditionalindivid-
ual chance constraints which is found to be a convex optimingti@blem. Thereafter,
the problem is extended to the non-conyeit chance constraint model to enable QoS
satisfaction of the cumulative demand over the time horizimprovide a tractable solu-
tion, the problem is then decomposed into two convex stdgescan be optimally solved

individually.

1t has to be noted that the total probability of negativeiradions for the normally distributed random
rate has a non-significant value (). This is attributed to the high average rate values thantagi a positive
distribution under typical variances in the 3GPP modelsstaddards [112,113,122].
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Individual Chance Constraint Programming

The robust energy-efficient form is attained by represgntife QoS constraint with the
individual chance constraint, where predicted rates grkaced by random variables, and

a probabilistic constraint is developed as follows
T M

minimize ) ") ", (5.1)
t=1 i=1

t
subjectto: C1: Pr {Z Fipip > Di,f} >B.Vie M, teT,

t'=0

M
C2: ) i, <LVteT,

=1
C3: 2, >0 VieM,teT.
Herein, the predicted data ratg, is modeled as a random variable following a normal
distribution:7;  ~N(7; ¢, aﬁt), andg € [0, 1] is the QoS satisfaction level.
Accordingly, the summation of the normally distributed dam data rates in C1 of
Eq. 5.1 is a multivariate normal distribution whose mearhis summation of means of
all single random variables, which we denote;as The corresponding variance is the

covariance matrix denoted kY, and can be evaluated as follows

t
n = Zﬂ"t’ Y= Ui2,1 5 (52)
t'=0

Whereamh = E[(ﬁ’t — 772'775)(&7]1 — f,‘yh)] andO'Zt = Gi7t7h,vt = h.
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The deterministic closed form of Eq. 5.1 can be expressatyube multivariate ran-
dom variables and normal cumulative distribution functsshown below.
t _
Di,t - Ztlzo Tiv Tt
t t 2
\/Zt’:o > h=0 Ly v Tit! h

) >pNVie M teT, (5.3)

t t t
Zfi,t’wi,t/ + le Z Z xit,ai,t/,h ZDi,ta Vie M,t c 7-
t'=0

t'=0 h=0

The independence between the realizations of random peedibannel rate at each time

slot implies thatr; ,» ;, = 0,Vt' # h. Accordingly, the chance constraint is represented as

follows
t t
Zlfi,t’xi,t/ + le int,ait, 2 DLtVZ € M,t € 7- (54)
t'=0 t'=0

The above constraint representation is a second order cogeaognming (SOCP) model
which is convex [123] for3 > 0.5 and results in a negative value for the inverse of the
Q-function. Finally, the deterministic closed form of Eql ®ising individual chance con-
straint with the preceding assumptions can be summarizedbe

T M
minimize SN i (5.5)

t=1 =1

t t
subjectto: C1: Zﬁ-,ﬂxi’t/ +Q5" Z%%t/o'?,ﬂ > Dy, Vie M,teT,

t'=0 t'=0

M
C2: > wy <LVteT,

=1

C3: ZEi,tZO ViGM,tGT.

As mentioned in Chapter 3, this type of chance constraimhfdation ensures that the
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QoS is satisfied at each time slot at a certain lgvdHowever, it does not model the joint
satisfaction for each user over the time horizon in whichgéeslot demand satisfaction
is dependent on the total data delivered in the preceding 8hots. In order to avoid

future buffer starvation, the allocation in each time slodd compensate the unsatisfied

previous demands. This is why the joint chance constraimtehis needed.

Joint Chance Constraint Programming

The joint chance constraint form for the QoS constraint caedpressed as follows

t

Pr{ (D Fipaiv > DM} > B,Yie M. (5.6)
vteT t'=0

We denote the event of individual QoS satisfaction gy 2 {Zﬁ,zo TipTipy > Dm}.

Similarly, the event of individual QoS dissatisfaction endted bysS;,;. The probability of

joint satisfaction of evens, , is represented as the complement of disjoint probability of

the dissatisfaction event as in Eq. 5.7
Pr{ﬂ Si,t}:1—Pr{U S;t},VieM. (5.7)
vteT vteT

According to Boole’s inequality, the disjoint probabiliy tightly bounded from above by

the total probability of all individual events [96] as folis

vteT

Pr{ U S;t} <> Pr{s;} Viem. (5.8)
vteT
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The joint probability of the QoS satisfaction event is tliere bounded as below

Pr{ N sz,t} >1- Y Pr{s,} . VieM,

vteT VteT
Pr{ N Sz,t} >B,VieM, (5.9)
vteT

> Pr{s;} <1-8VieM.

vteT

The above equation implies that the joint probability iadegd if the summation of
individual probabilities of the compliment event is keptdve the probability of QoS dis-

satisfaction (i.e.] — ). Accordingly, the joint chance constraintin Eq. 5.6 camdygaced

by the two constraints in Eq. 5.10 and Eq. 5.11

t
Pr {Z fi,t/xi,t/ < Di,t} < Ci,t,VZ. c M,t eT. (510)
t'=0
Y Gu<1-BVie M. (5.11)
vteT

whereg, , is denoted as the probability for not satisfying the indiatiQoS constraint (i.e.,
Pr{S¢,}) and is called the probability afsk [97].

Each probabilistic constraint in Eq. 5.10 will have the sate&erministic equivalent
form as the individual chance constraint but withreplaced by, ;. After incorporating
Eq. 5.10 and Eqg. 5.11, this JCCP formulation becomes a fumofiboth variables¢; , and
x;, as summarized below

T M

minxi,rcnize SN iy (5.12)

t=1 i=1
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t t
subjectto: Cl: » 7paiw + Qrle (| > 22,02, > Dy Vi€ Mt €T,

t'=0 t'=0

M
C2: ) z; <LVLET,

i=1

C3: ZEZ‘JgZO ViGM,tGT,

Ca: ) (u<1-BVieM

vteT

Indeed the above formulation is no longer convex and thusofitenal solution can
not be guaranteed by traditional optimization techniguegroof of its non-convexity is
provided in Appendix A. Therefore, to provide a tractableigon, the above formulation
is split into two stagesRisk Allocationand Robust PRAThe first stage determines the
optimal values for each risk level (i.e., solves tQf), while the second stage solves the
PRA problem given the calculated QoS satisfaction levelserprior stage (i.e., solves for
Tit)

Stage A: Risk Allocation

In this stage, the value of risk probabilities for each caaist is determined such that
Boole’s inequality Eq. 5.11 is satisfied to guarantee thetjprobability satisfaction of
Eqg. 5.6. Aninitial feasible solution is to uniformly didtrite the probability of riskl(— 5)
over all the time horizon. In other words, assign an equklpisbability; , among all the
time slots of each user as below

Git = #, Vi e M. (5.13)
However, such equal risk allocation was proven to be vergepmtive [97] and results in

suboptimal resource allocation that compromises the greagngs of the PRA obtained
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in the second stage. Hence, optimal risk allocation is add consider the optimality of
the second stage in addition to the Boole’s inequality canmstC4 in Eq. 5.12.

Note that lower risk probability; ; results in higher airtime; , and thatz; ; is inversely
proportional to its corresponding average rgteas depicted in Eq. 5.5. Therefore, the risk
of each time slot is allocated proportionally to the cormesting average rate , in order
to minimize the energy consumption during the resourcecation stage. In other words,
time slots with low average data rate will suffer from higintiene for QoS satisfaction.
Thus, assigning low risk probability to these slots willuksn additional airtime. To that
end, the following risk allocation optimization is introckd in Eqg. 5.14 to achieve the

optimality of the second stage as well

minimize > ()" y;; Vie M, (5.14)

y

subjectto: »  Q(yi) <1-B,Vie M.

vieT

where:y;; = Q) 1t to represent the constraint in a differentiable fofin= max; 7;, andn

is the risk proportionality parameter whose value is pesitiThe value of. captures the
trade-off between the risk of not satisfying the QoS at aaterime slot and the energy
savings. For very small values af the risk is fairly distributed among the time slots
and the user will not suffer from successive video degradati On the other hand, more
energy savings are obtained when the value micreases since high risk is allowed at low
data rate values. The mobile operator then may tubased on the maximum allowable
consecutive degradation, or the desired energy savingsafdve problem is convex given
that 5 > 0.5, which is valid for practical considerations. A proof of ghtonvexity is

provided in Appendix B.
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Stage B: Robust PRA

After solving the first stage in Eq. 5.14, and determiningribk probabilities(; ; for
each constraint, the problemin Eq. 5.12 can be solved wittanstraint C4. The resulting
formulation preserves the form of SoCP, which is still congtae to the positiveness of the

calculated risk probabilities.

5.2.3 Gradient Based and Guided Heuristic Solution Methods

After decomposing the joint chance constraint programmmi@two convex optimization

stages, the solution methods for each stage are introdnc¢htsisection.

Risk Allocation Solution

The constrained proportional risk allocation in Eq. 5.14a$ved by calculating the La-
grange formulation and then using Newton’s method to sefmcthe saddle points that

satisfy the Karush—Kuhn—Tucker (KKT) optimality condit®as follows

LN = () =M X Qi) - (1-0)  VieM, (5.15)

vteT

where) > 0 is the Lagrange multiplier associated with the constrairiq. 5.14.

Since the above problem is optimized for each user sepgratel performed only
once at the beginning of the time horizon, optimal path deagcmethods provide ac-
ceptable performance. We therefore apply Newton’s mets@lienmarized in Algorithm
1. The algorithm starts with the uniform risk allocation ahén iteratively searches for
the saddle points along the gradient while the step size ideduby the Hessian ma-
trix. The calculated step valuAL contains the change in both the decision vegtor

and the Lagrange multipliex which are denoted ady; and A\, respectively. In each
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iteration, both decision vectors are updated using theutatkd step, and the algorithm

stops when the iterations no longer result in a significamaanement, denoted by

Algorithm 1: Newton’s Method for Proportional Risk Allocation
Input : Time Horizon:7;, Average Predicted Rates;

QoS Level:s and Risk Proportionality Factof:

Output S Vi

1

Initialization : : ¢;, = %2, y,, = Q1. Vt € T, A = Ao, e = 0.001, Ay; = Ay, and

L= [yz )\]T
1 while Ay; > edo
8£(y7 t )\) i \n 1 _yl'?,t
2 — = (— A—— ;
0Yi.t (Fi,t) + vV 27T€ ’
8’C(yi,tv )‘) .
3 O\ - _<2Vt’e7' Q(?Ji,t) - (1- 5))'
2
O2L(yie,\) _ 1 Vit
4 73@%5 = —)\ﬁyi,te 2,
2L (yi £\ 1 v
5 S (yz,ty ) — 6T,
yi,ta>\ 2

6 | Construct:VL(y;, \) andV2L(y;, \);
7 | Calculate(V2L(y;, \)) 7

8 | AL=—(V2L(y;,\) 'VL(yi, \);

o | L=L+AL;

10 | Ay;=AL(1:T);

11 | AAN=ALT+1);

12 v = yi + Ay,

13 A=A+ AN\

14 end

15 returny;
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Robust Real-time optimizer

The calculated risk probabilities for each user at everetsiot are now readily available
to the robust PRA stage from the risk allocation solution.e Dibjective of this stage is
to solve for the airtime allocation formulated in Eq. 5.12heTsolution of this stage is
much more complex compared to the risk allocation since tierairtime is determined
jointly for all the users over the total time horizon. Basextloe users’ feedback, this stage
is recomputed every seconds according to the received amount of data. To adthess
resulting impractical complexity, a guided heuristic isaintroduced to provide a real-time
resource allocation solution, while the derivative basadilame search methods are used to
provide benchmark solutions.

The formulation in Eq. 5.12 is a SoCP, thus convex and coatia(123]. Its optimal
solution can be obtained using Interior Point Method (IPM)5] which is efficiently im-
plemented in many commercial solvers such as Gurobi [124jpatticular, IPM searches
within the set of feasible solutions for the optimal valueandnthe latter is recognized due
to its zero (or very small) duality gap. Although the IPM wasyed to reach the opti-
mality conditions in fixed number of iterations [106], thengalexity per iteration hinders
real-time solutions and still depends on the number of camgs. As seen from Eqg. 5.12,
the dimension of constraints increases with both the nurobeisers M and the length
of the time horizon T. In addition, the resource limitatianstraint (C3) might cause the
dissatisfaction of the QoS constraint (C2) especially albualues ofe. In this case, the
QoS constraint has to be relaxed which requires extra catipos. Our framework hence
relies on a suboptimal heuristic algorithm to provide a-teak solution, while optimal
techniques (e.g. IPM) are used for benchmarking only.

The introduced guided heuristic search algorithm exptbggproblem’s features rather
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than the direct gradient based iterative search. The #hgofirst calculates the minimum
allocation for the users to ensure constraint satisfagtien satisfy C1 in Eq. 5.12) given
the calculated risk probabilities and the requested demadndase of radio resource limit
violations (i.e., C2in EqQ. 5.12), airtime reallocation skus is done by granting the excess
user requirement in other time slots. In order to achieveggnminimization, users are
allocated the residual airtime when they reach the peakageerate location. Residual
airtime is the remaining airtime after satisfying the Qo8staaints (first step) for all users.
The heuristic is summarized in Algorithm 2

Minimal airtime allocation: To ensure the satisfaction of QoS constraint, C1 in Eq. 5.12
is turned to equality in the quadratic form* + bz + ¢ = 0 and solved using Eq. 5.16

(Lines 4-11) of Algorithm 2. This is achieved as follows

—b;p + bzt/ —4a;pcip

: (5.16)

Tip =
2a,»7t/
Where: a;y =77 — (Yip0iy)®
Wiy = Ty YirTiv ),
_ -2
iy = —2Ki,t/7“i,t/>
_ 2 2
Cip = Ki,t/ — (yiwLip)?,

t'—1

Kipy =Dy — in,r/f@‘,ﬂ,
h=0
t'—1
Li,t/ - Z x?,tlf’?,tl’
h=0
Allocation Repair: The total allocated airtime to all users in each time slotisuated
and the radio resource limitation constraint, C2 in Eq. bi¢Zhecked. In case of any
violations, the excess airtime is allocated in other tinzesslith unused resources. Par-

ticularly, the heuristic compensates (recovers) any tiloetse T with a total allocated
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Algorithm 2: Guided Heuristic Robust Green Allocation

© 00 N o a A~ W N P

=
o

11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28

Input : Users: M, Time Horizon:7;, Mean of Predicted Rate®, Rate

Variancesy:, Risk Levels:Y and DemandD

Output : X
Initialization : = = (), tf-p) = argmax R, },Vi € M

teT
/* time slot with maximum average rate (cell center) */;
forall the ¢t € 7 do
=0 [* total airtime fraction allocated in time slot*/ ;
forall the i € M do
if t < ¢ then
Calculater;, using Eq. 5.16 /* minimal airtime allocation*/ ;
e =T+ Ty,
end
else
M := M \ i /* remove user from minimal allocation after reaching cell
center*/ ;
end
end
if 7, > 1then
i*) .= argmaxx,,}, /*choose the user with maximum airtime violating the
ieEM
constraint*/ ;
oz« = T, + x4+, — 1 [*violating airtime excess fraction*/ ;
forn:=t—1to0do
if 7, + 0z, < 1 then
Tix n 1= T + 0x;+ . [FRepair the solution*/ ;
Tp i=Tp + 0% ¢ ;
Tt = 1 ;
end
end
end
end

forall the i € M do

| AllocatePeaks(r;, t¥) ;
end

returnX ;
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airtime fractions (i.e.7; = Y _,; #;Vt) more than the slot duration (1 sec.) which occurs
due to 1) an increased number of users, 2) high traffic perars&) high QoS levelf).

The heuristic solves this case by iteratively picking therusith the maximum airtime
fraction in this time slot and prebuffering his video cortanadvance to ensure airtime
minimization under demand satisfaction (Lines 12-21) igagklthm 2.

Peak Average Rate Allocation:The above allocation strategy guarantees the satisfaction
of both QoS and resource constraints. Thus, it continudabtbatpeak data rate time slot

is reached. The allocation strategy is then changed (Lin¢éd2dllocate the demand of the
future time slots in advance, to minimize the airtime. Tlokdiws the following steps for

each usef
e Calculate the residual demand for ugeiD; » = D; 7 — > —¢ Dis

e Repeat the allocation strategy in step 1 until either thal tetsidual demand is allo-

cated or the peak rate time slot is full.

¢ In case of remaining demand while the peak rate time slotlig koaded, the sec-
ond peak average rate with remaining airtime is selectedttaam@bove procedure

continues.

¢ In each iteration, the residual demand is decremented; byx (7; v — yiv0oiv),
which is a conservative method since it assumes the worstad@anel capacity of

the current rate.
e The algorithm terminates when all users received theit tietaand denoted &, ;.

Both the feasibility and optimality of the obtained resaumlocation solution are

highly sensitive to the variance®. Applying the second stage with low variance does
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not guarantee the constraint satisfaction since lessna@will be allocated to the user ac-
cording to Eq. 5.16, especially during low data rates wheh hisk probability is allowed.

On the other hand, using a large varianceresults in a conservative solution that
allocates too much airtime especially in relatively higkedate time slots when low risk is
applied. Due to the fluctuation ef with the user location and time of the day as previously
mentioned, a fixed value @f?> becomes suboptimal. We therefore propose to adaptively
track the variance? based on the user’s previous measurements. The trackiogdure

is implemented using Kalman Filter (KF) described in datathe following section.

5.2.4 Kalman Filter Based Variance Estimation

The variances of the random predicted rates are updated tisrchannel measurements
by the user in the previous time slot. The measured rate n@idy user during the

previous time slot — 1 is denoted a8, _, and calculated as follows

0y 1 = (Tig—1 — Tigo1)?, (5.17)
wherer; ;,_, is the average measured data rate by ugering the previous time slat— 1.
do?, is the ratio between the measured and the initial theotefic&@nces denoted a3, _,
and aﬁtfl, respectively, and calculated using the Monte-Carlo fraark. Although the
variance ratio represents the actual deviations from thimlivariance, the former still
varies from one time slot to another. Accordingly, the cleamgthe variance over time is
modelled as a Gaussian process and thus can be accuratelgtedtusing Kalman Filter,
which is known to be the optimal linear estimator in the meguase error sense.

In our problem, the priori stat&,” represents the variance raﬁozt and equals the

corrected state of the previous time epotfi, by setting the state transition to unity.
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The observation; represents the measured variance rﬁzbig)t shown in Eq. 5.17. The
observed measuremenisand the predicted stat®¥, represent different values for the
same quantity (i.e., variance ratio), and therefore thie sthservation matrix{ is set to
unity. In summary, our KF model for variance ratio estimati® represented as follows

Prediction Phase:
do?, = o0l (5.18)

P =P+ Q. (5.19)

Measurement Phase:

Ki=P (P +R)". (5.20)
do?," =802, + K,(d0;, — do?, ). (5.21)
P =P —K/P;. (5.22)

The updated ratidcrzfr will be then used to update the predicted variances in thairgng
time slots, denoted ag‘{tm*, while simultaneously considering their correlation wtitle

current measurement as follows

025 = (14 posssr(002 s — )02, Vot [l,T—1, (5.23)
wherep, ;15 is the channel correlation coefficient between the charauh§ at time and
t + ot.

According to Eqg. 5.23, in case of high correlation (i®..s: ~ 1), the future variance
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will be multiplied by the value of current updated ratio ahd term in the brackets becomes
1. Onthe other hand, very low correlation results in no upslat the future variance. In our
model, we calculate the correlation coefficient using anoeeptially decaying function

with the correlation distancé.,,. according to the 3GPP slow fading model [113].

5.2.5 Performance Evaluation
Simulation Set-up

The presented robust PRA techniques are simulated for annieti&ork using Network
Simulator (ns-3) which is a standard compliant simulat@5]1 with model parameters
and initial values of KF (i.e.Fy, @, R anddo,) as indicated in Table 5.1. The Gurobi
optimization solver is integrated in ns-3 [126] and useddivesthe SoCP in Eg. 5.5 and
Eq. 5.12 with an efficiently implemented barrier and Intefoint Method (IPM) [127].
The solver exits when it reaches a duality gap less that?o. The 3GPP correlated slow
fading model and its parameters [113] are incorporatedanegbeived UE power and thus
provide predicted rate variations. Simulation resultssaraged over 50 runs for statistical
validation. Users follow different predefined paths witthe cell at varying velocities from
25 to 60 Km/h and request a video stream at a fixed quality.odigi the allocation is done
at each base station separately, neighbouring BSs aredeoegiat an inter-cell distance of

600 m for practical calculation of SINR and channel rates.

Evaluation Metrics and Scheme Notations

In order to assess the introduced Robust Predictive Res@llocation (R-PRA) frame-
work, we use the two metrics previously discussed in Se&ibnThe firstis the percentage

of videos stops which reflects the user QoS level. Mathemgtjat is calculated as the
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percentage of time slots in which the QoS constraint is W&ala Existing predictive RA
approaches revealed that playback interruptions, due fferbunder-run, are among the
primary sources of user dissatisfaction with video delnagrvices [25,118]. Thus video
stops metric perfectly models the ability of RA to optimibe trade-off between energy-
minimization and QoS satisfaction. The percentage of vateps, denoted as VD, is used
to quantify the QoS degradation and calculated as the pageof time slots in which the

cumulative transmitted contenk(,) is less than the demand(,) per Eq. 5.24.

M T
Z Z ﬂRi,t<Di,t
i=1t=0

M xT

VD = x 100, (5.24)

whereR, ; = Z:/:o ri v 1S the cumulative video content received by ustlt time slot
t while r;, is the experienced channel rate by usat timeslot.. A maximum allowable
degradation level is defined as the boundary for the metnd, ia equal to(1 — ) x
100%. The second metric is the average BS airtime which is usedetsore the energy
consumption in the network. During resource allocatiorthidbe BS and UE consume
energy in transmission and reception of data. Thereforajmizing airtime reduces the
energy consumption proportionally [115]. The objectivadtion in Eqg. 5.1 is used to
guantitatively measure this metric.

In this evaluation study, we denote the proposed optimalR@@d JCCP, and their

corresponding heuristics with the following abbreviaton

e Optimal-ICCP: refers to formulation in Eq. 5.5 whose solution is obtainsihg the

IPM implemented in Gurobi.

e Heuristic-ICCP: refers to formulation in Eq. 5.5 whose solution is obtainethg

the guided heuristic in Algorithm 2.
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e Optimal-JCCP: based on the original non-convex JCCP formulation in EQ2 &rid
solved using the sequential quadratic programming in MABL{&r a global optimal

risk and airtime allocations [128].

e Optimal-ERA-JCCP: uses the two stage JCCP in which the first stage solution is
obtained with equal risk values Eg. 5.13 and the second &qg®.5 is solved using

the IPM implemented in Gurobi.

e Heuristic-ERA-JCCP: similar to the Optimal-ERA-JCCP but the second stage is

solved using the guided heuristic in Algorithm 2.

e Optimal-PRA-JCCP: similar to the Optimal-ERA-JCCP with first stage formulated

as in Eq. 5.14 and solved with Lagrangian Newton in Algorithm

e Heuristic-PRA-JCCP: similar to the Heuristic-ERA-JCCP with the first stage for-

mulated as in Eq. 5.14 and solved with Lagrangian Newton goAthm 1.

The optimal techniques are used to 1) evaluate the robisstridise introduced frame-
work, and 2) assess the developed real-time guided heumstlgorithm 2. The non-

convex Optimal-JCCP is used to evaluate the feasibilithetdecomposed two-stage JCCP.

Simulation Results

Comparison with Existing Non-Predictive and Non-Robust RA

The first simulated scenario is for one user moving acrosséldrom one edge to the
other. Both the predicted average and the actual expedeates are shown in Fig. 5.2(a).

We consider three typical classes of RA:
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Table 5.1: Summary of Model Parameters in the First Variant

Parameter Value

BS transmit power 43dBm
Bandwidth 5MHz

Time HorizonT 60s

Streaming rate V 0.5,1,1.5[Mbps]
Bit Error Rate 5x107°

Shadow correlation distan@g,,) [113] 50m
Shadow standard deviation [113] 6dB

Velocity From25 km/h to60 km/h
B, 1

Q 0.1

R 1

50'0 1

Risk Proportionality Facton 4
Feedback intervat 5Ss.
Packet size 103 [bytes]
Packet rate (from core network to BS) 10357
Total number of packets 7.5 x 103
Buffer size 10° [bits]

o NP-RA: refers to opportunistic Non-predictive Resource Allogatand the widely

used Proportional Fairness [129] will be adopted as a typeistlass.

e NR-PRA: refers to the existing energy-efficient Non-Robust PrédicResource
Allocation in [27], which assumed perfect prediction angresented the future rate

by its average value.

¢ R-PRA: refers to the energy-efficient Robust Predictive ResoultmcAtion intro-

duced in this work in its two main forms (ICCP and JCCP).

The NR-PRA assumes perfect prediction of the future charatets and results in the
minimum energy consumption compared to both the NP-RA aaedR#PRA as illustrated
in Fig. 5.3(a). This is because, NR-PRA strategically ates the minimal airtime that

satisfies the demand based on the average predicted ralt¢hentiser reaches the cell
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center. On the other hand, the introduced R-PRA conseemgtiocates more airtime than
the NR-PRA to guarantee QoS satisfaction under rate vanigti The NP-RA, however,
greedily assigns all the available resources and thusedslihe video to the user during
the initial low rates regardless of the future high ratesasvs in Fig. 5.2(b). On the other
hand, Fig. 5.3(b) shows that the low-energy NR-PRA failedatsfy the QoS demand as
we can see that the user suffered from a large percentagaeaf stops. On the contrary, the
proposed R-PRA (ICCP and JCCP) was able to compensate th&oss by strategically
allocating more airtime and the result is much fewer videxpst The traditional non-
energy aware NP-RA filled the buffer of the user in the first f®gonds, resulting in the
highest QoS satisfaction with a negligible number of stdyo$,at the cost of high energy
consumption.

To summarize, the NR-PRA previously introduced in [27] pdes large energy sav-
ings, denoted as therediction Gain compared to the NP-RA. However, this gain was
achieved with unacceptable QoS violations under impegdesdictions. To overcome this
limitation, the introduced R-PRA is designed to simultamsy satisfy the QoS require-
ments and energy minimization. This comes at the cost dittyigecreasing the prediction
gain by an amount referred to as thece/Cost of Robustne#isat accounts for rate varia-
tions. The above conclusions can also be drawn from the highd scenario in Fig. 5.5,
and indicate that robust PRA can provide significant gairgeupractical considerations
of imperfect predictions. These results are obtained ®oitimal forms of the introduced
R-PRA (i.e., Optimal-ICCP and Optimal-JCCP) to assess fhgiformance bounds, and
the developed real-time heuristic which will be assessedrsg¢ely. We first compare the

performance of the optimal ICCP and JCCP.
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Performance of R-PRA: ICCP and JCCP

Under the aforementioned low load scenario, the Optim&@R@iolates the maximum al-
lowable video degradation in case of large QoS levels (i.&:,0.9) as shown in Fig. 5.3(b).
This is attributed to the ignored dependency between theatibns in the time slots. More
specifically, the demand violation occurredtat 20 s in Fig. 5.2(b) due to the low rate
(shown in Fig. 5.2(a)), resulting in cumulative degradagion the following time slots.
This is because the potential outage was not accountedflomeband. We can see that the
buffer occupancy remained below the demand from20 s tot = 25 s in Fig. 5.2(b) until
the reallocation is done and the unmet demand is compend&diedviolation was avoided
for lower values of5 due to the continuous feedback from the user evesgconds that
enabled the network to recover video outages.

On the other hand, all the JCCP forms: Optimal-JCCP, OptlERA-JCCP and Optimal-
PRA-JCCP were able to avoid the above propagation of viadgasstnd thus did not violate
the maximum allowed degradation at all QoS levels as showigirb.3(b). This was done
at the expense of energy savings (i.e., a higher price ofstabgs) compared to ICCP as
depicted in Fig. 5.3(a). The results also demonstrate thigyadf the decomposed convex
forms of JCCP (Optimal-ERA-JCCP and Optimal-PRA-JCCP) litaim a solution that
satisfies the QoS level. However, compared to the globalh@btsolution, the Optimal-
PRA-JCCP was able to satisfy the QoS level with less energyeaoed to the Optimal-
ERA-JCCP. This result emphasizes the importance of optgithe risk values over the
time horizon to control the conservatism of JCCP, espeguvetien the user is located near
the cell edge.

The performance results also indicate that the energy gaadp between the Optimal-

PRA-JCCP and Optimal-ERA-JCCP increases with higher Qa84€5), number of users
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and higher streaming rates as shown in Fig. 5.4(a), Figabas(d Fig. 5.5(b), respectively.
In particular, as? increases, lower risk values are attained and the valuesahtlerse Q-
function decreases exponentially which results in morenaér to satisfy C1 in Eq. 5.12.
Similarly, increasing the number of users or streamingwalteesult in more conservative
RA for the cell edge users which decreases the BS airtimdad@ifor the cell center
users to pre-buffer the video. It should be noted that thgeaf airtime varies across the

scenarios since users follow different paths and velaitieeach case.

Optimality and Complexity Analysis

In order to evaluate the introduced guided heuristic, thénagity gap Z is measured
between the heuristic based solutions and the optimaltseas = % x 100,
whereM (x) andM (x*) are the values of objective functions corresponding to theiktic
and optimal solutions, respectively. A small optimalitypgadicates that the heuristic
solution is very close to the optimal one.

From Table 5.2 we observe that the heuristic solutions cawighe the energy savings
with small optimality gaps. This performance degrades &ithncreased competition at
the cell center due to either a large number of users locatelei cell peak during the
same slot or few residual airtime due to conservative allogaf cell edge users (the case

of ERA-JCCP). In particular, increasing the number of usgithe cell peak will increase

the optimality gap since the residual resources (aftecatlng the cell edge users) need

Table 5.2: Optimality Gap of Heuristic Algorithms

. Optimality Gap
Technique 1User 4Users 8Users 12 Users
Heuristic-ICCP 01% 015% 025% 0.3%
Heuristic-ERA-JCCP 0.1% 0.2% 05% 1.2%
Heuristic-PRA-JCCP 0.1% 0.15% 0.32% 0.45%
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Table 5.3: Complexity Measures for Introduced Robust Tepres

Execution Time

Technique Order of Magnitude 1 User 12 Users
Optimal-ICCP O(VMT(M3T%)) 90 s. 980 s.
Heuristic-ICCP O(MT + T?) < 1ms. < 1ms.
Optimal JCCP O(VMT(M3T*)) 140s. 1560s.

Optimal-ERA-JCCP  O(vMT (M3T?)) 90s. 980s.
Heuristic-ERA-JCCP  O(MT + T?) < lms. < lms.
Optimal-PRA-JCCP  O(VMT (M3T*)) 90s. 980s.
Heuristic-PRA-JCCP O(M(T)?) < lms. < lms.

to be proportionally allocated while considering the fetuates. This was not handled
by the heuristic algorithm to maintain its low complexitystead, the heuristic performs
a greedy allocation to the users with the maximum rates. AL S satisfaction, the

guided heuristic solutions follow the same performancedseas their corresponding opti-
mal counterparts, i.e., the ICCP forms fail to satisfy theximmaum degradation at high QoS
levels while the JCCP forms succeed for all values.

We next analyze the computational complexity of the difféadlocation strategies. For
SOCP formulations, the optimal solution techniques (&dggyior point method) require a
maximum ofO(v/K) iterations [123] wheréx is the number of constraints. Each iteration
has a complexity 0O (m? Zfil n;) [106], wherem denotes the total number of decision
variables and; is the dimension of thé” constraint. For the Newton’s method, the main
complexity lies in the calculation of the Hessian matrixdrse with a dimensiom x m.
This gives a complexity of (m?) for each step in Newton’s method. Table 5.3 summarizes
the two complexity measures for all the considered teches@s a function of the problem
dimensions, i.e., number uset$ and time slotsl". For the heuristic in Algorithm 2, the

QoS satisfaction has a complexity@f MT"). The peak allocations and solution repairing
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have complexities 0O (M (T — t,)) andO(MT'), respectively. We also report the execu-
tion time measured within the simulation environment on a@Core i7-Processor, 3.2
GHz machine. These results highlight the incapability ef dptimal solution methods to
facilitate real-time implementation. It should be notedttimcreasing the number of users
does not result in a proportional increase in execution mee the algorithms can be
executed on multiple threads when there are multiple uddoseover, the complexity of
Newton’s method which was executed for each user indiviguaimpletes in less than 1

ms.

Adaptive Variance Estimation

The simulations were extended to test the robustness ofRAeffamework to thevaria-
tionsin the channel variance. Such variations in the rate vaeiane typically observed in
practical measurements due to the different landscapesiegreées of urbanization [33].
A conservative approach to tackle such variabilities isgbmize with a constantly large
value (highest value revealed in simulations) for the ratgawice. This will ensure meet-
ing the QoS satisfaction level using JCCP as in Fig. 5.6(@wever, it compromises the
energy efficiency as shown in Fig. 5.6(b). On the other hatadtisg with a fixed lower
value (smallest value revealed in simulations) of varianderesult in less energy con-
sumption but at the expense of QoS degradation even when 3GpPplied. The KF based
tracking algorithm starts either with an arbitrary valuevafiance, and then continuously
adapts its value based on the error between the channel ragasus and initial values. It
is therefore able to satisfy the QoS for all valuesipfind with a lower airtime compared
to the high variance case. In this scenario, the evaluasittased on the Heuristic-PRA-

JCCP since it has a practical complexity and results in moeegy savings compared to
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the Heuristic-ERA-JCCP as highlighted previously.

5.3 Robust Model for Generic Uncertainty

5.3.1 Rate Uncertainty Model

In this second variant, the predicted uncertain rate is itfedias a random variablg,
[rl,, 7], wherer!, andr?, are the lower and upper rate bounds, respectively, and the
average value is;; = E[r;;]. Herein, we assume that the PDF of such random rate is

unavailable and only the bounds are used.

5.3.2 Problem Formulation

To obtain a robust deterministic form that is equivalent tp &1, irrespective of the, ,
distribution, Bernstein Approximation (BA) is used. In esse, BA utilizes the marginal
distribution and the moment generating function of the cand/ariable. Generally, the

chance constraint is represented as a linear summationadmavariables as follows
t/
Pr (fo(X) +) mfilx) < O) >1—¢ vt eT. (5.25)
t=1

Heren, is a random variable with marginal distributi@, and f,(x) is a convex function
containing the decision vectar. ¢ is the maximum allowed level of QoS violation and
equals tol — 4. Assuming that all the random variablesare independent; has a
bounded support on the intervat1, 1] v¢ and the functionf,(x) is affine in the decision
vectorz, a convex deterministic equivalent for Eq. 5.25 can be obkthas follows

inf [fo(x) + Z M ATHf(x)) + )\log% <0vteT. (5.26)
=1

A>0
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Herein, A,(z) is the logarithm of the moment generating functibfy(z) for r.v. z as de-

picted in Eq. 5.27

Ay (2) =logM,(z) (5.27)

My(z) =E[e**] = / e dP, (k)

Instead of computing the exact value of the logarithmic mothggenerating function in
Eq. 5.27, in addition to solving for the auxiliary variablea conservative approximation

using the upper bound can be adopted as in Eq. 5.28 [130].

2
Ai(2) < maz {pfz p; 2} + %22,Vt eT (5.28)

—1 <y <pf <1

The variables:,", ; ando; are used to approximate the bounded support [130]. There-
fore, a conservative deterministic equivalent for Eq. 52&ttained using Eq. 5.28 and the

arithmetic inequality as follows

€

o) + S ma {pif %),y ulx)} + J 2og(1) (Y oth0R) <0, WeT.

(5.29)

Finally, the robust PRA chance constraint C1 in Eq. 5.1 idaegd by Eq. 5.29 as
depicted in Eq. 5.30

t t’ t!
. 1 .
Z fi,txi,t + ; MZtri,txi,t — J QZOQ(E) (Z(Gi,tri,txi,t)2) > Di,t’7 vt/ c T,

t=1 t=1

(5.30)
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where the random predicted ratg is assumed bounded [}, r#,]. To satisfy the as-
sumptions for Eq. 5.26, this rate is normalized-i1, 1] by using the maximum deviation

and the average values denotedrpyandr; ., respectively per

1
¢ —r
A 2t 2.t m 1
Tit 5 Ty > Tit
l
_ T
7"1’7,5 = 72 (531)

The constraint in Eqg. 5.30 is a SOCP model which is convex far0.5 andx;; € [0, 1]

[123].

5.3.3 Real-time Guided Local Search Heuristic

The guided search algorithm proceeds by allocating therarthat ensures exact satis-
faction of QoS constraint (i.e., solves C1 in Eg. 5.30 as ky)#& minimize the airtime.
The radio capacity constraint is then checked (i.e., C2 ir6E2D) and reallocation is done
in case of violating the maximum time slot duration. Finathe algorithm pushes all the
remaining video content when the user reaches his peak cadditions (i.e. maximum
7) to avoid allocation in future time slots with lower rateshelsecond and third steps are
very challenging in multi-user scenarios where differesgns might experience their peak
radio conditions simultaneously. The heuristic is sumg®atiin Algorithm 3 and detailed
as follows

QoS satisfaction: To minimize the energy consumption while guaranteeing GaiSfac-
tion, C1 in Eqg. 5.30 is turned to equality so that the airtimaatly satisfies the demand
without violating the maximum degree This step is calculated for every time slot for each

user until the peak radio conditions are reached (lines 1-8)
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Algorithm 3: Local-Search Guided Heuristic For Robust Allocation

Input : Users: M, Time Horizon:7, Average Predicted Rate®, Rate
Bounds:2, Maximum Violation:e and Streaming Demand?;
Output - X
Initialization : X =0, N, =0Vt T
1 fori e M do
2 | ¢ =argmaXR;},Vie M,
teT
3 t=0;
4 | whilet < {;do
5 Transform Eqg. 5.30 to equality and solve far;
6 Ny = Ny + @iy,
7 end
8 end
o for t € T do

10 if N; > 1then

. Tit .
11 J=argmax —=v— ¢
ieM néta/X{Ri}t/q

12 Az =Ny —1,kE=t—-1,
13 while k£ > 0 do

14 Az = Azjy X g—;
15 if N, + Az, < 1then
16 Tjk =Tk + Al’%k;
17 Nk:Nk—i-A[L'j’k,Nt: 1, k=0;
18 else

19 | k=k-1;

20 end

21 end

22 end

23 end

24 for t € T do
5 | L={M|t;=tVie M};
26 for . € L do

27 Yi¢ = min {1 — N, i;iigz}f };
28 ' =argmax R; },Vi € M;
T\t
29 Yip = min {1 — N/, iai{_g}f };
T\ U
% OF = yiz — i,
31 if 9F > §F then
3 §F = F;
33 i= 1
34 end
35 end
36 end

37 returnX
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Resource Limitation Satisfaction: After calculating the airtime fractions for all users in
each time slot, the resource constraint, C2 in Eq. 5.1, iskdte In case of violation, the
excess airtime is prebuffered in a preceding time slot wiabawnt resources. To ensure
airtime minimization, the user with the highest averagealjgted rate in a previous vacant
time slot is chosen (lines 9-23).
Peak Local Search Allocation: The above allocation strategy guarantees the satisfaction
of both QoS and resource constraints. Thus, minimal allocas used until the peak data
rate time slot is reached. The challenging part in this stagirs when more than one
user competes on the same time slot. Accordingly, locatbaarapplied to select the user
who will result in the highest power consumption if he is nodrged this time slot. As
such, the local search calculates the difference in airbieteieen the two scenarios: If he
is allocated to this peak time slot or if the second maximuakpe selected (lines 31-34).
The user with less airtime in the first scenario is selectdoketgerved in the current slot.
The algorithm terminates when all the users’ cumulative aleshs are satisfied.

For the heuristic in Algorithm 3, the QoS satisfaction stap & complexity o (M T).
The peak allocations and solution repairing have compéxitf O(MT) andO(T?), re-

spectively. Thus, the total complexity of the heuristiOGM T + T2).
5.3.4 Particle Filter Based Rate Deviation Learning

We extend the robustness to scenarios in which the channahga changes over the
time and location [33]. A Particle Filter (PF) is used to tuhe rate deviations (initially

obtained off-line or theoretically) in order to reflect theannel variance based on the
users’ measurements. This is done on two steps: Rate devigidate and PF estimation.
In particular, the PF estimates the error between the medswariance and its assumed

value. This error is then used to update the theoreticahnad for the future allocations.
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Rate Deviation Update

We denote the off-line calculated deviations (e.g., usirand-Carlo in Chapter 4) aé]y)

while the final tuned deviations using PF are denoteﬁgﬁﬂ/and calculated as follows

wherea;; > 0 is the proportionality factor between the off-line and measd rate devi-
ations. As the channel variance changes over time and ¢ogdtie value ofv has to be
adapted accordingly using the particle filter as shown im#g subsection.

In multi-user scenarios, cooperative tuning can also bfopaed where existing users
in the network can propagate their estimated value;@fto the recent users admitted to
the same BS. Such cooperation is done using the channelatmmnecoefficients between
the users based on their distances per Eq. 5.33
Qi = Qg1+ jmax {pijie} (qjio1 — 1), 539

_digit
— d
Pigjt = € deor,

whered, ;. andp; ; , are the distance and distance-dependent channel carretakefficient
between userand; at time slott, while d..,. is the correlation distance. The above formula

is adopted from the 3GPP channel fading model [113].
PF Estimation

The PF initially generates a set of values (i.e., partidiewing a proposed distribution
and assigns them equal weights. These weights are then Ibased on the reported user
measurements according to a predefined likelihood functiriinal estimate of the PF
state (i.e.,a) is a weighted sum of the particles’ values. The measuregn@present

the reported deviation between the predicted and the medshannel rates. We apply
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the Sequential Importance Sampling (St&hnique [109] to obtain the best estimate of
for the PF states. SIS approximates the unknown posteristritsition by a group of
generated particles where each particle is weighted byitgoemity to the measurements.
Such particles are drawn from a proposed distribution, dasethe problem structure,
that approximates the original unknown distribution udenge number of particles. The

particle filter methodology based on SIS is summarized davsl

1 Initialization

i Define the proposed distributigri@).
i Generate a set aV particles denoted b§),—, using the distributiop(Q,—o).

iii Initialize equal weights¢;_,) for all particles.
wi_o=1/NYi=1,..,N, (5.34)
iv Define the likelihood functiorF'(Q, 7).

2 Measurement Phase

i Update the weights of each particle using the measuretdeand the likeli-

hood functionF'(Q, Z):
w! =wl_F(Q,Z),¥jel,.. N, (5.35)
il Normalize the weights:

- -, (5.36)
Zj:l Wy
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iii Calculate the best estimate:
N .
Je=Y_ awl, (5.37)
j=1
3 Prediction Phase

i Calculate the gradient:

- aZt
oYy = o (5.38)

ii Predict the future state:

Yrr1 = Ay + Boy;ot (5.39)

4 Importance Sampling

I Calculate effective samples:

1

Negr = S5
S (wf)?

(5.40)

Y

ii Check degeneracy then resampleNf;; < N then, resample particles and set =

1/NVjel,.., N,

In essence, the calculated weightsin Eq. 5.35 approximate the posteriori PDF in
Eg. 3.10, while the priori PDF in Eqg. 3.9 is evaluated usingltkelihood F'(Q, Z) in the
initialization phase. In addition, Eq. 5.37 in the measwatphase implements the best
estimate of the state (Eqg. 3.11). In the prediction phasefuture statey,,; in Eq. 5.39 is
a linear weighted combination of both the best estimated gtand the integral of its rate
of changejy;ot from the available measuremenis In Eq. 5.39, A and B are the weights

of both the best estimate and integral of the rate of charegpgectively.
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As the PF updates the weightg in Eq. 5.35 every time slot, their values may con-
verge and few number of particles will have non-zero weigl8sich situation is called
degeneracy, which has to be avoided as it deviates the vigedisiiribution from the actual
posteriori probability. Thus, the number of effective paess V. is calculated to check
for the degeneracy and in case of dropping below the maxinmueshold, resampling
is done. Each particle contributes, based on its weighteimegating a new particle [109].
The newly generated set of particles will not contain thesomih very low weights. The
new weights are equally redistributed similar to the ifid&tion phase.

In our rate deviation tracking, the PF statds the proportionality factos; while the

measurement, is the reported proportionality factes; calculated as

T = Elrg |
X = (M)
Tt

(5.41)

whereE[r; ;] is the measured channel rate by userthe duration from slot — 1 to slott¢.

5.3.5 Performance Evaluation

Simulation Set-up

We adopt the same simulation set-up as the previous vagahtyith different random

mobility traces. All the parameters and their values arsgmeed in Table 5.4.
Comparative Schemes and Evaluation Metrics

In this evaluation study, we compare the proposed robusliginee scheme against the

existing non-robust PRA and non-predictive RA schemes ehas follows

e N-PRA (MT): refers to a type of non-predictive RA called maximum thromgth
(MT) [131]. In essence, MT allocates the whole resourceseaser with the current

maximum channel rate regardless his future channel conditi
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Table 5.4: Summary of Model Parameters in the Second Variant

Parameter Value

BS transmit power 43dBm

Bandwidth 5MHz

Time HorizonT 60s

Streaming rate V 0.25,0.5 and1 [Mbps]
Bit Error Rate 5x107°

Shadow correlation distan@g,,) [113] 50m
Shadow standard deviation [113] 4

Velocity From25 km/h to40 km/h
p(Q) U(0,4)
N 10000
N N/3
A=B 0.5
o —0.5

/ 1
Jt . \/ﬁ
Feedback intervat 5s.
Packet size 103 [bytes]
Packet rate (from core network to BS) 1035~
Total number of packets 7.5 % 103
Buffer size 10° [bits]

¢ NR-PRA: refers to the existing non-robust PRA in [27] which only uBesaverage
value of the predicted rate resulting in a deterministiedinformulation. The optimal

solution is obtained using the simplex method implementedurobi [124].

e OR-PRA (I,): refers to the introduced BA based robust PRA in this work ame f
mulated in Eq. 5.30. The solution is obtained optimally gsine IPM in Gurobi
optimizer [124].

e HR-PRA(l,): the same a®R-PRA (l,), but its solution is obtained using the guided

local search heuristic in Algorithm 3.

e R-PRA (l;): refers to the introduced BA robust PRA in this work but lineed

similar to [43] and the solution is obtained optimally usithg simplex method in
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Gurobi optimizer [124].

All the above schemes are assessed using two main metricenpage of video stops,
referred to as VD, and average airtime to measure the QoS§fesaion and the energy
consumption, respectively. The maximum allowed value of, ¢&8lculated per Eq. 5.24,
is set to the predefined constraint violation ley@l x 100%. The second metric is the
average BS airtime which is used to measure the energy cqtgumin the network, and

calculated using the objective function in Eq. 5.1.
Comparison with Other Resource Allocators

We assume that the rate deviatiois accurately known and the focus is to show the impor-
tance of robust PRA and the heuristic solution. The first adgerconsidered a high quality
video (i.e. V; = 1Mbps) which is a high load scenario relative to the available ager
channel rate. The non-predictive MT continues to satisey @oS level independent on
the channel variance as shown in Fig. 5.7(a). This is beches®IT schedules the users
based on their current reported channel rate irrespedtie@ariance and the future rates.
The non-robust predictive technique [27] fails to sati$fg maximum VD set to 0.1 (i.e.
e = 0.1). This QoS performance degrades with the channel variance the measured
rate deviates from the average value. The allocated mirairtahe will not be sufficient to
satisfy the demand. Such deterioration is avoided by alidbast forms as the percentage
of stops did not passx 100% for the considered variances.

Although the non-predictive MT prioritizes users with m@&xim rates, its energy con-
sumption is higher than the predictive strategies as degpictFig. 5.7(b). The MT buffers
the video content for the cell peak users, which saves enbtgythen turns to push the
video for other users located near the cell edge rather tpplyiag minimal allocation.

On the other hand, the predictive strategy is able to mirerthe energy even in the robust
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forms. The results also demonstrate the conservatism dirtbarized BA used in [43],

which decreases the energy saving gain especially at vgty ¢hiannel variances. The
energy consumption thus increases and becomes compavdhkg obf the non-predictive
strategy.

Both the load per user and the moving speed are then decreaseedium quality
videos (i.e.V; = 0.5Mbps) and 25 Km/h, respectively, to allow more users and highe? Qo
levels in the simulation scenario. The conservatism of ifearized BA becomes more
significant as it consumes more energy than the non-predibtil at high QoS level (i.e.
low €) and high channel variances as in Fig. 5.8(b) and Fig. 5.9(bg BA in its original
SoCP form, however, is able to preserve the prediction gdinese high load conditions.
While the energy savings gap between, the predictive angpnedictive schemes decrease
for this scenario, the latter fails to meet the QoS level aswhn Fig. 5.8(a) and Fig. 5.9(a).
This is because such non-predictive strategy greedilycatléx the resources to the cell
peak users and ignored serving the cell edge users in oraeaxanize the total system
throughput.

Similar observations are noted for the conservative lizedrBA, NR-PRA and MT
when the number of users and the QoS level are increasedwns 8hbig. 5.9(b). The dis-
tributions of QoS satisfaction and degradation are regdont&ig. 5.10(a) and Fig. 5.10(b),
respectively. The percentage of users with violated Qo8ld¢emainly depends on their
mobility traces and experienced channel rates. In Fig.(8)1the percentage of users with
violated QoS levels was around?% in case of the non-robust PRA. This was found to be
the same percentage of users who started the video streamtihg cell edge, and thus

were subjected to minimal allocation strategy resultinguffer underrun. In Fig. 5.10(b),
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the distribution of video degradation, and its maximum ealiiustrate the QoS viola-
tion of non-robust PRA. Note that the robust PRA schemesrexqeed stable QoS per-
formance over the system load and variance. The scenarm® aemonstrate that the
adopted BA SoCP based PRA formulation: 1) satisfies all Quo&ddor different system
loads (Fig. 5.8(a)) and 2) preserves the energy-saving @ditine prediction (Fig. 5.8(b)).
In addition, the introduced heuristic shows stable pertoroe with a very low optimality
gap (< 0.1 %) with respect to the optimal solution’s airtime oS levels in all considered

cases.
Performance of Particle Filter

In this scenario, we assess the ability of the PF to track dke deviations while adopt-
ing the SOoCP BA formulation. We compare the PF based varisnoempared with both
the maximum and optimal theoretical variances denotetlay. Dev.andOpt,, respec-
tively. TheMax. Dev.corresponds to the maximum variance [113] that guaranbee@oS
satisfaction under the highest prediction errors. TUpg. adopts the exact rate deviation
corresponding to the current channel variance. This optualae satisfies the QoS level
without compromising the energy savings. On the other h#r@PF initially assumes
the highest variance as tMax. Dev, but continuously monitors the channel variance and
adapts the rate deviation accordingly.

With regards to QoS satisfaction, tivax. Dev. provides a very conservative allo-
cation that greedily satisfies the QoS at the expense of tegyersaving as depicted in
Fig. 5.11(a) and Fig. 5.11(b), respectively. This is notd¢hse forPF which has met the
constraint at nearly the exact level as Mpt., resulting in high energy savings. The PF, in
essence, decreases the initial maximum rate deviatiorati de lower optimal value and

sometimes below. Although going below the optimal rate agon value increases the risk
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Table 5.5: Execution Time of the Simulated Schemes

Number of Users Streaming Rate (V) [Mbps]

Technique 9 4 8 12 0.25 0.5 1

N-PRA (MT) <0.1ms <0.1ms <0.1ms <0.1ms <0.1ms <0.1ms <0.1ms
NR-PRA 1s. 15s. 23s. 4s. 4s. 4s. 4s.

OR-PRA(;) 50s. 80s. 150s. 250 s. 200 s. 250 s. 290 s.

HR-PRA (;) <0.1ms <0.1ms <0.1ms <0.1ms <0.1ms <0.1ms <0.1ms

OR-PRA(;) 1s. 15s. 2.3s. 4s. 4s. 5s. 55s.

of constraint violation, the conservative BA based allmrain early timeslots avoids such
QoS degradation case. The energy gain of the PF-based ¢heauking relative to the

maximum deviation has increased in the high load scendaresiiore number of users) at
high QoS levels and reached up to 15 % as shown in Fig. 5.12(l¥.adaptation mecha-
nism results in nearly the same energy savings as the opiewaltion case and with better
QoS satisfaction as less video stops have been experiem¢ld early slots as shown in

Fig. 5.12(a) and Fig. 5.12(b).
Runtime Complexity

We also report the execution time of all the examined RA s&®m Table 5.5, and mea-
sured within the simulation environment on a Quad Core e€ssor, 3.2 GHz machine.
These results highlight the efficiency of the guided hewrsblution methods for provid-
ing real-time implementation under different load scem&riThe complexity of the opti-
mal solver increases withoththe number of users (i.e. the problem dimensions) and the
streaming rate (V) since more iterations are required tolreafeasible solution. As op-

posed to the solver, the guided heuristic resulted in astdalable performance regardless
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the value of the aforementioned two parameters and withaydess than the duration of

Time Transmission Interval (TTI).
5.4 Discussion and Comparison between GA and BA

The Gaussian approximation, in the ICCP form, is theorlyithe optimal deterministic
representation for the chance constraint where the QoSaszton is guaranteed with prob-
ability (1 — €). However, this performance is attained while assumingyttie variations
in the predicted rates follow the normal distribution eslfir Such assumption does not
sustain practically when other imperfect predictions amsaered (e.g. user’s trajectory).
In that case, new rate distributions need to be computeashwieither guarantee to follow
the Gaussian nor provide an invertible CDF. Consequendgn&ein approximation has to
be applied to approximate variations by the bounds and tmidsboth the computational
effort of deriving new distribution or calculating the imge of CDF. Nevertheless, this ap-
proximation is at the expense of the solution’s optimalitg do the fact that the logarithmic
moment generating function, and its upper bound, are mareazwative than the inverse
of CDF. Therefore, one might be interested in finding the obsbbustness in applying the
Bernstein approximation rather than the Gaussian one. A&sudtr the trade-off between
saving the effort of deriving the inverse CDF for the Gaussiad the extra conservatism

cost of the Bernstein has to be compared.
5.4.1 Analytical Comparison

Assuming the case when the Gaussian is the optimal theairapproximate (i.e. predicted
rate variations follow a normal distribution), the conseism cost of the Bernstein is cal-
culated as a function of the difference in their safety terdmsparticular, Gaussian and

Bernstein safety terms are denotedsgsand Sz, and deduced from Eq. 5.5 and Eg. 5.30
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respectively as shown below.

t=1

t 1 (& (5.42)
Sp = — Z i TirTix + 2l0g(;) < Z(Uz‘,tfz‘,txi,t)Q) 7
VieM,t eT.
The difference between the above terms is denotéthag and calculated in Eq. 5.43:

Sp-a =SB — Sa

t/ v
A 1 .
=— E i ¢T3 tTie + \I QZOQ(E) ( Z(Ui,triytxi,t)Q) (5.43)

t=1 t=1

t/
Z($i,tU£t)2, VieM,t'eT.

t=0

_ Qfl

From [130],4,, ando;; are set to-0.5 and 1/4/12 respectively. For simplicity, the first
time slot for the first user is considered and thus the sunamasiremoved as well as the
subscripts i and t. Moreover, the bound96f7% of the samples in case of Gaussian can
be expressed in terms of the standard deviaifoas: 7, = 30. Accordingly, Eq. 5.43 can

be expressed as depicted below:

-1
o= o1+ e - %) (5.4

The positivity of EQ. 5.44 indicates that more airtime isigqsed by the Bernstein ap-
proximation (i.e. high conservatism) than the Gaussiaraligoractical value of QoS (i.e.
e < 0.5). This gap increases with both the QoS level (kedecreases) and the absolute

deviationr in the predicted rate. PF based tracking is a potentialisoldior minimizing
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such gap, and so the conservatism cost. Nevertheless,ingahg feedback interval to

decrease the conservatism is tested in the next subsection.
5.4.2 Numerical Comparison

We define the feedback intervalin which the solver performs reallocation of all users
while considering their total transmitted data. For getiegathe shadowing based rate
variations, the 3GPP slow fading correlated model is us&@&][1Simulation results are
averaged over 50 runs with different shadowing values. Twbilty scenarios were con-
sidered; urban and rural. Users move at a low speed with smalvehicle distances
in the urban scenario, and thus experience similar averiagevalues at the same time
interval. The rural scenario models high speed moving Vesiwith large inter-vehicle
distances. Consequently, users experience differentdts from each other at the same
time interval. Video content is then requested by all usés fixed streaming rate over
the considered time horizon. The numerical values of allpgw@ameters are summarized
in Table 5.1 and Table 5.4, while the variance and boundsaf este are calculated using

the previously discussed Monte-Carlo simulation.
Robustness in the Urban Scenario

In urban areas, users start moving from the cell edge towhedsentre. In order to decrease
computational complexity of the solver, the feedback timeas set firstly to a relatively
long interval equal tal0 s. This is the interval over which the solver recalculates the
allocation of all users for the remaining future time slobs.case of GA, the maximum
degradation was surpassed for high QoS (ile; ¢ > 0.9) as shown in Fig. 5.13(a).
This performance is attributed to the overlooked depengbativeen the QoS constraints

over time. Consequently, demand violation at a certain \sidtpropagate and affects
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the satisfaction in the next slots within the feedback wakr Such violations last until
reallocation is done for the next slots. The value @fas set to lower values= 1 andbs.
where less degradation occurs Fig. 5.13(a), but at the egpeiboth: increased airtime
Fig. 5.13(b) and the computational complexity.

The BA approach is very conservative, and thus the percergagtops was kept be-
low the maximum threshold for all the QoS levels and feedbadkes ofr as shown in
Fig. 5.13(a). However, the airtime performance withs opposite to that of GA. This is
due to the fact that users are moving from a region of low rateatds the cell peak, and
BA requires fast feedback to decrease the conservativeadibm at the cell edge which
consumes more airtime. Large feedback durations contmaddcate large amounts of
data at the cell edge.

BA requires small feedback durations to correct its coreans allocation. Similarly,
GA also requires the same small feedback time but to recbheategradation in any times-
lot and prevent it from affecting the coming ones. The allmcafor user 1 in Fig. 5.14(a)
demonstrates the aforementioned properties. In GA Figi(&)Wwhere degradation occurs
at the first time slot, the small feedback€ 1 s) was able to recover this by recalculating
the allocation at the next time slot£ 2 s.). On the other hand, Bernstein’s conservatism
avoided the degradation in any of the time slots. Howeverseovative airtime allocation
at early slots (where the rate is minimal) was avoided byuesd feedback, while alloca-
tion continues conservatively (large gap above the demfmdjhe case ofr = 10 s as

depicted in Fig. 5.14(b).
Robustness in Rural Scenario

The above conclusions were drawn for the case of users experg similar radio con-

ditions at the same time. Thus, very conservative solutamtg affects the optimality of
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each user individually. We now consider the rural scenahen some users are located
as the cell edge while others are at the cell peak and movwartts the edge. Minimal
allocation, to satisfy the QoS, is performed for the usetbetell edge while prebuffering
is done for the cell peak users to avoid allocation at futave flate locations. In this sce-
nario, the conservatism of cell edge users is more severaféeuds the optimality of cell
peak users as well due to the provided small airtime for dfigsing. An example of such
a case is shown for user 2 (located at cell peak) in Fig. 5)14%oie to the conservative
allocation of user 1 located at cell edge for= 10s., user 2 was unable to prebuffer in
the first 10 seconds while located at the cell peak. Thus, ¢ad pser had to wait until
reallocation of the cell edge usertat 10s. So more airtime is provided for the former to
prebuffer at relatively lower rates.

Accordingly, the cost of conservatism in the rural scenaas increased and thus the
energy gap expanded between Bernsteinrai=(5 and 10 s.) and the less conservative
cases: i.e., Bernsteimr (= 1 s.) and Gaussian as shown in Fig. 5.15(a). The frequent
feedback of Bernstein (i.er = 1 s.) was able to overcome its expected conservatism
and thus results in nearly equal energy consumption cordpgarthe Gaussian case at the
same feedback interval. Moreover, the QoS satisfactioargkl feedback intervals (= 5
and 10 s.) is slightly enhanced for the Gaussian case where violasfoine maximum
degradation occurs only at the highest QoS levelfer 5 s, and at the highest two QoS
values forr = 10 s. as depicted in Fig. 5.15(b). This is attributed to the prébufg
strategy for the cell peak users and thus their QoS satigfacever fails resulting in lower

average violation.
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Figure 5.13: Percentage of video stops and average BS aifomvarying QoS levels
(1 — ¢) for 2 users experiencing slow fading with Non Line of Sight (NLoS)
variance in urban area
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Chapter 6

Robust-Green PRA under Demand and
Resources Uncertainty

In the two variants of previous chapter, we showed how the watertainties impact the
QoS satisfaction for cell edge users, and demonstratedrtpertance ofobustscheme.
This chapter introduces the third variant which handlesuheertainties in both the de-
mand and resources. Hence, avoids energy consumption irafigeof cell center users
terminating the session, and achieves QoS satisfactidhueeas when network resources
fluctuates due to arrival of real-time traffic. This variastreferred to afRobustGreen
Predictive Resource Allocation (R-GPRA) and adopts botlP@@d RP as illustrated in
Fig. 6.1. Similar to the previous two variants, the R-GRPA®ito minimize the total

energy and delivers the video at a predefined quality level.

6.1 System Model

6.1.1 Resource Allocation

The users of the same BS share the available radio resoweEsstiene slott, where each
user: is allocated a fraction of the slot’s airtime denotedahy € [0, 1]. Other real-time

users are sharing the same resources, but their allocatiat handled by the R-GPRA.
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Figure 6.1: Block diagram of energy-saving R-PRA schemesuidgémand and resource
uncertainty

6.1.2 Demand Uncertainty Model

The average demand of usat time slott is denoted by, , which corresponds to the data
content played back with fixed quality. Herein, we assume tti@ demand is uncertain
as the user can terminate the video at any time slot. Accghdithe per slot demand
is modeled as a random variallg that is equal to O (user terminated the videopgr
(user streaming the video). The cumulative demand is thoetdd as a random variable
Di,t = Zifzo Vi gr-

6.1.3 Radio Network Resources Uncertainty Model

At each time slot, the resources are shared among both #emnstrg users (considered
by the R-GPRA) and other real-time users. The traffic of tfielas modeled using their
arrival rate and demanded resources. The arrival of rered-tisers is modeled as a Poisson

distribution with mean\, and the demand per user is denoted’by The total airtime share
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allocated to real-time users at time sl denoted by the random variatdle = ZZO Cit
whereN is a random variable representing the number of real-tiafédusers at time slot

t.
6.1.4 Problem Description

The R-GPRA scheme aims to calculate the airtime fractign$or each user at time slot
such that the total allocated resources are minimized teeelenergy-saving or efficient
bandwidth utilization. The possibility of terminating tkigleo by the user at a certain time
slot is taken into account. By doing so, this prevents the PRA prebuffering future
content to users who might terminate the video at any timevglh a certain probability.
Typically, this probabilistic strategy results in more gyesavings and optimal bandwidth
utilization compared to existingon-robustPRA that assumed perfect demand prediction.

As illustrated in Fig. 6.2 (a), the values of predicted rdteshree time slots would typ-
ically drive a non-robust GPRA to prebuffer the whole conturing the first slot to save
energy as depicted in Fig. 6.2 (c). However, as shown in ER(I&), the high probability
of terminating the video at the third time slot preventsitiiaustGPRA from prebuffering
the future content due to the high risk of wasting energy. échsonly the content of the
second slot, with low probability of video termination, iepuffered whereas the delivery
of the third slot’s content will be postponed as illustrateéig. 6.2 (d). To summarize the
example, delivering the rest of the video content in thedthime slot costs more energy,
in case of non-termination, while prebuffering all the @it causes a waste of resources
in case of a termination of viewing. The proposed robust GRBWulates this trade-off
based on both the predicted rates and the probability ofibetion to perform the energy-
efficient and QoS-aware allocation.

The uncertainty of future network resources, due to randsen arrival, will interfere
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with the strategy mentioned earlier. Delaying the transmaisin case of high termination
probability might be considered suboptimal if the futuréwerk resources are scarce. The
network, in that case, will miss the chance of exploiting tverent channel peaks and
vacant resources, thus will not be able to satisfy the usaadd with the future anticipated
limited resources. As a result, fewer energy-savings deenad in case of future peaks
with low resources, while video stops are observed if futavechannel rates are further

reduced by real-time users arrival.
6.2 Problem Formulation

In this section we mathematically formulate the problemobustGPRA (R-GPRA) using
stochastic optimization, and then adopt recourse and ehemgstraint programming to

obtain deterministic equivalent forms.
6.2.1 Stochastic Model

The introducecdnergy-efficient robussPRA is formulated using stochastic optimization.
In particular, the uncertain demand and future networkueses are represented by random
variables as follows:

minimize { > le,t} (6.1)

VieEM VteT

subject to:

t

t
C1: Zﬁ,t/xi,t/ > ZD”’ Vie M\VteT,

t'=0 t'=0
M

C2: in’t S 1— Ct, Vit € T,
=1

C3: z;; >0, VieM,teT.
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The objective function aims to minimize the total consumeergy represented as a func-
tion of the total BS airtime [115]. The QoS constraint in Chantees that the total deliv-
ered content to the user satisfies the anticipated cumel@nhdom demand. C2 models the
limited resources at each BS by ensuring that the sum ofa#dcairtime is less than the
total available network resources (allocation slot dorgtiwhile considering the random
resources allocated to the real-time users. The last @ns€3 ensures the non-negativity
of the decision variables. The main difference between tbhegsedrobustformulation
and the existing PRA work is the first and second constraaiisrtow incorporate random
demand and network resources. Such randomness has an onpmeuth objective function
value and QoS satisfaction. In particular, when the randemahd equals to, ;, the ob-
jective function is minimized by prebuffering the futurentent during slots of peak rates.
On the other hand, when the random demand beconfése to session termination) the
objective function is minimized by avoiding prebufferinffoture content. Similarly, allo-
cating more resources than the available capacity, aftausting for the real-time users,
will result in video stops since the users will not be ablesiweive the minimal data amount
calculated by the R-GPRA. As such, the network should avatydfering when available

resources are low due to periodic arrival of real-time users
6.2.2 Recourse and Chance Constrained Model

To represent the relation mentioned above between comstr@il, C2 and the objective
function in a deterministic form, Recourse Programming)(BRd Chance Constrained
Programming (CCP) models are used as depicted below:

mirliryize { > xi7t+E[H(y,D)}} (6.2)

VieMVteT
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Figure 6.2: lllustration of Robust-GPRA under uncertaitien streaming demand

The objective function herein comprises of two terms whagamation must be mini-

mized. The first term represents the total allocated ressufsimilar to the non-robust

approach) while the second term corresponds to the totallanud wasted resources as a

result of terminating the video before watching the predngfti content. In C2, the proba-

bility of satisfying the network resource constraint by tdadculated airtime fractions is set
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above the QoS level. Whereg € [0, 1] represents the minimal probability of satisfying
the QoS. In the following, we show how to obtain a closed foepresentation for both the

recourse model in the objective function, and the probstiliconstraint in C2.
Recourse Stage

The second term of the objective function in Eq. 6.2, il[H (y, D)], is the optimal
solution of the recourse stage and formulated as follows:

minimize {g > Zpygyi,t} (6.3)

VieMVteT

subject to:
CA: rir1Yir—1 +TisTis — Vg < TiglYip, Vi€ MNVELET,
C5: vt >0, Vie M,teT.

The objective function of the recourse stage in Eq. 6.3 miesithe expected value of
excess allocated resources (i.e. prebuffered) and ctdcda a function of both the second
stage decision variablg, and the probability of terminating the video denotecbm/. The
variable( is used to model the trade-off between the values of the tagest and its value
is typically less than one. The constraint in C4 is used toutate the excess resources
r;.yi+ after every time slot. The first two terms on the left hand-side represent the total
prebuffered and newly allocated resources in this timeg séstpectively. The third term
represents the per slot demand. The right hand-side shevesribunt of excess resources

after slott which corresponds to the prebuffered future content.
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Deterministic Equivalent

The probabilistic constraint in C2 is replaced by the follogvdeterministic equivalent

form which adopts the probability of arrival of real-timaffic users and their load.

M
C6: > wiy <1—(Crubr) VEET,VweQ,

=1

C7: Y buptL =8 VieT. (6.4)
Ywe
C8: &, €{0,1} ViteT,Vwed,

The binary decision variabl& ., equals 1 if scenaria at time slott has to be satis-
fied by the airtime allocation, and equals O otherwise. Th& BDuser arrival is used to
construct the scenarios of network resources at each tohash result of real-time traffic
user arrival. At each time slaf the scenaria represents the existencewfeal-time traf-
fic users. The constraint il demonstrates the scenarios in which the calculated airtime
fractions must satisfy the vacant network resources ddrimte — C, .. In C'7, the total
probability of satisfied scenarios must exceed the pred®feS levels. The probability
of user arrival scenario at time slott is denoted by, . When the scenario is ignored
(i.e. o, = 0), the right hand-side of'6 will be the maximum slot duration (i.e. all net-
work resources are available), and the QoS lgvelill avoid ignoring the most probable

scenarios.
6.2.3 Deterministic R-GPRA Formulation

The complete deterministic formulation of the proposed IRRA can be summarized in

the following closed form representation:

minimize {Z S wi+ () pr,ﬁyi,t} (6.5)

VieMVteT VieMVteT



6.3. REAL-TIME OPTIMIZER 116

subject to:
t t
C1: Zﬁ,t/xi,t/ > Zvi’t’ Vie M\VteT,
t'=0 t'=0
C3: Tt > O, 2 E.A4,t€f7i

Ca: rip1Vir—1 +riaip — Vig < TigYis, VIEMNVEET,

C5: vt >0, Vie M,teT.
M

C6: > xiy <1—(Crubia) Vt e T, Vw € Q,
i=1

C7: ) Gpt =8 VteT.
Ywe)

C8: 4, €{0,1} ViteT,Vw e,

The above formulation is obtained after combining Eq. 6.8 Bn. 6.4, resulting in
a mixed integer linear programming model. In the next sactie explore the possibil-
ities and challenges of solving this NP-complete model, proghose a guided heuristic

algorithm for real-time allocation.
6.3 Real-time Optimizer

This section reviews the numerical optimization methods ttan be used to solve the
formulated problem, and introduces the details of hewrstarch algorithm followed by

analysis of its computational complexity.
6.3.1 Optimal Solution

The robust formulation in Eg. 6.5 is a mixed integer linearggamming model. As such,
an optimal solution, which satisfies all the constraints) loa obtained using branch-and-

bound, branch-and-cut or similar techniques in commesoaters (e.g. Gurobi [124]).
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These techniques are capable of reaching the optimal golutith a very small duality
gap while satisfying all the constraints. However, the peobat hand requires obtaining
an optimal solution in real-time which is unattainable bg tommercial solvers or nu-
merical methods that suffer from low scalability and slomaergence. In particular, the
complexity of numerical optimization techniques grows @xgntially with the number of
decision variables [132]. These limitations are due to loaking the problem structure
and exploring a large area of the search space to avoid |ptiah@al solutions. A guided
heuristic algorithm is therefore proposed to provide a-tmaé feasible solution with low

optimality gap compared to commercial solvers solutions.
6.3.2 Guided Real-time Heuristic

The proposed guided search heuristic algorithm utilizesatedge about the problem’s
structure such as the interdependency and conflicts betthieszonstraints, and their im-
pact on the optimality of objective function. In essence,dlgorithm starts by satisfying all
the QoS constraints using the available radio resourcele wbnsidering the distribution
of user arrival and the predefined QoS level. To achieve gnaigimization, resources
are allocated to streaming users that have not reached paakel conditions. Then, the
algorithm exploits the prebuffering capabilities of thebile device for users experiencing
peak channel conditions. By doing so, the video content egouished in advance to avoid
allocation during time slots with low channel rates or higingestion. In the next step, the
value of the objective function is further minimized whibeaenining the trade-off between
possible energy savings during peak radio conditions, laads$k of wasting resources due
to video termination in future time slots. The heuristicusrsnarized in Algorithm 4 and
Algorithm 5, and detailed as follows:

In the first stage, minimal radio resources are calculaiad @-18) in order to satisfy
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the QoS constraint’1 in Eq. 6.2 for each slot while considering the network resesr
uncertainties. The available network resources at each $lot are calculated as follows

(lines 2-12):

1. The amount of resources in each scenario are initiallgdon ascending order and

probability mass function is sorted accordingly.

2. The scenarios are considered iteratively until the totabability reaches the QoS
level 5. Including more scenarios will result in a conservativeuoh that over-

satisfies the QoS and deteriorates the value of the objdatnation.

3. The resources of the last considered scenario (i.e. #redo that needs the maxi-

mum resources) are selected.

4. The total vacant capacity; remaining for video streaming users is calculated and

used in the next stage.

After satisfying constraint€’7 — C8, the algorithm proceeds to fulfil the per slot demand
constraintC'l. This is accomplished by settirdgl to an equality and calculate the resource
sharingz;; that guarantee the satisfaction of demand. Such minimatation continues
until the user reaches peak radio conditions (line 14). ghhoad scenarios, due to the
large number of users or high streaming rates, the totatatial resources in a certain
time slot might violate the airtime constrai@® in Eq. 6.5. Accordingly, the preceding
time slots with vacant resources will be used to prebufferdbntent of the highly loaded
time slots as depicted in lines 19-37 of Algorithm 4. Whil&aént exploitation of the
radio resources is mandatory for these scenarios, theithigoprebuffers the content of

the user with the highest achievable rate. Thus, less @rgnconsumed which increases
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the chance of satisfying the radio resource constr@intin case of non-vacant resources,
to accommodate the excess demand, the problem is said téelasible (lines 34-36).

To further minimize energy consumption, a calculated risdbpffering strategy is ap-
plied by Algorithm 5. In essence, the possibility of preleuifig is checked based on the
probability of terminating the video and the difference irannel rates. For each time slot
following this peak, the amount of resources in case of @febng and non-prebuffering
is checked while considering the probability of video taration (lines 3-5) which ap-
proximates the objective function in Eq. 6.3. In case of ma®ource saving (line 7),
prebuffering is done (line 8-10). Otherwise, the risk of thag resources is found to be
high and minimal allocation is done for the demand of this without prebuffering in the

previous slots (lines 13-16).
6.3.3 Algorithm Complexity

The first stage of the heuristic consists of sorting the stesand calculating the total
probability which have complexity aD(2 x N?). This stage is repeated for a maximum
of T time slots. Thus, the complexity of lines 2-120¢27 x N?), the minimal allocation

in lines 13-18 has complexity aD(MT), while the repairing of resources in lines 19-
37 has a complexity of(MT?) due to revisiting the preceding time slots to check the
possibility of prebuffering. Similarly, the second parttbé heuristic has a complexity of
O(MT?) in which previous slots are also revisited for prebufferamy of the future slots
with lower rates. Thus, the complexity of the whole propokedristic isO(AMT?) which

is significantly lower than the mathematical optimizatioethods whose complexity is

non-polynomial and depends on the number of decision Vasand constraints.
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Algorithm 4: QoS Satisfaction under Network Resource Uncertainty

Input : Users: M, Time Horizon:7, Predicted Rates?, Demand
Distribution: P, Streaming RateV ;
Output : X

Initialization : X =0, B=0,Y =0, Z=0N, =0Vt € T;

1 Define: t; = argmax {r;;, vVt € T};

2 fort € T do

3 | C=Sort(P Vw e O);

4 Initialize S; = 0;

5 Set minimum capacitg’; = 1;

6 while S; < 5 do

7 for w € Q2 do

8 Update probability sumS, = S, + P,;
9 Update minimum capacityc’; = 1 — C;
10 end

11 end

12 end

13 for i € M do

14 forte T |t <t do

15 Calculate minimal airtime;; ; = v; /7 ¢

16 Update used slot fractioN; = N; + z; ;

17 end

18 end

19 for t € T do

20 if N; > 1then

21 Setk =t —1,

22 while £ > 0 & N; > C] do

23 if x;; > 0|i = argmaz {r;;, Vi € M} then

24 Calculate the violated airtimazx; , = N; — 1,
25 Calculate the demanded airtimder; , = Ax;; x :;
26 if Ny + AZL’Z',]C <1 then

27 Updater; j, z;+, N; and Ny, ;

28 break;

29 end

30 end

31 k=k-—1;

32 end

33 end

34 if N; > C] then

35 | Return Infeasible Problem;

36 end

37 end
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Algorithm 5: Calculated Risk Prebuffering for Energy Minimization

Input : Users: M, Time Horizon:7, Predicted Rates?, Demand
Distribution: P, Streaming RateV ;
Output : X

Initialization : X =0, B=0,Y =0, Z=0N, =0Vt € T}
Define: t; = argmax {r;;,Vt € T'};
fort e T|t > t;do
Calculate airtime without Prebuffering; ; = v; ;/r;;
forreT |r<t,ri,>ri4, By #1do
Calculate airtime with prebuffering , = v; /7 ;
Calculate excess resourags = v x pXVt X Zis
if /sy > 2+ +vi- then
Updatez; , = x; - + 2.+
Update used slot fractioN; = N, + z; ;
Update prebuffering status, ; = 1,
end
end
if B;; # 1then
Update airtime without prebuffering ; = v; /7 +;
Update used slot fractioN; = N; + z;;
end
end
return.X
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6.4 Performance Evaluation

6.4.1 Simulation Environment

The proposed R-GPRA is developed in Network Simulator 33)nkTE module where

Gurobi (a commercial solver) is integrated to obtain beratksolutions [124]. The prob-
ability of terminating the video at any time slotis calculated using the model in [40].
Users follow random mobility traces within the cell covezaggion at a constant velocity
typical for suburban areas. The simulation parameters anterical values are shown in
Table 6.1. The simulation is performed 25 times, and theameeresults of all runs are

reported in the next subsections.
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The main metric to assess the energy consumption is theB8talrtime [27], and the
QoS of video streaming is quantified by the number and duraifovideo stops [119],

denoted by, andr and calculated as per Eq. 5.24 and Eq. 6.6 respectively.

T T
T — \/Tiﬁdlﬁ// dk. (66)
0 0

wherer; , equals to 1 if user experienced a video stop at time instanheres << t.

While the network performance is calculated by the averdgsmoh QoS metric, the
resultant Quality of Experience (QoE) is also reported talehthe users’ perception. QoE,
in essence, is a subjective metric that represents theceegnd-to-end performance level
from the user’s perspective, and can calculated using thenNOpinion Score (MOS) for-

mula in [133] and [134] depicted below:

1 M

MOSys =+ D (2,99 % €095 42,01, (6.7)
i=1
1 M
_ —3.44Ti
MOSyp =+ ; 459 x e : (6.8)

WhereMOSy 5 andMOSy p are the MOS values due to number and duration of video
stops, respectively. The value of MOS varies from 1 to 5 whiggresents very poor to
excellent service, respectively.

We adopt these metrics to evaluate the proposed R-GPRAXi$teng non-robust PRA
and the opportunistic RA (i.e. non-predictive). The follogzabbreviations are used in the

next subsection:

e PF (Non-PRA): the traditional opportunistic proportional fair schedukeused to

represent the class of non-predictive schemes. It alls¢hgeresources to the users
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based on their current channel measurements and cumsatived traffic in previ-

ous slots [135].

¢ NR-GPRA: is the existing energy-efficient predictive resource atmn that as-
sumes perfect prediction and adopts the deterministic dtations in [27]. This
scheme is simulated by setting the valuesyaind C; ; to zero in Eq. 6.5, and the

resultant formulation is solved using Gurobi optimizer41.2

e PK-GPRA: this refers to a hypothetical PRA with perfect knowledge nfertain
demand and network resources. As such it is aware of exachimgtduration and
amount of available resources. This is achieved by repiatia random variables in

EqQ. 6.1 by the exact values from the random generator in ns-3.

¢ OR-GPRA: this represents the proposexdbustgreen predictive resource allocation
as formulated in Eq. 6.5. The probability of video termioatiollows the distribution
in [40]. The optimal solution is obtained by the branch antimethods in Gurobi

optimizer [124].

o HR-GPRA: this refers to the heuristic version ©R-GPRA in which the solution

is obtained by the proposed guided search in Algorithm 4 dgd®thm 5.

6.4.2 Simulation Results

Evaluating Demand Uncertainties

We initially evaluate the impact of uncertain demand sotalythe prediction gains (i.e.
energy savings). The system load, in terms of number of welsstreaming rates, was
configured and set below the available radio resources. éjamcvideo stops were ob-

served, and thus the QoS was satisfied by all the schemes, thvbilnain focus remains on
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Table 6.1: Summary of Model Parameters in the Third Variant

Parameter Value/Definition

BS transmit power 43dBm

Bandwidth 5MHz

Time HorizonT 60s

¢ 0.99

Bit Error Rate 5x107°

Velocity 60 [kmph]

QoS levels 0.95

Packet size 103 [bytes]

Packet rate (from core network to BS) 103571

Buffer size 109 [bits]

Probability of watching ratig;'; 2/0p(E0)P(al), Vi €
M

Probability of user arrivap; , el e T

Standard deviation of watching time ratio 0.18

Skew parametet 0.84

Mean of watching time ratiq 0.27

User arrival rate\ 0.5

o(x) PDF of normal distribution

O (z) CDF of normal distribution

energy consumption. The maximum energy saving gap, reféor@s prediction gain, is
observed between the opportunistic non-predictive RA aipabtinetical perfect knowledge
PRA. As reported in the PRA literature, and shown in Fig. &.3the gain can reach up to
400 % due to the minimal allocation strategy adopted for celleedgers moving to peak
radio conditions. This is in addition to maximizing the alidion for users exiting the cell.

The existing non-robust PRA (NR-GPRA), however, has disfiad the gain to 150 %
as a result of the greedy prebuffering for cell center useatsg the cell, as yet not watch-
ing the full buffered video. On the contrary, the proposeloust GPRA has strategically
prebuffered the video content to the users exiting the egllon, rather than transmit-
ting their full content. Such risk-aware prebuffering s#gy avoids greedy prebuffering

of the future content whose delivery can be postponed urgilcorresponding time slots
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are reached, or the user arrives at time slots which have gilobability of terminating
the video. This is in addition to following the minimal all@ion to users experiencing
poor conditions until they reach peak rate values. As suehrabust scheme was able to
maintain the prediction gain 820 %.

The same impact of uncertainty on the prediction gain wagmies while increasing
the streaming rate for fewer users Fig. 6.3(b). In this scenthe maximum prediction
gap can reach up to 150 %, however, the uncertainties rdsult@ 25 % prediction gap
as depicted by the non-robust scheme. The gain was retaon®alt % by adopting the

stochastic based robust scheme.
Evaluating Joint Demand and Resources Uncertainties

The simulations are extended to incorporate the resouncesriainties, where the QoS
and QoE performance are depicted in Fig. 6.4(a)-Fig. 6.4(0) Fig. 6.5(a)-Fig. 6.5(b),
respectively.

The resources uncertainties violated the QoS level undantisting non-robust predic-
tive scheme for different number of users. Due to the arovabal-time users, the network
was unable to deliver the video content with the pre-catedlamount of resources. As
such, the demand of cell edge users is not met by the minirtcadadéd resources that
might be occupied by the real-time traffic users. The celteewideo streaming users
were not impacted due to the prebuffered content that ssegdhe demand. Nevertheless,
the substantial increase in the normalized number andidosabf stops is attributed to
the short video segments watched by the streaming usersiérmand uncertainty). The
corresponding QoS demonstrates the exponential decayes’ @experience as a result of
encountering a large number and durations of stops.

Unlike the non-robust scheme, the proposed optimal rolegsinique has satisfied the
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predefined QoS levep) for all number of users. The robust scheme balances ther@mou
of allocated resource to the cell edge and cell center uggehuffering is minimized for
the cell center users and thus reserved more resourcesfogdahtime users. As a result,
the amount of allocated resources to cell edge users wilebared during the arrival of
real-time users.

The performance of non-robust and robust predictive sceesneompared at different
streaming rates and real-time traffic load as shown in Fig(a$.and Fig. 6.6(b). As the
traffic load (streaming or real-time) increases, so doestinaer of unsatisfied users. With
regards to energy savings and the prediction gain, thehyabflrobust scheme to maintain
a high value was observed. Thus, the cost of robustnesgiisossbe very low as the robust

scheme avoided generating conservative solutions.
Performance of Heuristic

The above-mentioned observations over different systetrsaireaming loads are also re-
ported for the proposed heuristic. In essence, the heungts capable of satisfying the
QoS level and maintain the prediction gap under demand atwbrieuncertainties. The
complexity of both the optimal and heuristic techniques &asured in terms of the com-
putation time of a Quad Core i7-Processor, 3.2 GHz machirtee Reuristic algorithm
requires less thah 1ms. to solve the robust PRA formulation for all the network coofig
rations (i.e. number of users and streaming rate valueshh®awther hand, the performance
of Gurobi is sensitive to network load and capacity. The akean time varies from s. to
15s. depending on the number of unsatisfied users in previousdiats, streaming rate,
and available channel capacity. Requests of high streamateg during low channel ca-
pacity will result in a narrow feasibility region. Such stions are very challenging for the

solver that overlooks the problem structure and generak@mgi@ number of branches and
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nodes to solve the integer programming model.
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Chapter 7

QoS-Aware Robust-DASH under Rate
Uncertainty

The three variants in Chapter 5 and Chapter 6 aimed to mieithiz energy consumption
which is only achievable during low load scenarios as the B® @o into sleep mode.
This chapter introduces the fourth variant, in Fig. 7.1,chexploits all the available radio
resources (i.e. no energy saving) to achi@reQoS during high load scenarios, and solves
for both video quality and airtime fractions over a time4laon. This is unlike the previous
three variants in which the video quality was predefined el éane slot and thus treated as
constant in the optimization stage. The scheme in this enapan application of network-
centric DASH in which the network selects the video qualitythieve fairness among the
users, and calculates the corresponding amount of reso(aiceme fractions) required to
avoid video stops while considering uncertainties in presdi channel rates. The schemes

is referred to aRkobust PredictivddASH (RP-DASH).
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Figure 7.1: Block diagram of RP-DASH scheme under rate uacgy

7.1 System Model

7.1.1 Predicted Rate Error Model

In order to model prediction uncertainties, future rate @delled as random variable de-
noted byr; ;. This random variable is either described by 1) its discRil#- when the
realizations and their probabilities are known or 2) the €3#gan distribution in which the
standard deviation is denoted by, and calculated using the framework in Chapter 4. This
Gaussian distribution error model is motivated by the figdim [34, 43] and will be used
to quantify the trade-off between error PDF modelling anousiness. In both cases, the
per slot rate errors are assumed to be independent. Parlycthe error of predicting the
rate is function of erroneous rate in REM, variations in theelgss signal (which changes
the SINR) and user location uncertainty. These parametersaéculated at each slot based

on the independent channel gains [43, 90].
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7.1.2 Demand Model

In this scheme, we assume that the total video duration #eisigoing to watch is known
(i.e. no demand uncertainty). Yet, the scheme has to decidbeoquality of each video

segment.
7.2 Problem Statement

The RP-DASH scheme aims to calculate both the airtime fyastt; , and segments quality
nﬁ?t) for each usei at time slott such that all users experience fair video qualities while
meeting the QoS level. Particularly, QoS is said to be satisfihen users experience video

stops, due to buffer underrun, with probability belew: (1 — 5).
7.3 Problem Formulation

The introduced robust P-DASH and fair quality selectionaisrfulated based on Chance

Constrained Programming (CCP) as follows:

maximize {&1]{1[2 > vq} (7.1)

VteT VqeQ;
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subject to:
t t
Cl: Pr {Z TipTiy > Z Z /ﬁg?t),vq} >1— €y,
=0 /=0 VgeQ;
Vie MVteT,
t
C2: Z Z Iig?t)/TZ',t/ >t, Vie MVt e T,
t'=0VqeQ;
C3: > w¥ <1, Vie M,teT,
qeQ;
C4: s e {0,1}, Vie M,teT,
|M]
C5: megL VteT,
=1
C6: I’i7t20, ViGM,tGT.

e+ € [0,1] is the probability that the QoS of usérs unsatisfied at time slat where
e+ = 1 is the maximum QoS violation. The objective function aimsiaximize the
minimum total quality of each user to attain the fairness agnthe users over the time
horizon. The QoS chance constraint in C1 guarantees thaothledelivered content to
the user satisfies the anticipated demand (function of tleeteel quality) by a minimum
probability of 1 — ¢ while considering uncertainties in future rates. The c@mst in C2
complements C1 to ensure that the total duration of the teelsegments should be greater
than the elapsed playback time to avoid video stops. C3 arneh€dre that, for each user,
only one quality level is selected at a given time slot. Thih fdfonstraint C5 models the
limited resources at each base station by ensuring thatith@tthe airtime fractions is less
than 1 second which is the duration of the allocation slote TEst constraint C6 ensures
the non-negativity of the decision variable. Indeed thevalformulation does not have a

closed form solution due to the probabilistic constraint &4 such, we will initially adopt
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Figure 7.2: lllustration of SA and GA operations
the SA to obtain a deterministic equivalent form in the nedt®n.
7.4 Nominal Scenario Approximation Equivalent

The Scenario approximation adopts the discrete Probabiénsity Function (PDF) of the
uncertain rates to derive a deterministic representatiothe probabilistic constraint. The
PDF of every rate; ;, contains all the realizationé? and their probabilitiepgf} to construct

the scenarios over the time horizon. The approximationressiinat resource allocations
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and quality selections satisfy the scenarios whose totddghility of occurrence is more
than the defined QoS level (i.¢.— ¢). Each scenario corresponds to one combination of
the possible realizations of the uncertain rates in C1. Kamgple, the constraint in the
second time slot includes the rates in both the first and sktore slot. The scenarios will
comprise all the possible combinations of the realizatmfrtbese two rates. As illustrated
in Fig. 7.2(c), the first scenario consstsnﬂ‘) and rlg Wherer&) represents the first
realization of the rate at t=1, amﬁf2 is the first realization of the rate at t=2, both for the
first user. The probability of this scenario will be the protof the individual probabilities

(i.e. 311% = p(ll1 X p1 2) The deterministic equivalent of C1 in Eq. 7.1 is capturgiz-C9

below

maximize {VI/ZDGIJI&[Z PRy vq} (7.2)
VteT VqeQ);

subject to:

t

C7: Z Zt,x”/ >5ﬂ>z > Kﬁqt),uq, Vie MVt e T,Vj € T,

=0 =0 VYqeQ;
c8: > sPo >1-ey, Vie M teT,
JETit
c9: oY) e {0,1}, VieMteT,je T,
(C2-C6)

wherer(” is the j™* realization of the uncertain predicted rate at time slfar user;.
(J is the probability of thej™* scenario at time slat for useri. 5” is a binary decision
variable which equals to 1 if th¢” scenario at slot must be satisfied by the decision
variable and equals O otherwise (C9). Constraint C8 gueearthat the total probability of

all the satisfied scenarios exceeds the minimal QoS levet.
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Although the above formulation is deterministic and robitgtoses the following three

main challenges to the solver:

1. Non-linearity: due to the joint optimization of qualitpéairtime fractions, the right
hand side in C7 will be non-linear (both decision variablesraultiplied). Despite
the dimensions of C7, the problem is NP-hard and reachingphienal solution is

not guaranteed.

2. Exponential complexity: the QoS constraint at each tiloeis a function of the rate
in both the current and preceding slots (C7 in Eq. 7.2 and FR). Thus, at each
time slott the number of considered scenarios will }5[@,:0 |J;+|, where|J; | is
the number of realizations of the uncertain rate. Assuming that all the rates have
equal number of realizations (i.¢J; »| = |J;|), thus the total number of scenarios

for each time slot constraint per user will §g;|)(*.

3. Explicit rate information: the scenario-based appration requires the exact values
of realizations for all the rates and their correspondingppbilities. This requires
collecting large number of samples for each achievableralaate value in order to
construct an accurate discrete PDF. Due to the large nunfibéisical layer config-
urations such as Multiple Input Multiple Output (MIMO) andQ®, more possible
rates can be achieved. Hence, increases the burdens oftmredind error mod-

elling.

In the next subsection we address the first two challengele wie third challenge is

tackled separately in the next section by the Gaussian lzgg@dximation.
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7.5 Linear Look-Back Scenario Approximation Equivalent

The nonlinearity of QoS constraint C7 is solved by explgtihe problem’s structure. The
scenario decision variabkéft) is governed by the QoS constraint C8, as such a minimal
number of scenarios should be satisfied (ESEQ = 1). For each satisfied scenario (i.e.
55? = 1), the corresponding airtime allocation (i.e. left handesid C7) should guarantee
the satisfaction of the selected demand (i.e. video gyaltyile considering the worst
case of the selected scenario. The objective function pteysnain role in discarding the
scenarios (i.eéff't) = 0) whose realizations have very low values. In that case, biots

of C7 are equal to zero, and the scenario is not satisfied byatlcalated airtime fractions.

A new linear representation for C7 in Eq. 7.2 is introducecipture the above strategy
and avoid the exponential complexity due to consideringréadizations of all previous
time slots. Instead, the new formulation considers a lineak-back on the preceding
rate realizations to decrease the large number of scenarieach time slot. Only one
conservative realization denoted by;) is selected to represent each of the rates in the
previous slots. The number of scenarios at shaill depend only on the realizations in
this slot (J; ;|) and the number of previous slots{ 1) instead of all the realizations of the
latter. In order words,J; ;| x (¢t — 1) scenarios are considered instead|df|)®. The new

linear formulation is represented as follows:

X,K,0,Y

M
maximize Y, (7.3)
=1



7.5. LINEAR LOOK-BACK SCENARIO APPROXIMATION EQUIVALENT 1 40

subject to:

t—1

t
C10: Z Z Hg?t),vq — (Z rg,)xi,t/ + r;t)x,}t) < B(1 - 62(72), Vie M,teT,

/=0 YqeQ; /=0
cil: > pBo > 1 -« Vie M teT,
J€Tit
t
c12: > > kv, >V, Vi€ M,
t'=0 VqeQ);
(C2 - C6, C9)

The minimum function operator in the objective function @f.&.2 was replaced by in-
troducing auxiliary variablé’; and the fairness constraint C12 which must be satisfied for
all users. C10 represents the linear look-back constraimichpgf;) is the probability of
realizationj of channel rate-; ; andB is a very large number that forces the airtime allo-
cation to satisfy the demand when scenaris consideredrﬂ) approximates the channel
rates of the preceding timeslots and can be calculated lagviol

minimize rﬂ) (7.4)

()
0,7“1.3

subject to:

D> Y e,

J€Tit

j
0,3 ) >e  VieTy
j'=1
9]' € {07 1}
The objective function in Eq. 7.4 aims to select the optimradug of the aggregated

rater/, for the slot realizations such that very low values with @mwative solutions and

high values with non-robust solutions are ignored. The @isststraint ensures that the
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calculated value of/, surpasses some realizations due to their low values; whecging
such realizations avoid conservative solutions. The scomstraint guarantees that the
sum of probability of the ignored realizations is below tlegychdation levet, to achieve
robustness. The last constraint defifiess a binary decision variable. Since the objective
function is minimization which is subjected to the secondstaint, the decision variable

is >, 0; = 1. Thus only one realization value is selected from the firssta@int.
7.6 Linearized Gaussian Approximation Equivalent

The third challenge of Scenario Approximation (SA) is tackby adopting the Gaussian
Approximation (GA) which does not require the explicit igations and their probabilities
for all future rates. Instead, GA obtains a deterministased form for C1 using the CDF
of multivariate random variables denoted by Thus the probabilistic constraint C1 is
replaced by the following deterministic form

t t D; ¢
Pr {Z FiwTiy > Z Z ngflt),vq} =1- N(r, u, X)dr
#=0 -

t'=0 VqeQ; o0

(7.5)

Dit—pit —Mit
L R
B Sit

>1—€y,

Using the inverse CDF, the following closed form can be otadi

pig + Sia® %5y > Diy, Vie MLET, (7.6)
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where:
t (u) _ ) _
Tig — Tt Tip — Ti
Se=11 (¢(#) - @(laf))
/=0 b b
t
Wit = Z (R
t'=0

t
Z Ty,
t'=0
oty = B|(Fiy — Tiw)?],

Dy = Z Z "% t/vq

=0 VqeQ;
rflt) andrgj) are the lower and upper bounds of the realizations of futugdipted rate

i (1.. the support). Typical values of the channel rateserctirrent and future networks
are more than the corresponding variance valuesy(j.e>> %; ) and thusp(<= t) ~ 0.
S;.+ 1S used to normalize the truncated probability distriboitod the random rates.

The above deterministic form, however, is a mixed integexdgatic constrained pro-
gramming which is NP-hard. A linear approximation is addptghich turns the problem
to NP-compIete. This is done by the budgeted robust appiatam of [82] on Eq. 7.6 as
follows. LetZ Zt, _o|zipoip], thusy;, < Z” , and<I>( ) > O( (L)) This guar-
antees the satisfaction of C1 by substitutiig with Ei,t . Such apprOX|mat|on will result
in a linear but conservative formulation compared to thginal Gaussian approximation.

The final deterministic mixed integer linear equivalenttoe RP-DASH in Eq. 7.1 is

summarized as

maximize ) Y (7.7)

X,k,0,Y
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subject to:

Ci3: Hit + Si,tCI)_IEL > -Di,ta V1 € M,t € T,

€i,t Tt —

(C2 - C6, C9)
7.7 Real-Time Guided Heuristic

This section introduces the guided heuristic algorithmlitam real-time solutions for the
formulated RP-DASH problem. This is in addition to analyyits computational com-

plexity.
7.7.1 Limitations of Optimal Commercial Solvers

The Scenario-and Gaussian-based robust formulations .iY Bognd Eq. 7.7 are repre-
sented in mixed integer linear programming forms. The mawaatage of these forms
is that an optimal feasible solution can be obtained usimgdr and bound or simplex
techniques. Such conventional techniques are currentlydeeeloped and implemented
in many commercial solvers such as Gurobi [124]. These s®lvge their own developed
heuristic algorithms to calculate an initial feasible ¢mio which satisfies the constraints.
Other neighbouring solutions are then explored by meansasfdh and bound or simplex
algorithms, while using the duality gap to evaluate theroptity of each solution. Al-

though zero or low duality gaps (i.e. optimal solutions) tenachieved by commercial
solvers, the execution time highly increases with the pnotd dimensions (i.e. number of
constraints and decision variables). A guided heurisgorhm is proposed to provide a

real-time feasible solution with low optimality gap frommmercial solvers solutions.
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7.7.2 Guided Real-time Heuristic

The introduced guided heuristic search algorithm is awatbeproblem’s structure that
includes the interdependency between the constraintsh@ndmpact on the value of ob-
jective function. This is in addition to considering the metof robust and predictive
allocation in calculating the airtime fractions and videmlies. In essence, the algorithm
starts by satisfying all the QoS constraints using the alsal radio resources while ig-
noring the objective function in that stage. This first stagatains two problem specific
knowledge: 1) the buffering capabilities of the users, anith@ direct relation between the
QoS and the resource limitation constraints. The formemkadge can be used to push the
video content in advance and thus avoids stalling in coegesie slots. In the next step,
the value of objective function is maximized while explogdithree other problem features:
1) the trade-off between the fairness (i.e. the objectivetion) and the above-mentioned
two constraints, 2) the time horizon and the buffer statusagh user, and 3) the competi-
tion between the users, experiencing different chann#ds ran the radio resources of one
time slot.
The heuristic implements two main consecutive stages suip@dan Algorithm 6 and

Algorithm 7, respectively and are detailed as follows:
Satisfaction of Minimal Quality

In this initial stage (Algorithm 1), the lowest video quglis assigned to all users over the
time horizon (Algorithm 1, line 3). Then, the amount of amé that satisfies this quality
level is calculated (line 4) and used to update the total arnofiallocated resources at
each time slot (line 5). Such allocation guarantees thefaation of QoS constraint C13

inEq. 7.7.
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However, in high load scenarios, due to high QoS levels{i-e¢) or a large number of
users, the total allocated resources in a certain time sggttaiolate the airtime constraint
C5in Eq. 7.1. Accordingly, the preceding time slots withasmicresources will be used to
prebuffer the content of the highly loaded time slots asatediin lines 11-21 of Algorithm
6. While efficient exploitation of the radio resources is whaiory, the algorithm selects the
user with the highest achievable rate in this precedingasidtprebuffers the content (lines
13-16). Thus, less airtime is consumed and the chance affysag the radio resource
constraint C5 is increased. In case of non-vacant resquticesproblem is said to be
infeasible (lines 23-25). Other bounding and streamingtramts are implicitly satisfied

by the above iterative procedure.
Optimizing Long-term Fairness

This stage (Algorithm 2) aims to maximize the value of ohjectunction without violating
any of the aforementioned satisfied constraints. While thjeabive is to maximize the
long-term quality for each user, the algorithm tries to aghithis on both the current
and the future time slots. In each time slot with vacant reses) both the cumulative
quality and the required airtime to increase the currenissipiality are calculated for each
user (lines 3-7). The user with minimal quality (both cuntiwka and increased values)
is selected as long as the required airtime is less than #iable vacant resources (line
9). In case of more than one user with the same quality, thel@ategequires less airtime
is selected (line 10). This procedure is repeated for altsuas long as there are vacant
resources in the current slot and the video quality is imimgv

For low-load scenarios, due to either a small number of usehggh achievable rates,

the resources at a certain time slot might not be fully wdizAs such, predictive allocation
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is performed in order to maximize the quality of the userseeigmcing their highest chan-
nel conditions in the current time slot. This is modelled lyjcalating the ratio between
the achievable rate in this time slot and the minimal futate r Thus, users with peak radio
conditions who are heading towards the cell edge (line 1#)have the highest ratio and
thus can use these vacant resources to increase the qudlityi@ video content (lines
13-16). The achievable rate used to calculate all the araffocations as a function of the

rate average value, variance, CDF and QoS level as derivedi3rof Eq. 7.7.

7.7.3 Algorithm Complexity

The first part of the heuristic (i.e. Algorithm 6) consistawb successive loops, the first is
in lines 1-9 and has a complexi€y(MT'). The second loop, however, has a higher com-
plexity of O(MT?) due to revisiting the preceding time slots in lines 9-27. iirty, the
second part of the heuristic (i.e. Algorithm 7) has a comipfexf O(QMT?) =~ O(MT?)

due to the relatively small number of available quality lex@mpared to the length of the
time horizon. The complexity of the whole proposed hewristio (M 7?) which is lower

than numerical optimization methods.

7.8 Performance Evaluation

7.8.1 Simulation Setup

We simulate the proposed RP-DASH using the LTE module in {il&28] which is inte-
grated with Gurobi commercial solver [124] to obtain optirealutions for all the for-

mulated problems. The fading model of 3GPP defined in [113[dided to the received
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Algorithm 6: Initialization and QoS Satisfaction Stages of Guided Hstiari

Input : Users: M, Time Horizon:7, Average Predicted Rate®, Rate
Variances>:, Maximum Violation:e and Video Qualities();
Output : X

Initialization : X =0,k =0 N, =0Vt €T

1 Define: Ry = 75y — Siu®; L ois;

2 forie Mdo

3 for t € T do

4 Setry, = 1;

5 Set C13 of Eq. 7.7 to an equality and solve foy;
6 Ny = N; + Tjt

7 end

s end

9 fort € T do

10 if N; > 1then

11 Setk =1¢t—1;

12 while £ > 0 do

13 Calculate the residual airtim&z, , = N, — 1;
14 Calculate the demanded airtimder; ,, = Az, x 77;;
15 i* = argmazx; Vi € M,

16 if N, + Axi*,k < 1then

17 Updatez;. , ¢, Ny and Ny, ;

18 break;

19 end

20 k=k-—1;

21 end

22 end

23 if N; > 1then

24 | Return Infeasible Problem;

25 end

26 end

27 return X
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Algorithm 7: Optimization Stages of Guided Heuristic

Output: X andx;
1 Define: R, =7t — Si,tq)e_iigi7t;

2 fort € T do

3 while N, < 1do

4 CalculateV;; = >, Y vaeQ ﬂﬁ?t),vq for all users;

5 for i € M do

6 Calculate a possible higher quality Ievé;ft')vq/;

7 Calculate the required airtim&z; , to satisfymgf’t/)vq/;
8 UpdateV; , usingmgf{)vq/ ,

9 end

10 Select the set of usefsvith minimumyY, ;;

11 Select usefk from [ with minimal Az, 4;

12 UpdateN;, x4, and/@,(jz;

13 if [ is emptythen

14 while ¢’ < T do

15 Select usef with maximum(R,; ;) x (0 — 7it);
16 Repeat line$ — 6 and linel1 for useri with t = t/;
17 end

18 end

19 end

20 end

21 returnX andx

power at the user device to apply variations in predictegl rdsers follow random prede-
fined paths within the cell coverage region at varying veiesifrom 25 to 40 km/h, which
correspond to typical values in urban areas. All the sinmiigbarameters and values are
presented in Table 7.1, and the average of all output reswis 50 simulation runs, is re-
ported in the following subsections. We compare the intceduRP-DASH scheme with an
existing non-robust P-DASH technique. The abbreviatidesinitions and solution meth-
ods of the comparative schemes are summarized in Table Xi2irt§ non-robust P-DASH

techniques, referred to #&DASH are simulated by replacing the random rates in Eq. 7.1
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Table 7.1: Summary of Model Parameters in the Fourth Variant

Parameter Value

BS transmit power 43dBm

Bandwidth 5MHz

Time HorizonT 60s

Streaming rates 0.5,1,1.5,2,2.5[Mbps]
Bit Error Rate 5x107°

Shadow correlation distangg,,) [113] 50m
Shadow standard deviation [113] 4,6

Velocity 25 - 40 [km/h]
Packet size 103 [bytes]
Packet rate (from core network to BS) 103571
Buffer size 10° [bits]

Table 7.2: Comparative Schemes

Notation Definition Solution Method

P-DASH Non-robust P-DASH in [26, 136] Gurobi [124].

PP-DASH P-DASH with perfect channel knowledge Gurobi [124].
SRP-DASH SA based RP-DASH in Eg. 7.3 Gurobi [124].
GRP-DASH GA based RP-DASH in Eq. 7.7 Gurobi [124].
HRP-DASH GA based RP-DASH in Eq. 7.7 Heuristic in Algorithm 6-7.

with the average rate values. The performance bounds aagettbyPP-DASHwhich
assumes perfect prediction of channel rates (without €rtorreplace the random variable

inC1Eq.7.1.

7.8.2 Evaluation Metrics

QoS Satisfaction and QoE levels

In order to assess the robustness of the simulated schemesasure the QoS satisfaction
using the number and duration of video stops denoteq &yd 7, respectively and calcu-
lated as in Eq. 5.24 and Eq. 6.6. Similar to Chapter 6, thdteeglQOE is also reported to
model the users’ perception using the MOS formula in [133] [r34].
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Video Streaming Quality

A key performance parameter of DASH is the selected quafigflahe segments over the

time horizon for each usérdenoted by/;, and calculated as a function of the segment size

as follows
Vi=Y Y s, VieM (7.8)
VteT VqeQ);

TheV; metric is averaged over all users to assess the consenvattigra schemes, while

the optimality of the objective function is measured by thierfess using the Jain’s index

below
M
(; Vi)?
J— ? (7.9)
M),V

=1

7.8.3 Simulation Results

Comparison with non-Robust P-DASH

We firstly compare both the SA and GA formulations of the idtrced robust P-DASH
against the existingon-robust P-DASHor different values of QoS degradations and stan-
dard deviations. The existing non-rob#sDASHsuffered from an increased number and
durations of video stops with the standard deviations ofilshéng as depicted in Fig. 7.3(a)
and Fig. 7.3(b), respectively. Although only four users @asidered, this QoS degrada-
tion resulted in average and poor MOS values due to frequeps svith long durations as
shownin Fig. 7.4(a) and Fig. 7.4(b), respectively. Thigislauted to the average predicted
values of rates adopted by tReDASHwhich did not account for the rate variations and

uncertainties. As such, the highest quality levels wereagéaselected by the non-robust
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scheme as depicted in Fig. 7.5(a). This is as opposed to tleelutedGRP-DASHand
SRP-DASHormulations which were able to keep the percentage of shogsdurations
below the QoS degradation lewek 100%. An increasing trade-off between the QoS and
QoE improvements on one hand and the quality degradatioheoather hand is deduced
over differente levels as in Fig. 7.3(a)-Fig. 7.4(b) and Fig. 7.5(a), reipely. The main
objective (i.e. quality fairness), did not suffer a sigrafit degradation as reported by the
Jain’s index in Fig. 7.5(b).

By increasing the number of users, more and longer vides stmobserved which re-
sulted thus in low MOS values when using (HdASHas shown in Fig. 7.6(a)-Fig. 7.7(b).
This degradation is caused by the optimistic strategy oPHi2ASHwhich tries to maxi-
mize the quality at the expense of prebuffering and thusemsss the chance of stops during
channel variations. This was avoided by BRP-DASHwhich, in essence, allocates more
airtime than thé>-DASHbased on the standard deviation and the QoS degradatidreleve
The optimality gap between tHieDASHandRP-DASH(GA and SA) also decreases with
the increased load as shown in Fig. 7.8(a)-Fig. 7.8(b) dimedormer has to retroactively

allocate extra airtime after detecting the video stops.
Gaussian and Scenario Based Comparisons

Comparing the&SRP-DASHvith GRP-DASHI the latter is found to be less robust, in terms
of average stops, during the low standard deviations arnd Q@S degradation levetsas
shown in Fig. 7.3(a)-Fig. 7.3(b). However, this is not theecavhen the MOS is considered
which illustrates that GA is equal or more robust than the SAliacussed in Section 7.4
especially at very low values ef Since the MOS is calculated by an exponential function,

it reveals that the GA provides a fair robustness across skeeswnlike the SA which
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Figure 7.3: QoS performance of RP-DASH (SA and GA) for 4 us¢different degrada-
tion levels
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decreases the average degradation and conservatism. filmaldyp gap in Fig. 7.5(a)-
Fig. 7.5(b) reveals another trade-off between the amoumntfofmation, required by the

SA, and the lower quality obtained by the GA.
Evaluation of the Heuristic and Complexity

The performance of the introduced heuristic is reporteddftierent numbers of users in
Fig. 7.6(a)-Fig. 7.7(b). Similar to th&RP-DASH the HRP-DASHwas able to satisfy
the maximum QoS degradation leweand provided a stable QoS performance over the
load and the channel standard deviation. It can be also $e¢riteHRP-DASHwas
slightly more conservative than tiigRP-DASHand thus reported a smaller optimality gap
in Fig. 7.8(a)-Fig. 7.8(b). This demonstrates the abilityhe heuristic to exploit the prob-
lem structure and obtain near-optimal solutions that adsisfy the defined QoS degrada-
tion levele. The complexity of the both optimal and heuristic techngji;emeasured in
terms of the execution time as reported in Table 7.3. Theistgualgorithm only requires
less tharD.1ms. to solve the RP-DASH formulation irrespective of the netiimad (i.e.
number of users) and the QoS degradation leverhis is unlike the commercial solver
which required tens or hundreds of seconds to reach thet @dugéty gap. The execution
time increases with both the number of users, due to therlargblem dimension, and the
QoS level { — ¢) due to the tight feasibility region. When the optimal SA &ed, more
execution time is required compared to the GA due to the adde&diary decision vari-
ables, thus, presenting a new trade-off between the comptEhHhSA and the conservatism

of GA.
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Table 7.3: Execution Time of the Simulated Schemes

Number of Users

QoS Degrad. Leve) (

Technique

4 8 12 16 0.3 0.2 0.1 0.05
P-DASH 50s. 120s. 290s. 600s. 30s. 30s. 30s. 30s.
SRP-DASH  60s. 200s.  320s. 600s. 50s. 55s. 60s. 80s.
GRP-DASH  50s. 120s.  260s. 560s. 30s. 40s. 50s. 5Hs.
HRP-DASH <0.1ms. <0.1ms. <0.1ms. <0.1ms. <0.1lms. <0.1ms. <0.Ims. <0.1lms.
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Chapter 8

Conclusions and Future Directions

8.1 Summary and Conclusions

In this thesis, we addressed the problenpdictiveresource allocation (PRA) for video
streaming under imperfect prediction. In contrast to presiefforts [25-27, 37, 38], we
developed aobustPRA framework with uncertainty in mind that providgsnt proba-
bilistic QoS guarantees and risk-aware prebuffering over a timedrmr By offering a
mechanism to control the probability of constraint satistan, operators may strike a bal-
ance between network utilities such as energy and the rsgdacated with erroneous pre-
dictions. Furthermore, in order to facilitate practicapligyment, near-optimal real-time
solutions coupled with a channel variation tracking teghei were developed. Different
variants of R-PRA framework are introduced for energy-gdficy and QoS-aware adaptive
streaming. Stochastic optimization Chance ConstrainegrBmming (CCP) and Recourse
Programming (RP) techniques are adopted, and tested watdedemand and resource un-
certainties. Results, obtained by a standard compliantlabor, indicate the resilience
of R-PRA framework in meeting QoS constraints, while siguaifitly reducing BS energy
and achieve QoS fairness under practical prediction uaicgyt To summarize, for the

first time in literature, a robust framework is introduced fo r taking decisions over a
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time horizon while considering the interdependency betweaethe time slot constraints
and the demand accumulation. This is further integrated wit adaptive tracking of
uncertainty degree to control the robustness level.

The first two variants introduceghergy-efficient robusichemes under rate uncertain-
ties. The first solution assumed Gaussian distributed rate mmodel and integrated the
Gaussian Approximation (GA) for chance-constraint QoS efind, a Kalman Filter (KF)
for prediction uncertainty tracking, and a guided heuritat enables real-time implemen-
tation. The second variant, on the other hand, adopted &enspproximation (BA) com-
bined with Particle Filter (PF) to handle uncertainty withkaown or complex rate error
models in which the Cumulative Density Function (CDF) is iavertible. Such tracking
enables the operator to be greedy during periods of accpratictions, and thereby max-
imizes energy savings without compromising QoS. Using aepliheuristic enabled the
adoption of the GA and BA in their original less conserva®ezond order Cone Program-
ming (SoCP) form as opposed to linear approximations initeeature. These results are
unlike the existingnon-robustPRA that rely only oraveragefuture rates and thus suffered
from QoS violations due to increased number of video stope rEsults further demon-
strated thanon-predictiveRA either consumes excess energy or violates the QoS level
under low or high load scenarios, respectively.

Both Gaussian and Bernstein approximations are tested deting target QoS level.
At small feedback intervals that require frequent optirtic@avia optimal solvers, both ap-
proaches were able to meet the QoS level while keeping thgsaving gain close to
the benchmark. Less complex longer feedback intervals stidwwwever different perfor-
mances in both QoS satisfaction and energy saving. In péatjcGaussian approximation

was not robust to avoid the accumulation of video stops ovesecutive time slots. This
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necessitates eithgoint probabilistic form with optimal risk allocation or shortddback
intervals. On the contrary, Bernstein approximation wds &t satisfy the QoS level but
with high cost of robustness, i.e. more energy consumptioa to using the bounds rather
than the CDF of the prediction error.

The third variant focused also on energy-saving, but hahdlleertainties in both user
demands and network resources over a time horizon. The RE@Rdnodels adopted the
probability of random video termination and arrival of réiahe users. The performance
evaluation demonstrated the ability of the introduced s@h® maintain the energy-saving
gains of PRA while satisfying the QoS levels. An increaseystam load underlines the
importance of having a robust scheme to avoid excessivesditm for users leaving the cell
center and with high probability of terminating the videddye viewing the prebuffered
content. This is unlike existing PRA schemes that greedipat the peak radio conditions
by prebuffering the whole future content without takingoinbnsideration the unstable user
demand. As such, high energy consumption is observed cathparthe non-predictive
scheme employed in today’s network.

The last variant focused drRobust PredictivddASH (RP-DASH) to jointly calculate
the resources and video quality while handling uncertagnitn predicted rates and achiev-
ing streaming quality fairness among the users. New lineterchinistic equivalent forms
are then proposed based on GA and SA to provide closed foumiaud at a polynomial
complexity as opposed to traditional forms. Unlike the thoptimization literature, the
allocation over time-horizon will result in GA and SA withimgolynomial complexity and
non-convex approximations. As such, linearized and narsexvative yet robust approx-
imations are proposed in this work. The performance showedbility of probabilistic

RP-DASH to satisfy the predefined QoS level. This is unlilkeekisting non-probabilistic
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P-DASH schemes which assume ideal prediction and thusiexgerhigh degradation in
users’ QoS and QoE. The results further revealed a tradeetfieen the risk of experi-
encing video stops and maximizing video quality, which @ages the need for an explicit
modelling of user’s preferences. As such, users seeking Video qualities should be
assigned low QoS probabilistic levels at the expense oeasad number and duration of
stops. In addition to satisfying the QoS level, the smaliroptity gap between the SA
and GA promises the adoption of the latter in RP-DASH withldganaximization. This
is unlike the existing conclusions on GA that doubted itusibess in long-term energy-
efficient predictive video delivery. Adopting the GA in radiypredictive DASH will de-
crease the cost of uncertainty modelling as the networkadpewill not rely on the exact
realizations of future rates. Moreover, near-optimal-taak robust solutions are obtain-
able for the energy-saving and DASH scheme through a low Gty guided heuristic
algorithm that exploits the problem structure. All the abg@erformance improvements
and design flexibilities envision the implementation of RA°in future wireless networks
under practical uncertainties.

Compared to non-predictive schemes in today’s networks, # R-PRA demon-
strates that significant prediction gains are still achievéle under all kinds of uncer-

tainties.

8.2 Future Directions

The future work considers the following enhancements tsyiséeem model, R-PRA frame-

work and the performance evaluation:

1. System Model:

— Backhaul and Application: The main focus in this thesis i wireless link.
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However, the uncertainties and limitations of the backimemvork have to be
taken into consideration. This includes the delivery ofvfteo content from
the application server to the BS cache. The delays in thecgbioin server re-
sponse to the user requests, maximum caching capacity BSkend user de-
vice, and the backhaul link capacities have to be explicitbdelled to achieve

an optimized end-to-end performance.

— Multi-cell Environment: While each BS individually exeestthe R-PRA so-
lutions, cooperative scheduling has to be introduced. ttiqudar, neighbour-
ing BSs can jointly exchange future information and caltutasource alloca-
tion that controls the inter-cell interference. For ins@nthe interfering BSs
can schedule their sleep interval to void simultaneousstrassion and thus

increase the total channel capacity.

2. R-PRA Framework:

— Robust Optimization: the proposed work typically relied sitochastic opti-
mization to handle uncertainties. Other robust technicuet as Fuzzy and
decision under uncertainty such as Markov decision proagebslief networks
can be also introduced. The fuzzy is known for its low compyesut high con-
servatism which can be handled by real-time tracking ofreraviance. Other
probabilistic decision making techniques such as Markaisiien process can
provide simple uncertainty modelling as it only requireaditional probability

among the system states rather than the error CDF.

— Real-time Prediction: the future information can be recated frequently over
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the time horizon to correct the previous predictions whieeraging the un-
veiled randomness over time. In particular, the KF and PH tesdrack the
degree of uncertainty, can be extended to correct the peedicformation us-
ing the measurements. This will eventually lead to low utasety degree and

thus low safety term (i.e. cost of robustness).
3. Performance Evaluation and Optimization:

— Probabilistic QOE Models: Existing user experience madeds QoE, can be
extended to capture the trade-off between video stops dectsé quality using
the probabilistic metric. Particularly, a new QoE model ¢éeded to consider
the user’s preference, i.e. both quality and stops, as difumaf the QoS level
e. Such model would guide the operator while selecting thaevalf ¢ jointly

with the resources and quality of segments to reflect thepreéerence.

— Dynamic Objective: Existing PRA focused on optimizing eithhe QoS (e.qg.
video quality), in high load scenarios, or decreasing therggnrconsumption
in low load cases. A joint optimization model is desirableatdonomously
evaluate the network load and select the objective fundtioaptimize (e.g.

energy or QoS parameter).

— Testbed Implementation: An experimental evaluation isledd¢o assess the R-
PRA under real network conditions. Thus, assess the peafacengains of both
PRA literature and robust techniques while consideringtpral uncertainness.
This is in addition to discovering implementation challee@nd verifying the
assumptions on system model of the PRA literature and thgogexd frame-

work.



BIBLIOGRAPHY 166

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

R. Atawia, H. Abou-zeid, H. Hassanein, and A. NoureldiRpobust resource al-
location for predictive video streaming under channel viagety,” in Proc. IEEE

GLOBECOM pp. 4683-4688, Dec 2014.

R. Atawia, H. Abou-zeid, H. Hassanein, and A. Noureld®hance-constrained qos

satisfaction for predictive video streaming,”mmoc. IEEE LCN pp. 253-260, 2015.

R. Atawia, H. Abou-zeid, H. S. Hassanein, and A. Noune]diJoint chance-
constrained predictive resource allocation for enerdigieht video streaming,”

IEEE J. Select. Areas Communwol. 34, pp. 1389-1404, May 2016.

R. Atawia, H. S. Hassanein, H. Abou-zeid, and A. NouneJdRobust content deliv-
ery and uncertainty tracking in predictive wireless nekgdrlIEEE Trans. Wireless

Commun.pp. 1-14, 2017.

R. Atawia, H. Hassanein, and A. Noureldin, “Energy-eéiit predictive video

streaming under demand uncertainties,Pioc. IEEE ICC pp. 1-6, May 2017.

R. Atawia, H. S. Hassanein, N. A. Ali, and A. Noureldin, Bust content deliv-
ery and uncertainty tracking in predictive wireless netggr IEEE Trans. Green

Commun. Netwpp. 1-14, 2017.



BIBLIOGRAPHY 167

[7] R. Atawia, H. Hassanein, and A. Noureldin, “Fair robusggictive resource allo-
cation for video streaming under rate uncertainties,Pimc. IEEE GLOBECOWM

pp. 1-6, Dec 2016.

[8] R. Atawia, H. S. Hassanein, and A. Noureldin, “Robustgdaarm predictive adap-
tive video streaming under wireless network uncertaifitidSEE Trans. Wireless

Commun.pp. 1-14, 2017.

[9] R. Atawia, H. Hassanein, and A. Noureldin, “Optimal amtbust gos-aware predic-
tive adaptive video streaming for future wireless netwgriksProc. IEEE GLOBE-

COM, pp. 1-6, Dec 2017.

[10] K. Kobayashi and Y. Matsunaga, “Radio quality prediatbased on user mobility
and radio propagation analysis,” Rersonal, Indoor and Mobile Radio Communi-

cations, 2009 IEEE 20th International Symposiummm 2137-2141, IEEE, 2009.

[11] CISCO, “Cisco visual networking index: Global mobileatd traffic fore-
cast update, 2016-2021.” http://www.cisco.com/c/emsisitions/collateral/service-
provider/visual-networking-index-vni/mobile-whitexper-c11-520862.html, 2017.
Accessed Jun. 15th, 2017.

[12] T. Stockhammer, “Dynamic adaptive streaming over HT3fndards and design
principles,” in Proceedings of the second annual ACM conference on Multamed

systemspp. 133-144, ACM, 2011.

[13] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hol3fedthd P. Tran-Gia, “A sur-
vey on quality of experience of HTTP adaptive streamingEE Communications

Surveys & Tutorialsvol. 17, no. 1, pp. 469-492, 2015.



BIBLIOGRAPHY 168

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

L. Correia, D. Zeller, O. Blume, D. Ferling, A. Kangas,Godor, G. Auer, and
L. Van der Perre, “Challenges and enabling technologieeha@rgy aware mobile

radio networks, TEEE Commun. Magazingol. 48, no. 11, pp. 66—72, 2010.

K. Davaslioglu and E. Ayanoglu, “Quantifying poteritenergy efficiency gain in
green cellular wireless networksEEE Commun. Surveys Tutsol. 16, pp. 2065—

2091, Fourthquarter 2014.

M. A. Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo, “Qimal energy savings in
cellular access networks,” iroc. IEEE ICC Comm. Workshopgsp. 1-5, 2009.

E. Oh and B. Krishnamachari, “Energy savings throughadyic base station switch-
ing in cellular wireless access networks,” iftoc. IEEE GLOBECOMpp. 1-5,
2010.

A. A. Hammad, T. D. Todd, G. Karakostas, and D. Zhao, “Ibtink traffic schedul-
ing in green vehicular roadside infrastructurdlSEE Trans. Veh. Technolvol. 62,

no. 3, pp. 1289-1302, 2013.

IGR, “U.S. regional and small operator network infrasture Capex and Opex fore-

cast, 2012-2017.” https://igr-inc.com/, 2013. Accesseat.M9th, 2017.

M. Azimifar, T. D. Todd, A. Khezrian, and G. Karakostd¥ghicle-to-vehicle for-
warding in green roadside infrastructurlEEE Trans. Veh. Technglol. 65, no. 2,

pp. 780-795, 2016.

A. Khezrian, T. D. Todd, G. Karakostas, and M. Azimif&nergy-efficient schedul-
ing in green vehicular infrastructure with multiple roadisunits,”IEEE Trans. Veh.

Technol, vol. 64, no. 5, pp. 1942-1957, 2015.



BIBLIOGRAPHY 169

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. A. Hammad, T. D. Todd, and G. Karakostas, “Variablerhte transmission
schedule generation in green vehicular roadside udEEE Trans. Veh. Technol.

vol. 65, no. 3, pp. 1590-1604, 2016.

3GPP, “LTE; transparent end-to-end packet-swicheebsting service (pss); pro-
gressive download and dynamic adaptive streaming over HB§p-dash),” Tech.

Rep. TS 26.247 v10.7.0, 2012.

A. El Essalili, D. Schroeder, E. Steinbach, D. Staehiel, . Shehada, “QoE-based
traffic and resource management for adaptive HTTP videwetglin LTE,” IEEE
Transactions on Circuits and Systems for Video Technohlagly25, no. 6, pp. 988—
1001, 2015.

Z. Lu and G. de Veciana, “Optimizing stored video defiwér mobile networks:

The value of knowing the future,” iRroc. IEEE INFOCOM pp. 2806—-2814, 2013.

R. Margolies, A. Sridharan, V. Aggarwal, R. Jana, N. Staanarayanan, V. A.
Vaishampayan, and G. Zussman, “Exploiting mobility in pydmnal fair cellular
scheduling: Measurements and algorithms,Pioc. IEEE INFOCOM pp. 1339-
1347, 2014.

H. Abou-zeid and H. S. Hassanein, “Predictive greereless access: Exploiting
mobility and application information,IEEE Wireless Communvol. 20, no. 5,

pp. 92-99, 2013.

H. Abou-zeid, H. S. Hassanein, and S. Valentin, “Enegfficient adaptive video
transmission: Exploiting rate predictions in wirelesswwks,” IEEE Trans. Veh.

Technol, vol. 63, no. 5, pp. 2013 — 2026, 2014.



BIBLIOGRAPHY 170

[29] H. Abou-zeid, H. Hassanein, and S. Valentin, “Optimedgictive resource alloca-

[30]

[31]

[32]

[33]

[34]

[35]

[36]

tion: Exploiting mobility patterns and radio maps,” Rroc. IEEE GLOBECOM
pp. 4714-4719, 2013.

M. S. Zefreh and T. D. Todd, “Energy provisioning in gnemesh networks using
positional awareness|EEE Trans. Veh. Technglvol. 63, no. 8, pp. 4064-4076

2014.

X. Lu, E. Wetter, N. Bharti, A. J. Tatem, and L. Bengtsstkpproaching the limit
of predictability in human mobility,"Scientific reportsvol. 3, no. 2923, pp. 1-9,
2013.

M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Unstanding individual hu-
man mobility patterns,Natureg vol. 453, pp. 779-782, 2008.

H. Abou-zeid, H. S. Hassanein, Z. Tanveer, and N. A. Ayaluating mobile signal
and location predictability along public transportationtes,” inProc. IEEE WCNC
pp. 1195 - 1200, 2015.

N. Bui and J. Widmer, “Modelling throughput predictierrors as Gaussian random

walks,” in Poc. KuVS Workshop on Anticipatory Netwa2R14.

J. Yao, S. Kanhere, and M. Hassan, “Improving QoS in ftsghed mobility using
bandwidth maps,JEEE Trans. Mobile Computvol. 11, no. 4, pp. 603-617, 2012.

M. Neuland, T. Kurner, and M. Amirijoo, “Influence of pitisning error on x-map

estimation in Ite,” inProc.IEEE VTC (Spring)pp. 1-5, 2011.



BIBLIOGRAPHY 171

[37]

[38]

[39]

[40]

[41]

[42]

[43]

H. Abou-zeid, H. S. Hassanein, and S. Valentin, “Enegfficient adaptive video
transmission: Exploiting rate predictions in wirelesswwks,” IEEE Trans. Veh.

Technol, vol. 63, no. 5, pp. 2013 — 2026, 2014.

H. Abou-zeid and H. S. Hassanein, “Toward green mediaeahy: location-aware
opportunities and approache#fEE Wireless Commurwol. 21, no. 4, pp. 38-46,
2014.

L. Chen, Y. Zhou, and D. M. Chiu, “Video browsing-a studfuser behavior in
online vod services,” ifProc. IEEE ICCCN pp. 1-7, 2013.

Y. Chen, B. Zhang, Y. Liu, and W. Zhu, “Measurement andielong of video watch-
ing time in a large-scale internet video-on-demand systd#aiE Trans. Multime-

dia, vol. 15, no. 8, pp. 2087-2098, 2013.

H. Zhou, P. Fan, and J. Li, “Global proportional fair sculing for networks with
multiple base stations|EEE Trans. on Veh. Techvol. 60, pp. 1267-1879, 2011.

Y. Gai and B. Krishnamachari, “Distributed stochasiidine learning policies for
opportunistic spectrum accesiEE Trans. Signal Processol. 62, pp. 6184—6193,
Dec 2014.

N. Y. Soltani, S.-J. Kim, and G. B. Giannakis, “Chanamstrained optimization
of ofdma cognitive radio uplinksJEEE Trans. Wireless Commurvol. 12, no. 3,

pp. 1098-1107, 2013.

[44] A.Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpa@dGrunewald, K. Jain,

and V. N. Padmanabhan, “Bartendr: a practical approach éoggraware cellular

data scheduling,” ifProc. ACM Mobicompp. 85-96, 2010.



BIBLIOGRAPHY 172

[45] J. Hajipour and V. C. Leung, “Proportional fair schadglin multi-carrier networks
using channel predictions,” iRroc. IEEE Int. Conf. on Commun. (ICQ)p. 1-5,
2010.

[46] H. Farahat and H. S. Hassanein, “Proactive cachingrfodycer mobility manage-

ment in named data networks,” Rroc. IEEE IWCMGC pp. 171-176, 2017.

[47] H. Farahat and H. S. Hassanein, “Supporting consumdilityousing proactive

caching in named data networks,”ftoc. IEEE GLOBECOMpp. 1-6, 2016.

[48] H. Farahat and H. Hassanein, “Optimal caching for poadlunobility support in
named data networks,” iRroc. IEEE ICC pp. 1-6, 2016.

[49] H. Farahat and H. Hassanein, “On the design and evaluafi producer mobility
management schemes in named data network$rac. ACM MSWIMpp. 171-
178, 2015.

[50] H. Farahat, R. Atawia, and H. S. Hassanein, “Robust gire@ mobility manage-
ment in named data networking under erroneous contentghi@dal’ in Proc. IEEE

GLOBECOM pp. 1-6, 2017.

[51] A. Duel-Hallen, “Fading channel prediction for mobiedio adaptive transmission

systems,Proceedings of the IEEEvol. 95, no. 12, pp. 2299-2313, 2007.

[52] Y. Zhao, B. Le, and J. H. Reebtletwork support—The radio environment mé&jse-
vier, 2006.

[53] A. Galindo-Serrano, B. Sayrac, S. B. Jemaa, J. Riijiand P. M&honen, “Auto-
mated coverage hole detection for cellular networks usadgrenvironment maps,”

in Proc. IEEE WiOptpp. 35-40, 2013.



BIBLIOGRAPHY 173

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

T. Cai, J. van de Beek, B. Sayrac, S. Grimoud, J. Nasneddl. Riihijarvi, and
P. M&honen, “Design of layered radio environment maps faraptimization in

heterogeneous lte systems,Rroc. IEEE PIMRC pp. 172-176, 2011.

J. Johansson, W. A. Hapsari, S. Kelley, and G. BodogniMization of drive tests
in 3gpp release 11JEEE Communications Magazineol. 50, no. 11, 2012.

C. Brunner and D. Flore, “Generation of pathloss andriierence maps as son en-
abler in deployed umts networks,” Wehicular Technology Conference, 2009. VTC
Spring 2009. IEEE 69ttpp. 1-5, IEEE, 2009.

I. Skog and P. Handel, “In-car positioning and navigattechnologies—a survey,”
IEEE Transactions on Intelligent Transportation Systewas. 10, no. 1, pp. 4-21,
2009.

S. Tao, V. Manolopoulos, S. Rodriguez, M. Ismail, andRusu, “Hybrid vehicle
positioning and tracking using mobile phones,TT& Telecommunications (ITST),

2011 11th International Conference qop. 315-320, IEEE, 2011.

K. Farkas, T. Hossmann, F. Legendre, B. Plattner, anl.Pas, “Link quality
prediction in mesh networksComputer Communicationgol. 31, no. 8, pp. 1497—

1512, 2008.

D. Fernandes Boesel, “Prediction of vehicle trajee®mwith map data for coopera-

tive systems,” 2009.

R. Franke, “A critical comparison of some methods faenpolation of scattered

data,” tech. rep., DTIC Document, 1979.



BIBLIOGRAPHY 174

[62] R.J.Renka, “Multivariate interpolation of large sefscattered dataACM Trans-

actions on Mathematical Software (TOM8)!. 14, no. 2, pp. 139-148, 1988.

[63] D. Denkovski, V. Atanasovski, L. Gavrilovska, J. Rjdnvi, and P. Mahonen, “Re-
liability of a radio environment map: Case of spatial intdgtion techniques,” in
Cognitive Radio Oriented Wireless Networks and Commuigicaf CROWNCOM),
2012 7th International ICST Conference, @p. 248-253, IEEE, 2012.

[64] L. Bolea, J. Pérez-Romero, and R. Agusti, “Receivedaignterpolation for con-
text discovery in cognitive radio,” ilVireless Personal Multimedia Communications

(WPMC), 2011 14th International Symposium pp. 1-5, 2011.

[65] W. Fa, F. Xu, and Y. Jin, “Sar imaging simulation for ammamogeneous undulated
lunar surface based on triangulated irregular netwdskjence in China Series F:

Information Sciencewol. 52, no. 4, pp. 559-574, 2009.

[66] S. Ureten, A. Yongagglu, and E. Petriu, “Interference map generation based on
delaunay triangulation in cognitive radio networks,"Signal Processing Advances
in Wireless Communications (SPAWC), 2012 IEEE 13th Intevnal Workshop on
pp. 134-138, 2012.

[67] S. Ureten, A. Yongadilu, and E. Petriu, “A comparison of interference cartogsap
generation techniques in cognitive radio networks Communications (ICC), 2012

IEEE International Conference opp. 1879-1883, 2012.

[68] J. Ojaniemi, J. Kalliovaara, A. Alam, J. Poikonen, and/chman, “Optimal field
measurement design for radio environment mappinglhfarmation Sciences and

Systems (CISS), 2013 47th Annual Conferenc@pnl-6, 2013.



BIBLIOGRAPHY 175

[69] H. Abou-zeid, H. S. Hassanein, and N. Zorba, “Long-tdaimness in multi-cell
networks using rate predictions,” Proc. IEEE GCC Conf. and Exhibition (GCC)
pp. 131-135, 2013.

[70] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic JBna, X. Jin, J. Rexford,
and R. K. Sinha, “Can accurate predictions improve videsastring in cellular net-
works?,” inProceedings of the 16th International Workshop on Mobilen@ating

Systems and Applicationgp. 57-62, ACM, 2015.

[71] S. Cicalo, N. Changuel, V. Tralli, B. Sayadi, F. Fauckeand S. Kerboeuf, “Im-
proving QoE and fairness in HTTP adaptive streaming over h&Evork,” IEEE
Transactions on Circuits and Systems for Video TechnolgyPP, no. 99, pp. 1-1,
2015.

[72] K. J. Ma and R. Bartos, “HTTP live streaming bandwidthmagement using intel-
ligent segment selection,” @lobal Telecommunications Conference (GLOBECOM

2011), 2011 IEEEpp. 1-5, 2011.

[73] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and Race, “Towards
network-wide QOE fairness using openflow-assisted adapigeo streaming,” in
Proceedings of the 2013 ACM SIGCOMM workshop on Future huceatric mul-
timedia networkingpp. 15-20, ACM, 2013.

[74] A. Seetharam, P. Dutta, V. Arya, J. Kurose, M. Chetlad &. Kalyanaraman, “On
managing quality of experience of multiple video streamsvireless networks,”

IEEE Transactions on Mobile Computingpl. 14, no. 3, pp. 619-631, 2015.



BIBLIOGRAPHY 176

[75] M. Elazab, A. Noureldin, and H. Hassanein, “Integratedperative localization for

connected vehicles in urban canyons,Prroc. IEEE Globecon2015.

[76] M. Elazab, A. Noureldin, and H. S. Hassanein, “Integdatooperative localization

[77]

[78]

[79]

[80]

[81]

[82]

for vehicular networks with partial gps access in urban ocasy Vehicular Commu-

nications 2016.

M. Elazab, “Integrated cooperative localization imess for gps denied environ-

ments,” Master’s thesis, 2015.

A. Mahmoud, A. Noureldin, and H. Hassanein, “Vanetsiposing in urban envi-

ronments : A novel cooperative approach,Aroc. IEEE VTC (Fall) 2015.

A. Mahmoud, A. Noureldin, and H. S. Hassanein, “Disited vehicle selection
for non-range based cooperative positioning in urban enwents,” inProc. IEEE

ICC, pp. 1-6, 2016.

W. Hu and G. Cao, “Energy-aware video streaming on gohares,” inProc. IEEE
INFOCOM, pp. 1185-1193, 2015.

M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Using ward-sourced viewing
statistics to save energy in wireless video streaming,Piac. ACM MobiCom

pp. 377-388, 2013.

R. Ramamonjison and V. K. Bhargava, “Sum energy-efficiemaximization for
cognitive uplink networks with imperfect CSI,” iRroc. IEEE WCNCpp. 1012—
1017, 2014.



BIBLIOGRAPHY 177

[83]

[84]
[85]

[86]

[87]

[88]

[89]

[90]

[91]

M. Abdel-Rahman and M. Krunz, “Stochastic guard-bawre channel assign-
ment with bonding and aggregation for DSA networkEEE Trans. Wireless Com-

mun, vol. 14, pp. 3888—-3898, July 2015.
B. Liu, Theory and practice of uncertain programmirfgpringer, 2002.
P. Kali and S. W. Wallacestochastic programmingspringer, 1994.

Q. Chen, “Comparing probabilistic and fuzzy set apphess for designing in the

presence of uncertainty,” 2000.

A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello, “Trengple average approxi-
mation method for stochastic discrete optimizati®@AM Journal on Optimizatign

vol. 12, no. 2, pp. 479-502, 2002.

A. Charnes and W. W. Cooper, “Chance-constrained amogning,” Management

sciencevol. 6, no. 1, pp. 73—-79, 1959.

A.-C. So and Y. J. Zhang, “Distributionally robust slagaptive ofdma with soft gos
via linear programming,JEEE J. Select. Areas Communmol. 31, no. 5, pp. 947—

958, 2013.

W.-L. Li, Y. Zhang, A.-C. So, and M. Z. Win, “Slow adap@vofdma systems
through chance constrained programming&EE Trans. Signal Proceswyol. 58,

no. 7, pp. 3858-3869, 2010.

M. J. Abdel-Rahman, F. Lan, and M. Krunz, “Spectrumesdint stochastic chan-
nel assignment for opportunistic networks,’Rnoc. IEEE GLOBECOMpp. 1272—
1277, 2013.



BIBLIOGRAPHY 178

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

S. Parsaeefard, A. R. Sharafat, and M. Rasti, “Robudiaduilistic distributed power
allocation by chance constraint approach,Piroc. IEEE PIMRC pp. 2162-2167,
2010.

B. L. Miller and H. M. Wagner, “Chance constrained pragrming with joint con-

straints,”Operations Researchol. 13, no. 6, pp. 930-945, 1965.

G. Classen, D. Coudert, A. M. Koster, and N. NepomucéBandwidth assignment
for reliable fixed broadband wireless networks, Hroc. IEEE WoWMolMpp. 1-6,
2011.

B. Nunez, P. Adasme, I. Soto, J. Cheng, M. Letournel,Aandsser, “A chance con-
strained approach for uplink wireless ofdma networksPrac. CSNDSPpp. 754—
757, 2014.

S. S. VenkateshThe Theory of Probability: Explorations and ApplicationSGam-
bridge University Press, 2012.

M. Ono and B. C. Williams, “Iterative risk allocation: Aew approach to ro-
bust model predictive control with a joint chance constrain Proc. IEEE CDC

pp. 3427-3432, 2008.

F. Oldewurtel, C. N. Jones, and M. Morari, “A tractablepaoximation of chance
constrained stochastic mpc based on affine disturbancbdekd in Proc. of IEEE

Conf. on Decision and Contropp. 4731-4736, 2008.

U. A. Ozturk, M. Mazumdar, and B. A. Norman, “A solutioo the stochastic unit
commitment problem using chance constrained programmiB&E Trans. Power

Syst, vol. 19, no. 3, pp. 1589-1598, 2004.



BIBLIOGRAPHY 179

[100] Q. Wang, Y. Guan, and J. Wang, “A chance-constrainemtdtage stochastic pro-

[101]

[102]

[103]

[104]

[105]

[106]

[107]

gram for unit commitment with uncertain wind power outpdEEE Trans. Power

Syst, vol. 27, no. 1, pp. 206-215, 2012.

M. Ono and B. C. Williams, “Decentralized chance-doaisied finite-horizon opti-

mal control for multi-agent systems,” Proc. IEEE CDGC pp. 138-145, 2010.

Q.-T. Thieu and H.-Y. Hsieh, “Use of chance-consteaiprogramming for solving
the opportunistic spectrum sharing problem under rayléglmg,” in Proc. IEEE
IWCMC, pp. 1792-1797, 2013.

N. Bui, F. Michelinakis, and J. Widmer, “A model for thughput prediction for
mobile users,” iProc. European Wirelespp. 1-6, 2014.

W. Xu, A. Tajer, X. Wang, and S. Alshomrani, “Power a@idion in miso interfer-
ence channels with stochastic csIEEE Trans. Wireless Communwol. 13, no. 3,

pp. 1716-1727, 2014.

J. E. Mitchell, “Polynomial interior point cutting @he methods,Optimization

Methods and Softwayeol. 18, no. 5, pp. 507-534, 2003.

M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret,jAgations of second-order
cone programming,Linear algebra and its applicationsol. 284, no. 1, pp. 193—

228, 1998.

A. Noureldin, T. B. Karamat, and J. Geordgyyndamentals of Inertial Navigation,

Satellite-Based Positioning and Their Integratiddpringer, 2013.



BIBLIOGRAPHY 180

[108] K. Huber and S. Haykin, “Improved bayesian mimo charnreeking for wireless
communications: incorporating a dynamical modéEEE Trans. Wireless Com-

mun, vol. 5, no. 9, pp. 2458-2466, 2006.

[109] L. Mihaylova, D. Angelova, S. Honary, D. R. Bull, C. Na@agarajah, and B. Ristic,
“Mobility tracking in cellular networks using particle fdting,” IEEE Trans. Wire-

less Communvol. 6, no. 10, pp. 3589-3599, 2007.

[110] A. Galindo-Serrano, B. Sayrac, S. B. Jemaa, J. Rimiijand P. Mahonen, “Cellular
coverage optimization: A radio environment map for miniatian of drive tests,” in

Cognitive Communication and Cooperative HetNet Coextgqrp. 211-236, 2014.

[111] N. Kolehmainen, J. Puttonen, P. Kela, T. RistaniemK&nttonen, and M. Moisio,
“Channel quality indication reporting schemes for utramgaerm evolution down-

link,” in Proc. IEEE VTC (Spring)pp. 2522-2526, 2008.

[112] 3GPP, “LTE; evolved universal terrestrial radio aax€E-UTRA); physical layer
procedures,” Technical Specification TS 36.213 v12.5.00B&015.

[113] 3GPP, “LTE; evolved universal terrestrial radio esx€E-UTRA); further advance-
ments for E-UTRA physical layer aspects,” Technical Reddt 36.814 V9.0.0,
3GPP, 2010.

[114] Y. Li, M. Reisslein, and C. Chakrabarti, “Energy-eitiot video transmission over a

wireless link,”IEEE Trans. Veh. Technolol. 58, no. 3, pp. 1229-1244, 20009.

[115] C. Desset, B. Debaillie, V. Giannini, A. Fehske, G. Awnd H. Holktamp, “Flexible
power modeling of Ite base stations,”ftoc. IEEE WCNCpp. 2858-2862, 2012.



BIBLIOGRAPHY 181

[116] G. Auer, V. Giannini, . Gédor, P. Skillermark, M. Otss, M. A. Imran, D. Sabella,
M. J. Gonzalez, C. Desset, and O. Blume, “Cellular energgieficy evaluation

framework,” inProc. IEEE VTC (Spring)pp. 1-6, 2011.

[117] H. Holtkamp, G. Auer, S. Bazzi, and H. Haas, “Minimigibase station power con-

sumption,”IEEE J. Select. Areas Commuwol. 32, no. 2, pp. 297-306, 2014.

[118] A. ParandehGheibi, M. Médard, A. Ozdaglar, and S. 8b#é&i, “Avoiding interrup-
tions—a qoe reliability function for streaming media apptions,”IEEE J. Select.

Areas Communvol. 29, no. 5, pp. 1064-1074, 2011.

[119] Y. Xu, E. Altman, R. El-Azouzi, M. Haddad, S. Elayoubnd T. Jimenez, “Analy-
sis of buffer starvation with application to objective Qofimization of streaming

services, Multimedia, IEEE Transactions grol. 16, no. 3, pp. 813-827, 2014.

[120] N. Bui, F. Michelinakis, and J. Widmer, “Mobile networesource optimization

under imperfect prediction,” iRroc. IEEE WoWMolMpp. 1-6, 2015.

[121] N.Y. Soltani, S.-J. Kim, and G. B. Giannakis, “Charamstrained optimization of
ofdma cognitive radio uplinks,JEEE Trans. Communvol. 12, no. 3, pp. 1098-
1107, 2013.

[122] 3GPP, “E-UTRA,; base station (BS) radio transmissiod eeception (release 10),”
Technical Specification TS 36.104 VV10.2.0, Dec. 2011.

[123] S. Boyd and L. Vandenbergh€pnvex optimization Cambridge university press,
2004.

[124] Gurobi, “Gurobi Optimization.” http://www.gurol@om/. Accessed Mar. 29th, 2017.



BIBLIOGRAPHY 182

[125] G. Piro, N. Baldo, and M. Miozzo, “An LTE module for the43 network simulator,”
in Proc. Int. ICST Conf. on Simulation Tools and Technigqpps415-422, 2011.

[126] H. Abou-zeid, H. S. Hassanein, and R. Atawia, “Towardsbility-aware predictive
radio access: modeling; simulation; and evaluation in #evorks,” inProc. ACM

MSWiM pp. 109-116, 2014.

[127] Gurobi, “Gurobi Optimization.” http://www.gurolmom/products/features-benefits/.

Accessed Mar. 29th, 2015.

[128] MATLAB, “MATLAB Optimization.” http://www.mathworks.com/help/optim/ug/constrained-

nonlinear-optimization-algorithms.html/. Accessed Me#th, 2017.

[129] H. Holma and A. Toskald, TE for UMTS-OFDMA and SC-FDMA based radio ac-
cess John Wiley & Sons, 2009.

[130] A. Ben-Tal and A. Nemirovski, “Selected topics in r@bwconvex optimization,”

Mathematical Programmingol. 112, no. 1, pp. 125-158, 2008.

[131] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Cadaa “Downlink packet
scheduling in Ite cellular networks: Key design issues asgraey,”|lEEE Commun.

Surveys Tutsvol. 15, no. 2, pp. 678-700, 2013.

[132] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Matti-Spaccamela, and
M. Protasi,Complexity and approximation: Combinatorial optimizatiproblems

and their approximability propertiesSpringer Science & Business Media, 2012.

[133] T. Hol¥feld, M. Seufert, M. Hirth, T. Zinner, P. Tran&iand R. Schatz, “Quan-
tification of YouTube QOE via crowdsourcing,” iaroc. IEEE ISM pp. 494-499,
2011.



BIBLIOGRAPHY 183

[134] L. G. M. Ballesteros, S. Ickin, M. Fiedler, J. MarkemtlaK. Tollmar, and K. Wac,
“Energy saving approaches for video streaming on smarghbhased on QoE mod-

eling,” in Proc. IEEE CCNCpp. 103-106, IEEE, 2016.

[135] T. Bu, L. Li, and R. Ramjee, “Generalized proportiofat scheduling in third gen-
eration wireless data networks,” Proc. IEEE Int. Conf. on Computer Commun.

(INFOCOM), pp. 1-12, Apr. 2006.

[136] H. Abou-zeid, H. S. Hassanein, and N. Zorba, “Longrdairness in multi-cell
networks using rate predictions,” Proc. IEEE GCC Conf. and Exhibition (GCC)
pp. 131-135, 2013.



BIBLIOGRAPHY 184

Appendix

Appendix A

The objective function and all constraints in Eq. 5.12 anedr except the QoS one. The
convexity of this first constraint will be checked using thesdian matrix, which should be
positive semidefinite [123]. Let the QoS constraint for thetfuser { = 0) attimet = 1 be

denoted ag (xo,, xo.1, Co.1)- In the standard form, the constraint is represented aswell

1
Z x(%,tlo—g,t/ (1)
t'=0

For the ease of representation, fét o, o1, Co.1), Zo,0, Zo1 and¢y; be denoted ag,

1
f(wo0, 70,1, Co1) = — Z To¢ ot — Q:@J
=0

xo, v1 and( respectively. The Hessian matrk can then be defined as follows

02 F 02 F 0*F
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The function (F) is convex if the Hessian matrix is positieensdefinite. In particular,

8:1:08:1:1 N 81’181’0

all the principle minors should be positive or zero.

e The value of satisfaction degree of individual chance caidt (i.e., () should be
less than 0.5 to satisfy the constraint (summatioQ)dér g > 0.5. Accordingly, the
inverse of Q functiorQ;_lg is less than 0. Thus, all the first order principle minors

are positive.

e The first second order principle minor (constructed by dedethe third row and
column) is always positive for all the values af andz,, 0y ando, . However,
this is not the case for the other second order principle rsimthose positiveness

depend on the actual values af andz,, 0o andogo. For illustration, the value
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of a second order principle (constructed by deleting themsgéecow and column) is

calculated as follows

2 2
X0,
1 9 190,1
As :( — Q1 ¢00 - S 3) 9)
( =0 It'ao,t/)

-1 2
0 2 1 2

¢ =0 L0,4/0 0,/

It can be observed thak; is only positive for specific values of allocation deci-
sions and the variance. For instance, by assuming the carans greater than the
variancer, the second term will be greater than the first term, and ftwus: 0. Ac-
cordingly, the Hessian matrix is neither positive nor negatemidefinite and hence

the problem is non-convex.

Appendix B

All the equations in Eq. 5.14 are linear and thus convex edbepsecond constraint whose
convexity is checked as follows

F(y,8)=>_ Qyis) — 1+ 5

vteT

VE(y, 8) = Q(ys) = e 2" (10)

VQF(y,B) = Q”(yi,t> = E?ﬁ,t@ P

Since we assume > 0.5 for practical QoS levels, the constraint holdsyff,, .- Q(yi:) <
0.5. This implies that)(y;:) < 0.5 which occurs when, ; > 0. The Hessian matrix is a
diagonal matrix of positive entries that represents itemglues. Accordingly, the Hessian

matrix is positive semidefinite and this proves the conyexdtfunction.



