
Context-aware Automatic Access Policy
Specification for IoT Environments

1Ashraf Alkhresheh, 2Khalid Elgazzar, 1Hossam S. Hassanein
1School of computing, Queen’s University, Kingston, ON K7L 3N6, Canada

2Department of Electrical, Computer and Software Engineering
University of Ontario Institute of Technology, Oshawa, ON L1H 7K4 Canada

Email: khashraf@cs.queensu.ca, Khalid.Elgazzar@uoit.ca, hossam@cs.queensu.ca

Abstract—Data privacy becomes a primary impediment to
the realization of the IoT vision. One approach to the IoT
security and privacy problem is to restrict access to sensitive
data via access control and authorization models. Yet access
context in IoT changes frequently raising the need for flexible
and dynamic access control policies. Towards developing dynamic
access control policies, context-based access control techniques
are being investigated due to their robustness in assigning dy-
namic access permissions according to changes in context. In this
paper, we propose to automate the generation of access control
policies to overcome the inflexibility in traditional access policy
specification techniques, and improve its adaptability to dynamic
IoT environments. In our framework, we use context, attributes,
and predication to describe the core access control elements.
In response to access requests, our algorithm automatically
produces conflict-free access control policies and makes the
final access decisions at runtime. Our framework prevents non-
authorized data accesses, and satisfies privacy constraints for
authorized access requests in highly dynamic IoT environments.
Our preliminary evaluation shows that the proposed approach
offers greater flexibility and improved scalability than the current
state-of-the-art methods.

I. INTRODUCTION

A recent study conducted by IoT analytics [1] to rank IoT
applications based on their popularity reported that in 2016,
on average, there were 60,000 Google searches issued every
month for the term “smart home,” 41,000 for “smart city,”
and 33,000 for “wearables.” However, the proliferation of
smart devices in our surroundings enables pervasive collection,
processing and dissemination of personal information, raising
considerable privacy concerns among IoT users. As such, data
privacy inhibits the widespread adoption of IoT. In order to
unleash the full potential of IoT, smart devices should make
their data accessible to interested parties (e.g., smartphones,
web services) in a controlled manner; otherwise, potential IoT
privacy breaches will outweigh its benefits.

One approach to the security and privacy problem in IoT is
to restrict access to sensitive data via access control and au-
thorization models. Traditional access control approaches such
as Role Based Access Control (RBAC) [2], Attribute Based
Access Control (ABAC) [3] and Task-Based Access Control
(TBAC) [4] control access to shared resources based on static
considerations such as user identity, role, and attributes. How-
ever, these approaches fall short in high dynamic computing
environments as is the IoT, wherein most interaction scenarios,

the identity, role or attributes of whom we will be sharing our
resources with might not be known in advance. Thus, instead
of relying on user identity, role or attributes only, an access
control policy should consider other information that is related
to the access in hand, such as the condition of the surrounding
environment in which the access request takes place.

Operational factors (e.g., processors, memories and operat-
ing systems), situational factors (e.g., location, time, and net-
work security configuration) and environmental factors (e.g.,
temperature, humidity) are examples of information that can
greatly affect access control decisions and subsequently the
performance of an access control system. Hereinafter, we refer
to this information collectively as context information. Context
refers then to any information that is considered relevant to
interacting IoT entities as well as environmental conditions
under which these interactions take place [5].

To point out some unique access control challenges in
dynamic IoT environments, we begin by considering a dy-
namic access scenario where a former student is meeting their
supervisor at the office. According to supervisor’s calendar,
the meeting is scheduled for two hours. When the student
comes on campus, based on their current context (i.e., student’s
profile, location and time), they will be able granted access
to some resources campus-wide such as smart parking, Wi-
Fi network. As the student’s context changes (e.g., the student
enters a building), they will dynamically be assigned additional
access privileges such as entrance to their lab. While waiting
for the supervisor, the student may not have privileges to
access the lab facilities. However, when the supervisor arrives,
the student’s context changes again so that during the meeting
time, the coexistence of both the supervisor and student in the
lab enables the student, to access lab-specific privileges (e.g.,
the room temperature of the lab, printer and other lab utilities).

In such scenarios, it would be impossible to define all the
necessary policies for all possible situations in advance. For
example, let us consider the case of a meeting that continues
beyond its allotted time. It is important to ensure that the
student can continue to access campus and lab resources as
long as the meeting is taking place. If an unforeseen change
happens, it would be necessary to modify previous policies to
reflect the new context of the meeting very quickly. Without
policy adaptation support, the supervisor would have to define
a new policy to grant the student access to resources after

978-1-5386-2070-0/18/$31.00 ©2018 IEEE 793

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:53:06 UTC from IEEE Xplore. Restrictions apply.

the scheduled time of when the meeting was to end had
past. However, this solution complicates policy management
as policy administrator (i.e., the supervisor or the university)
might not be the policy owner or the system might not be able
to specify new policies promptly. This simple scenario demon-
strates how dynamic context changes affect user privileges and
complicates policy management in IoT. Therefore, dynamic
access control policies that handle such context changing
situations are inevitably a core requirement for IoT.

In this work, we focus our research on automatic policy
specification as a core feature that any dynamic access control
system should support. It improves the overall flexibility in
managing access control policies and adaptability in dynamic
IoT environments.

II. BACKGROUND AND RELATED WORK

Access control (AC) is the process of enforcing the system
security requirements on protected services and resources [6].
AC determines whether an entity has sufficient privileges to
access system resources and what is or is not allowed for the
entity to perform. The level of authorization that an entity can
be assigned is determined by evaluating its associated proper-
ties against the rules. For example, entity associated properties
would include group membership roles, credit payment for
content, proximity, access history and privacy preferences.

Three primary abstractions under AC systems need to be
defined: policies, models, and mechanisms [6]. While AC
policies determine the high-level security rules according to
which AC must be regulated, AC models provide a formal
description of the AC security policy and the procedures. AC
mechanisms provide the low-level functions that implement
and enforce the security rules defined in the AC policies and
formalized by the AC model. AC core elements represent the
input upon which functions of an AC mechanism enforces the
access rules defined in the AC policy. These elements include
Subject which is the person, device, or a process that actively
causes information to flow between system objects or that
changes the system state, Object which is a passive entity that
contains or receives information (e.g., thermostat, door lock,
printer), Operation which refers to a certain action (e.g., read
and write) invoked by a subject and applied to an object.

In RBAC, access to a resource is determined based on
the relationship between users (subjects) and the organization
or the administrator (policy creator) who controls access to
resources (objects). RBAC simplifies policy management by
grouping users with similar access needs into roles, which
typically reflects the corporate structure of an organization.
RBAC is easy to manage as users can be assigned to one or
several roles according to their duties within the organization,
which allows users to have multiple levels of access to
the same resource. In addition, RBAC enables for many-to-
one relationships between users and roles. Therefore, RBAC
simplifies policy management by allowing for a set of access
permissions to be set once for one role that is (the role) as-
signed to multiple users who have same access needs.However,
IoT has different types of users with different access needs;

this introduces many administrative and policy enforcement
challenges in RBAC. For example, grouping users into roles
would make it difficult to define granular access control for
individual users. This results in creating additional roles to
exclude specific users who fall into a particular group but do
not necessarily need to have the same permissions granted as
to other members of the group. Thus, RBAC is an inefficient
approach in dynamic IoT environments.

ABAC controls access based on three considerations: a set
of arbitrary attributes associated with users and resources,
the environmental conditions that are relevant to the ongoing
access request [3][7], and a set of policies that are specified
based on these attributes and conditions. ABAC focuses on
attributes instead of identity or roles and controls access by
evaluating rules against a wide range of attributes. Controlling
access based on attributes simplifies policy management as
there is no need to associate access permissions directly with
users, roles or groups. This flexibility enables the creation
of access rules without specifying individual relationships
between each subject and object. In addition, ABAC access
policy is scalable in the sense that subjects need not be known
in advance to the system or to the object to which access is
requested. Therefore, subjects can join and leave the system
without the need to modify the underlying rules that associate
to them. Furthermore, ABAC can make access decisions at
runtime, where changes in attributes will immediately change
access decisions between subsequent access requests, making
ABAC a preferred model for dynamic environments.

A common issue associated with traditional access control
policies is that they describe core access control elements
(i.e., subject, operation, object) and their matching conditions
holistically and statically. Holistic in the sense that all at-
tributes and conditions that govern the association of the three
elements are tightly coupled in the policy specification process
and static in that access policies are specified at the setup
time and do not change. When an access request is received,
the access decision is made by verifying the conditions of
the access request against a set of predefined static access
control policies. If all attributes of the access request satisfy
the conditions of a certain access control rule(s), access is
permitted or denied based on a definition of the applicable
rule(s). Figure 1 shows the decision making process in static
access control with the three core elements tightly coupled.

The tight coupling describes parallel relationships between
the core access control elements (i.e., subject-operation-object
relationships). It limits the flexibility in policy expression and
adaptation to dynamic access scenarios. In addition, modi-
fication in access policy would result in significant policy
maintenance overhead (e.g., policy conflict resolution).

In an attempt to overcome the rigidity in the policy specifi-
cation process, Han et al. [8] propose to adopt a hierarchical
description and matching method in their policy specification
process. They use attributes to describe core elements by pred-
icates as basic facts, and layered matching rules to describe
relationships between each two of the core elements (i.e.,
subject-operation, operation-object, and object-subject rela-

794

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:53:06 UTC from IEEE Xplore. Restrictions apply.

Subject
Attributes

Operation
Attributes

Object
Attributes

Subject
Conditions

Operation
Conditions

Object
Conditions

Access Request

Access Rule

Unity
Match

Access
Decision

Response

Fig. 1: Access control decision making based on static policy
specification.

tionships) as hierarchical facts. Then, their proposed algorithm
dynamically calculates the final relationships (i.e., subject-
operation-object) and stores them into a policy repository.
Finally, an access decision is made by analyzing and checking
the conditions of the access request against the set of rules
in the policy repository. If there exists a rule(s) that matches
the ongoing request, access is permitted. Otherwise, access is
denied by default. However, their approach incurs significant
runtime overhead as well as offline maintenance when rules
or access conditions change. This solution is not scalable
and will not be feasible in a dynamic and time-sensitive IoT
deployment.

III. AUTOMATIC ACCESS POLICY FRAMEWORK
DESCRIPTION

In this section, we describe the proposed automatic policy
specification framework. Our framework is built around the
concept of context which defines the set of environmental con-
ditions under which protected IoT resource can be accessed,
while access control policies define a set of allowed operations
on that resource for each context. Once these contexts are
defined by the resource administrator, they act as a guard
context that regulates access to the protected resource. We
also define operational context as the set of conditions asso-
ciated with the requesting entity, protected resource, and the
surrounding environment at runtime. Thus, if the operational
context matches the required guard context, the requesting
entity can only perform operations that are allowed under such
context on the protected resource.

In fact, a guard context is a set of predefined application-
dependent values or thresholds represented as key-value
pairs for example (location: ‘lab room’), (time,‘<9:00 am’),
(temperature:‘> 37 ◦ && < 40 ◦’), (humidity:‘>50 %’).
These key-value pairs describe the environmental conditions
defined by the resource administrator under which a requesting
entity of certain attributes (e.g., identity, role and access
credits) can perform operation of certain attributes such as

(type: ‘read’), (granularity: ‘per minute’) on a protected entity
of certain attributes such as (CPU utilization: ‘<70 %’),
(energy level: ‘>80 %’).

Similar to guard context, operational context is represented
by key-value pairs. , However, values in operational context are
real-time measurements that reflect the real-world conditions
of the interacting IoT entities at the time of access. If these
measurements satisfy the guard context conditions that are
defined separately for each element, then access is permitted.
Otherwise, access is by default denied.

In the following, we describe our framework components.

A. Primitive Facts (PF): Attributes and Guard Context
In this section, we describe the core access control elements

(subject, operation, and object) using abstractions, in a key-
value pair representation, which contain both the attributes that
characterize elements and the guard context that determines
the qualification context (or constraints) relevant to each
element that controls access to resources. We build these basic
abstractions and represent them in predicates as follows:

• Element Abstraction:
element(X) is a descriptor represented by a tuple of the
form {type:value, key1: value1, key2:
value2, ...}. The tuple contains a key type
whose value is {subject|operation|object}
to indicate this tuple is pertaining to the which of the
access core elements. A descriptor is likely to contain
a time and location keys that identify a certain time
frame and location that control access to resources.
For example, a subject must be in location x and
time t to perform an operation of a certain object.
The element descriptor is a unified fact defined by
the object administrator on attributes of the access
elements and their associated context. For example,
the following basic abstraction represents a factual
tuple for a subject x:
element x= {type:"subject",name:"Any",
study-level: "undergraduate",advisee:
"True",location:"IoTResearchLab",time:
"6:00-16:00",coexistence: "True"}. This
descriptor contains a type key, three subject attributes
that basically identify the subject, and three access
constraints that determine the guard context required
to gain access to a protected resource. In this
example, the key coexistence refers to collocation
of both the requesting subject and object administrator.

• Request Abstraction:
The ideal request abstraction consists of a request
template that defines the request elements and
operational context c. The request descriptor
contains patterns of the form p= {type:value,
key1: value1, key2: value2, ...}. For
example, the following tuple represents a print
service request (pertaining only to operation):
{type:"operation",name:"print",loca-

795

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:53:06 UTC from IEEE Xplore. Restrictions apply.

tion:"6th floor",time:"8:00-14:00"}. A
request descriptor matches a resource if there is an
operation in the fact base (i.e., set of facts defined
by administrator) that satisfies every pattern in the
request template.

It is worth noting that for guard context, individual con-
straints can be set on simple context information (e.g., time,
location, number of users, temperature readings, etc.) or it
can be set on complex context information inferred by seman-
tic rules. These are application-dependent contexts, such as
personal relationship (e.g., friend of, family member, primary
physician), spatial relationship (e.g., coexistence of two or
more subjects, objects or both) or situational context (e.g.,
threat level and emergency cases).

B. Automatic Access Policy Specification
Figure 2 depicts the process of our proposed dynamic access

policy specification and access decision making. Our access
policy specification algorithm takes the primitive facts and the
access request as inputs and automatically produces the access
control decision as an output

The algorithm shown in Listing 1 extracts the attributes
and operational context information associated with the access
request at runtime and uses the primitive facts defined by the
policy administrator, to dynamically compute access policies
in response to the access request at hand.

Subject
Attributes and
Guard context

Subject
Attributes

Operation
Attributes

Object
Attributes

Access
Decision

Response

Operation
Attributes and
Guard context

Object
Attributes and
Guard context

Primitive Facts

Access Request

Operational
context

Automatic Policy Specification
 And Decision-Making Algorithm

Active Access Sessions

Policy Owner

Fig. 2: Access control decision-making based on dynamic
policy specification.

The matching process in Listing 1 performs two steps:
1) Access request analysis. In our work, an access request

(AR) can be interpreted as a query of three parameters:
subject x, operation y, object z that asks the access engine
whether subject x is permitted to perform operation y on
object z under the operational context associated with the
AR. Object z is not always necessary in the request. For
example, a subject x may request a print service (i.e.,
operation y), but does specify which object of the system
may provide this service. In such a case, the system

Listing 1: Automatic access control policy
specification and Decision-Making

input : Primitive Facts PF, Access Request AR
output: Access Decision: Permit/Deny

1 begin
2 for AR do
3 Extract all attributes and operational context

values of the subject, x = {type : “subject”,
4 key1 : value1, key2 : value2 }
5 Extract all attributes and operational context

values of the operation, y =
{type : “operation”,

6 key1 : value1, key2 : value2 }
7 Extract all attributes and operational context

values of the object (if exist), z =
{type : “object”,

8 key1 : value1, key2 : value2 }
9 end

10 Generate PF-query{x},PF-query{y}, PF-query{z}.
11 Result := Deny
12 for all element ∈ PF do
13 if ∃ element(x) and element(y) and element(z) in

PF: then
14 Result:= Permit
15 Break
16 end
17 end
18 end

must be able to find an object that accepts the requested
operation and is either accessible to subject x or allows
open access.
When a new AR is received, our algorithm, lines
2-9, extracts all attributes of the requesting subject,
requested operation, and target object along with the
operational context associated with each element of the
access request. Then, it generates four patterns as follow:

p1{x}, p2{y}, p3{z}, and p4{c}.
2) Access decision making. To evaluate the access request,

our algorithm, lines 11-17, searches the PF for all
combinations of the access control elements that exactly
match the request patterns. Otherwise, access is denied
by default.

IV. USE CASE: ACCESS TO UNIVERSITY RESOURCES

Bob is a graduate student who has a meeting with his
supervisor Alice at the office. According to Alice, all students
under her supervision may access resources in the office
and lab rooms only from within these rooms and during
specific time frames. Examples of the resources that Alice
is sharing: lab door lock (DL), air conditioner (AC) located
in her office and printers (P) located in both rooms. As a
resource administrator, Alice defines the attributes and guard

796

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:53:06 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Student attributes and guard context.

Attribute/Guard-Context Range
Type subject

student-name Any

study-level {graduate, undergraduate}
advisee {True, False}

Location {Office, Lab}
time 24 hours

coexistence {True, False}

TABLE II: Operation attributes and guard context.

Attribute/Guard-Context Range
Type operation

operation-name {print, controlDL, controlAC}
study-level {graduate, undergraduate}

location {Office , Lab}
time 24 hours

context for the three types of resources she administers based
on the following regulations and assumptions:

• A subject is described by four attributes and three con-
textual conditions as in Table I.

• An operation is described by three attributes and two
contextual conditions as in Table II.

• An object is described by four attributes and two contex-
tual conditions as in Table III.

Assume the following are the facts Alice sets to control
access to her devices:
R1: Graduate students may have local access to the lab room

and printers at any time.
R2: Undergraduate students may only access the lab and its

printers from 8:00 to 16:00.
R3: Graduate advisees can control office AC and printer only

when Alice coexists with them in the office.

A. Primitive fact generation

According to the resource profiles in Tables I to III and
Alice’s access regulations R1-R3, the system can generate a
set of primitive facts as shown in Tables IV. These facts can
be generated through a user-friendly interface from the fact
description and presented to Alice for final approval.

B. How it works

While waiting for his supervisor, Bob decides to enter the
lab and print the meeting agenda at approximately 12:00 PM.
In order to get access to the lab resources, Bob needs to issue
two access requests: the first request is to enter the lab room
and second is to access the printer. When Bob submits the
request, our algorithm extracts all attributes and operational
context associated with this access request and generates the
following queries to the access policy (i.e., PF):

TABLE III: Object attributes and guard context.

Attribute/Guard-Context Range
type object

object-name {DL,P,AC}
study-level {graduate, undergraduate}

operation-name {print, controlDL, controlAC}
location { Office , Lab}

time 24 hours

TABLE IV: Primitive facts.

PF1 { type: "subject", study-level: "graduate",
location: "lab"}

PF2 {type:"subject", study-level:"undergraduate",
location: "lab", time: "08:14:00}.

PF3 {type: "operation", operation-name:
"controlDL", study-level: "graduate",
location: "lab"}

PF4 {type: "operation", operation-name:
"print", study-level: "graduate", location:
"lab"}

PF5 {type: "operation", operation-name:
"controlDL", study-level: "undergraduate",
location: "lab", time:"08:00-16:00"}

PF6 {type: "operation", operation-name:
"print", study-level: "undergraduate",
location: "lab", time: "08:00-16:00"}

PF7 {type: "object", object-name: "DL",
study-level: "graduate", operation-name:
"controlDL", location: "lab"}

PF8 {type: "object", object-name: "P",
study-level: "graduate", operation-name:
"print", location: "lab"}

PF9 {type: "object",object-name:"DL",study-level:
"undergraduate",operation-name:"controlDL",
location: "lab",time:"08:00-16:00"}

PF10 {type: "object", object-name: "P",
study-level: "undergraduate",operation-name:
"print", location: "lab",time:"08:00-16:00"}

PF11 {type: "subject", study-level: "graduate",
advisee: "true", location: "office",
coexistence: "true"}.

PF12 {type:"operation",operation-name:"controlAC",
study-level: "graduate",location: "office"}.

PF13 {type:"operation",operation-name: "print",
study-level:"graduate", location: "office"}.

PF14 {type: "object",object-name: "DL",
study-level: "graduate",operation-name:
"controlDL", location: "office"}.

PF16 {type: "object", object-name:"P",study-level:
"graduate",operation-name:"print",
location: "office"}.

PF17 {type: "object",object-name: "AC",
study-level: "graduate", operation-name:
"controlAC", location: "office"}.

p1={type: "subject", student-name:
"Bob", study-level: "graduate", advisee:
"True"}.

p2={type: "operation", "operation-name:

797

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:53:06 UTC from IEEE Xplore. Restrictions apply.

"controlDL", study-level: "graduate"}.

p3={type: "object", object-name: "DL",
study-level: "graduate", operation-name:
"controlDL"}.

p4={type: "context", location: "lab",
time: "12:00"}.

Based on key-value pair matching, the request patterns
collectively match the primitive facts PF1,PF3 and PF7.
Therefore, access to the lab room is granted. Similarly, in
addition to the previous p1 and p4 the following patterns are
extracted from a print access request:

p5={type: "operation","operation-name:
"print ", study-level:"graduate"}.

p6={type: "object", object-name:"P",
study-level: "graduate", operation-name:
"print"}.

These patterns p1, p5, p6 and p4 collectively match
PF1,PF4 and PF8. Therefore, access to the printer in the
lab room is granted.

Now, suppose that the context changes when Alice arrives
and asks Bob to meet with her in her office, our context
manager will capture changes in Bob’s context (e.g., location:
“office” and coexistence: “true”) and inform the access engine
to recheck the validly of ongoing requests. Bob’s access
privileges might be affected or even current access rights could
be revoked. In our scenario, Bob now may access the printer in
Alice’s office. For any upcoming print requests issued by Bob,
the system will notify Bob with the list of available services
ranked by proximity and let Bob decide which service to
choose. Should Bob issue another print request, the algorithm
extracts the new context and generates the following context
pattern, in addition to the previous ones, and send them all to
the access engine for evaluation:

p7={type: "context",location: "office",
time: "12:00", coexistence: "True"}.

This request (p1, p5, p6 and p7) matches to PF11, PF13

and PF16 and a print access to Bob on Alice’s office printer
is granted.

It is worth mentioning that our framework allows the
policy administrator to define different primitive facts for the
same object such that the same subject may have multiple
access levels on this object. In addition, for those users with
multiple access levels, our algorithm always grants the least
access privileges a subject may require to accomplish certain
tasks. Thus preventing unnecessary or unintended accesses
that may impair the privacy of the object administrator. For
example, assume in our use case scenario that the printer in
Alice’s office has two printing modes {BW, color} where
graduate students may only print color documents in the time
frame 14:00 - 16:00. In this case, Alice needs to define a
new operation for color printing or update the current print

operation by adding supported modes as follows:

{type: "object", object-name: "P",
operation-name: "print", mode: { "BW,
color"}, study-level: "graduate",
location: "office", time: "14:00-16:00"}
{type: "operation", operation-name:

"print", default: "BW", mode: "color",
study-level: "graduate", location:
"office", time: "14:00-16:00"}

If Bob issues an access request during the above mentioned
time frame to access the printer in Alice’s office without
specifying the printing mode, the matching algorithm will
use the default key; otherwise, the requested mode will be
evaluated. If the request matches multiple operations due to
relaxed constraints, the algorithm will always grant the least
privileges. For example, if printing mode is not specified, the
print request will always grant the BW printing mode.

V. EVALUATION OF ACCESS POLICY MANAGEMENT

To evaluate the proposed approach, we compare our auto-
matic policy specification method with traditional approach
such as RBAC. We perform the comparison from the policy
management perspective including adding a new user, adding
new access rule and policy conflict resolution.

A. Adding new user

Let’s assume Jane is a new graduate student who has just
joined Alice’s research team. To add Jane as a new user in
RBAC, the system administrator needs perform the following
steps:

1) Analyze Jane’s access needs based on her attributes (e.g.,
graduate student, under the supervision of Alice).

2) If there exists an equivalent role, assign Jane to the
appropriate organizational role (e.g., graduate student)
that satisfies her access needs. Otherwise, create a new
role.

When Jane issues an access request, the request is matched
to a set of manually preconfigured and static access rules
that are stored in an access policy database, where user-role
and role-permission assignments are tightly coupled in the
specification of each rule. Then, the access request is either
granted or denied based on the implementation of applicable
access rule(s).

Our approach makes it easier and scalable to add Jane as
new user. The policy administrator does not need to add/define
Jane’s attributes to the basic facts maintained by the system,
unless she has unique attributes that has not been defined
already (e.g., Jane is a postdoc or research assistant). Further,
our algorithm does not maintain permanent access policies,
but rather it generates the applicable policies on the fly at
runtime and makes access decisions based on the primitive
facts. Thus, Jane’s request will be evaluated using submitted
credentials against primitive facts.

798

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:53:06 UTC from IEEE Xplore. Restrictions apply.

B. Adding new rule

In traditional access control systems, access rules may
be specified by different authorities at different times for
several purposes. Therefore, these rules may conflict with each
other, allowing unintentional access to sensitive information.
A straightforward definition of rules conflict is provided by
Jajodia et al. [9], which states that a conflict occurs when
contradicting access rights are granted to an individual entity.
Detecting rule conflict is challenging. It involves identification
of the conflicting rules and detecting the type of conflict among
them at runtime. In addition, it requires dynamic verification
to ensure conformance with security requirements specified by
access policies.

Typically, access control systems adopt various conflict
detection methods [10, 11] and conflict resolution strategies
(e.g., first applicable rule, if one applicable rule, permit
dominate, deny dominate) [12] to resolve conflicts in access
policies or rules. In particular, Rule-Based RBAC with
negative authorization [13] was proposed to overcome some
limitations in RBAC including conflict resolution policies.
Our approach does not store access policies in their final
representation permanently, but rather the context-rich
primitive facts directly related to access control elements.
Access decisions are made on the fly solely on primitive
facts. Thus, the system guarantees a conflict-free access
policy. Every time a context changes, the system triggers a
re-evaluation of ongoing granted access; context changes may
mandate limitations on or even revocation of granted access.
For example, to prevent graduate students from accessing
printers in the lab room, we only need to update/delete
primitive fact(s) that have the following three pairs:
{study-level:"graduate ", object-name:"P",
location:"lab"}. Therefore, the matching algorithm
will not result in positive access decisions that require the
existence of any of the deleted primitive facts. Hence, all
subsequent access requests from graduate student to printers in
the lab will be denied. To make it easier to enable back these
permissions, we can add a key-pair attribute to each primitive
fact that shows its status such that: status:{"active",
"disabled"}, where active means it is in effect and
disable means it’s currently suspended. The system will
then only match against active facts and ignore those that are
suspended.

VI. CONCLUSION

In IoT environments, users and resources are expected to
join and leave the system quite often. This may result in
frequent changes in the context under which these entities
may interact. This raises the essential need for dynamic access
policy management to protect resources from unauthorized
access without too much upfront overhead as well as to main-
tain high system flexibility and scalability. In this work, we
propose an automatic access policy specification framework
based on primitive facts that describe the core access control
elements in predicates. Primitive facts are represented by an
extendable tuple of key-value pairs that include both attributes

that characterize the entity and context under which access is
granted. Our algorithm generates access control policies and
makes access decisions on the fly at the access request time.
It improves the adaptability of the access policy in highly
dynamic computing environments such as IoT.

ACKNOWLEDGMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number: STPGP 479248.

REFERENCES

[1] Bartje Janina. The top 10 IoT application areas – based
on real IoT projects. 2016.

[2] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and
Charles E Youman. Role-based access control models.
Computer, 29(2):38–47, 1996.

[3] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo. Attribute-
based access control. Computer, 48(2):85–88, 2015.

[4] Ji-Bo Deng and Fan Hong. Task-based access control
model [j]. Journal of Software, 1:011, 2003.

[5] Anind K Dey. Understanding and using context. Personal
and ubiquitous computing, 5(1):4–7, 2001.

[6] Vincent C Hu, David Ferraiolo, and D Richard Kuhn.
Assessment of access control systems. US Department of
Commerce, National Institute of Standards and Technol-
ogy, 2006.

[7] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R
Friedman, Alan J Lang, Margaret M Cogdell, Adam
Schnitzer, Kenneth Sandlin, Robert Miller, Karen Scar-
fone, et al. Guide to attribute based access control
(abac) definition and considerations (draft). NIST special
publication, 800(162), 2013.

[8] Dao-jun Han, Ling Gong, and Fen Qin. A dynamic ac-
cess control policy based on hierarchical description. In
Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2016 International Conference on,
pages 76–80, 2016.

[9] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino,
and VS Subrahmanian. Flexible support for multiple
access control policies. ACM Transactions on Database
Systems (TODS), 26(2):214–260, 2001.

[10] John C Strassner and Gregory W Cox. Performing policy
conflict detection and resolution using semantic analysis,
December 4 2012. US Patent 8,327,414.

[11] Gregory W Cox, David L Raymer, and John C Strassner.
Efficient policy conflict detection, July 9 2013. US Patent
8,484,693.

[12] Anne Anderson. Extensible access control markup lan-
guage (xacml). Technology Report, 2003.

[13] Mohammad A Al-Kahtani and Ravi Sandhu. Rule-based
rbac with negative authorization. In Computer Security
Applications Conference, 2004. 20th Annual, pages 405–
415. IEEE, 2004.

799

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 12:53:06 UTC from IEEE Xplore. Restrictions apply.

