
Benchmarking Message Authentication Code
Functions for Mobile Computing

A. M. Rashwan#1, A-E M. Taha*2, and H.S. Hassanein#3

#Telecommunications Research Lab
School of Computing
Queen’s University

Kingston, ON, Canada K7L 3N6
{1arashwan, 3hossam}@cs.queensu.ca

*Electrical Engineering Department
Alfaisal University

P.O. Box 5092
 Riyadh 11533 KSA
2ataha@alfaisal.edu

Abstract— With the increased popularity of both Internet and
mobile computing, several security mechanisms, each using
various cryptography functions, have been proposed to ensure
that future generation Internets will guarantee both authenticity
and data integrity. These functions are usually computationally
intensive resulting in large communication delays and energy
consumption for the power-limited mobile systems. The functions
are also implemented in variety of ways with different resource
demands, and may run differently depending on platform. Since
communications within the next generation Internet are to be
secured, it is important for a mobile system to be suited to the
function that provide sufficient communication security while
maintaining both power-efficiency and delay requirements. This
paper benchmarks mobile systems with cryptographic functions
used in message authentication. This paper also introduces a
metric, namely apparent processing, that makes benchmarking
meaningful for mobile systems with multiple processing cores or
utilizing hardware-based cryptography. In addition, this paper
discusses some of evaluated functions’ computational
characteristics observed through benchmarking on selected
mobile computing architectures.

Keywords-component; message authentication code; message
hashing; next generation Internet security; mobile security;

I. INTRODUCTION
Many standards and proposals have been made to ensure

the authenticity and data integrity of Internet communications
at different levels. Such proposals include IPSec, SSL/TLS,
Kerberos, TCP-AO, SCTP-AUTH, to name a few [1]; targeting
various services from secured web browsing to protection of
intercontinental routing information, and systems from small
embedded devices to large mainframes and data centers. Many
of those proposals achieve both authenticity and data integrity
of transmitted messages with the use of cryptographic functions
to generate verification tags, known as Message Authentication
Code (MAC), to be attached to their corresponding messages.

While the use of cryptography in computing is essential to
ensure the security of the information being transmitted
through the Internet, it is also known to be computationally
challenging. As the importance of security increases with the
development of wireless communications and smart portable
systems, researchers in security have continued developing,
optimizing, and evaluating the performance of various
cryptographic approaches. The major focus is finding the
approach with strongest security measures and least possible
resources demand. As a result, several cryptographic functions
had found their ways as software-based and hardware-based

solutions to provide message encryption and verification
services for various systems and applications. These functions
were subject to several research studies evaluating their
security and performance, in terms of either the computational
power or data throughput.

However, previous studies [2] [3] [4] [5] were evaluating
the absolute computational or resource demands of a group of
selected functions running on the architecture of study. Only
slight considerations were made for how functions behave
under dynamically-controlled resource limitations.
Cryptographic functions are further attached to other processes,
such as communication sessions, and not operated in isolation.
Thus, evaluating them for communication purposes should be
conducted in a scenario that reflects existence of multiple
sessions competing on the existing resources, instead of simply
benchmarking for the absolute performance or throughput on
the system of study. Especially if the evaluated function is not
processed by the same processor where communications are
handled – a common setup for many mobile systems [6].

This paper investigates a more comprehensive way to
evaluate cryptographic functions that offer MAC services for
mobile communications. In this paper, the computational
characteristics of some known MAC functions are observed
through benchmarking them for communication purposes;
under different mobile computing architectures. In doing so,
we suggest the use of a new metric, called apparent processing,
to facilitate a meaningful comparison between MAC functions.
The metric borrows from the notion of apparent parallelism
utilized in the context of parallel computing.

The remainder of this paper is organized as follows. Section
II refers to some of the related works and describes motivations
behind inducting the benchmarking of MAC functions. Section
III defines the metric, assumptions, run environments, and used
workload for the benchmarking. Evaluation of the
benchmarking results is presented in Section IV. Section V lists
some additional observed considerations and challenges when
benchmarking MAC functions. Finally, conclusion and future
directions are mentioned in Section VI.

II. RELATED WORK AND MOTIVATION
MAC functions are powered by two types of cryptographic

functions: hash or block-cipher [7]. Hash functions, such as
MD5, SHA1, and SHA2, are one-way compression algorithms
that map variable-length larger messages into shorter fixed-
sized strings that vary for different messages. Block-cipher

978-1-4673-0921-9/12/$31.00 ©2012 IEEE

Globecom 2012 - Next Generation Networking and Internet Symposium

2585

functions, such as AES, TWOFISH, SERPENT, and RC6, are
encryption/decryption algorithms designed to work on fixed-
sized portions of given messages, called blocks. MACs are
generated either by directly hashing combined messages with
provided secrets using hash functions, or by hashing message
blocks encrypted with provided secrets when using block-
cipher-functions.

There are many performance studies of both hash and
block-cipher functions in the literature; evaluating different
implementations directly and indirectly for various applications
[8] [9], architectures [2] [5] [10] [11], and network structures
[3] [12]. Those studies were evaluating either the processing
power of evaluated functions on certain processing units, or the
data throughput that the evaluated functions process.

Today’s mobile systems are powered by various single-core
and multiple-core processors of different architectures. In
addition, several mobile systems are equipped with additional
hardware-assisted components to offload computing intensive
operations, such as graphics and cryptography, from their main
processors, while communications are still maintained by the
main processors. Different considerations must be taken into
account when benchmarking MAC functions for network
communications. These considerations include:
• Cores Involved. The future generation Internet protocols,
and the future production operating systems in response, will
have message authentication as a standard feature. Execution of
MAC functions might be locked on certain processor cores so
those functions do not render the system unusable in case of
high load. Previously conducted performance studies usually
focused on the processor power consumed by an evaluated
function, without taking into consideration how many cores are
utilized by that function.
• Extra-Processor Computation. There are implementations
of MAC functions that execute outside the main processor (e.g.
an external cryptographic processor), yet the main processor
still responsible for handling the communication session
utilizing the MAC function. Evaluating the processing power
on either the main processor or the external processor alone
might not be sufficient to indicate the effective performance of
that communication session.
• Implementation Heterogeneity. A MAC function can
have different implementations under same computing
architectures, for example, single- threaded and multi-threaded
implementations. The determination of superior
implementation will be subject preliminary to how the
processor will handle them, and how the operating system will
schedule their execution. Other factors such as I/O and bus
delays may also contribute to the determination.
• Workload Concurrency. Previous studies did not consider
the use of concurrent workloads (for example, to simulate
multiple connections) for their evaluations. With concurrent
workloads, effects of scheduling, memory and I/O demands
can be reflected on the processing time, giving more realistic
performance determination (such as computing the system’
capacity in term of number of concurrent connections).

It becomes obvious that there are substantial considerations
to be made beyond power or throughput. The objective of this
work is to realize an environment to characterize the effect of
these considerations.

III. BENCHMARKING SETUP
In order to successfully evaluate the MAC functions for

communication purposes within mobile systems, it is important
to have a benchmarking setup that effectively describes the true
nature of both mobile environments and communications. To
achieve this, the benchmarking setup should incorporate the
use of mobile production systems, and production operating
systems configured for everyday usage. For communications,
the setup should be simulate concurrent processing of message
authentication as it happens with real communication sessions,
and to operate on realistic message lengths that are supported
by major mobile communication protocols.

In this paper, the benchmarking setup was designed to
fulfill the mentioned objectives. Real architectures from three
major known brands in mobile computing were evaluated. A
customizable distribution of Linux operating system, which its
kernel is powering many of today’s mobile systems, is used.
The workload was implemented to apply message
authentication processing in simulated communication mode,
while controlling some operational factors such as cores
involved, number of concurrent sessions, and session duration.
The workflow was also designed to ensure that the both
workloads and their parameters were suitable to apply on
studied systems for accurate evaluations. The benchmark
metrics were selected to observe computational characteristics
of studied systems in both simple and comprehensive ways.

The following elaborates on the details of the
benchmarking setup.
A. Benchmark Environment

The environment is designed in a manner that ensures that
the operating system has minimum influence on obtained
results, all benchmarking experiments were conducted under
the same OS (Ubuntu Linux 10.04LTS). The chosen operating
system, which is running in Gnome desktop mode, uses
“Completely Fair” scheduler for scheduling its processes.

Benchmarked architectures were TI DM3730 ARM Cortex
A8, Intel Core I3 M350, AMD Opteron 2354, Mobile Intel
Pentium 4 3.0GHz. While Opteron is not build for mobile
systems, it was included in the benchmark since it was the
available AMD architecture at the time of the study, as it shares
similar features with its mobile counterpart (Phenom) such as
Cool'n'QuietTM speed-stepping (which is a mobile-based
feature that reduces processor clock frequency to save energy
or reduce operating temperature).
B. Workload and Workflow

A multi-threaded benchmarking application is written to
evaluate selected MAC functions. The application uses
multithreading approach to create workload instances in order
to minimize the effect of memory switching on the
measurements accuracy. The application was also equipped
with a method for binding the execution of the workload
instances into certain predefined cores in order to study the
effect of limiting the number of available processor cores on
the performance of the workload.

The benchmarking workload procedure is illustrated in
Figs. 1 and 2. Since typical communication sessions usually
runs concurrently with different durations and message lengths,
the workload was implemented to simulate such conditions;

2586

Create n sub workload threads
for benchmarking F

Start

Available
Processor Cores

c

Function to
Benchmark

F

Simulated
Connections

n

Set message size p =16 bytes

Execute
created sub workloads for t
time with the given message

size p

Sub workloads executed k
times?

Number of
Iterations

k

Set message size p =(2 * p)
bytes

Message size p exceeded
64KB?

End

Sub Workloads
session duration

t

NO

YES

YES

NO

Fig. 1. Benchmark workload procedure

Start

Available
Processor Cores

c

Function to
Benchmark

F

Session duration
t

Packet Size
p

Wait for other sub workloads
to initialize

Generate message m of size
P

Initialize function F and its
key setup

Use F to generate MAC for
m

Execution time less than
t?

End

Measuring
process

YES

NO

Measurement
Start t1

Measurement
Stop t2

Fig. 2. Benchmark sub workload procedure

Mobile
Systems

Benchmark
Scenario

Configure
Workload

Evaluating
Parameters

Analysis
&

Validation

Benchmark
Evaluation

OperatorOperator

Fig. 3. Benchmark workflow procedure

with assumptions of fixed selection of evaluated function and
fixed session duration per run to simplify the evaluation. In
addition, workload executes the message authentication process
same as with a typical production message authentication
session. Under each studied architecture, the workload was
applied with no other foreground applications running except
for the Gnome desktop environment in order to reduce the
effect on the measurement accuracy. The workload creates n
sub workload threads to simulate existence of n connections
transmitting messages ranging from 16 bytes to 64 kilobytes
(the maximum length supported by the IP protocol). For each
sub workload, there are n-1 background sub workloads
representing n-1 background connections. In sub workloads,
measurements are taken using both the processor clock and the
system’s wall clock. The period of taking measurements is
defined by interval from t1 to t2, where t1 and t2 are predefined
time values between 0 and the execution time t, with t2 > t1.

Fig. 3 describes the benchmarking workflow procedure.
This procedure is essential to ensure workloads being applied
to suit benchmarked systems, and measurements obtained are
accurate and informative. First, a benchmark scenario is
defined to include the number of connections, the function to
evaluate, and the processor cores to utilize. Through the
process, obtained measurements are analyzed and validated.
For example, the accuracy can be affected by resources
overutilization, insufficient session duration for reaching the
steady state, or inappropriate measurement period. In this case,
their corresponding parameters, which are the number of
connections n, the session duration t, and the measurement
period [t1,t2] will be adjusted accordingly for the next
workload.

C. Evaluated MAC functions
1) Hashed-based MAC (HMAC) [13]: a hash based

algorithm, which is being used by various popular Internet
protocols (e.g IPSec and TLS [1] [14]) to offer message
authentication service during communication sessions
Evaluated hash functions under this group are MD5, SHA1,
SHA2-256 (simply SHA256) and SHA2-512 (simply
SHA512).

2) One-key MAC One (OMAC1): also known as CMAC; a
block-cihper based algorithm that was introduced to resolve
security flaw of it predecessor, CBC-MAC, when generating
MACs for variable-length messages [15]. In 2005, NIST
recommended the using of OMAC1 for operating a block-
cipher based authentication [16]. Evaluated block-cipher
functions under this group are RIJNDAEL, TWOFISH,
SERPENT, and RC6, which. were the finalist candidates in
Advanced Encryption Standard (AES) selection process with
Rijndael becoming the official AES [2].

3) VMAC: a block-cipher based algorithm designed to
offer high-performance message authentication service [17].
Optimized for 64-bit computing architectures, VMAC utilizes
block cipher functions via a “universal hashing” algorithm and
secret key to generate MACs for a given message. Evaluated

2587

Fig. 4. Absolute Processing Power vs Message Size for different MAC
functions under AMD Opteron 2354 @ 1.1GHz with all cores utilized

(hardware-assisted compilation of CryptoPP)

2

4

6

8

10

12

14

4 6 8 10 12 14 16

Co
m

pu
ta

ti
on

al
 P

ow
er

 (2
n

Cy
cl

es
/B

yt
e)

Message Size (2n Bytes)

HMAC-MD5

HMAC-SHA1

HMAC-SHA256

HMAC-SHA512

VMAC-AES128

OMAC-AES128

OMAC-SERPENT

OMAC-TWOFISH

OMAC-RC6

Fig. 6. Absolute Processing Power vs Message Size for different MAC
functions under Mobile Intel Core I3 M350 @ 2.26GHz with all cores

utilized (software-only compilation of CryptoPP)

6

8

10

12

14

16

18

4 6 8 10 12 14 16

Co
m

pu
ta

ti
on

al
 P

ow
er

 (2
n

Cy
cl

es
/B

yt
e)

Message Size (2n Bytes)

HMAC-MD5

HMAC-SHA1

HMAC-SHA256

HMAC-SHA512

VMAC-AES128

OMAC-AES128

OMAC-SERPENT

OMAC-TWOFISH

OMAC-RC6

Fig. 5. Absolute Processing Power vs Message Size for different MAC

functions under Mobile Intel P4 @ 3.0GHz with hyper-threading disabled
(hardware-assisted compilation of CryptoPP)

8

10

12

14

16

18

4 9 14

Co
m

pu
ta

ti
on

al
 P

ow
er

 (2
n

Cy
cl

es
/B

yt
e)

Message Size (2n Bytes)

HMAC-MD5

HMAC-SHA1

HMAC-SHA256

HMAC-SHA512

VMAC-AES128

OMAC-AES128

OMAC-SERPENT

OMAC-
TWOFISH

Fig. 7. Absolute Processing Power vs Message Size for different MAC
functions under TI DM3730 ARM Cortex A8 @ 1GHz (software-only

compilation of CryptoPP)

10

12

14

16

18

20

4 6 8 10 12 14 16

Co
m

pu
ta

ti
on

al
 P

ow
er

 (2
n

Cy
cl

es
/B

yt
e)

Message Size (2n Bytes)

HMAC-MD5

HMAC-SHA1

HMAC-SHA256

HMAC-SHA512

VMAC-AES128

OMAC-AES128

OMAC-SERPENT

OMAC-TWOFISH

OMAC-RC6

block-cipher function under this group is AES, which is the
only implemetation avaliable for VMAC at the time of study.
D. Cryptograhic Library Used in Benchmarking

A well-known cryptographic library called CryptoPP 5.6.1
is used for this study. This selection is motivated by its
popularity among academia for studying cryptographic
performance and cryptanalysis [3]. It is also open-source and
has cross-platform compatibility, making it suitable to run
under various operating systems and computer architectures.
The library further has both hardware-assisted and software-
only implementations for some functions such as AES (using
x86 AES-NI extension) and SHA-256/512 (Using x86 SSE-2
extension); making it a good option to test the effect of
different implementations under same hardware. More
significantly, the library has its own benchmarking tool that
can be used as a validation tool for our benchmarking results.
E. Metrics

Cryptographic functions are known to be computationally
demanding, but many of them do not pose high memory and
I/O demands; making the processing power the only reasonable
evaluation metric. In this paper, two types processing power
metrics are considered. The first type presents the choice of
most previous studies for evaluating cryptographic functions.
While the second type is being introduced in this paper to show
the effective performance on mobile systems through
evaluating cryptographic functions at external or several

processing units. For both types, the less value they have the
better performance they indicate.

1) Absolute Processing Power (presented in cycles/byte):
the number of processor cycles that a MAC function spent on
main processor coding one byte of date. This metric is
obtained directly from the main processor clock.

2) Apparent Processing Power (presented in cycles/byte):
the wall clock time, calculated as the number of processor
cycles, that a MAC function spent coding one byte of data, as
if the function is virtually being executed squentially by the
main processor. This metric is introduced for evaluating both
multiple-core and hardward-assited systems (adopted from
apparent parallism defined in [18] for symetric mutilple
processor systems).
F. Measuring Assumptions

The following assumptions were made in evaluating the
performance of the different MAC functions.
• Only the processing power is measured. Memory usage and
I/O demands are not included in this study. However, the
apparent processing power should reflect the memory and I/O
demands since both memory transfers and I/O waits take time.
• Only the time for generating MACs is measured. Key setup
time is considered in this study.
• Measuring overhead is taken into consideration when
setting up the workload to minimize its effect on measurement
accuracy.

2588

Fig. 8. Wall Clock Cycles,Absolute Processing Power, and Apparent
Processing Power of VMAC-AES128 per thread when applying 100-

thread workload on TI DM3730 ARM Cortex A8 @ 1GHz

2

4

6

8

10

12

14

16

18

4 9 14

Co
m

pu
ta

ti
on

al
 P

ow
er

 (2
n

Cy
cl

es
/B

yt
e)

Message Size (2n Bytes)

Wall Clock
(Per thread)

Apparent
Processing
Power

Absolute
Processing
Power

Fig. 9. Wall Clock Cycles,Absolute Processing Power, and Apparent
Processing Power of VMAC-AES128 per thread when applying 100-

thread workload on one core of Intel Core I3 M350 @ 2.26GHz

0

2

4

6

8

10

12

14

16

4 9 14

Co
m

pu
ta

ti
on

al
 P

ow
er

 (2
n

Cy
cl

es
/B

yt
e)

Message Size (2n Bytes)

Wall Clock
(Per thread)

Apparent
Processing
Power

Absolute
Processing
Power

Fig. 10. Wall Clock Cycles,Absolute Processing Power, and Apparent
Processing Power of VMAC-AES128 per thread when applying 100-

thread workload on both cores of Intel Core I3 M350 @ 2.26GHz

0

2

4

6

8

10

12

14

16

4 9 14

Co
m

pu
ta

ti
on

al
 P

ow
er

 (2
n

Cy
cl

es
/B

yt
e)

Message Size (2n Bytes)

Wall Clock
(Per thread)

Apparent
Processing
Power

Absolute
Processing
Power

Fig. 11. Wall Clock Cycles,Absolute Processing Power, and Apparent
Processing Power of VMAC-AES128 per thread when applying 100-
thread workload on all eight cores of AMD Opteron 2354 @ 1.1GHz

-4

-2

0

2

4

6

8

10

12

4 9 14
Co

m
pu

ta
ti

on
al

 P
ow

er
 (2

n
Cy

cl
es

/B
yt

e)

Message Size (2n Bytes)

Wall Clock
(Per thread)

Apparent
Processing
Power

Absolute
Processing
Power

• Effect of mobility features, such as speed stepping and
thermal protection, on processing delays is not considered in
this study.

IV. RESULTS
A. Behaviour of Different MAC generating functions under

Different Architectures
Figs. 4, 5, 6 and 7 show the absolute processing power for

the evaluated functions under different architectures, and with
100 simultaneous threads per workload.

1) General computational trend for achitectures using the
same function implementation: the computational trend, using
the same compilation for CryptoPP library, is almost the same
across evaluated architectures. The slight differences in
performance between different architectures running the same
compilations are due to how different processors handle and
optimize execution of programs.

2) Computational trend verses message size: it is obvious
that the computational trend changes with message sizes under
different architectures. Thus, systems and services can optimize
the selection of the best performing function based on the size
of the transmitted message; provided that other factors such as
security stength and key setup time are also taken into
consideration.

3) Effect of a function’s implementation on computational
trend: In the hardware-assisted compilation of CryptoPP, as
shown in Figs. 4 and 5, functions such as AES and SHA take

advantage of speed boosting. While in Figs. 6 and 7 both AES
and SHA lost their advantage, and thus the computational trend
has changed with HMAC-MD5 being the fastest processing 64
kilobyte messages, and HMAC-SHA512 being the slowest (as
opposed to VMAC-AES128 for fastest and OMAC-SERPENT
for slowest in the hardware-assisted compilation).
B. Effect of the number of utilized processor cores

1) Single-core verses multiple-cores architectures: Figs. 8,
9, and 10 show the absolute and the apparent processing power
when running a 100 connections VMAC-AES128 workload.
For single-core architectures, the apparent processing power
should mirror the absolute one, or be slightly higher due to
resources demand and measurement overheads. For multiple-
core architectures, such as in Figs. 10 and 11, the apparent
processing power reflects the effect of parallelism on the
performance. As expected, the apparent performance is
correlated to the number of cores utilized within the
architecture, with additional cores translated to better apparent
performance.
2) Utilizing single-core verses multiple-cores: While the

apparent performance improved in Fig. 10 (compared to Fig. 9)
due to the parallelism effect, the absoluste performance is
dropped. One explanation is because the contention between
the workload and the operating system, causing the latter to
preempt execution of the workload more frequenty. In addition,
with the increase of the number of cores, the overhead caused
by thread migration between cores might increase as well.

2589

V. OBSERVED CHALLENGES
We note some challenges that were observed through

conducting the benchmarking experimenting and workflow
procedures. These challenges affect the accuracy of measuring
both absolute and apparent processing powers, or in some
cases, render them useless as evaluation metrics.
A. Multi-threaded processor architectures

Several computing architectures support execution of two
or more threads per core (known as multi-threading cores).
Operating systems usually treat each thread as a separate
logical core, with no possibility of differentiating it from a
physical core. Thus evaluating multi-core systems through
limiting available cores can represent a challenge, especially if
their main processors have three or more physical cores.

B. MAC function offloading outside the main processor
Some systems might offload MAC functions outside their

main processor. Examples of places where MAC functions are
offloaded into include General Purpose Graphic Processing
Unit (GPGPU) and cryptographic processing units. While the
performance can be evaluated from the offload unit; it is
important not to ignore the main processor in the evaluation
since it is still handling communications secured by the
offloaded MAC function. In such cases, it will be more logical
to benchmark for the apparent processing performance, as if the
main processor is executing the functions, although, it will not
point to the absolute performance of the evaluated MAC
function at the offload unit.

C. Systems with no synchronized clock accross all of its
processors or cores
In a multiple processors/cores system, a thread can jump

from one processor/core to another. If such a system does not
maintain a synchronized clock across all the processors/cores,
it is not possible to get the absolute performance for the
evaluated MAC function. It will still possible, however, to
benchmark for the apparent performance. An estimate for
absolute performance can then be made knowing the system’s
parallelism factor.

D. Operating System Scheduling
It is important to be aware of the scheduling algorithm

used by the evaluated operating system. Some operating
systems might schedule sub workloads unevenly, which will
be mainly reflected in the measured apparent performance. For
example, least scheduled threads will have higher apparent
processing power than the most scheduled threads of same
workload.

VI. CONCLUSIONS
Message Authentication Codes (MAC) functions with

similar implementations perform with nearly similar
computational trends regardless of the computing architecture
or its number of cores, the trend depends on the message size.
This finding is elemental in selecting the MAC function based
on message size, delay, energy, and security requirements. It
should also be noted that utilizing all processing cores within a
system increases the absolute processing power of MAC
functions due to resource contention with the operating system
and to overhead of process switching between cores. Systems

may therefore employ methods to allocate the number of cores
in a manner that optimizes both absolute and apparent
processing performance.

The use of the apparent processing power metric for
benchmarking seems highly useful when evaluating MAC
functions in systems with multiple processors/cores, systems
with multi-threaded cores, and systems with offload
cryptographic processing units. While the apparent processing
performance does not always reflect the absolute performance
of the evaluated MAC function, it can be considered as an
effective performance metric for communication purposes.
However, more investigations are required for finding a
feasible relation between the apparent performance and some
other factors, such as the used task scheduling and the physical
resource requirements of the evaluated MAC function.

ACKNOWLEDGMENT
This research is funded by a grant from Natural Sciences

and Engineering Research Council of Canada (NSERC).
REFERENCES

[1] Internet Official Protocol Standards. RFC 5000, IETF, May 2008,
http://www.ietf.org/rfc/rfc5000.txt.

[2] B. Schneier and D. Whiting, "A performance comparison of the five AES
finalists," , 2001, p. the 3rd AES Conference (AES3).

[3] Y. W. Law, J. Doumen, and P. Hartel, "Survey and Benchmark of Block
Ciphers for Wireless Sensor Networks," ACM Transactions on Sensor
Networks (TOSN), vol. 2, pp. 65-93, February 2006.

[4] D. S. Abd Elminaam, H. M. Abdual Kader, and M. M. Hadhoud,
"Evaluating The Performance of Symmetric Encryption Algorithms,"
International Journal of Network Security, vol. 10, no. 3, pp. 216–222,
2010.

[5] O. Hyncica, P. Kucera, P. Honzik, and P. Fiedler, "Performance
evaluation of symmetric cryptography in embedded systems," in IEEE
6th International Conference on Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS), 2011, pp. 277-282.

[6] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov, "Cryptographic
Processors - A Survey," Proceedings of the IEEE, vol. 94, no. 2, pp. 357-
369, Feb. 2006.

[7] C. Paar, J. Pelzl, and B. Preneel, Understanding Cryptography: A
Textbook for Students and Practitioners.: Springer, 2010.

[8] M. Sokol, S. Gajewski, M. Gajewska, and L. Staszkiewicz, "Security and
Performance Analysis of IPsec-based VPNs in RSMAD," in The First
International Conference on Advanced Communications and
Computation (INFOCOMP'11), 2011, pp. 70-74.

[9] C. Shen, E. M. Nahum, H. Schulzrinne, and C. Wright, "The impact of
TLS on SIP server performance," in IPTComm'10, 2010, pp. 59-70.

[10] D. J. Bernstein and P. Schwabe., "New AES software speed records,"
INDOCRYPT, vol. 5365 of LNCS, pp. 322-336, 2008.

[11] D.A. Osvik, J.W. Bos, D. Stefan, and D. Canright, "Fast software AES
encryption," Fast Software Encryption (FSE), vol. 6147 of LNCS, pp.
75–93, 2010.

[12] J. Kaps and B. Sunar, "Energy Comparison of AES and SHA-1 for
Ubiquitous Computing," in Embedded and Ubiquitous Computing, 2006,
pp. 372-381.

[13] H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for
Message Authentication. RFC 2104, IETF, Feb. 1997,
http://www.ietf.org/rfc/rfc2104.txt.

[14] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.2, 2008, http://www.ietf.org/rfc/rfc5246.txt.

[15] Kaoru Kurosawa Tetsu Iwata, "OMAC: One-Key CBC MAC," Fast
Software Encryption (FSE), pp. 129-153, 2003.

[16] M. Dworkin, Recommendation for Block Cipher Modes of Operation:
The CMAC Mode for Authentication, May 2005, NIST Special
Publication 800-38B.

[17] T. Krovetz, "Message authentication on 64-bit architectures," in 13th
international conference on Selected areas in cryptography , 2006, pp.
327-341.

[18] Eli Biham, Fast software encryption: 4th International Workshop, FSE
'97.: Springer, 1997.

2590

