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Abstract—Crowd Sensing (CS) is a paradigm empowered by
the pervasiveness of mobile smart devices, in which crowds
of device owners cooperate to provide information about their
surrounding environment. In this paper, we introduce the Data
and Participant Assessment and Remuneration Scheme (DPARS)
for cooperative CS applications. DPARS implements a three-
stage procedure to estimate a fair reputation-based payoff for CS
participants. We achieve this by first applying a consensus-based
outlier detection technique on the received data. The output of
this technique is used to statistically evaluate participants’ repu-
tations based on the Dirichlet process. Consequently, a fair payoff
for every participant is determined by treating participants as
coalitions of players in a cooperative game. Performance results
indicate that our proposed scheme efficiently detects misbehaving
participants, and decreases the amount of incentives allocated to
them.

I. INTRODUCTION

The ubiquitous presence of sensor-enriched smart devices

has given rise to a promising sensing paradigm called Crowd

Sensing (CS), in which ordinary citizens cooperate to collect

and upload data about their surrounding environment. The

collected data is processed to extract crowd intelligence infor-

mation, and used to facilitate the provision of a wide array of

services. These services include environmental monitoring, e-

health care, urban dynamics sensing and crisis control, among

others [1].

Broadly speaking, a CS application organizer is interested in

monitoring an environmental phenomenon by collecting data

from the crowd. The organizer typically begins by specifying

multiple Points of Interest (PoIs), from which data is to be col-

lected. The organizer also specifies the sensing duration, which

is divided into equal-length sensing cycles depending on the

application [2]. In order to ensure the sensing service quality,

it is customary to accept a large number of data instances

from different participants at every PoI, so that the actual

value of the environmental variable is accurately deduced. At

the end of the sensing duration, participants are compensated

with monetary rewards according to an appropriate incentive

scheme [3].

The inherent openness of these human-centric applications

poses several challenges to the veracity of the collected

data. On one hand, malicious participants may deliberately

contribute erroneous data instances to hamper end-service

delivery, or may even provide irrelevant and fake data instances

to obtain monetary gain without actually performing any

sensing tasks. On the other hand, corrupted data can be a

result of inadequate sensor calibration and/or communication-

related failures without deliberate participant interference., or

can be a result of improper device placement (e.g., placing a

cellphone inside one’s pocket when monitoring noise levels).

Given that the ability of the CS organizer to provide end-

services is strongly dependent on the CS participants and the

quality of the contributed data, we recognize that there is a

pressing need to employ techniques to diagnose and overcome

these situations.

More specifically, the challenges faced by the organizer are

threefold. Firstly, the organizer must estimate the goodness of

every data instance within the context of all the data received

from the PoI, given that the ground-truth measurement is un-

known to the organizer. Secondly, these goodness estimations

must be used in a framework that allows the organizer to

analyze and predict participants’ behavior in the long run,

and decide whether a participant systematically contributes

corrupted data. And lastly, these estimations must be taken into

consideration when determining the incentive payoff, such that

the remuneration per participant is proportional to the value

of his/her contribution to the CS system.

In this paper, we propose the Data and Participant As-

sessment and Remuneration Scheme (DPARS), which encom-

passes solutions to the above enlisted challenges. DPARS

consists of three main stages: data assessment, participant

assessment and incentive determination. In the first stage,

DPARS uses a consensus-based outlier detection technique to

assess the goodness of every data instant, and assigns it a score

relative to all data received from the same PoI. This score is

used in the second stage to gauge participants’ behavior by in-

corporating a statistical reputation management system based

on the Dirichlet Process [4]. Lastly, the incentive determination

stage draws on concepts from cooperative game theory, where

participants are treated as coalitions that cooperate to increase

the utility of the organizer. These contributions are estimated

based on the first two stages, and the Shapley value [5] is used

to determine the fair remuneration per participant.

The remainder of the paper is organized as follows. In

section II, we discuss related work. In section III, we introduce

DPARS and present the three stages of our scheme in detail.

Section IV presents and discusses simulation results. Finally,
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section V presents our conclusions.

II. RELATED WORK

There exists a plethora of literature devoted to incentive

design and reputation management for ad hoc networks in

general, and CS systems in particular.

In [6], the authors proposed a reputation-based scheme to

evaluate CS participants. Participants were clustered in three

different groups based on their provided data measurements as

compared to the ground-truth. The group of participants with

the highest reputation was considered to be the winning group,

and its contributed data was sent to the server. Accordingly,

participants’ reputations are updated using positive and nega-

tive scores based on their group. Another work [7] presented

a robust reputation system that efficiently detects different

kinds of corrupted participants, including collusion and on-

off attacks. The proposed system was shown to improve the

accuracy of data aggregation process at the server. However,

these works lacked the implementation of an incentive mech-

anism based on the reputation values.

In terms of incentive design, the work in [3] focused on

recurrent CS applications, where every round is considered

as a single-shot game. The proposed incentive mechanism

encouraged participants cooperation to sell their sensory data

instances. Simulations showed that the scheme minimized

the number of participants in every round, while controlling

sample price and improving dropout rates. On the other hand,

the authors in [8] proposed to promote global cooperation

between participants by leveraging social ties. In particular,

participants are motivated to increase their payoff by impacting

the behavior of friends and socially-related participants. The

proposed incentive mechanism was shown to achieve coopera-

tion on a low budget, while providing a near optimal solution.

Although similar works increase the level of cooperation

between participants, they fail to take behavioral factors, such

as reputation, into account.

The closest work to ours is [9], where the authors proposed

to hire mobile trusted participants who provide ground-truth

measurements for an increased amount of payoff. The ground-

truths are compared to data provided from other participants,

and used to build their reputation scores based on a subjective-

logic belief model. The reputation scores were used to cal-

culate the incentive payoff for every participant. As will be

shown, our work is different because it does not require

expensive ground-truth knowledge to estimate the truthfulness

of data. Furthermore, we appeal to a more elaborate method

for determining the individual payoff based on cooperative

game theory.

III. DPARS OVERVIEW

In this section, we begin by introducing the key concepts

and the system model. Then, we present the three stages of

DPARS in detail: the data assessment stage, the participant

assessment stage, and the incentive determination stage.

A. Preliminaries

We adopt a general CS system model, where the organizer

divides the area of interest into M PoIs, and the entire sensing

duration into equal-length epochs denoted by e. At every PoI

m, there exists a set of participants Lm = {Pm,i : i ∈
[1, 2, ..., Lm]}, where Pm,i is the notation for participant i at

PoI m. At each epoch e , the organizer receives a collection

of data instances from Lm denoted by Xe,m = {xe,m,i :
i ∈ [1, 2, ..., Lm]}, where xe,m,i denotes the data instance

from participant Pm,i at epoch e. At the end of the entire

sensing duration, there exists a total incentive budget B. Every

PoI is allocated a portion of B denoted by bm, such that∑M

m=1
bm = B. Moreover, bm is further divided among the set

Lm, where each participant’s share is bm,i, under the condition

that
∑Lm

i=1
bm,i = bm.

DPARS works as follows. The first stage takes as inputs the

set Xe,m from all the PoIs, and performs a consensus-based

outlier detection algorithm on each set separately. Every data

instance xe,m,i is assigned a score se,m,i ∈ [0, 1]. This score

is an indication of the level of goodness of xe,m,i relative

to the other data instances from the same PoI. At the next

stage, DPARS statistically evaluates every participant using

an accumulation of the scores based on the Dirichlet process.

The output of this stage is an assigned reputation Ri ∈ [0, 1]
that serves as a measure of the participant’s behavior in the

long run. Finally, the last stage allocates fair portions of the

incentive budget B, such that participants are rewarded based

on their cooperation to increase the organizer utility. In the

following subsections, we present in details the operation of

the three stages of DPARS.

B. Data Assessment

As stated earlier, CS systems are greatly susceptible to

the reception of corrupted data as a result of their openness.

Hence, the organizer must employ a strategy to detect cor-

rupted data instances and compromised participants, in order

to mitigate their negative effect on end-service delivery. The

goal of the data assessment stage is to produce the score se,m,i

for every data instance, where the score is an indication of its

consistency with other data instances from the same PoI. It is

worth mentioning here that in practical systems, the organizer

performs this step without knowledge about the ground-truth,

i.e., the real value of the environmental variable is not available

at the organizer side, hence making the data assessment even

more challenging.

Generally, techniques that aim at detecting anomalous data

instances within a data sample are referred to as outlier

detection techniques [10]. These can be broadly classified in

two categories: parametric and nonparametric outlier detec-

tion. Parametric techniques estimate the amount of deviation

from a predefined model that describes the underlying physical

phenomenon. For example, in a temperature monitoring frame-

work, each data instance is individually compared to a spatio-

temporal model of temperature distribution, and classified as

normal or abnormal. While these techniques do not require

a certain number of data instances for accurate estimation,
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prior knowledge of the model is hard to obtain in most cases.

On the contrary, nonparametric models operate only using

the gathered data instances, without reliance on prior spatio-

temporal models or ground-truths. We focus our attention on

nonparametric consensus-based outlier detection techniques,

where the algorithm establishes a rule of consistency and

evaluates all data instances accordingly.

There is an extensive amount of research investigating

consensus-based outlier detection techniques. From which, we

choose to implement the Local Outlier Factor (LOF) technique

[11]. Our motivation to implement this method among all

others is twofold: a) it is computationally efficient, and b)

it offers a flexible continuous score rather than a binary

one, where data instances are categorized as either normal

or outlier. The concept of LOF is based on the relative local

density of points, where the output is an LOF score for every

data instance based on a single parameter k. To understand

how the LOF technique works, we first present definitions used

in calculating the LOF, where it is understood that a point is

a data instance in our context. For simplicity, we enlist all

definitions for two arbitrary points i and j.

• The distance between points i and j (d(i, j)): the eu-

clidean distance between points i and j.

• The k-distance of point i (dki ): the distance between point

i to its kth closest neighbor.

• The k-neighborhood of point i (Nk
i ): the set of all points

whose distance from i is less or equal to dki .

• The k-reachability distance of i to j (ρki→j): the maximum

of the distance between i and j, and j’s k-distance.

Mathematically:

ρki→j = max{d(i, j), dkj } (1)

• The k-local reachability density of point i (LRDk
i ): the

inverse of the average of reachability distances in i’s

neighborhood. Mathematically:

LRDk
i =

|Nk
i |∑

∀j∈Nk
i
ρki→j

(2)

• The k-local outlier factor of point i (LOF k
i ): the average

ratio of the k-local reachability density of point i and its

k neighbors. Mathematically:

LOF k
i =

∑
∀j∈Nk

i
LRDk

j

LRDk
i · |N

k
i |

(3)

In this manner, the LOF is a measure of the local reachability

density of a given point compared to its k-neighborhood.

Intuitively, if a point is an outlier, it will have low local

reachability density compared to its k neighbors. This sub-

sequently means that its LOF score will be high. Specifically,

LOF k
i ∈ [0,∞), where LOF k

i ≈ 1 indicates an inlier, and

LOF k
i ≫ 1 indicates an outlier. In our context, the LOF

procedure is applied to every Xe,m set, where every data

instance receives an LOF score denoted by LOF k
e,m,i. We

note that this is dependent on our choice of the parameter

k. To improve the performance, we repeat the procedure on

Algorithm 1 The LOF algorithm

Input: k = [k1, k2, ..., kJ ], Xe,m, ∀m ∈ [1, 2, ...,M ]
Output: se,m,i, ∀m ∈ [1, 2, ...,M ], ∀i ∈ [1, 2, ..., Lm]

1: for m← 1,M do

2: for i← 1, Lm do

3: for j ← 1, J do

4: LOF
kj

e,m,i =

∑
∀j∈Nk

i
LRDk

j

LRDk
i
×|Nk

i
|

5: end for

6: ωe,m,i = max{LOF
kj

e,m,i : j ∈ [1, 2, ..., J ]}
7: ω̂e,m,i = max{0, ωe,m,i − 1}
8: ω̄e,m,i = max{0, 0.5F (ω̂e,m,i)− 1}
9: se,m,i = 1− ω̄e,m,i

10: end for

11: end for

different values k = [k1, k2, ..., kJ ]. We choose the final LOF

as the maximum and denote it by ωe,m,i:

ωe,m,i = max{LOF
kj

e,m,i : j ∈ [1, 2, ..., J ]} (4)

At this point, we have a mathematically solid measure of

the outlierness of every data instance as compared to all data

instances in its PoI. A final step in this stage is to convert

this measure into a score se,m,i ∈ [0, 1]. In order to do

this, we adopt the regularization and normalization procedure

proposed in [12]. The goal of this procedure is to translate the

LOF values from [1,∞) into the range [0, 1]. Specifically, the

regularization step transforms se,m,i into the interval [0,∞),
as follows:

ω̂e,m,i = max{0, ωm,e,i − 1} (5)

Hence, inliers will now have an LOF value around 0, whereas

outliers will have much larger than 1. The next step is to

normalize the scores. We apply a statistical normalization

procedure as it increases the contrast between inlier and

outlier scores [12]. To do so, we map our LOF scores into

a Gaussian distribution whose mean µ is the mean of all

regularized LOF scores, and variance σ is the variance of all

regularized LOF scores F (ω̂e,m,i) = N(µ, σ). The normalized

CDF scores are obtained by:

ω̄e,m,i = max{0, 0.5F (ω̂e,m,i)− 1} (6)

Now, we have a regularized and normalized LOF for every

received data instance as a measure of its degree of outlierness.

Since we defined the score se,m,i as a measure of goodness,

then it is:

se,m,i = 1− ω̄e,m,i (7)

The procedure is applied to all PoI data sets at every epoch,

as shown in algorithm 1 in detail. In the next subsection, we

will show how we will utilize this instantaneous data instance

goodness score in the evaluation of the overall participant

behavior.
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C. Participant Assessment

In the data assessment stage, the goal was to obtain scores

that measure the level of the relative goodness of the received

data instance. Notably, these scores are instantaneous by

nature, and they do not contain accumulative information about

a participant in particular. Therefore, there is a need for a more

comprehensive view in our scheme that offers objective scores

representative of every participant behavior. Towards this end,

we employ a reputation management mechanism in this stage.

The goal is to produce a reputation value Ri ∈ [0, 1] that

represents the degree of reliability of a given participant.

There are numerous reputation management mechanisms

proposed in previous works, among which is a prevalent

category based on Bayesian statistics [4]. In this category, a

random variable follows a certain likelihood function Fs, and

a dependent variable is assumed to have a prior distribution

Fr. Then, the posterior distribution Fr,p can be found from

the well-known Bayes’ theorem. Furthermore, if the posterior

distribution belongs to the same class as the prior, this distri-

bution is called the conjugate prior of the likelihood function

Fs. The importance of this result is the algebraic convenience

of obtaining a closed-form expression of the posterior that it

directly related to the prior distribution.

The Dirichlet Process (DP) is a probability distribution

whose range is itself a set of probability distributions. Fur-

thermore, it is the conjugate prior of the general infinite-

dimensional discrete distribution [4]. Therefore, we propose

to use the DP as our distribution. Specifically, we think of

our score se,m,i as a discrete random variable with infinite

possible values in [0, 1]. Therefore, the reputation is assumed

to have a prior DP distribution. After every observed score,

we can update our assumption about the reputation. Here,

the update becomes a simple parameter change using the

successive observations to estimate the posterior distribution

of the reputation, as we will show shortly.

Let the DP represent the prior distribution of participant’s

i reputation, denoted by Di(αi) where αi is a distribution

shape parameter called the base measure. Let the score se,m,i

represent evidence from which the reputation distribution shall

be updated. From [4], we know that the posterior distribution

of Di(αi) after an observation se,m,i, is also a DP where the

base measure is found to be: αi + δ(se,m,i). Here, δ(se,m,i)
is the unit impulse function existing at se,m,i only.

Consequently, the posterior probability of a new observation

sE+1,m,i given all previous observations until epoch E, is

found as:

P (sE+1,m,i|s1:E,m,i) =
αi +

∑E

e=1
δ(se,m,i)

αi + E
(8)

In this context, we define a participant’s reputation Ri as the

expected future behavior of participant i given all observations

se,m,i. Mathematically, this can be written as the expectation

of the random variable se,m,i:

Ri =
αi + 2

∑E
e=1

se,m,i

2(αi + E)
(9)

Note that now we have constructed a long term view of each

participant’s behavior from successive instantaneous scores.

At every epoch, the reputation of each participant’s will be

updated, and will eventually converge to a value in [0, 1]
that is representative of the behavioral pattern. In particular,

when there are no observations about participant i (E = 0),

the value of Ri will be 0.5. This value is intuitive since

at the beginning, we assume that the participant has the

same probability of being normal or compromised. As more

observations are collected about participant i, Ri will approach

its real value. For a participant whose contributions are mostly

rated se,m,i = 0, as E →∞, Ri → 0, and vice versa.

D. Incentive Determination

In the incentive determination stage, the aim is to find the

amount of fair payoff for every participant. Here, fairness

means that every participant’s remuneration should be propor-

tional to its contribution to the organizer utility. We achieve

this objective by using the Shapley value from cooperative

game theory [5]. In a cooperative game, players form coali-

tions to obtain a certain gain, and the Shapley value determines

the unique distribution of the total gain, such that it is fair and

efficient. Specifically, for a game with G players, the Shapley

value payoff for player g is:

φg =
∑

C⊆G\g

|C|!(G− |C| − 1)!

G!
(v(C ∪ g) − v(C)) (10)

where C is a coalition from G without player g, and v(.) is

a valuation function that measures the utility of a coalition

of players depending on the nature of the game, such that

v(∅) = 0. Clearly, the Shapley value can be interpreted as the

average marginal contribution of player g over all the possible

permutations in which the coalition can be formed.

To determine the fair incentive payoff for every participant,

we implement a two-step procedure. In the first step, we treat

the set of all PoIs as a coalition of M players, and use the

Shapley value to divide B into fair payoffs for every PoI bm.

In the second step, we view the set of all participants at PoI

m as a coalition of Lm players, and further divide bm into

fair portions for every participant bm,i. Specifically, the fair

payoff for a PoI m is:

φm =
∑

C⊆M\m

|C|!(M − |C| − 1)!

M !

· (vPoI(C ∪m)− vPoI(C)) (11)

where vPoI(C) is a valuation function that measures the

organizer utility achieved by the cooperation of all the PoIs in

C. We define it as:

vPoI(C) = eγIm
∑

m∈C

R̂m (12)

where R̂m is the sum of the individual participant reputations

in PoI m, Im is the number of participants in m whose

reputation is larger than a threshold Rth, and γ ∈ [0, 1]
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Fig. 1: Evolution of Ri for some participants.

is an adjusting factor. We refer to the multiplicative term

eγIm as the Synergy Factor (SF). Here, synergy refers to the

ability of a coalition to cooperate and create a whole whose

utility is greater than the sum of the individuals. In other

words, the SF is a boosting factor dependent on a coalition’s

potential to produce trusted knowledge. The logic behind this

is that the organizer’s utility is increased when participants

provide consistent data about the monitored environmental

variable, and this is reflected in the number of reputable

participants Im. Thus, the valuation function rewards PoIs

with reputable participants, while it penalizes PoIs with under-

achieving participants. Given the Shapley value for each PoI

m, the fair PoI level payoff is:

bm =
φmB

∑M

m=1
φm

(13)

Having found the allocated budget for every PoI, we use

the Shapley value in a second step to further divide it among

Lm, by applying Eq. (10) on Lm participants and using a

participant valuation function as follows:

vPart(C) =
∑

i∈C

Ri
2

∑
i∈C Ri

(14)

In this manner, the payoff for every participant is a function

of the reputation of the entire PoI (Eq. (12)) and its own

reputation level among the coalition of participants at m. As in

the previous step, reputable participants receive higher rewards

than under-achieving participants. The exact value is found as:

bm,i =
φm,ibm∑Lm

i=1
φm,i

(15)

IV. PERFORMANCE EVALUATION

In this section, we first introduce our simulation setup envi-

ronment and parameters, then present performance evaluation

results.

A. Simulation Setup

We conduct simulation experiments to evaluate the perfor-

mance of DPARS. We study the performance of our scheme

in a cooperative noise monitoring CS application using MAT-

LAB. We assume we have M = 3 PoIs, at each one there

exists 25 participants. Each PoI corresponds to a location

where there are different nearby conditions, and different noise
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Fig. 2: Percentage of CPs with Ri > Rd.

levels. We generate random data based on the measurements

provided in [13]. Let the 3 PoIs correspond to vehicle traffic,

construction and quiet places, respectively. We generate data

instances at each PoI from normal distributions with means

75.4, 73, and 67.7 dBA, where dBA is the unit of noise levels

measured using the A-(frequency) weighted network, respec-

tively. We divide our participants into two categories: normal

and corrupted. For normal participants, we set the variance of

the distribution to 0.2 at every PoI. For Corrupted Participants

(CPs), we deliberately tamper with the data instances of a

randomly selected set of participants. We assume there exists

1, 3 and 5 corrupted participants at the PoIs, respectively. For

the evaluation of the data at each epoch, we set k = [3, 4, 5].
Furthermore, let αi = 1 for all participants, and we update the

reputation value after each epoch.

B. Simulation Results

We begin by studying the evolution of the reputation value

for some participants in Fig. 1, where we plotted the reputation

per epoch for a normal participant chosen randomly, and

all the CPs in the 3 PoIs. Firstly, we note that the normal

participant starts with Ri = 0.5 as all other participants, but

quickly converges to Ri = 1. Secondly, note that all CPs

tend to fluctuate in their reputations, as a result of the random

fabricated data. In general, all reputation values converge

around epoch e = 100. More specifically, we note that CP 1

from PoI 1 has the lowest reputation among all CPs, because

it is in a high-achieving PoI and the outliers are very easy to

detect. Whereas the set of CPs from PoI 2 and 3 have varying

reputations in a slightly higher range. This is because when

the number of outliers increase, they might be mistaken for

a group of inliers by themselves, hence giving higher scores

and reputation values. However, all these CPs converge to a

maximum reputation of 0.5, which is considered to be the

borderline in our reputation management scheme.

To verify this result, in Fig. 2 we have plotted the percentage

of CPs with varying decision threshold for the reputation, de-

noted by Rd. From the Figure, we notice that the average drops

to around 10% at Rd = 0.5. This verifies that our proposed

scheme detects corrupted data and participants efficiently.

In Fig. 3, we plot the fraction of the allocated budget for

every PoI for different values of the adjusting parameter γ,

where Rth = 0.6. Note that for γ = 0, the allocation of
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the budget degenerates to the Variable Reward (VR) scheme

in [9], where participants are rewarded according to their

relative reputations, without considering the cooperation or

synergy between participants. For γ > 0, the distribution of the

allocated budget among different PoIs becomes increasingly

sparse. This is achieved by allocating a larger payoff for

highly-reputable PoIs, and less for under-achieving PoIs. In

our simulation, it is obvious that PoI 1 achieves the highest

synergy as all participants except 1 are reputable, as opposed

to PoI 3. As we have mentioned earlier, the logic behind the

SF is that the organizer has high trust in the aggregated data.

The exact amount of reward and penalty is controlled by γ.

Finally, in Fig. 4, we show the percentage of B that was

allocated to all the CPs in the CS applications. Again, we

compare the performance of our scheme to the VR scheme

in [9] by letting γ = 0. We note that as increase γ, the total

allocated budget for CPs decreases gradually, as the reputable

participants receive higher rewards. Hence, our scheme min-

imizes the amount of B allocated for CPs. Additionally, the

organizer can control the amount of penalty by changing γ,

depending on the application requirements.

V. CONCLUSIONS

In this paper, we proposed the Data and Participant As-

sessment and Remuneration Scheme (DPARS) for cooperative

crowd sensing applications. The DPARS aims to address three

main challenges: to evaluate the goodness of every received

data instance without prior knowledge about the ground-truth,

to construct a long-term view of each participant’s behavior

using the data good estimations, and determine the fair payoff

for every participant in the CS application. In the first stage of

DPARS, the data is assessed using a consensus-based outlier

detection mechanism, where each data instance receives a

score of goodness. In the second stage, the reputation of each

user is updated using the data scores based on the Dirichlet

process. And finally, the last stage distributes the total budget

among the PoIs and the participant using the Shapley value,

based on a valuation function of the total reputations of

the PoIs and participants. Simulations results show that our

scheme detects misbehaving participants and minimizes the

amount of incentive allocated to them.
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