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Abstract— Participatory sensing allows individuals and groups 

to contribute to an application using their handheld sensor 

devices. Data collected from participants including their location, 

time, contacts, etc. are vital to the accuracy of the application but 

are considered private to the participants. The design of a 

successful participatory sensing application must consider the 

challenge of the accuracy-privacy trade-off. In more critical 

situations when a crisis occurs, however, the accuracy-privacy 

trade-off becomes more complex. When a participant is at risk, 

data accuracy becomes more important than participant's 

privacy. In this paper, we propose a Context-Aware Privacy 

(CAP) scheme. CAP aims to provide privacy-preserved data to 

authorized recipients based on the status of participants. 

Depending on the recipient category, their role and policies 

enforced, a different level of participants’ private data may be 

received. Experimental results show that the CAP scheme 

achieves a high level of privacy protection in safe areas. In risk 

areas/situations the scheme achieves a higher level of data 

accuracy than existing privacy schemes. 

Index Terms— Privacy; differential privacy; crisis response 

system; participatory sensing. 

I. INTRODUCTION 

In recent years, devices such as smartphones and tablets are 

increasingly being equipped with various embedded sensors 

such as camera, microphone, GPS, proximity, accelerometer, 

temperature and humidity [1]. These sensors enable a wide 

range of applications in Participatory Sensing (PS). PS allows 

the users of these devices to participate by sensing and 

collecting data from their surrounding environment and sending 

them to the application server. 

Participants’ contributions enhance the PS application 

services for the end users. These contributions become crucial 

when the application collects data about a crisis. A crisis such 

as fires, earthquakes and floods needs an urgent action to be 

taken to disturb its difficulties. A crisis PS application can be a 

major source of information for a Crisis Response System 

(CRS). CRS consists of a group of authorities who are trained 

to deal with such situations [2]. In addition to the basic pre-exist 

data at CRS, authorities need data, through the PS application, 

that is directly related to the crisis and individuals who are 

within close proximity to the crisis to make rescue plans. 

Data collected from participants including location, time, 

contacts, etc. are significant to the CRS and are considered 

private to the participants. Protecting participants’ privacy, on 

the one hand, is essential to encourage them to contribute in such 

applications. On the other hand, data accuracy is vital to execute 

CRS optimal performance. Therefore, balancing the privacy-

accuracy trade-off is challenging especially that participants 

may become at risk and loos their lives.  

To overcome this challenge, we propose a Context-Aware 

Privacy (CAP) scheme. CAP aims to provide privacy-preserved 

data to authorized recipients based on the status of participants. 

Different recipient categories receive a different level of 

participants’ private data.  

CAP consists of two major components: (1) context-aware 

scheme and (2) privacy scheme. The context-aware scheme 

decides what and how much private data to release to recipients. 

The privacy scheme protects participants’ private data to a 

certain level based on the context-aware scheme decisions. It 

applies a manipulated Differential Privacy (DP) function [3] 

before sending the data to recipients. 

CAP is a viable CRS solution for various environmental 

conditions such as fire disaster, radiation measurement and air 

quality. As well, it is compatible with multiple types of private 

data and recipient categories.  

We implement the proposed CAP scheme on a fire crisis 

dataset. Participants, who are around the crisis, sense the air 

temperature using their sensor devices from different locations 

and epochs (time periods). Afterwards, participants send the 

collected data including the metadata such as the participant’s 

location, time and contacts to CAP. It, then, applies its functions 

to protect participants’ privacy and sends its output to the 

application server. Recipients, including CRS, use the available 

output to measure the severity of the disaster and make an 

efficient rescue plan. 

We perform experimental evaluations to assess the success 

of the proposed CAP scheme in controlling the privacy-

accuracy trade-off. The results show that CAP scheme achieves 

a high level of privacy protection in safe areas. In risk 

areas/situations the scheme achieves a higher level of data 

accuracy than existing privacy schemes. 

The remainder of this paper is organized as follows. In 

Section II, we discuss several related works. Section III details 

our proposed context-aware privacy scheme and its related 

algorithms. In Section IV, we describe the experimental 

evaluation, setup and the evaluation results. Section V 

concludes our work. * Mohannad A. Alswailim is also affiliated with Qassim University (QU), 
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II. RELATED WORK 

Protecting participants’ privacy is important to encourage 

them to contribute to PS applications. Participant data can be 

privacy-preserved before being published to the end users. Due 

to the lack of researches discussing privacy schemes in crises, 

we, in this section, discuss the related work that is proposing 

privacy schemes including DP in various PS applications.  

Participant trajectory and position data in PS applications 

have been privacy-preserved by DP [4, 5]. Li et al. [4] proposed 

a differentially private trajectory data publishing scheme to 

protect the privacy of sensitive areas. The scheme is based on 

partition-based models to partition the original location universe 

at each time point into multiple groups. The scheme follows an 

algorithm to select optimal partitions to apply the DP to protect 

the trajectory privacy. To et al. [5] proposed a scheme to protect 

the privacy of participant locations in PS applications. They 

assumed that a trusted third party has access to data sanitized by 

DP. Thus, the trusted third party can release participant locations 

to the PS applications in noisy form, according to DP.  

Jin et al. [6] proposed a differentially private incentive 

scheme that preserves the privacy of each participant’s bid 

against others including curious participants within the same 

application. Some PS applications offer a reward to the 

participant to do a required task as an encouraging step. To win 

the reward, participants submit their bids that contain some 

private and sensitive data to be protected by DP.  

Chen and Ma [7] proposed a privacy-preserving aggregation 

scheme to limit PS applications of learning participants’ 

sensitive data. The scheme applies the concept of DP by adding 

noise to the sensitive data. Then, it encrypts the noised data and 

sends them to the application server. The application server can 

only learn the sum of the noised data. 

Existing schemes work on satisfying privacy-preserving PS 

applications. These schemes do not consider crisis situations on 

their journey to protect participant privacy. As a result, they do 

not provide different privacy levels in critical situations when 

data accuracy is more of a concern.  

III. THE CAP SCHEME 

In this section, we overview the proposed CAP scheme in 

Section III.A. Sections III.B and III.C detail the context-aware 

scheme and the privacy scheme algorithms, respectively. 

A. The CAP Scheme Overview 

CAP is a scheme that works in critical situations when 

crises occur. It aims to balance the privacy-accuracy trade-off 

challenge based on the status of participants. When a 

participant is at risk, more accuracy and less privacy will be 

released to recipients, and vice versa. Different recipient 

categories receive a different level of participants’ private data. 

Fig. 1 shows the data flow starting from the participants’ 

data collection passing through the CAP scheme then onto the 

PS application server. Participants start the process by sensing 

the required data using their sensor devices. They send the 

sensed data to CAP to decide what data to release and apply 

privacy scheme. Then, CAP releases the privacy-preserved data 

to the PS application server.  

In this work, we protect privacy based on both policy and 

technology protections. Policy protection is by enforcing rules 

through “rules entity” in the context-aware scheme. 

Technology protection is by enforcing the privacy scheme on 

the data that is considered private. Thus, the course of the CAP 

scheme goes through two major components: (1) context-aware 

scheme and (2) privacy scheme.  

 

 
 

Fig. 1: The CAP architecture 
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Algorithm 1 Context-Aware Scheme  

Input: Participant Contributions 

Output: Decisions of what to release to who 

1. Get Participant Situations   

2. Get Recipient Categories     

3. Get Administrator Policies   

4. Get 𝑃 Attributes      

Decision Maker Entity 

5. for 𝑖 ← 1 to 𝑚 do    

6.       for 𝑗 ← 1 to 𝑛 do    

7.             if Pi.location ∈ Sj (radius Rj)  

8.             then add Pi to Sj      

9. for 𝑗 ← 1 to 𝑛 do  

10.       apply Rulej to Sj    

11. Decide “what (participants’) attributes to release to who 

(recipients)” 

In the first component, the context-aware scheme decides 

what participant’s data to release to who and to what level of 

privacy protection, as discussed in Section III.B. The context-

aware scheme inputs are the participants contributions data and 

their metadata. Its decision depends on multiple contexts, i.e., 

participant situations, recipients of the data and a set of policies. 

The second component performs three steps on participant 

data based on the decisions of the first component. Step one 

removes some data that the first component decides to hide 

from recipients. This step prevents the selected recipients from 

accessing that specific participant data. Step two publishes 

certain data that the first component decides to release in its 

original format. This step allows the selected recipients to 

receive those certain data clearly. Lastly, step three applies the 

privacy scheme on the data that are selected to be privacy-

preserved before they reach recipients, as explained in Section 

III.C. 

B. The Context-Aware Scheme 

In Algorithm 1, participant situations, recipient categories 

and policies are defined based on the application requirements. 

In every epoch, the context-aware scheme receives 

contributions from participants in an affected area. 

Participants’ contributions consist of multiple attributes 

describing their surrounding environment and themselves.  

The context-aware scheme divides the crisis area map into 

multiple sectors, as in Fig. 2. It centers the crisis location, R0, 

and creates n nested circle zones by considering radius Rj, 

where j = {1, …, n}. Then, the system splits the map into four 

cardinal directions (north, east, south and west) to ease 

following crisis direction and locating participants. We follow 

the sectors division method in our previous work [8]. As a 

result, the application acquires n situations (Sj). The closer the 

sector to the crisis, the higher the risk. 

The decision maker entity, within the context-aware 

scheme in Fig. 1, determines participants’ situations based on 

their proximity to the crisis that can be derived from their 

location data. The entity forms situation groups by adding a 

participanti (Pi), where i = {1, …, m}, to its relevant Sj. Then, 

the decision maker entity applies the predefined rules (Rulej) 

onto Sj. Each of these rules considers participant data attributes, 

participant situations and recipient categories. For example, the 

j-th set of rules applies to the j-th situation that decides what 

participant attributes to hide, release or privacy-preserve before 

sending them to recipients. Each recipient category may receive 

different types of participant attributes and different level of 

privacy. 

In the end, the context-aware scheme formulates three 

output decisions of participant data attributes, i.e., totally hide, 

clearly release and privacy-preserve. It forwards these 

decisions to the privacy scheme component. 

C. The Privacy Scheme 

The privacy scheme component receives the context-aware 

scheme output decisions to apply them. It applies the three steps 

of hiding, releasing and privacy-preserving to each situation at 

a time. Then, it treats recipientk (Ck), where k = {1, …, d}, by 

checking each participant attribute (Pi.A) decision, as in 

Algorithm 2. If Pi.A decision is to hide, remove the attribute 

from the published list. If Pi.A decision is to release, forward the 

attribute to the publisher. If Pi.A decision is to privacy-preserve, 

apply a manipulated DP function on the attribute, then send the 

privacy-preserved attribute to the publisher. As a result, the 

scheme sends the publishable attributes to Ck.  

In the case of Pi.A requires privacy preservation, the privacy 

scheme applies a manipulated DP function. DP is a concept for 

dataset privacy that learns as much as possible about a group of 

participants while learning as little as possible about individuals 

[3]. 
𝑃𝑟[𝑓(𝐷) ∈ 𝑆] ≤  𝑒𝜀 . 𝑃𝑟[𝑓(𝐷′) ∈ 𝑆]                         (1)  

A randomized function f gives 𝜀-differential privacy if for 

all adjacent datasets D and D’ differing on at most one 

participant, and all events S ⊆ Range(f) [3]. 

DP requires computing multiple factors, i.e., sensitivity 

level, maximum difference in an attribute and privacy level, to 

compute the noise level properly. 

One of the factors is sensitivity level (∆f). Sensitivity level 

is the maximum amount of all possible datasets by which the 

present or absent of a participant can change the outcome [3].   
∆𝑓 = 𝑚𝑎𝑥𝐷,𝐷′ |𝑓(𝐷) −  𝑓(𝐷′)|                               (2)  

 
Fig. 2: A crisis map after splitting the area into sectors in each direction  
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Another factor is the maximum difference between two 

participants’ element (E) of the same attribute (α). 
𝛼 = 𝑚𝑎𝑥1≤𝑖,𝑙≤𝑚 |(𝐸𝑖) −  (𝐸𝑙)|,          𝑖 ≠  𝑙          (3) 

The privacy scheme cannot use the same noise level for all 

attributes due to the differences in the nature of the attribute 

types. Therefore, the purpose of computing α is to relate the 

noise level to the attribute range values when applying the 

Laplace distribution. 

Privacy level (εi), a.k.a. privacy budget, is a key factor in 

computing how much noise the scheme needs to add to the result 

to protect participant data privacy. The privacy level is not an 

absolute measure of privacy but is rather a relative measure. The 

scheme computes εi as the natural logarithm of the ratio of Eq. 

1. It is the inverse of the exponential function 𝑒𝜀 divided by α.   

𝜀𝑖 = |𝑙𝑛
𝑚 ∗ 𝛽𝑖 ∗ 𝛾𝑗

1−𝛽𝑖
| / 𝛼                                     (4)  

where m is the total number of participants in a situation Sj in 

one epoch. βi is the probability of identifying participant Pi in 

the current contribution. γj is a situation degree of danger. γj is 

an assigned value set by the administrator. The purpose of γj is 

to adjust the privacy level to match the situation critical 

condition that differs from one to another. Thus, each situation 

has a same value of γ. 

By computing the sensitivity level (Eq. 2) and privacy level 

(Eq. 4), the scheme computes the noise level (bi). It is a real 

number that will be added to the true participant data to achieve 

privacy.  

Algorithm 2 Privacy Scheme  

Input: Context-Aware Scheme Decision 

Output: Privacy_Preserved Data  

1. for 𝑗 ← 1 to 𝑛 do   

2.      for 𝑘 ← 1 to 𝑑 do   

3.           for 𝑖 ← 1 to |𝑆𝑗| do   

4.                if Pi.A = Hide   

5.                then Remove Pi.A from list    

6.                else  

7.                if Pi.A = Release     

8.                then Send Pi.A to Publisher    

9.                else Apply DP on Pi.A and Call Differential Privacy 

10.                Send PP.Pi.A to Publisher       //PP: Privacy-Preserved  

11.           Send Pi attributes in Publisher to Ck 

Manipulated Differential Privacy Function  

Compute sensitivity level (∆f) 

12.       ∆𝒇 = 𝑚𝑎𝑥𝐷,𝐷′ |𝑓(𝐷) −  𝑓(𝐷′)|   

Compute maximum difference between two elements (E) of the same 

attribute (𝛼)   

13.       𝜶 = 𝑚𝑎𝑥1≤𝑖,𝑙≤𝑚 |(𝐸𝑖) − (𝐸𝑙)|   

Compute privacy level (𝜀𝑖)      

14.       𝜺𝒊 = |𝑙𝑛
𝑚 ∗ 𝛽𝑖 ∗ 𝛾𝑗

1−𝛽𝑖
| / 𝛼        

Compute noise level (b)  

15.       𝒃𝒊 =
∆𝑓

𝜀𝑖
          

Compute LaPlace mechanism  

16.       𝑳𝒂𝒑(µ, 𝑏𝑖)  

𝑏𝑖 =
∆𝑓

𝜀𝑖
                                                    (5)  

To add bi to the original data, the scheme applies Laplace 

distribution. It is mainly how wide is the noise to be added to 

protect privacy.  
𝐿𝑎𝑝 = (µ, 𝑏𝑖)                                             (6) 

where µ is the position that depends on the original data that 

needs to be privacy-preserved. bi is the scale factor that depends 

on ∆f and εi, not on the dataset. The higher the bi, the flatter the 

scale is, and the lower the bi, the sharper the scale is. 

IV. EXPERIMENTAL EVALUATION 

In this section, we discuss our experimental evaluation of 

the CAP scheme. Section IV.A reviews the implementation 

setup and evaluation environment. In Section IV.B, we describe 

the dataset we use in the implementation. Finally, we discuss 

the implementation results and the evaluation metrics to assess 

the success of our scheme in Section IV.C. 

A. Evaluation Environment  

Our implementation of the CAP scheme uses a dataset by a 

group of participants who are within the vicinity of a crisis (see 

Section IV.B for details). The participant contributes by 

collecting sensor data, location, date and time. In each 

participant contribution, metadata, i.e., age, gender, height, 

weight and health condition are included. Participants send 

their contributions to CAP periodically. Then, CAP applies the 

steps of the context-aware scheme and the privacy scheme as 

discussed earlier. Based on the CAP decisions of what data to 

release and to what level of privacy protection, the publisher 

component sends the privacy-preserved data to the application 

server. 

B. Dataset 

Our overall dataset consists of two parts, sensors dataset 

and participants dataset. Sensors dataset considers the crisis 

environment and sensor data, i.e., location, date and time. 

Participants dataset deliberates participants personal profiles, 

i.e., age, gender, height, weight and health condition. Our 

dataset is publicly available on Scholars Portal Dataverse1 [9] 

i. Sensors Dataset 

Due to the lack of data collected from sensor devices of an 

actual crisis, we generated our dataset following some of the 

early steps of our previous work [8]. In our generated dataset, 

we randomly assigned the crisis location and the participants 

located within the vicinity of the crisis.  

Our use case is a fire crisis. We generated a heat map by 

creating three heat levels in a radius of 2 km from the crisis. 

The dataset contains 250 participants contributing for six days. 

The data collector gathers the data every 2 minutes (epoch). In 

every epoch, participants use their smartphones’ temperature 

sensors to collect sensor data in addition to their location, date 

and time. In our use case, the temperature is an instance. 

Participants freely travel from one position to another. 

Therefore, the number of participants in any given zone differs 

from one epoch to another due to the absence of some of the 

participants who are out of the crisis considered range. 

1 https://doi.org/10.5683/SP2/DIDFP9  
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We apply a Gaussian distribution to generate a temperature 

value for every participant in every epoch. In the Gaussian 

distribution, we assign a mean (µ) that corresponds to the 

ground truth temperature for every heat level and a standard 

deviation (δ) that corresponds to the limited possible error of 

the participant contribution.  

ii. Participants Dataset 

Metadata, in this work, is the data about participants that do 

not change frequently. To have such data, we searched for a 

real-world dataset that contains data about actual people 

collected by official organizations. Statistics Canada has 

collected a dataset “Canadian Community Health Survey” 

(CCHS) in 2014 and published it in 2016 [10]. We selected 

specific attributes to describe the participants. These are age, 

gender, height, weight and health condition. We selected 250 

out of thousands of participants in the survey and assigned their 

data randomly to our 250 participants. The participants dataset 

eventually has one record to each participant.  

To make our dataset more challenging to privacy, we 

applied two steps that make some participant contributions 

distinct from others that may cause, with some effort, to re-

identify the participants. In the first step, we chose 80 

uncommon characteristic participants in the survey (among the 

selected 250) that are either underweight or obese. We 

computed the Body Mass Index (BMI) values to obtain the two 

uncommon characteristics. In the second step, for each 

participant, we assigned a visit probability to each sector in the 

map. We allocated random adjacent sectors to each participant 

and random probability to each sector. Participants, selected by 

these two steps, are more vulnerable to be re-identified than 

others due to their uncommon characteristics and appearance 

probability in some sectors. 

C. Experiment Results 

At the end of the CAP process, every publishable data will 

be sent in either its original or privacy-preserved format. 

Therefore, we need to consider the consequences that those 

publishable data may cause regarding protecting participant 

privacy and rescuing victims. Hence, we evaluate the success 

of our scheme by measuring: (1) the possibility of re-

identifying participants due to releasing some of their data in 

original format, and (2) the impact that the privacy scheme may 

cause to prevent rescuing victims due to hiding full or part of 

the original data.  

Identification Confidence (IC) is a metric to measure the 

confidence level of re-identifying a participant through its 

published data.  

To apply IC, we need to classify all the participant attributes 

and measure how sensitive each attribute is in the two possible 

release formats, original and privacy-preserved. As a result, we 

understand the quasi-identifier attributes that may lead to re-

identify participants. A quasi-identifier attribute is an attribute 

that can be used to probabilistically identify a participant either 

by itself or in combination with other attributes. Table 1 shows 

all the attributes in our use case and their sensitivity parameters 

in the two release formats. The proposed sensitivity parameters 

are high, medium and low. For example, if combining a high 

sensitive attribute with another high sensitive attribute, the 

result can lead to a high probability of re-identifying the 

participant.  

Sweeney et al. [11] found that the probability of re-

identifying an individual by combining the quasi-identifiers of 

the date of birth, gender and full postal code is 87%. By making 

either the date of birth or full postal code less specific, the 

probability drops to 44%. Hence, decreasing the number and/or 

the details of the quasi-identifiers will result in decreasing the 

probability of re-identifying individuals. Thus, we assign the 

values of 80, 40 and 10 to the attribute parameters high, 

medium and low, respectively. These values allow the IC 

metric to compute the overall sensitivity of combining multiple 

attributes.  

We set two thresholds, 30% and 60%, to decide the 

probability of re-identifying participants. In this case, a small 

value means good privacy and poor accuracy level, and vice 

versa. If the IC value is below 30%, then the probability of re-

identifying a participant is low, that privacy protection is good. 

If the value is between 30% and 60%, the probability to re-

identify a participant is medium, that the privacy and accuracy 

are fair. Finally, if the value is above 60%, the probability to 

re-identify a participant is high that the accuracy is good. 

To compute IC metric, we take the average parameter 

values of all publishable attributes for each recipient category 

in every situation, as in Eq. 7: 

𝐼𝐶𝑗𝑘
=

∑ 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑎𝑏𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑎𝑏𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 
                   (7) 

Where j = {1, 2, 3} referring to the number of situations that are 

S1: high risk situation, S2: moderate risk situation and S3: safe 

situation. Where k = {1, 2, 3} referring to the number of 

recipient categories that are C1: family and friends, C2: 

authorities and C3: journalists and public. Authorities in C2 are 

the most important recipient category because they are 

responsible for setting rescue plans regardless of the participant 

situations. Therefore, the application administrator allows more 

data to be released to this category than others. Family and 

friends in C1 come next in releasing data due to the close 

relationship, then journalists and the public in C3.  

As a result, IC values in S1 show that C1 and C2 receive 

more accurate data than C3 and the probability of re-

identification is high at 63%, 63% and medium at 41%, 

 
Table 1: Sensitivity parameters attributes in the two release formats 
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respectively, as shown in Fig. 3.a. At S2, the results show that 

C2 receives less accurate data than in S1 because participants 

status are more comfortable; however, it receives more data 

than other categories in the same situation. The IC values are 

medium at 45%, 57% and low at 24% for C1, C2 and C3, 

respectively, as in Fig. 3.b. Finally, S3 is the most comfortable 

and safe situation for participants, and the results show that C2 

receives more accurate data than others to measure the crisis 

severity even if the participants are safe. The IC values are the 

lowest, as shown in Fig. 3.c, and the privacy level is good due 

to low risk on participants. 

From the IC metric results, we can notice that the impact 

the privacy scheme may cause in preventing rescuing victims 

is very low especially in S1, the most critical situation. The 

probability of re-identifying participant is as high as 63% for 

C1 and C2, which means that the published data is critically 

managed to provide more accurate data besides privacy. In the 

other two situations, S2 and S3, risk recedes to a level that 

rescuing participants becomes less important. Thus, the IC 

values drop to the range of 57% and 10% to all recipients.   

V. CONCLUSION 

Protecting participants’ privacy is essential to encourage 

them to contribute in crisis PS applications. Also, data accuracy 

is necessary to set finest plans by rescue personnel. Therefore, 

balancing the privacy-accuracy trade-off is challenging 

especially that participants may become at risk in some 

situations. We proposed the CAP scheme that aims to provide 

privacy-preserved data to authorized recipients based on the 

status of participants. Different recipient categories receive a 

different level of participants’ private data. We implemented 

the proposed CAP scheme on a fire crisis dataset. Experimental 

results showed that the CAP scheme achieves a high level of 

privacy protection in safe situations, and a higher level of data 

accuracy than existing privacy schemes in risk situations. 
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Fig. 3: Privacy-accuracy trade-off in three situations based on IC values 
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