
Bitrate Adaptation-aware Cache Partitioning for
Video Streaming over Information-Centric Networks

Wenjie Li∗, Sharief M.A. Oteafy†, Marwan Fayed‡ and, Hossam S. Hassanein∗
∗Queen’s University, Canada

Email: {liwenjie, hossam}@cs.queensu.ca
†DePaul University, USA

Email: soteafy@depaul.edu
‡University of St Andrews, United Kingdom

Email: marwan.fayed@st-andrews.ac.uk

Abstract—Recent studies suggest that performance gains for
content delivery over Information-centric Networks (ICNs) may
be negated by Dynamic Adaptive Streaming (DAS), the de
facto method for retrieval of multimedia content. The bitrate
adaptation mechanism that drives video streaming appears to
clash with generic ICN caching techniques in ways that affect
users’ Quality of Experience (QoE). Cache performance dimin-
ishes as video consumers dynamically select content encoded at
different bitrates. Motivated by preliminary evidence suggesting
the merits of bitrate-based cache partitioning, we introduce
a scheme to dissect the cache capacity of routers along a
forwarding path according to dedicated bitrates. To facilitate
this partitioning, we propose a guiding principle RippleCache,
which stabilizes bandwidth fluctuation while achieving high cache
utilization by safeguarding high-bitrate content on the edge and
pushing low-bitrate content into the network core. We further
propose a cache placement scheme, RippleFinder, to realize this
RippleCache principle and highlight its impact on users’ QoE
by cache partitioning. The performance gains are reinforced
by evaluations in NS-3. Measurements show RippleFinder can
significantly reduce bitrate oscillation, while ensuring high video
quality, indicating overall improvement to QoE.

Index Terms—Information Centric Networks; Named Data
Networking; Dynamic Adaptive Streaming; In-network Caching.

I. INTRODUCTION

The dominance of streaming video traffic on the Internet
makes it a high-value, as well as high-priority, candidate
for information-centric network (ICN) service [1]. Streaming
video traffic is also known to defy the long-valued Internet
tenets of stability, utilization, and fairness, that are only begin-
ning to be understood and addressed [2], [3]. This suggests that
video delivery services could be similarly problematic in an
ICN, which is optimized to deliver non-adaptive and non-video
traffic. It is therefore prudent to understanding and design for
adaptive multimedia within the ICN context.

Dynamic Adaptive Streaming over HTTP (DASH) is the
application-layer standard that is used to deliver multimedia
content over the network [4]. A DASH implementation has
three salient features. Content is first partitioned into equal
duration segments. All segments are then encoded at multi-
ple bitrates in order to accommodate a variety of network
conditions. Finally, adaptive algorithms are used to retrieve

the highest level of quality, subject to estimates of avail-
able network resources. These three attributes in combination
have been central to maximizing consumer satisfaction, while
minimizing content provider costs of delivery. However, as
streaming video traffic approaches 80% [5], application-layer
solutions are facing issues of scale.

In-network caching of video segments with variable bitrates
is touted as being one solution. The placement of video
segments with variable bitrates in ICN caches, which is
the focus of this paper, is known to be far from intuitive.
Existing caching schemes (e.g., [6], [7]) attempt to fill this
video-to-cache-placement gap by utilizing a snapshot approach
which is based on instantaneous picture of adaptive video
traffic in ICN. Despite improvements on video throughput
in a constrained network, this snapshot approach ignores the
interplay between cache placement and consumer-side bitrate
adaptation, which introduces dependencies that can diminish
cache performance [1].

This dependency between caches and bitrate adaptation
leads to a potential for “oscillation dynamics” [8]. For exam-
ple, consumers that retrieve low-bitrate segments from nearby
caches will perceive good performance. This observation will
trigger a desire for higher-quality content that may be stored
in the network core. As data from the network core has to
be delivered via a longer path than the earlier cache, poor
performance from the video source will cause the streaming
application to reduce its video quality preference. Oscillation
dynamics is intrinsically caused by estimates of unstable
network conditions that occur with intermittent cache hits
and misses. As a result, bitrate adaptation may recommend
users to request for different bitrates, exceeding the expected
behavior learned from the last snapshot of system; and cache
placement that is derived from the last snapshot of system
would become outdated immediately because of this shift on
preferred bitrates.

The issue of oscillation dynamics has been studied within
the conventional Internet. For example, a cache-aware bitrate
adaptation [9] is proposed, where an independent thread of
adaptation logic would be triggered when cache hits occur.
However, ICN architecture significantly differs from conven-
tional Internet where all content is hosted at known locations

����������	
���

 !�"�"#
�$"		�
"
%��%&
�'���(��������� 401

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 13:13:44 UTC from IEEE Xplore. Restrictions apply.

and consumer estimates of system performance are dominated
by network effects. In an ICN where video segments with var-
ious bitrates may be stored in different caches, the consumer-
side adaptation techniques have no means to distinguish poor
performance in the network from poor performance at the
cache. Thus, we argue that a “good” caching scheme that can
stabilize the bandwidth fluctuation is the fundamental solution
for ICN to relieve this oscillation.

In this paper, we design, implement, and evaluate such
caching schemes that improve consumers Quality of Expe-
rience (QoE) by reducing bitrate oscillation. We first carry
out exploratory experiments to understand the influence of
cache placement on adaptive streaming. We find that bitrate
oscillation pattern emerges with hop distance of requested
content along the forwarding path. This insight then motivates
us to safeguard cache capacity along each forwarding path
for particular bitrates via cache partitioning. As a result,
video content at a selected bitrate can be retrieved within an
appropriate hop distance that stabilizes bandwidth fluctuation.

Our contributions in this work are threefold:
1) We carry out exploratory experiments on existing caching

schemes to observe the cache distribution under adaptive
streaming, and the observed interplay between caches
along a forwarding path motivates the idea of a single
aggregate of caches into a cache path.

2) We propose the novel concept of RippleCache, as a
guiding principle for adaptation-aware cache partition-
ing. RippleCache manages the entire cache capacity of
ICN nodes along each forwarding path by safeguarding
high-bitrate content on the edge and pushing low-bitrate
content into the network core.

3) We present a cache placement scheme RippleFinder,
that realizes the RippleCache principle, to validate the
concept of cache partitioning. Experimental results show
RippleFinder can significantly reduce bitrate oscillation,
increase video quality, and indicate overall improvement
to QoE.

The remainder of this paper is organized as follows. In
Section II we present related work, focusing on recent con-
tributions to bitrate adaptation control and video caching
in ICN. Section III pinpoints the challenges of adaptation-
agnostic caching schemes on adaptive video streaming, and
presents the RippleCache principle. To assess the potential
gain of RippleCache, We elaborate on an embodiment scheme
RippleFinder in Section IV. Section V presents our experiment
setup and performance evaluation. We conclude in Section VI
and present our final remarks.

II. RELATED WORK

In the domain of adaptive video streaming, users’ QoE can
be improved by both client-side and server-side control [10].
Rate adaptation on the client-side can be Stepwise [11], [12],
where changes in selected bitrate are constrained to contiguous
levels of encoding. This has the effect of smoothing visual
changes in resolution and quality. Non-stepwise adaptation
has no such limitation on bitrate changes, and is instead

guided by indirect means of resource estimation such as buffer
occupancy [13], [14].

Ubiquitous caching [15] is a fundamental feature of ICN,
and could effectively reduce redundant traffic generated by
duplicate requests. Due to the decoupling of content and lo-
cation in ICN naming mechanisms, information is not bonded
with a certain host and can be retrieved from anywhere
in the network. In-network caching schemes in ICN have
been heavily investigated [16]. A consensus is reached where
caching performance can be enhanced by catering to content
popularity [17], [18]. For example, request statistics may be
processed to make caching decisions that reduce the hop
distance between consumer and content [17]. The request
frequency has also been utilized to annotate segments of
popular content and resize caching windows [18].

The relationship between in-network caching and bi-
trate adaptation has also attracted attention. For example,
Kreuzberge et al. [19] develop a cache-aware traffic-shaping
policy in response to the unfair bandwidth sharing generated
by rate-adaptive video streams. Other studies, such as our
previous work on revealing the interplay between caching
and bitrate adaptation [20], motivates the need of bitrate-
adaptation-aware caching. The focus on caching specifically
for adaptive video streaming is comparatively recent. Exam-
ples include building cache models that accommodate multiple
bitrates of the same content [6], [21], [22]. However, these
work either drives caching mechanisms using the steady states
that emerge from modelling bitrate adaptation as a Markovian
process [6], or assumes random behaviour from bitrate adapta-
tion generated by Gaussian model [21]. While insightful, these
studies are built on assumptions that overlook the variations
of realistic client-side bitrate adaptations.

In this work, we specifically address the interaction between
ubiquitous caching and bitrate adaptation. To the best of
our knowledge, our proposed RippleCache principle and its
embodiment RippleFinder are the first attempts to harness the
interplay between bitrate adaptation and cache placement to
improve users’ QoE.

III. CACHE PARTITIONING FOR ADAPTIVE VIDEO
STREAMING

We begin by motivating our design choices with evidence
from our exploratory studies to understand the interaction
between adaptive video traffic and cache placement. Our re-
sults demonstrate that adaptation-level dynamics change with
hop distance, which motivates us to safeguard portions of
cache capacity for different bitrates, in order to improve cache
utilization and reduce bitrate oscillation.

A. Impact of Cache Placement on Bitrate Adaptation

We evaluate the benchmark Cache Everything Everywhere
(CE2) with Least Frequently Used (LFU) replacement [15],
under experiment settings as described in Section V.

Figure 1 presents the likelihood of incurring a bitrate adap-
tation as a function of hop distance between the consumer and
the cache. We present results for lowest (1 mbps) and highest

����������	
���

402

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 13:13:44 UTC from IEEE Xplore. Restrictions apply.

Bitrate(Mbps)
1 8

1 2 3 4 5 6 7
Hop Count

1 2 3 4 5 6 7
Hop Count

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
ro

ba
bi

lit
y

of
 B

itr
at

e
A

da
pt

at
io

n

Adaptation
Lower Same Higher

Fig. 1. Likelihood of bitrate adaptation at different hop distances.

(8 mbps) video quality, which are the most representative
bitrates. We note that bitrate adaptations are triggered in
response to changes in network and caching conditions. In
order to reduce bitrate oscillation, the cache placement must
be made with the least likelihood to trigger adaptation.

Figure 1 shows that, among 1 mbps streams, it is more
likely to trigger an adaptation at low hop count while the
stability increases at higher hop count. A contrasting trend
emerges for high-bitrates. We observe from Figure 1 that the
highest 8 mbps streams are more likely to remain the same
quality within the first two hops. This implies high-bitrate
content must be retrieved close to consumers. Otherwise,
it becomes unavoidable to trigger bitrate adaptation when
high-bitrate requests are forwarded into the core network.
The combination of observations summarized by Figure 1
demonstrate the need for safe-guarding edge capacity for high-
bitrate content by pushing low-bitrate content into the core. We
expect that, by reserving cache capacity for a certain bitrate
in an ‘appropriate’ range of hop distance from consumers,
bandwidth fluctuation can be stabilized, which enables us to
further reduce bitrate oscillation. This motivates our design of
an adaptation-aware cache partitioning.

B. RippleCache Partitioning Principle

Our early experiments underscore the need for cache parti-
tioning. However, deciding on which portions of the network
should undergo cache partitioning, and the size of each parti-
tion, presents a significant challenge. This leads us to develop
RippleCache as a guiding principle for partitioning, stated as
follows:

Definition. RippleCache: Considering a forwarding path from
consumer(s) to a video producer, cache capacity along this
path would be partitioned and safeguarded for video bitrates
in a descending order.

We further elaborate on this principle in Figure 2, where
consumers can adapt video requests among three bitrates (B1 <
B2 < B3). The route from video consumer C1 to provider P1
follows routers R1, R2 and R3. RippleCache would require any
cache placement scheme that realize this principle to manage
the cache capacity on R1, R2 and R3 together, and safeguard
caching space from R1 to R3 in the order of B3, B2 and B1.

��

��

�������������	
���� ���� �������� ����

	
����

��

�����������������

�����������������

���	���			���	

�
����

�

����������������� ��������

Fig. 2. cache partitioning by encoding bitrates along each forwarding path

Figure 2 depicts a representative partitioning example guided
by RippleCache, where R1 is arranged to cache video content
particularly for B3, R2 for B2 and R3 for B1. The boundary of
partitions that separates the caching space for different bitrates
is named as a Ripple.

RippleCache works on each forwarding path. As different
consumers may experience varying bandwidth, complete dif-
ferent cache partitions may be constructed along each forward-
ing path. Thus, a certain router in the network may reside
in multiple partitions simultaneously, facing a contradictory
guidance for caching video content of different bitrates. That
is, as shown in Figure 2, the cache placement on forwarding
path from consumer C2 to producer P2 may request R2 to
cache bitrate of B3, while another path from C1 may drive
the same router R2 to cache B2. The cache placement on R2
must negotiate among these two routes, which dissects the
available cache capacity for each route, in order to satisfy
diverse caching preferences from different users.

RippleCache is intrinsically a guiding principle, and must
be realized by a specific caching scheme. However, there still
exist two issues to be solved before we can design any practical
solution: 1) Which are appropriate caching decision criteria,
so that the cache placement would form partitions? 2) When
conflicting partitioning occurs, which negotiation mechanism
can be applied to ensure a fair share on cache capacity
among each path? We resolve these issues by proposing our
RippleFinder scheme, as explained in Section IV.

IV. RIPPLEFINDER CACHE PLACEMENT SCHEME

RippleCache describes a high-level guiding principle of
cache partitioning. In order to realize this principle, we man-
ifest a cache placement scheme, named RippleFinder.

RippleFinder makes caching decisions along each forward-
ing path at one time, and iterates over all paths to complete
the cache placement for all routers in an ICN. It executes
upon a central controller, which can monitor the status of
caches and send cache placement decisions. Video statistics are
collected by edge routers and exchange with central controller
to facilitate cache decisions. RippleFinder would be triggered
once the request pattern derived from statistics significantly

����������	
���

403

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 13:13:44 UTC from IEEE Xplore. Restrictions apply.

changes, which would only be altered in hours as shown in
previous research based on YouTube traces [23].

To facilitate explaining our proposal, an ICN is modelled
as a connected graph G = (V,E). Every node i ∈ V is
equipped content storage capacity Ci dedicated to adaptive
video caching. We further assume single-path forwarding,
where routers satisfy video requests by selecting only one
interface with least delay to deliver content.

RippleFinder consists of the following five procedures as
labeled from 1) to 5). The first four procedures are executed
for each forwarding path while the last procedure is executed
for each ICN router.

1) Ranking Table Construction. Video statistics are col-
lected by the edge router of each forwarding path, and further
utilized to construct ranking tables. As shown in Figure 3a,
statistics on requested video content are categorized by bitrate,
while a ranking table Rb is built for each bitrate b. Every entry
in a ranking table consists of the Name of requested content
and the corresponding caching utility U, which is sorted from
high to low in this table. Caching decisions would cater to
video segments with high utility. The cache utility for video
segment (identified by file ID f , chunk ID k, and encoding
bitrate b) is calculated as follows:

U(f , k, b) = PopScore(f , k, b) ∗ Cost(b), (1)

where PopScore(f , k, b) is the number of requests appeared
in statistics, and Cost(b) is defined as the normalized size of
video segment encoded with bitrate b. This utility reflects our
design on the importance of caching: video contents that are
1) highly popular; 2) costly to deliver, are preferred caching.

2) Discover Cache Capacity. RippleFinder manages cache
capacity of all ICN nodes along a forwarding path. Specifi-
cally, available caching storage along a forwarding path L is
concatenated, where the total available size is defined as CL .
Initially, we start cache placement by assuming RippleFinder
can manipulate the entire caching space of all routers along
each path, i.e., CL =

∑
i∈L Ci . However, since cache placement

decisions are made along each forwarding path independently
and routers in an ICN will be shared by multiple paths, one
cannot guarantee that our previous assumption remains valid.
In fact, as shown in Figure 3b, it is highly possible that only
a portion of cache capacity of ICN nodes can be utilized by a
forwarding path (e.g., R2 and R3 in Figure 3b), while the rest
of capacity is reserved to cache content delivered through other
paths. Thus, the available size CL must be adjusted where the
update rule is detailed in Negotiation procedure, as we explain
later in this section.

3) “Push” and “Pop”. We construct a Cache Stack (STb)
for each bitrate b, as an intermediate data structure to hold
video segments. STb is filled in a descending bitrate order. For
example, STB3 is the first stack scheduled to be filled, followed
by STB2 and STB1 . Video content that appears in table Rb will
be “Push”ed into corresponding STb by ranking order until
the size of video segments in all Cache Stacks exceeding the
total available cache capacity CL , i.e., “Push” operation will

�������������	

Name Utility

/Video1/B3

/Video2/B3

/Video3/B3

100

70

40

�����������������
...

Name Utility

/Video1/B3

/Video2/B3

/Video3/B3

100

70

40...

Name Utility

/Video1/B3

/Video2/B3

/Video3/B3

100

70

40

�����������������
...

Name Utility

/Video1/B2

/Video3/B2

/Video4/B2

80

60

50

�����������������
...

Name Utility

/Video1/B2

/Video3/B2

/Video4/B2

80

60

50...

Name Utility

/Video1/B2

/Video3/B2

/Video4/B2

80

60

50

�����������������
...

Name Utility

/Video2/B1

/Video4/B1

/Video5/B1

40

35

30

�����������������
...

Name Utility

/Video2/B1

/Video4/B1

/Video5/B1

40

35

30...

Name Utility

/Video2/B1

/Video4/B1

/Video5/B1

40

35

30

�����������������
...

�������������	�����
�
���� ���� �� �������������������������� �� ��

(a) Ranking Table Construction. Construct ranking tables for each bitrate
(B1, B2 and B3) from video statistics collected by edge router R1.

�� �� ��

��������������	�L

�����������	��
��������������	�L

��	����������
����

��	����������
����

��	����������
����

��	����������
����

��	����������
����

��	����������
����

(b) Discover Cache Capacity. The shaded volume of router R1 , R2 and R3
would be used to cache video content delivered along path L. These shaded
volume is added together, with a size of CL .

Name Utility

/Video2/B1

/Video4/B1

/Video5/B1

40

35

30

����������	
�����
...

Name Utility

/Video2/B1

/Video4/B1

/Video5/B1

40

35

30

����������	
�����
...

���������������� ����	
	
	 ��� ���������������������� ����	
	
	 �� �������

NamNameeNamNamee UtiUt littyyUtiUt littyy

/ViVideode 2/BB1/ViVideode 2/BB1

/ViVideodeo4/B4/B1/ViVideodeo4/B4/B1

/ViVideode 5/B5/B1/ViVideode 5/BB1

40404040

353535

3030300..................

Name Utility

/Video2/B1

/Video4/B1

/Video5/B1

40

35

30

����������	
�����
...

����������������������������������

���

Name Utility

/Video1/B3

/Video2/B3

100

70

����������	
������

...
/Video10/B3 15���

Name Utility

/Video1/B3

/Video2/B3

100

70...
/Video10/B3 15���

Name Utility

/Video1/B3

/Video2/B3

100

70

����������	
������

...
/Video10/B3 15���

Name Utility

/Video1/B2 80

����������	
������

...
/Video24/B2

/Video25/B2��� 14
16

Name Utility

/Video1/B2 80...
/Video24/B2

/Video25/B2��� 14
16

Name Utility

/Video1/B2 80

����������	
������

...
/Video24/B2

/Video25/B2��� 14
16

������������������

/Video1/B2 (80)

���/Video24/B2 (16)

/Video25/B2 (14)

������������������

/Video1/B2 (80)

���/Video24/B2 (16)

/Video25/B2 (14)

������������������

/Video1/B3 (100)

/Video2/B3 (70)

���/Video10/B3 (15)

������������������

/Video1/B3 (100)

/Video2/B3 (70)

���/Video10/B3 (15)

(c) “Push” and “Pop”. Video content is pushed into Cache Stack by ranking
order. After content ‘/Video25/B2’ is pushed into STB2 , the Equation 2 is
violated, which triggers ‘Pop’ operation. Since utility of ‘/Video10/B3’ on
top of STB3 is higher than ‘/Video25/B2’ on top of STB2 , video segment
‘/Video25/B2’ is popped.

Fig. 3. RippleFinder’s procedures oriented around cache paths.

����������	
���

404

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 13:13:44 UTC from IEEE Xplore. Restrictions apply.

be paused once ∑

b∈B
Size(STb) ≤ CL (2)

is violated. Thereafter, a “Pop” operation is triggered to adjust
the content in Cache Stacks, in order to restore Equation 2
and resume “Push” operation. Figure 3c depicts a snapshot
of this procedure when STB2 is being filled and Equation 2
is just violated after segment ‘\Video25\B2’ is pushed. The
“Pop” operation would compare the utility of video segments
on the top of each Cache Stack, and pop up content with
the least utility until Equation 2 is restored valid again. As
a result, “Push” and “Pop” will occur intermittently, which
improves the average utility of video segments in all stacks.
When the popped video content belongs to the Cache Stack
that is currently being filled (i.e., STB2 in the example as shown
in Figure 3c), this stack would be marked as ‘complete’ since
overall cache utility can no longer be improved by continuing
pushing content into current Cache Stack. The popped content
and entries left in the ranking table would be excluded from
cache placement. Next, we move on to the following Cache
Stack (i.e., STB1 in Figure 3c) and repeat the same operations.

4) Nominate Cache Candidates. Video segments are kept
in Cache Stacks after “Push” and “Pop”, while this procedure
takes segments out from stacks, and assigns them over ICN
nodes along a forwarding path. In order to take advantage of
cache partitioning and realize the RippleCache principle, video
segments in Cache Stacks are placed in a descending bitrate
order, starting from edge router along path L. As shown in
Figure 4a, video content in STB3 is first to be placed, followed
by STB2 and STB1 . The number of segments assigned to each
router is determined according to the contributed volume of
each node to CL . We nominate these assigned video segments
as cache candidates. This procedure is also a precursor for
Negotiation, where the final cache placement would choose
from those candidates.

5) Negotiation. This procedure completes two tasks: a) it
evaluates nominated cache candidates by all forwarding paths,
and determines final cache placement from these candidates.
b) it updates CL based on cache placement result. To complete
task a), a cache decision table is built on each router, as shown
in Figure 4b, where every entry consists of the Name of a cache
candidate and the merged cache utility. Each router caches as
many content as its cache capacity allows, according to the
sorted cache utility from this table. To complete task b), we
first define Ci (L) as the available capacity for cache placement
on router i along path L. Ci (L) is derived by total size of
nominated video segments from path L that appear in the final
cache placement. As a result, after all Ci (L) on router i along
path L is calculated, CL can be updated by CL =

∑
i∈L Ci (L).

The coordination among these five procedures is detailed
in Algorithm 1. RippleFinder executes by iteration: the first
four procedures make cache placement based on assumed path
capacity CL , while the last Negotiation procedure updates CL

and triggers the cache placement for another iteration. Itera-
tions would stop once CL is not changed for any forwarding
path between two consecutive rounds. Since CL decreases

��������
������������	
�

���
������������	
�

����
������������	
�

������������ ����

������
��������	

(a) Nominate Cache Candidates. Video segments in Cache Stacks are placed
back to ICN routers. The placement occurs first at R1, followed by R2 and R3
along path L. Video Content in STB3 is first arranged to place, followed by
STB2 and STB1 .

��������������
������	���
����

Name Utility

/Video2/B3

/Video2/B1

/Video5/B2

70

40

30

������������
���
���

Name Utility

/Video2/B3

/Video2/B1

/Video5/B2

70

40

30

Name Utility

/Video2/B3

/Video2/B1

/Video5/B2

70

40

30

������������
���
���

�����������
��
������	���
����

�������������
��	��

Name Utility

/Video2/B1

/Video2/B3

/Video1/B1

80

70

60

/Video3/B3

/Video5/B2

35

30

Name Utility

/Video2/B1

/Video2/B3

/Video1/B1

80

70

60

/Video3/B3

/Video5/B2

35

30

�������������
��	��

NameName UtilityUtility

/Video2/B1/Video2/B1

/Video2/B3/Video2/B3

/Video1/B1/Video1/B1

8080

7070

6060

/Video3/B3/Video3/B3

/Video5/B2/Video5/B2

3535

3030

Name Utility

/Video2/B1

/Video2/B3

/Video1/B1

80

70

60

/Video3/B3

/Video5/B2

35

30

Name Utility

/Video1/B1

/Video2/B1

/Video3/B3

60

40

35

������������
���
���

Name Utility

/Video1/B1

/Video2/B1

/Video3/B3

60

40

35

Name Utility

/Video1/B1

/Video2/B1

/Video3/B3

60

40

35

������������
���
���

(b) Negotiation. The cache placement on path L1 and L2 nominates cache
candidates. Videos that reside inside the dashed rectangle represent the final
cache placement decisions. As two cache candidates from L1 (three from L2)
appear in the final cache placement, Ci (L1) is then equal to the size of segment
‘/Video2/B3’ plus the size of ‘/Video2/B1’. The same rule applies to Ci (L2),
which sums up the size of three video segments.

Fig. 4. Negotiating partitions among individual caches shared along inter-
secting paths.

monotonically during iterations, and is capped by 0 (i.e.,
RippleFinder cannot utilize any size on the path to make cache
placement), iterations are guaranteed to converge in the end.

RippleFinder has a polynomial time complexity. Let us first
denote the number of video files in the framework as F,
number of segments in each file as K , number of encoding
bitrates as B. The overall complexity of this algorithm is
O(|V|BFK · log(BFK) + |V|3), which is dominated by Line
8 and Line 13. Discover Cache Capacity iterates over each
forwarding path and every router to update cache capacity,
with a complexity of O(|V|2). Negotiation sorts the utility
values from a mix of cache candidates of different paths, with
a complexity of O(BFK · log(BFK)).

V. PERFORMANCE RESULTS AND INSIGHTS

We validate RippleFinder performance via simulation
against known caching strategies. The results and observations
inform and reinforce the broader merits of cache partitioning
for adaptive streaming. Our evaluations are conducted on the
Named Data Networking (NDN) architecture. We maintain
without loss of generality that RippleFinder design and sub-
sequent analyses can be applied on other ICN infrastructures.

A. Simulation Setup and Parameters

We implement RippleFinder over ndnSIM [24], an NS-3
based simulator. Each NDN router is allocated a Content Store

����������	
���

405

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 13:13:44 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 RippleFinder
Input: Set of forwarding paths L; Set of ICN Routers V;

Cache Capacity Ci of Router i, i ∈ V.
Output: Adaptation-aware cache placement xi on router i.

1: for all L ∈ L do
2: CL ← ∑i∈L Ci

3: end for
4: while CL <> C ′L do
5: for all L ∈ L do
6: C ′L = CL

7: Do Ranking Table Construction
8: Do Discover Cache Capacity
9: Do “Push” and “Pop”

10: Do Nominate Cache Candidates
11: end for
12: for all i ∈ V do
13: CL, xi ← Do Negotiation
14: end for
15: end while
16: return xi .

(CS), where its size Ci is subject to a total available system
capacity, controlled by ω, as

Ci =

∑
Size of Video

of NDN Routers
∗ ω,∀i ∈ V.

Client-side adaptation behaviour is simulated via our own
implementation of FESTIVE [12], a buffer occupancy-based
mechanism that captures recent advancements in bitrate adap-
tation. Users’ interests in video content vary across different
video files, captured by a Zipf -like distribution (controlled via
skewness parameter α). Videos are 200 seconds in duration,
comprised of 4-second segments. Each video segment is
prepared at 1, 2.5, 5, and 8 mbps, which are recommended
encoding bitrates by YouTube. Requests on video files are
triggered following a Poisson process, with an average time
interval between two consecutive requests as 400 seconds.
After the request for a video file is triggered, each segment
within that file is requested under the control by FESTIVE.
In our simulations, we build a 16-node ICN network with a
maximum hop distance from a video producer to consumers
capped at 7 levels. In this topology, edge routers connect to an
equal number of consumers. Link capacity is 20Mbps, which
represents dedicated bandwidth for adaptive streaming. The
simulation parameters are listed in Table I.

Three additional caching schemes are evaluated alongside
RippleFinder for comparison. Cache Everything Everywhere
(CE2) [15] with LRU, also with LFU, is a baseline that
commonly appears in literature [15]. ProbCache [25] serves as
a baseline for probabilistic caching [6], [18]. As our proposed
RippleFinder is a placement scheme, a snapshot on cache
status of other caching schemes is taken at steady state, in
order to make a fair comparison.

We present results of three performance metrics: Expected
Bitrate (Ebr), Video Freezing Duration (Pv f) and Average

TABLE I
SIMULATION PARAMETERS

NDN

Number of video files 200
Number of video segments per file 50
Number of NDN routers 16
Video segment playback time 4 sec
Number of video consumers 32
Encoded bitrates {1, 2.5, 5, 8} mbps
Average time interval on video file requests 400 sec
Bandwidth 20 mbps
Skewness factor (α) 0.8
Content store size percentage (ω) 0.1

FESTIVE

Drop Threshold 0.8
Combine Weight 8

Times of Bitrate Switches (Abo), which are inherited from
our definitions in previous work [20]. These metrics are used
to (i) assess the average video quality a consumer can expect;
(ii) identify the duration of a video pausing to buffer; and
(iii) track bitrate oscillation at the consumer. Each set of
evaluations is repeated to account for the total size of the
content store ω and popularity-related bias α. All results are
presented at a 95% confidence level.

B. The Impact on Expected Bitrate

Expected Bitrate (Ebr), plotted across Figure 5, is an
aggregate measure of the video quality that can be sup-
ported by network and cache resources. Ebr is calculated
by averaging the requested bitrates among consumers during
entire simulation period. RippleFinder performs as well as
other popularity-based schemes (e.g., LFU or ProbCache)
across different cache capacity and popularity distribution, and
achieves advantages especially at low cache capacity and high
popularity skewness. For example, Figure 5a shows that at
ω = 0.05, RippleFinder achieves higher Ebr than CE2 with
LFU by 8.1%, and is 34.6% better than CE2 with LRU. The
improvement of RippleFinder is significant over LRU but is
minor over LFU and ProbCache. This is because RippleFinder
is also a popularity-based scheme, which achieves high cache
utilization by capturing request pattern and catering to popular
content. In addition, RippleFinder considers the factor of
delivery cost in its utility function (as shown in Eq 1), which
further reduces bandwidth consumption and gains advantages
over LFU and ProbCache especially with small cache capacity.

Figure 5b shows Ebr under different popularity distribu-
tions, controlled by skewness parameter α. When α changes
from 0.6 to 1.2, expected video quality gets improved by
all tested caching schemes. This is because users’ requests
concentrate on a smaller set of popular content with larger
α, which thereby increases the overall cache hit ratio.
RippleFinder delivers a consistently higher expected bitrate
and outperforms other schemes with large α values.

C. The Impact on Bitrate Oscillation

Bitrate oscillation manifests on-screen by images that ap-
pear to improve and degrade in quality. In our measurements,

����������	
���

406

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 13:13:44 UTC from IEEE Xplore. Restrictions apply.

Cache Percentage
0.05 0.1 0.15 0.2

1.8

2.0
2.2
2.4
2.6

2.8
3.0
3.2
3.4

E
xp

ec
te

d
B

itr
at

e
(M

bp
s)

CE2(LRU)
CE2(LFU)
ProbCache
RippleFinder

(a) Ebr across cache capacity (ω)

Popularity Skewness
0.6 0.8 1 1.2

2.0

2.5

3.0

3.5

4.0

4.5

E
xp

ec
te

d
B

itr
at

e
(M

bp
s)

CE2(LRU)
CE2(LFU)
ProbCache
RippleFinder

(b) Ebr across popularity skewness (α)

Fig. 5. Expected bitrate across tunable ω, α

Cache Percentage
0.05 0.1 0.15 0.2

2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

A
vg

. #
 o

f B
itr

at
e

S
w

itc
he

s

CE2(LRU)
CE2(LFU)
ProbCache
RippleFinder

(a) Abo across cache capacity (ω)

Popularity Skewness
0.6 0.8 1 1.2

2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

A
vg

. #
 o

f B
itr

at
e

S
w

itc
he

s

CE2(LRU)
CE2(LFU)
ProbCache
RippleFinder

(b) Abo across popularity skewness (α)

Fig. 6. Bitrate oscillation across tunable ω, α

Cache Percentage
0.05 0.1 0.15 0.2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
re

ez
e

D
ur

at
io

n
(s

ec
on

d)

CE2(LRU)
CE2(LFU)
ProbCache
RippleFinder

(a) Pv f across cache capacity (ω)

Popularity Skewness
0.6 0.8 1.0 1.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
re

ez
e

D
ur

at
io

n
(s

ec
on

d)

CE2(LRU)
CE2(LFU)
ProbCache
RippleFinder

(b) Pv f across popularity skewness (α)

Fig. 7. Video freezing across tunable ω, α

we average the count of bitrate increases and decreases during
watching an entire video file. A representative set of mea-
surements appears in Figure 6, where RippleFinder achieves
the least bitrate oscillation compared with other caching
schemes. In combination with Figure 5, the performance of
RippleFinder is remarkable since it can not only reduce bitrate
oscillation but meanwhile deliver the best video quality.

Figure 6 shows that bitrate switches increase with cache
capacity and popularity skewness. This is because either large
cache size or skewed popularity distribution would improve
cache hit ratio, which triggers bitrate adaptation to upgrade
requested video quality. However, as cache resource of each
ICN node is limited, a downgrade on video quality would
unavoidably occur thereafter. Popularity-based schemes (e.g.,
ProbCache) achieve a higher cache hit ratio than LRU, but
this high cache hit ratio also comes with a higher probabil-
ity of performance downgrade. As a result, popularity-based
schemes deliver a better video quality on average with a cost
of frequent bitrate adaptation. A good caching scheme, such
as RippleFinder, would maintain consumers’ requests on high-
quality content as long as possible, which thereby improves
the overall QoE.

D. The Impact on Video Freezing

Short-term variations in network and system conditions can
adversely affect playback before bitrate adaptation occurs.
One such indication is buffer-induced pausing during playback
that manifests on-screen as ‘freezing’. The Video Freezing
Duration (Pv f) is shown in Figure 7, calculated as the average
playback time spent in a ‘frozen’ state.

The probability of video playback freezing relates to the
video access delay of each segment. Caching schemes that

achieve high cache hit ratio can reduce average access delay,
which causes less playback freezing. In contrast to its rivals,
RippleFinder outperforms other schemes since it not only
caters to popular content (which improves cache hit ratio),
but also realizes the RippleCache principle where high-bitrate
content is placed closer to consumers. As large amount of
video segments with high quality would significantly increase
the network delay and choke video traffic, RippleFinder is
effective on relieving traffic load by satisfying high-bitrate re-
quests as early as possible. Only when the request distribution
is least skewed, does RippleFinder performance diminish to a
degree matched by popularity-based caching.

E. Discussion of Results

Throughout our evaluations we were surprised by the ability
of CE2 with LFU to meet or exceed all but RippleFinder
in terms of delivered video quality and playback freezing.
Looking ahead, the robustness of LFU suggests that perfor-
mance gains promised by ICNs may be dependent on on their
ability to exploit content characteristics. Otherwise caching
mechanisms may be mooted by simple popularity, alone, and
the corresponding simplicity of LFU.

The general hypothesis that cache placement should be
informed by content characteristics is further reinforced by
RippleFinder observations. By designing a cache placement
scheme for adaptive streaming content, we draw insights that
run counter to convention. Lower quality content that is pushed
into the core, for example, can improve end-user QoE. Edge
caches are left with additional capacity for higher-quality
content. Content quality at all bitrates consequently becomes
network- rather than cache-limited.

����������	
���

407

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 13:13:44 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION

In this paper, we have argued that ICN cache placement
should be tailored for adaptive streaming, as bitrate adaptation
mechanisms appear to clash with generic ICN caching tech-
niques. We highlight the issue of oscillation dynamics which is
caused by the interplay between in-network caching and bitrate
adaptation control, and present a primer in a novel approach
to caching, and establishes the premise of safe guarding cache
partitions for higher bit-rates, allowing for more ideal cache
placement strategies for adaptive video content.

Our proposed safe-guarding mechanism enforces bitrate-
based partitioning of cache capacities, named as RippleCache,
in order to stabilize bandwidth fluctuation. In RippleCache, a
network of caches is viewed along each forwarding path from
consumers, where the essence is safeguarding high-bitrate
content on the edge and pushing low-bitrate content into the
network core. To validate the concept and demonstrate the
potential gain of RippleCache, we implement an embodiment
caching scheme, RippleFinder, where our experiment results
contrast to leading caching schemes, and demonstrate how
cache partitioning would improve users’ QoE, in terms of high
video quality and significant reduction on bitrate oscillation.

More importantly, our experimentation with RippleFinder
yields the following conclusions: 1) The operational man-
date of bitrate adaptation algorithms significantly impacts
in-network caching schemes, thus caching must seamlessly
cooperate with adaptation. Existing schemes that apply a
snapshot approach cannot be applied directly for adaptive
streaming application, as they ignore the need of cooperation,
which results in severe bitrate oscillation. 2) The problem
of bitrate oscillation can be tackled by concatenating caches
along a forwarding path into a cache path. Although cache
hits on a standalone router would result in similar throughput,
adaptation-level dynamics vary across encoding bitrates such
that even exact same throughput will not bring the same
adaptation decision for each bitrate. By zooming out our view
from one cache to the range of a forwarding path, we can
arrange video content of different bitrates at a hop distance
from consumers that maximizes the chance of maintaining the
same adaptation decision, which is the key to avoid bitrate
oscillation. 3) It is possible for a caching scheme to deliver
video consumers high-quality content while ensuring near-
zero playback freezing and minimal bitrate oscillation. Our
experiments demonstrate that there is significant room of
improvement for future caching policies to enhance QoE by
practicing cache partitioning and inheriting from RippleCache
principle. This study paves the way for caching schemes
that can interact with bitrate selection algorithms, and handle
the dependency between adaptation control and caching via
network prediction for future request patterns.

REFERENCES

[1] C. Westphal, S. Lederer, D. Posch, C. Timmerer et al., “Adaptive video
streaming over information-centric networking (icn),” RFC 7933, IRTF,
2016, [Online]. Available:http://www.rfc-editor.org/rfc/rfc7933.txt.

[2] J. Chen, M. Ammar, M. Fayed, and R. Fonseca, “Client-driven network-
level qoe fairness for encrypted ’dash-s’,” in SIGCOMM Internet-QoE
Workshop, 2016.

[3] A. Mansy, M. Fayed, and M. H. Ammar, “Network-layer fairness for
adaptive video streams,” in Proc. IFIP Networking, 2015.

[4] MPEG, “DASH,” http://dashif.org/mpeg-dash.
[5] Cisco, “Cisco visual networking index: Forecast and methodology,

2015–2020,” 2016.
[6] W. Li, S. Oteafy, and H. Hassanein, “Rate-selective caching for adaptive

streaming over information-centric networks,” IEEE Transactions on
Computers, vol. 66, no. 9, pp. 1613–1628, 2017.

[7] Z. Ye, F. De Pellegrini, R. El-Azouzi, L. Maggi, and T. Jimenez,
“Quality-aware dash video caching schemes at mobile edge,” in IEEE
International Teletraffic Congress (ITC 29), 2017, pp. 205–213.

[8] R. Grandl, K. Su, and C. Westphal, “On the interaction of adaptive video
streaming with content-centric networking,” in Packet Video Workshop
(PV), 2013 20th International. IEEE, 2013, pp. 1–8.

[9] D. Lee, C. Dovrolis, and A. Begen, “Caching in http adaptive streaming:
Friend or foe?” in ACM Network and Operating System Support on
Digital Audio and Video Workshop, 2014, pp. 31–36.

[10] J. Kua, G. Armitage, and P. Branch, “A survey of rate adaptation
techniques for dynamic adaptive streaming over http,” IEEE Commu-
nications Surveys & Tutorials, 2017.

[11] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran, “Probe
and adapt: Rate adaptation for http video streaming at scale,” IEEE
Journal on Selected Areas in Communications, vol. 32, no. 4, pp. 719–
733, 2014.

[12] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive,” in Pro-
ceedings of the 8th International Conference on Emerging Networking
Experiments and Technologies (CoNEXT). ACM, 2012, pp. 97–108.

[13] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4, pp. 187–198, 2015.

[14] G. Tian and Y. Liu, “Towards agile and smooth video adaptation
in dynamic http streaming,” in Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies
(CoNEXT). ACM, 2012, pp. 109–120.

[15] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mechanisms
in information-centric networking,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 3, pp. 1473–1499, 2015.

[16] A. Ioannou and S. Weber, “A survey of caching policies and forwarding
mechanisms in information-centric networking,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 4, pp. 2847–2886, 2016.

[17] J. Li, H. Wu, B. Liu, J. Lu, Y. Wang, X. Wang, Y. Zhang, and L. Dong,
“Popularity-driven coordinated caching in named data networking,” in
ACM/IEEE symposium on Architectures for Networking and Communi-
cations Systems (ANCS), 2012, pp. 15–26.

[18] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “Wave:
Popularity-based and collaborative in-network caching for content-
oriented networks,” in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2012, pp. 316–321.

[19] C. Kreuzberger, B. Rainer, and H. Hellwagner, “Modelling the impact
of caching and popularity on concurrent adaptive multimedia streams
in information-centric networks,” in IEEE International Conference on
Multimedia & Expo Workshops (ICMEW), 2015.

[20] W. Li, S. M. Oteafy, and H. S. Hassanein, “On the performance of
adaptive video caching over information-centric networks,” in IEEE
International Conference on Communications (ICC), 2017.

[21] Y. Jin, Y. Wen, and C. Westphal, “Towards joint resource allocation
and routing to optimize video distribution over future internet,” in IFIP
Networking Conference, 2015.

[22] A. Araldo, F. Martignon, and D. Rossi, “Representation selection prob-
lem: optimizing video delivery through caching,” in IFIP Networking
Conference, 2016, pp. 323–331.

[23] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characteriza-
tion: a view from the edge,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, 2007, pp. 15–28.

[24] A. Alexander, I. Moiseenko, and L. Zhang, “ndnsim: Ndn simulator for
ns-3,” Technical Report NDN-0005, 2012.

[25] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in Proc. of the 2nd ICN Workshop on
Information-centric Networking. ACM, 2012, pp. 55–60.

����������	
���

408

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 13:13:44 UTC from IEEE Xplore. Restrictions apply.

