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Abstract—This paper considers Mobile Crowd-Sensing (MCS)
systems that suffer from scarce participant availability due to
small sample sizes in each sensing cycle. With such small sample
sizes, a sample in error would dramatically affect the MCS
system performance. Therefore, we propose a novel quality
of source metric targeted for small sample sizes through the
non-parametric bootstrap, the trimmed mean, and the Median
Absolute Deviation Trimming-based mean (MAD-mean). This
statistic permits outlier detection, and therefore allows the
estimation of quality under the stringent conditions of small
sample sizes present in MCS independent sensing cycles. We
introduce an algorithm that allows MCS administrators to
control the accuracy of the metric, and therefore control the
range of accepted values. Such control is achieved by means
of introducing the MAD-mean, which deliberately widens the
statistic’s distribution, and therefore the perception of quality.
In combination with the bootstrap, our metric allows quality
estimation for samples as small as 8. We develop our robust
quality of source metric algorithm, showing the impact of all the
involved parameters; and we compare it to computer simulations
to demonstrate its viability.

Index Terms—mobile crowdsensing; internet of things; sensor
networks; non-parametric bootstrap; small sample quality met-
ric; source quality.

I. INTRODUCTION

The Internet of Things (IoT) and mobile sensors’ networks

became a part of people’s daily lives [1], and such integration

led to the development of Mobile Crowd-Sensing (MCS)

paradigm. MCS exploits the significant presence of sensors

in the crowd, allowing system administrators to utilize the

crowd, their sensor-loaded smartphones in particular, as an

extended instrument to learn about their environment [1]. MCS

became a hot topic in recent research due to its pervasiveness

and the huge availability of potential sensing applications.

It can be leveraged to sense the physical space, as well

as the sociophysical behaviour of humans [2]. MCS can be

classified into two main categories based on the nature of task

execution: opportunistic sensing, in which passive execution

takes place without any user intervention except his consent;

and participatory sensing, that requires MCS participants to

actively follow a described procedure to successfully complete

sensing tasks [2].

An extensive portion of recent research contributions [3]

[4] concentrate on Big Data, and propose techniques that

assume data availability in abundance. However, MCS within

the IoT-Ecosystem, should also operate on the assumption that

Big Data is not always available. MCS data comes from a

diverse variety of participant smartphones at different locations

and different times. We believe that MCS solutions should

tackle more realistic scenarios, where at the sensing layer the

problem of data can be at small data scale, and not only Big

Data. To that end, small-sample techniques are required for

realistic IoT systems.

Small data techniques are complementary to Big Data

techniques. The contrast between ”Small” and ”Big” lies in

the fact that Big Data techniques seek to obtain a global
picture, while the Small Data techniques seek to obtain a

local picture. Such a distinction is important for applications

targeting IoT and Smart Cities, as the global result stems from

numerous local results. Also Small Data provides insight to

administrators, policy makers, and researchers into the minute

details of the system, which enables the design of more

consistent policies and better understanding of the different

scientific aspects involved [5].

Having small data sizes opens the door to alternative prob-

lems in realistic scenarios, where the administrators of MCS

systems need to recruit members of the crowd to perform

opportunistic or participatory sensing. Such recruitment needs

to guarantee data quality while minimizing cost, where cost

could be in terms of incentive payments [6], the provision

of a service [2], or data consumed [7]. Ultimately, it is the

number of participants that impacts the cost in an MCS system.

However, in order to minimize cost and achieve an efficient

system, the MCS administrator needs a mechanism, or a

metric, that relates sensing quality and sample size, for each

spatio-temporal cell [8].

Due to the variety and diversity of MCS participants, not

all participants are of the same quality, as a result there is

a heterogeneity present in the users’ sensors [2]. This results

in discrepancies in the accuracies and precision of the sensors

that are trying to estimate the true value of the sensed quantity

(for example, the normal distribution often comes up in sensed

physical measurements). However, in an MCS system, the

administrator is blind to the truth. This impairs the MCS

administrator’s ability to evaluate MCS participants. Such a

problem would be minor in Big Data settings, but it is crucial

in small data settings, as an incorrect measurement could drive

the whole system. In such cases, the MCS administrators needs

a statistical technique that would permit proper classification

under the stringent conditions of a small sample size, and
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that is by means of proper detection of faulty sensors as

abnormalities or outlier samples [9]. It is imperative that an

MCS system be capable of automatic detection and isolation

of such imperfections prior any analysis or inference about

the true value, or even augmentation into Big Data. With that

regard, this paper investigates a novel source quality metric

for such imperfections present in MCS systems.

The approach we adopt relies intensively on the non-
parametric bootstrap [1] to characterize the quality of a

sample. Within our setup, the bootstrap is used to compute

a sample distribution of a difference statistic, denoted θMMTM,

that combines, in a controlled manner, the mean with robust

centrality estimates: in particular the trimmed mean and the

Median Absolute Deviation trimmed-mean (MAD-mean). This

statistic provides a distribution that is similar to the bootlier

plot. Our contribution is twofold: we provide a mathematical

approach instead of the graphical approach in [10], and adapt

it to commercial systems as the width of the distribution is

deliberately widened by the presence of the MAD-mean term.

The presence of the MAD-mean term is controlled by the MCS

administrator via a parameter called sensitivity, that allows the

administrator to impose tolerances on the outlier sensitivity

of the statistic. This parameter is critical for commercial

systems as it controls the relation between the desired quality

and the allowed cost, that ultimately relates to the number

of participants within an MCS system. We also propose an

alternative quantification of the intuition captured in [10] by

comparing that distribution to an ideal distribution, that of the

dirac delta [11]. The introduced quality metric is based on the

similarity between the statistic’s distribution and that of the

dirac delta.

The contributions of our paper lie in the development of the

θMMTM-based metric, the statistical analysis of its mean and

variance under the bootstrap, and the quality metric developed.

The paper, in that sense, is organized as follows: Section

II provides a review of the non-parametric bootstrap, the

Bootlier; Section III describes the MAD-mean, the devel-

oped quality metric, its acquisition algorithm, and necessary

mathematical rigor; Section IV illustrates the usage of the

quality metric in a simulated scenario; and finally, Section

V concludes with a discussion of potential improvements.

II. REVIEW OF NON-PARAMETRIC BOOTSTRAP

A. The Non-Parametric Bootstrap

The non-parametric bootstrap [12] is a population-agnostic

method, that allows the construction of sample distributions

without prior assumptions about the population’s distribution.

Its numerical nature allows it to achieve its target by means

of sampling with replacement a large number of times, B.

The non-parametric bootstrap resamples the original sample

X = {x1, x2, . . . , xN}, generating B resamples, Xb =
{xb1, xb2, . . . , xbN} where xbi can appear more than once in

Xb, where xbi is a random variable that samples uniformly

from X . To construct the sample distribution of a statistic θ,

each Xb is employed to compute B θb statistics, gathered in a

vector θ∗, whose histogram represents the sample distribution.

Despite its numerical complexity for a large B, the bootstrap

is useful for crowdsensing applications where the scenario is

sparse [1]. It is of particular usefulness for small-sample cases

due to the fact that its fair resampling has a low probability,

P , of selecting a homogeneous sample (i.e., all samples in Xb

being exactly the same); which is obtained as:

P (Xb = {xi, xi, . . . , xi}) = [1− (1− 1/N)N ]N (1)

which is the probability of a binomial case. Inspecting the Eq.

(1), out of B resamples, only 3.45% will be extremely biased

for a sample of size N = 8.

The usefulness of the bootstrap in obtaining the quality of

small-sample scenarios comes from the presence of outliers.

Since resampling is uniform, the outliers presence is promoted

to have a probability of 1/N , like any other sample xi in X .

Further analysis of the binomial probability shows that the

probability of an element’s inclusion is:

P (xi ∈ Xb) = 1− (1− 1/N)N (2)

which converges for a large N to 67%, i.e. each sample is

present in 67% of the B Xb samples.

Furthermore, since B is a sufficiently large number, the

properties of the central limit theorem are also applicable to

the B θb statistics obtained. This property is of particular

usefulness in the discussion of central measures of tendency

(mean, median, mode,... etc), which causes the tendency of

the bootstrap for the mean to follow a Gaussian distribution.

However, due to the robustness of the MAD-mean, the result-

ing distribution is multi-modal because of the employment of

the median in the MAD-mean’s trimming process. It limits the

set of medians to be selected to a discrete number of medians

(for an odd N there are N possible medians, for an even N
there are N2 −∑N−1

i=0 i possible medians).

B. The Bootlier

The Bootlier, a graphical tool developed in [10], exploits the

outlier promotion flaw in the bootstrap to detect outliers by

computing the difference statistic between the mean x̄ and the

trimmed mean x̄k. The trimmed mean is a robust estimate of

centrality with a breakdown point of k%. The breakdown point

is the percentage of outliers beyond which the statistic ceases

to be robust. The mean is the least robust with a breakdown

point of 0, and the median - and inherently the MAD -

have a robust breakdown point of 0.5. In the Bootlier, the

difference between the mean and the trimmed mean, x̄− x̄k is

bootstrapped to construct a sample distribution. The histogram

of the resulting sample distribution is called a bootlier plot,

which shows the impact of outliers present in a sample. The

authors in [10] investigated the bootlier’s multimodality and

smoothness, and developed the bootlier index as a measure to

quantify its smoothness. However, their work heavily depends

on human intuition for assessing the quality of a sample, and

for detecting outliers, as well as does not provide a straight

metric for the evaluation of a sample’s quality.

We have analyzed the bootlier plot and found that its ideal

reference is in fact the distribution N(0, 0), which is best
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described as the dirac delta impulse [11], centered at 0. We

have also found that the bootlier is a superposition of leaking
impulses, which are very distinct when an outlier is present

as it introduces another impulse at xo − x̄k, where xo is an

outlier sample and x̄k is the trimmed mean of the sample.

The source of leakage is the variation within the original

sample, which causes the resulting sample distribution, i.e. the

bootlier, to be smooth. The bootlier statistic hides the resulting

multimodalities which combine to form a seemingly normal

distribution around 0, that should ideally - for an absolutely

perfect sample - be an impulse.

III. SAMPLE QUALITY ASSESSMENT

In the previous section, we have described how the non-

parametric bootstrap is useful for getting the sample distribu-

tions of a statistic even from small sample sizes. We combine

the MAD-mean with the bootstrap through the θMMTM statistic

to develop a quality metric that accounts for both range

and accuracy. For range, we employ the mean trimmed-mean

difference, x̄ − x̄k, that is sensitive to outliers below the

breakdown point of k%. For accuracy, on the other hand, we

employ the mean-MAD-mean difference, x̄ − x̄MAD, that is

always robust about the breakdown point of 50%, which makes

the metric more insensitive to the presence of outliers than the

trimmed-mean x̄k. So, we introduce in this section a hybrid

quality metric that utilizes this range-accuracy trade-off, along

the MAD-mean and the θMMTM statistic.

A. MAD-based Trimmed Mean

For a sample X = {x1, x2, . . . , xN}, the dispersion of

the population can be measured by means of the sample

standard deviation. However, the sample standard deviation

is a non-robust measure of dispersion which is easily affected

by outliers, since it is a statistic that has a breakdown point

of 0. The breakdown, as previously mentioned, is the point at

which the statistic becomes blind and and no longer robust to

outliers, as they become part of the population of the sample

itself, which is an unrealistic scenario in practical systems.

An alternative measure of dispersion is the Median Absolute

Deviation (MAD), that has the robust breakdown point of the

median, 0.5 [13]. The MAD is defined as the median of the

absolute deviations from the sample median, stated as:

MAD = median
{∣∣xi −

x̃M︷ ︸︸ ︷
median(X)

∣∣} (3)

where xi is the ith sample in X , and the median is denoted x̃M .

It is a robust measure of dispersion that is based on deviations
from the median, rather than deviations from the mean as is

the case in the standard deviation. The MAD, however, is a

consistent estimator of the standard deviation with:

σ̂MAD =
1

Φ−1(3/4)
MAD =

1

1.4826
MAD

∣∣∣∣
f(x)=N(μ,σ)

(4)

where σ̂MAD is the MAD-based standard deviation estimator,

f(x) is the probability distribution followed by the population,

N(μ, σ) represents the special case of the normal distribution

centered around μ with a standard deviation of σ, Φ−1 is

Fig. 1: Population with Abnormal Outliers (lower and upper).

the quantile function
(
which is the inverse of the cumulative

distribution function F (x)
)
. The quantile function is evaluated

at the probability of 75%, as the MAD is defined to cover

the median distance from the sample median (x̃M , which -

for a symmetric distribution - covers 50% from the left to

the right of the median x̃M ), and Φ−1 = 1.4826 for any

normal distribution N(μ, σ). We note that through the normal

distribution, the general relation between the MAD and the

standard deviation for any analytically defined distribution,

f(x), was derived [13].

The MAD inherits the robustness of the median, which

makes it useful for the detection and removal of outliers.

However, the definition of outliers is vague, and depends on

the application in hand. For MCS systems, sensor measure-

ments tend to follow the normal distribution, which involves

normal outliers that rise from extremes of the distribution.

However, there are abnormal outliers which lie far outside

the three sigma range defined by the three sigma rule [14].

These abnormal outliers rather come from an unexpected
phenomenon that is not modeled by the normal distribution,

as illustrated in Fig. 1.

In an MCS system, these abnormal outliers need to be

isolated as they represent a hindrance for the purpose of the

MCS system, to estimate the truth at a specific time in a

specific location. The MAD allows the removal of outlier

samples present in X , producing a MAD-trimmed sample,

denoted XMAD [15], where only values from within the range
of the normal distribution are considered, expressed as:

XMAD = {X : xj ∈ [x̃M ± λMAD︸ ︷︷ ︸
δσ̂MAD

]} (5)

where λ is how many MADs away from the median is the

threshold beyond which samples are outliers. The product

λMAD can be related to the consistent estimation of the

standard deviation δσ̂MAD to define it in terms of multiples

(δ) of deviations from the mean (σ̂MAD).

Nevertheless, normal outliers are expected, unlike abnormal
outliers, which lie farther beyond the three-sigma range. Thus,

to ensure proper estimation of the true value, μ, samples

beyond the 3-σ range could be considered as non-outliers,

around λ = 4, and therefore only the values belonging to the

interval x̃M ± 4MAD will be accepted. Therefore, the MAD-
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trimmed robust estimate of μ can be defined as:

x̄MAD =
1

N −No

N−No∑
i=1

xMADi
(6)

where N is the sample size, No is the number of outliers

present (i.e., samples outside the x̃M ± λMAD range), and

xMADi
is the ith element in the MAD-trimmed sample, XMAD.

Notice that the value of λ provides a degree of freedom for

the system administrator to decide the range of measurements

and the consideration of outliers. For the quality metric,

λ takes values less than 2 for the purpose of maximizing

robustness due to the small-sample sizes. The MAD-based

outlier detection is a technique that is especially useful for

small sample sizes [16], which makes it useful for the small-

sample scenarios present in MCS systems’ spatio-temporal

cells. Algorithm 1 summarizes the procedure to obtain the

MAD-mean.

Algorithm 1 Computing the MAD-mean.

Input: A sample: X = {x1, x2, ..., xn}
Output: MAD-mean: x̄MAD

Initialize : λ
1: MAD(X) = median(median(X)−Xi)
2: for all xixixi do
3: if xi /∈ [median(X)± λMAD] then
4: Xo = append(xi, Xo)
5: else
6: XMAD = append(xi, XMAD)
7: end if
8: end for
9: return x̄MAD = mean(XMAD)

B. MMTM Quality of Source Metric

The Bootlier, discussed in Section II, employs human intu-

ition in its assessment, and is too sensitive to disregard normal

outliers as abnormal outliers. Being overly sensitive to outliers

always impacts the perception of the sample’s quality, which is

an important criterion in selecting the number of participants

and thus impacts the overall system’s cost. We have seen in

the previous section how the MAD-mean is a robust centrality

estimate for the true value, μ. We employ it to develop a

quality metric that accounts for both range and accuracy. For

range, one of the best solutions is the mean-trimmed mean

difference, x̄ − x̄k, which exhibits acceptable sensitivity to

outliers present within a sample with less than k% presence.

For accuracy, the MAD-mean provides a suitable solution by

considering the difference between the mean and the MAD-

mean, x̄ − x̄MAD, that is always robust about the breakdown

point of 50%, which makes it less sensitive to the presence of

outliers than the trimmed mean x̄k. So, we introduce in this

section a hybrid quality metric, that comes from the sample

distribution of the mean MAD-mean trimmed-mean difference

(MMTM) statistic, denoted θMMTM, that utilizes this trade-off

between range and accuracy, which is defined as:

θMMTM = β(x̄− x̄k) + (1− β)(x̄− x̄MAD) (7)

where x̄ is the mean, x̄k is the trimmed-mean, x̄MAD is the

MAD-trimmed mean, and β is the sensitivity parameter. The

source quality metric has to relate to two important quantities:

1) the closeness of the θMMTM’s sample distribution to the ideal

impulse best captured in terms of location and spread, and 2)

the MCS administrator’s desire to include or exclude normal

outliers, defined by the sensitivity parameter β. Therefore, we

define the quality metric Qs based on the description of the

θMMTM sample distribution as:

Qs =
1

2

[
logγ

(
μ−1

MMTM

)
+ logγ

(
σ−2

MMTM

)]
(8)

where μMMTM and σ2
MMTM, respectively, are the mean and

variance of the θMMTM sample distribution, and logγ is used

to scale the values as later shown in the simulation section.

The procedure to compute Qs is summarized in Algorithm 2.

The feasibility region for our algorithm is wide and robust

to samples whose outliers’ proportion is less than the robust

breakdown point of 0.5, beyond which the outliers are the

majority of the sample itself.

Algorithm 2 Bootstrap Algorithm for Sample Quality

Assessment.

Input: Readings from N sensors: X = {x1, x2, ..., xn}
Output: Quality of Source: Qs

Initialize : B, β, k, λ, γ
1: θ∗

MMTM = bootstrap(X,B, θMMTM)
2: μMMTM = mean(θ∗

MMTM)
3: μMMTM = variance(θ∗

MMTM)
4: return Qs = 0.5

[
logγ

(
μ−1

MMTM

)
+ logγ

(
σ−2

MMTM

)]

The mean of the resulting θMMTM distribution indicates

where the distribution is located, and the variance indicates

its spread. However, the best reference to compare with is the

N(0, 0) distribution, the dirac-delta impulse. The Quality, Qs,

is defined as the average of the logs of the θMMTM’s mean and

variance. The closer they are to zero, the higher the quality.

This renders Qs an absolute quality metric is it is free from

any reference distributions or thresholds (excluding that of the

impulse).

IV. COMPUTER SIMULATION

In order to test our proposed algorithm we have considered

a temperature evaluation scenario, where the samples are

acquired from a distribution N(24, 0.5), and the outliers were

obtained from a distribution located at +Θ̄σ, N(24+Θ̄σ, 0.3).
Throughout this simulation, we use γ = 10, k = 10, λ = 1.5,

and a number of bootstrap resamples B = 1000. Our algorithm

has been evaluated under various scenarios, where we changed

the sample sizes (N ), and outlier deviations (Θ̄).

We first tackle the scenario of a variable sample size to

show its impact on the obtained quality. That reflects the
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percentage of outliers and their impact, where the results are

plotted in Figure 2. By increasing the sample size while No

is fixed, then the percentage of outliers decreases, the quality

will increase as shown in the figure. In order to realize the

benefit of our proposed metric, another metric was used as a

reference, Qs(x̄ − x̃M ) which considers only the difference

between the mean x̄ and the median x̃M . The results show

how MMTM always outperforms others. Moreover, Figure 2

illustrates the sample size (i.e., the number of sensors that

should be recruited, with their corresponding cost) that is

needed to achieve a predefined quality indicator.

We now tackle an alternative setup where we consider

different kinds of sensors, and their impact on quality. It is rep-

resented through the Normalized Outlier Deviation, denoted

Θ̄, that indicates how many standard deviations far from the

true value μ do the outliers come from. Figure 3 illustrates the

impact on the quality metric and how its largest value happens

when it is at Θ̄ = 0, i.e. no outliers are present, and decays as

it goes farther from Θ̄ = 0. We also considered another metric

to help the reader realize the benefits of our proposed metric.
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Fig. 2: MMTM quality metric for a variable sensitivity value

V. CONCLUSION

With the recent expansion in IoT and Big Data, small

data provides a complement since systems, such as MCS

systems, could also operate in conditions where data is scarce.

This paper proposed the θMMTM statistic in combination with

the non-parametric bootstrap to obtain a metric for quality

for very small sample. The developed metric considers the

administrator’s desire in tolerating outliers.

The proposed metric employs the MAD-mean, the trimmed

mean, and the non-parametric bootstrap for quality assessment

−6 −4 −2 0 2 4 6
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β = 0.70, No = 2, N = 20
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Qs(x̄− x̃M )

Fig. 3: MMTM quality metric for a variable normalized outlier

deviation

for small samples in crowd-sensing applications. The devel-

oped metric provides the basis for a relation between quality

and the sample size by analyzing the mean and the variance

of θMMTM sample distribution. The significance of this quality

metric lies in its attempt to quantify the adequacy of a sample

for the purpose of the MCS system, and thus providing a

basis for measuring the system’s reliability in truth estimation.

Our quality metric permits the MCS system and its affiliated

stakeholder to be aware of their unawareness about the truth,

while getting as close as possible to the truth. The quality

metric developed is a simple tool to aid such insight.
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Plot,” Sankhyā: The Indian Journal of Statistics, vol. 65, no. 3, pp. 532-
559, Aug. 2003.

[11] G. Arfken, H. Weber, “Dirac Delta Function,” Mathematical Methods
for Physicists, 6th Ed, London, UK, Elsevier Academic Press, 2005, ch.
1, sec. 15, pp. 83-95.

[12] B. Efron, “Bootstrap Methods: Another Look at the Jackknife,” The
Annals of Statistics, vol. 7, no. 1, pp. 1-26, Jan. 1979.

[13] P. Rousseeuw, C. Croux, “Alternatives to the Median Absolute Devia-
tion,” Journal of the American Statistical Association, vol. 88, no. 424,
pp. 1273-1283, Dec. 1993.

[14] E. Grafarend, J. Awange, “Sampling Distributions and Their Use: Confi-
dence Intervals and Confidence Regions” Linear and Nonlinear Models:
Fixed Effects, Random Effects, and Total Least Squares, Springer, Berlin,
Heidelberg, 2012, pp. 637-751

[15] C. Leys, C. Ley, O. Klein, P. Bernard, L. Licata, “Detecting outliers:
Do not use standard deviation around the mean, use absolute deviation
around the median,” Journal of Experimental Social Psychology, vol.
49, no. 4, pp. 764-766, Jul. 2013.

[16] G. Buzzi-Ferraris, F. Manenti, “Outlier detection in large data sets,”
Computers and Chemical Engineering, vol. 35, no. 2, pp. 388-390, Feb.
2011.

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 13:52:56 UTC from IEEE Xplore.  Restrictions apply. 


