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Abstract— With the increased popularity of both Internet and 
mobile computing, several security mechanisms, each using 
various cryptography functions, have been proposed to ensure 
that future generation Internets will guarantee both authenticity 
and data integrity. These functions are usually computationally 
intensive resulting in large communication delays and energy 
consumption for the power-limited mobile systems. The functions 
are also implemented in variety of ways with different resource 
demands, and may run differently depending on platform. Since 
communications within the next generation Internet are to be 
secured, it is important for a mobile system to be suited to the 
function that provide sufficient communication security while 
maintaining both power-efficiency and delay requirements. This 
paper benchmarks mobile systems with cryptographic functions 
used in message authentication. This paper also introduces a 
metric, namely apparent processing, that makes benchmarking 
meaningful for mobile systems with multiple processing cores or 
utilizing hardware-based cryptography. In addition, this paper 
discusses some of evaluated functions’ computational 
characteristics observed through benchmarking on selected 
mobile computing architectures. 

Keywords-component; message authentication code; message 
hashing; next generation Internet security; mobile security; 

I.  INTRODUCTION 
Many standards and proposals have been made to ensure 

the authenticity and data integrity of Internet communications 
at different levels. Such proposals include IPSec, SSL/TLS, 
Kerberos, TCP-AO, SCTP-AUTH, to name a few [1]; targeting 
various services from secured web browsing to protection of 
intercontinental routing information, and systems from small 
embedded devices to large mainframes and data centers. Many 
of those proposals achieve both authenticity and data integrity 
of transmitted messages with the use of cryptographic functions 
to generate verification tags, known as Message Authentication 
Code (MAC), to be attached to their corresponding messages. 

While the use of cryptography in computing is essential to 
ensure the security of the information being transmitted 
through the Internet, it is also known to be computationally 
challenging. As the importance of security increases with the 
development of wireless communications and smart portable 
systems, researchers in security have continued developing, 
optimizing, and evaluating the performance of various 
cryptographic approaches. The major focus is finding the 
approach with strongest security measures and least possible 
resources demand. As a result, several cryptographic functions 
had found their ways as software-based and hardware-based 

solutions to provide message encryption and verification 
services for various systems and applications. These functions 
were subject to several research studies evaluating their 
security and performance, in terms of either the computational 
power or data throughput.  

However, previous studies [2] [3] [4] [5] were evaluating 
the absolute computational or resource demands of a group of 
selected functions running on the architecture of study. Only 
slight considerations were made for how functions behave 
under dynamically-controlled resource limitations. 
Cryptographic functions are further attached to other processes, 
such as communication sessions, and not operated in isolation. 
Thus, evaluating them for communication purposes should be 
conducted in a scenario that reflects existence of multiple 
sessions competing on the existing resources, instead of simply 
benchmarking for the absolute performance or throughput on 
the system of study. Especially if the evaluated function is not 
processed by the same processor where communications are 
handled – a common setup for many mobile systems [6].  

This paper investigates a more comprehensive way to 
evaluate cryptographic functions that offer MAC services for 
mobile communications. In this paper, the computational 
characteristics of some known MAC functions are observed 
through benchmarking them for communication purposes; 
under different mobile computing architectures.   In doing so, 
we suggest the use of a new metric, called apparent processing, 
to facilitate a meaningful comparison between MAC functions. 
The metric borrows from the notion of apparent parallelism 
utilized in the context of parallel computing. 

The remainder of this paper is organized as follows. Section 
II refers to some of the related works and describes motivations 
behind inducting the benchmarking of MAC functions. Section 
III defines the metric, assumptions, run environments, and used 
workload for the benchmarking. Evaluation of the 
benchmarking results is presented in Section IV. Section V lists 
some additional observed considerations and challenges when 
benchmarking MAC functions. Finally, conclusion and future 
directions are mentioned in Section VI. 

II. RELATED WORK AND MOTIVATION 
MAC functions are powered by two types of cryptographic 

functions: hash or block-cipher [7]. Hash functions, such as 
MD5, SHA1, and SHA2, are one-way compression algorithms 
that map variable-length larger messages into shorter fixed-
sized strings that vary for different messages. Block-cipher 
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functions, such as AES, TWOFISH, SERPENT, and RC6, are 
encryption/decryption algorithms designed to work on fixed-
sized portions of given messages, called blocks. MACs are 
generated either by directly hashing combined messages with 
provided secrets using hash functions, or by hashing message 
blocks encrypted with provided secrets when using block-
cipher-functions. 

There are many performance studies of both hash and 
block-cipher functions in the literature; evaluating different 
implementations directly and indirectly for various applications 
[8] [9], architectures [2] [5] [10] [11], and network structures  
[3] [12]. Those studies were evaluating either the processing 
power of evaluated functions on certain processing units, or the 
data throughput that the evaluated functions process.  

Today’s mobile systems are powered by various single-core 
and multiple-core processors of different architectures. In 
addition, several mobile systems are equipped with additional 
hardware-assisted components to offload computing intensive 
operations, such as graphics and cryptography, from their main 
processors, while communications are still maintained by the 
main processors. Different considerations must be taken into 
account when benchmarking MAC functions for network 
communications. These considerations include: 
• Cores Involved. The future generation Internet protocols, 
and the future production operating systems in response, will 
have message authentication as a standard feature. Execution of 
MAC functions might be locked on certain processor cores so 
those functions do not render the system unusable in case of 
high load. Previously conducted performance studies usually 
focused on the processor power consumed by an evaluated 
function, without taking into consideration how many cores are 
utilized by that function. 
• Extra-Processor Computation. There are implementations 
of MAC functions that execute outside the main processor (e.g. 
an external cryptographic processor), yet the main processor 
still responsible for handling the communication session 
utilizing the MAC function. Evaluating the processing power 
on either the main processor or the external processor alone 
might not be sufficient to indicate the effective performance of 
that communication session. 
• Implementation Heterogeneity. A MAC function can 
have different implementations under same computing 
architectures, for example, single- threaded and multi-threaded 
implementations. The determination of superior 
implementation will be subject preliminary to how the 
processor will handle them, and how the operating system will 
schedule their execution. Other factors such as I/O and bus 
delays may also contribute to the determination. 
• Workload Concurrency. Previous studies did not consider 
the use of concurrent workloads (for example, to simulate 
multiple connections) for their evaluations. With concurrent 
workloads, effects of scheduling, memory and I/O demands 
can be reflected on the processing time, giving more realistic 
performance determination (such as computing the system’ 
capacity in term of number of concurrent connections).  

It becomes obvious that there are substantial considerations 
to be made beyond power or throughput. The objective of this 
work is to realize an environment to characterize the effect of 
these considerations. 

III. BENCHMARKING SETUP 
In order to successfully evaluate the MAC functions for 

communication purposes within mobile systems, it is important 
to have a benchmarking setup that effectively describes the true 
nature of both mobile environments and communications.  To 
achieve this, the benchmarking setup should incorporate the 
use of mobile production systems, and production operating 
systems configured for everyday usage. For communications, 
the setup should be  simulate concurrent processing of message 
authentication as it happens with real communication sessions, 
and to operate on realistic message lengths that are supported 
by major mobile communication protocols.  

In this paper, the benchmarking setup was designed to 
fulfill the mentioned objectives. Real architectures from three 
major known brands in mobile computing were evaluated. A 
customizable distribution of Linux operating system, which its 
kernel is powering many of today’s mobile systems, is used. 
The workload was implemented to apply message 
authentication processing in simulated communication mode, 
while controlling some operational factors such as cores 
involved, number of concurrent sessions, and session duration. 
The workflow was also designed to ensure that the both 
workloads and their parameters were suitable to apply on 
studied systems for accurate evaluations. The benchmark 
metrics were selected to observe computational characteristics 
of studied systems in both simple and comprehensive ways. 

The following elaborates on the details of the 
benchmarking setup. 
A. Benchmark Environment 

The environment is designed in a manner that ensures that 
the operating system has minimum influence on obtained 
results, all benchmarking experiments were conducted under 
the same OS (Ubuntu Linux 10.04LTS). The chosen operating 
system, which is running in Gnome desktop mode, uses 
“Completely Fair” scheduler for scheduling its processes. 

Benchmarked architectures were TI DM3730 ARM Cortex 
A8, Intel Core I3 M350, AMD Opteron 2354, Mobile Intel 
Pentium 4 3.0GHz. While Opteron is not build for mobile 
systems, it was included in the benchmark since it was the 
available AMD architecture at the time of the study, as it shares 
similar features with its mobile counterpart (Phenom) such as 
Cool'n'QuietTM speed-stepping (which is a mobile-based 
feature that reduces processor clock frequency to save energy 
or reduce operating temperature). 
B. Workload and Workflow 

A multi-threaded benchmarking application is written to 
evaluate selected MAC functions. The application uses 
multithreading approach to create workload instances in order 
to minimize the effect of memory switching on the 
measurements accuracy. The application was also equipped 
with a method for binding the execution of the workload 
instances into certain predefined cores in order to study the 
effect of limiting the number of available processor cores on 
the performance of the workload.  

The benchmarking workload procedure is illustrated in 
Figs. 1 and 2. Since typical communication sessions usually 
runs concurrently with different durations and message lengths, 
the workload was implemented to simulate such conditions; 
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Fig. 1.   Benchmark workload procedure 
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Fig. 2.   Benchmark sub workload procedure
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Fig. 3.   Benchmark workflow procedure 

with assumptions of fixed selection of evaluated function and 
fixed session duration per run to simplify the evaluation. In 
addition, workload executes the message authentication process 
same as with a typical production message authentication 
session. Under each studied architecture, the workload was 
applied with no other foreground applications running except 
for the Gnome desktop environment in order to reduce the 
effect on the measurement accuracy. The workload creates n 
sub workload threads to simulate existence of n connections 
transmitting messages ranging from 16 bytes to 64 kilobytes 
(the maximum length supported by the IP protocol). For each 
sub workload, there are n-1 background sub workloads 
representing n-1 background connections. In sub workloads, 
measurements are taken using both the processor clock and the 
system’s wall clock. The period of taking measurements is 
defined by interval from t1 to t2, where t1 and t2 are predefined 
time values between 0 and the execution time t, with t2 > t1. 

Fig. 3 describes the benchmarking workflow procedure. 
This procedure is essential to ensure workloads being applied 
to suit benchmarked systems, and measurements obtained are 
accurate and informative.  First, a benchmark scenario is 
defined to include the number of connections, the function to 
evaluate, and the processor cores to utilize. Through the 
process, obtained measurements are analyzed and validated.  
For example, the accuracy can be affected by resources 
overutilization, insufficient session duration for reaching the 
steady state, or inappropriate measurement period. In this case, 
their corresponding parameters, which are the number of 
connections n, the session duration t, and the measurement 
period [t1,t2] will be adjusted accordingly for the next 
workload.  

C. Evaluated MAC functions 
1)  Hashed-based MAC (HMAC) [13]: a hash based 

algorithm, which is being used by various popular Internet 
protocols (e.g IPSec and TLS [1] [14]) to offer message 
authentication service during communication sessions 
Evaluated hash functions under this group are MD5, SHA1, 
SHA2-256 (simply SHA256) and SHA2-512 (simply 
SHA512). 

2) One-key MAC One (OMAC1): also known as CMAC; a 
block-cihper based algorithm that was introduced to resolve 
security flaw of it predecessor, CBC-MAC, when generating 
MACs for variable-length messages [15]. In 2005, NIST 
recommended the using of OMAC1 for operating a block-
cipher based authentication [16]. Evaluated block-cipher 
functions under this group are RIJNDAEL, TWOFISH, 
SERPENT, and RC6, which. were the finalist candidates in 
Advanced Encryption Standard (AES) selection process with 
Rijndael becoming the official AES [2]. 

3) VMAC: a block-cipher based algorithm designed to 
offer high-performance message authentication service [17]. 
Optimized for 64-bit computing architectures, VMAC utilizes 
block cipher functions via a “universal hashing” algorithm and 
secret key to generate MACs for a given message. Evaluated 
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Fig. 4.   Absolute Processing Power vs Message Size for different MAC 
functions under AMD Opteron 2354 @ 1.1GHz with all cores utilized 

(hardware-assisted compilation of CryptoPP) 
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Fig. 6.   Absolute Processing Power vs Message Size for different MAC 
functions under Mobile Intel Core I3 M350 @ 2.26GHz with all cores 

utilized (software-only compilation of CryptoPP)
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Fig. 5.   Absolute Processing Power vs Message Size for different MAC 

functions under Mobile Intel P4 @ 3.0GHz with hyper-threading disabled 
(hardware-assisted compilation of CryptoPP) 
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Fig. 7.   Absolute Processing Power vs Message Size for different MAC 
functions under TI DM3730 ARM Cortex A8 @ 1GHz (software-only 

compilation of CryptoPP) 
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block-cipher function under this group is AES, which is the 
only implemetation avaliable for VMAC at the time of study. 
D. Cryptograhic Library Used in Benchmarking 

A well-known cryptographic library called CryptoPP 5.6.1 
is used for this study. This selection is motivated by its 
popularity among academia for studying cryptographic 
performance and cryptanalysis [3]. It is also open-source and 
has cross-platform compatibility, making it suitable to run 
under various operating systems and computer architectures. 
The library further has both hardware-assisted and software-
only implementations for some functions such as AES (using 
x86 AES-NI extension) and SHA-256/512 (Using x86 SSE-2 
extension); making it a good option to test the effect of 
different implementations under same hardware. More 
significantly, the library has its own benchmarking tool that 
can be used as a validation tool for our benchmarking results.  
E. Metrics  

Cryptographic functions are known to be computationally 
demanding, but many of them do not pose high memory and 
I/O demands; making the processing power the only reasonable 
evaluation metric. In this paper, two types processing power 
metrics are considered. The first type presents the choice of 
most previous studies for evaluating cryptographic functions. 
While the second type is being introduced in this paper to show 
the effective performance on mobile systems through 
evaluating cryptographic functions at external or several 

processing units. For both types, the less value they have the 
better performance they indicate. 

1) Absolute Processing Power (presented in cycles/byte): 
the number of processor cycles that a MAC function spent on 
main processor coding one byte of date. This metric is 
obtained directly from the main processor clock.  

2) Apparent Processing Power (presented in cycles/byte): 
the wall clock time, calculated as the number of processor 
cycles, that a MAC function spent coding one byte of data, as 
if the function is virtually being executed squentially by the 
main processor. This metric is introduced for evaluating both 
multiple-core and hardward-assited systems (adopted from 
apparent parallism defined in [18] for symetric mutilple 
processor systems).  
F. Measuring Assumptions 

The following assumptions were made in evaluating the 
performance of the different MAC functions. 
• Only the processing power is measured. Memory usage and 
I/O demands are not included in this study. However, the 
apparent processing power should reflect the memory and I/O 
demands since both memory transfers and I/O waits take time. 
• Only the time for generating MACs is measured. Key setup 
time is considered in this study. 
• Measuring overhead is taken into consideration when 
setting up the workload to minimize its effect on measurement 
accuracy. 
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Fig. 8.   Wall Clock Cycles,Absolute Processing Power, and Apparent  
Processing Power of VMAC-AES128 per thread when applying 100-

thread workload on TI DM3730 ARM Cortex A8 @ 1GHz 
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Fig. 9.   Wall Clock Cycles,Absolute Processing Power, and Apparent  
Processing Power of VMAC-AES128 per thread when applying 100-

thread workload on one core of Intel Core I3 M350 @ 2.26GHz
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Fig. 10.   Wall Clock Cycles,Absolute Processing Power, and Apparent  
Processing Power of VMAC-AES128 per thread when applying 100-

thread workload on both cores of Intel Core I3 M350 @ 2.26GHz 
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Fig. 11.   Wall Clock Cycles,Absolute Processing Power, and Apparent  
Processing Power of VMAC-AES128 per thread when applying 100-
thread workload on all eight cores of AMD Opteron 2354 @ 1.1GHz 
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• Effect of mobility features, such as speed stepping and 
thermal protection, on processing delays is not considered in 
this study.   

IV. RESULTS 
A. Behaviour of Different MAC generating functions under 

Different Architectures 
Figs. 4, 5, 6 and 7 show the absolute processing power for 

the evaluated functions under different architectures, and with 
100 simultaneous threads per workload.  

1) General computational trend for achitectures using the 
same function implementation: the computational trend, using 
the same compilation for CryptoPP library, is almost the same 
across evaluated architectures. The slight differences in 
performance between different architectures running the same 
compilations are due to how different processors handle and 
optimize execution of programs.  

2) Computational trend verses message size: it is obvious 
that the computational trend changes with message sizes under 
different architectures. Thus, systems and services can optimize 
the selection of the best performing function based on the size 
of the transmitted message; provided that other factors such as 
security stength and key setup time are also taken into 
consideration. 

3) Effect of a function’s implementation on computational 
trend: In the hardware-assisted compilation of CryptoPP, as 
shown in Figs. 4 and 5, functions such as AES and SHA take 

advantage of speed boosting. While in Figs. 6 and 7 both AES 
and SHA lost their advantage, and thus the computational trend 
has changed with HMAC-MD5 being the fastest processing 64 
kilobyte messages, and HMAC-SHA512 being the slowest (as 
opposed to VMAC-AES128 for fastest and OMAC-SERPENT 
for slowest in the hardware-assisted compilation). 
B. Effect of the number of utilized processor cores 

1) Single-core verses multiple-cores architectures: Figs. 8, 
9, and 10 show the absolute and the apparent processing power 
when running a 100 connections VMAC-AES128 workload. 
For single-core architectures, the apparent processing power 
should mirror the absolute one, or be slightly higher due to 
resources demand and measurement overheads. For multiple-
core architectures, such as in Figs. 10 and 11, the apparent 
processing power reflects the effect of parallelism on the 
performance. As expected, the apparent performance is 
correlated to the number of cores utilized within the 
architecture, with additional cores translated to better apparent 
performance.  
2) Utilizing single-core verses multiple-cores: While the 

apparent performance improved in Fig. 10 (compared to Fig. 9) 
due to the parallelism effect, the absoluste performance is 
dropped. One explanation is because the contention between 
the workload and the operating system, causing the latter to 
preempt execution of the workload more frequenty. In addition, 
with the increase of the number of cores, the overhead caused 
by thread migration between cores might increase as well. 
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V. OBSERVED CHALLENGES 
We note some challenges that were observed through 

conducting the benchmarking experimenting and workflow 
procedures. These challenges affect the accuracy of measuring 
both absolute and apparent processing powers, or in some 
cases, render them useless as evaluation metrics.  
A. Multi-threaded processor architectures 

Several computing architectures support execution of two 
or more threads per core (known as multi-threading cores). 
Operating systems usually treat each thread as a separate 
logical core, with no possibility of differentiating it from a 
physical core. Thus evaluating multi-core systems through 
limiting available cores can represent a challenge, especially if 
their main processors have three or more physical cores.  

B. MAC function offloading outside the main processor 
Some systems might offload MAC functions outside their 

main processor. Examples of places where MAC functions are 
offloaded into include General Purpose Graphic Processing 
Unit (GPGPU) and cryptographic processing units. While the 
performance can be evaluated from the offload unit; it is 
important not to ignore the main processor in the evaluation 
since it is still handling communications secured by the 
offloaded MAC function. In such cases, it will be more logical 
to benchmark for the apparent processing performance, as if the 
main processor is executing the functions, although, it will not 
point to the absolute performance of the evaluated MAC 
function at the offload unit. 

C. Systems with no synchronized clock accross all of its 
processors or cores 
In a multiple processors/cores system, a thread can jump 

from one processor/core to another. If such a system does not 
maintain a synchronized clock across all the processors/cores, 
it is not possible to get the absolute performance for the 
evaluated MAC function. It will still possible, however, to 
benchmark for the apparent performance. An estimate for 
absolute performance can then be made knowing the system’s 
parallelism factor. 

D. Operating System Scheduling  
It is important to be aware of the scheduling algorithm 

used by the evaluated operating system. Some operating 
systems might schedule sub workloads unevenly, which will 
be mainly reflected in the measured apparent performance. For 
example, least scheduled threads will have higher apparent 
processing power than the most scheduled threads of same 
workload.  

VI. CONCLUSIONS 
Message Authentication Codes (MAC) functions with 

similar implementations perform with nearly similar 
computational trends regardless of the computing architecture 
or its number of cores, the trend depends on the message size. 
This finding is elemental in selecting the MAC function based 
on message size, delay, energy, and security requirements. It 
should also be noted that utilizing all processing cores within a 
system increases the absolute processing power of MAC 
functions due to resource contention with the operating system 
and to overhead of process switching between cores. Systems 

may therefore employ methods to allocate the number of cores 
in a manner that optimizes both absolute and apparent 
processing performance.  

The use of the apparent processing power metric for 
benchmarking seems highly useful when evaluating MAC 
functions in systems with multiple processors/cores, systems 
with multi-threaded cores, and systems with offload 
cryptographic processing units. While the apparent processing 
performance does not always reflect the absolute performance 
of the evaluated MAC function, it can be considered as an 
effective performance metric for communication purposes. 
However, more investigations are required for finding a 
feasible relation between the apparent performance and some 
other factors, such as the used task scheduling and the physical 
resource requirements of the evaluated MAC function.   
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