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Abstract—Driving behavior profiling has important relevance
in many driving applications. For instance, car insurance com-
panies have been recently applying a new insurance paradigm in
which a driver’s insurance premium is adapted based on real-
time driving behavior. Driver profiling process is composed of
two sub processes. The first is the detection of certain driving
behaviors by acquiring data from onboard devices such as
smartphones and OBDII units, whereas the second is the scoring
process in which the detected behaviors are used to measure
the actual driving risk. The scoring process has been viewed
as an intricate problem due to the lack of reliable and large-
scale datasets that can provide statistically trustworthy insights.
This paper presents a data-driven approach for calculating a
driver’s risk score by utilizing the SHRP2 naturalistic driving
dataset, which is the largest dataset of its kind to date. Two
machine learning algorithms, which are support vector regression
(SVR) and decision tree regression (DTR) are trained to reflect
a driver’s score. Driver’s score is quantified in terms of the
additive inverse of the predicted risk probability. After data
filtering and preprocessing, models are trained using thirteen
predictors, which represent twelve unique driving behaviors and
the total driving time per driver. Validation results show that
risk probability can be accurately predicted using the proposed
models.

Index Terms—Internet of vehicles (IoV), driving behavior pro-
filing, data driven applications, intelligent transportation systems
(ITS), machine learning, prediction models.

I. INTRODUCTION

Despite all the recent developments in road safety systems,
road crashes are still in the top ten leading causes of death
worldwide [1]. For instance, road crashes were the fifth main
reason of deaths in Canada in 2015, which constitutes 4.5 %
of the overall number of fatalities [2]. As a result, researchers
in academia and industry have been proposing new innovative
ideas to tackle this problem. A particularly emerging driving
safety application is driver risk profiling which has gained a
special significance in the fleet management and car insurance
telematics domains [3]. In fleet management domain, fleet
administrators are interested in tracking the behavior of their
drivers to ensure the safety of their fleets. Likewise, car
insurers have been recently adopting a new insurance paradigm
called pay-how-you-drive (PHYD) in which insurance pre-
mium is adapted according to the real-time behavior of drivers
[4]. In both domains, data that reflects a subject drivers’s
(sd) behavior is collected using smartphone sensors and/or

on-board diagnostics (OBD) units, and is then analyzed to
detect certain behaviors. Different figures of merit (FOMs)
are typically calculated for each trip using the collected
data. Conventionally, there are four driving behavioral FOMs
insurance companies utilize as risk quantification measures
(i.e., risk predictors) to calculate risk scores. These FOMs are:
braking, speeding, acceleration and cornering behaviors [4].

Modeling the actual risk score based on the calculated
FOMs is viewed by many as an intricate problem. The reason
is that the process of designing efficient scoring models
necessitates the existence of enough and reliable data, which
is not always available [4]. Consequently, different insurance
companies have been adopting several scoring models that
assign different weights for each FOM [4]. Although several
insurers are viewing the number of harsh braking events as
the best risk predictor, there is no common agreement about
the statistical significance of such measure.

SHRP2 Naturalistic Driving Study (NDS) dataset offers an
enormous amount of driving context data for almost 9,000
recorded crash and near crash events and more than 20,000
balanced base-line events (i.e., normal driving events propor-
tional to the total driving per driver) [5]. The data collected
not only gives the opportunity to study the prevalence of
behavioral factors during risky events, but also their prevalence
through normal driving episodes, which enables the conduc-
tion of statistically sound studies. The contribution of this
paper is threefold:

1) It provides a robust data-driven framework for predicting
a driver’s risk probability by utilizing the behavioral
context information during base-line, crash and near
crash events. To achieve this, twelve behavioral risk
predictors are identified and the feature matrix is for-
mulated. Driving score is then expressed in terms of the
additive inverse of the predicted risk probability.

2) Two machine learning algorithms, which are support
vector regression (SVR) and decision tree regression
(DTR) algorithms, are employed to reflect a driver’s
predicted risk probability. Both algorithms are compared
in terms of their average performance and their perfor-
mance consistency through various testing samples. The
algorithms are trained and tested using an unprecedented
amount of data for more than 2,000 drivers.
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3) An important finding is that driving risk can be ac-
curately predicted with only few events captured with
an appropriate sampling time (i.e., balanced base-line
events). Therefore, there is no need for a continuous
driving data acquisition to determine the associated risk
of a certain driver. This has its relevance in minimizing
the consumed power of offloading driving data to the
cloud server and minimizing the computational cost for
predicting driving risk.

The remainder of this paper is structured as follows. In section
II, a background review and the related work are provided.
Section III presents the formulation of the driver scoring
problem. In section IV, the adopted data filtering and pre-
processing process is described. In section V, the implementa-
tion details of the underlying algorithms that have been utilized
to tackle the risk prediction problem are presented. Results
and discussion are presented in section VI and Conclusions
are drawn in section VI.

II. BACKGROUND AND RELATED WORK

A. Driving Behavior Profiling

Driver behavior profiling is of interest to industry and
academia. Several industrial products as well as research
papers have been implemented and proposed. For instance,
car insurance companies have developed different smartphone
applications that are compatible with IOS and Android op-
erating systems and are capable of detecting and evaluating
the behavior of drivers by utilizing smartphones’ sensors such
as: accelerometer, magnetometer and GPS sensors. Examples
include Aviva RateMyDrive and StateFarm DriverFeedback
applications [6], [7]. The aggregated scores over many trips
are used to adjust the drivers’ insurance premiums.

On the other hand, research in this field has been in two
main streams:

1) Driver behavior detection and classification. This in-
cludes the detection of certain events such as: aggressive
acceleration, aggressive lane change, etc. [8], [9].

2) The development of a scoring function that accurately
reflects risk rate given the detected behaviors [3], [10].

While the earlier contains many contributions, the latter has
very few. Indeed, the choice of scoring functions has been
very subjective due to the absence of a frame of reference due
to the lack of large-scale and reliable datasets.

In [8], authors proposed an HMM-based model to detect
sharp and normal driving maneuvers in both longitudinal and
lateral directions. Events were detected using smartphones
and authors claimed to have a classification accuracy of
∼ 95%. Authors in [11] proposed an application called
MobiDriveScore that acquires data from a smartphone and a
vehicle’s network (i.e., CAN-bus) to detect risky events. A
smartphone application called CarSafe was proposed in [12]
to detect dangerous behaviors. Authors utilized smartphones’
dual cameras to detect a number of dangerous events. They
used the front camera to detect drowsiness and distraction
whereas the rear camera was utilized to detect tailgating and

unintentional lane changing. A fuzzy logic based smartphone
application was proposed in [3]. In this work, a complete
driving behavior detection and scoring system was proposed
and discussed. Four unique driving events were detected with
high accuracy by fusing smartphone’s accelerometer, gravity,
magnetic, and GPS data. Moreover, authors used two different
smartphones with different sampling rates and resolution and
compared their detection performances which were found to be
consistent. More recently, authors in [13] proposed an HMM-
based modeling approach that is capable of classifying the
behavior of drivers by taking into account the behavior of
surrounding vehicles. Models were trained and tested using
the 100-CAR NDS dataset.

Despite all the aforementioned efforts in event detection
and driver behavior classification field, contributions in for-
mulating reliable scoring functions are still very primitive [3],
[4], which motivated the formulation of reliable data-driven
scoring models presented in this work. In this work, the risk
probability, quantified in terms of crash and near crash events’
rate, is predicted by considering the rate of occurrence of
different driving behaviors and the total driving time per driver.

B. SHRP2 NDS Dataset

Human errors contribute in approximately 90% of crashes
[14]. In order to examine the influence of different driving
behaviors on the crash rate, different approaches have been
proposed including the naturalistic driving (ND) data collec-
tion approach. ND data collection methodology provides three
important advantages over other methods [15]:

1) Detailed information about the behavior of a driver prior
to a crash/near crash events.

2) Exposure information, which provide vital information
about the frequency of occurrence of different driving
behaviors during normal driving episodes.

3) The amount of collected data which paves the way for
conducting statistically sound studies.

The Virginia Tech Transportation institute (VTTI) has been
pioneering this approach since the beginning of this century
with two large-scale data collection projects; the 100-CAR
NDS and more recently the SHRP2 NDS [5], [15]. In SHRP2
NDS, 3542 drivers were recruited in six different sites in the
United States, and their vehicles were equipped with unobtru-
sive data acquisition systems (DASs) containing mainly for-
ward radar sensors, video cameras, OBD units to acquire the
vehicle’s CAN bus information, and global positioning system
(GPS). Participants were then asked to use their vehicles as
in their normal day-to-day driving routine. Some participants
remained for the entire course of the project and others were
replaced. Data was continuously recorded which resulted in
more than 35 million miles of driving data. This is, by far,
the largest amount of naturalistic driving data ever recorded.
Data reductionists were then able to extract almost 9,000
risky events which are comprised of crashes and near-crashes.
Moreover, more than 20,000 normal driving events where
randomly captured for drivers to offer exposure information.
These episodes are called balanced baseline events as their
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Fig. 1: Block diagram of driver’s risk scoring system

number is proportional to the total driving time of a driver.
A total of 59 driving context behavioral attributes have been
identified during recorded events by VTTI data analysts. The
operational definitions for each type of these events can be
found in [5] and are briefly as follows:

1) Crash: Any contact that the sd makes with an object
(vehicle, pedestrian, cyclist, animal, etc.), either moving
or fixed. Also includes inadvertent departures of the
roadway.

2) Near crash: Any driving conflict that requires an evasive
action to avoid a crash.

3) Balanced baseline events: epochs of data selected to
provide exposure information. They are 21 seconds long
and their number is proportional to the total driving time
for each driver.

The detailed selection criteria of the number of baseline
events per driver can be found in [16]. The dominant driving
behavior prior to crash/near crash events or during baseline
events was extracted and recorded by VTTI data analysts using
the collected data.

III. PROBLEM FORMULATION

Let FID represents the feature vector that holds the behav-
ioral FOMs of driver ID after driving for Ttotal seconds. It
can be expressed mathematically as:

FID =
[
B1(%) . . . BM (%) Ttotal

]
(1)

where the vector entries “Bi(%)” represent the frequency of
occurrence of each behavior with respect to other behaviors
and Ttotal is the total exposure (driving) time of a trip. In
this paper, 12 mutually exclusive driving behaviors have been
identified as risk predictors. They are depicted in table I
with their brief description. The detailed selection criteria is
explained in section IV.

The risk score for driver ID at trip j is calculated in terms
of the conditional risk probability P (Risk|FID) as:

ScoreID(j) = 1− P (Risk|FID)j (2)

where P (Risk|FID) is the predicted risk probability which is
governed by the summation of the crash (C) and near crash
(NC) conditional probabilites as shown in equation 3:

P (Risk|FID) = P (C|FID) + P (NC|FID) (3)

The choice of a prediction model that can accurately predict
P (Risk|FID) is very crucial for obtaining a reliable score. In
this work, SVR and DTR, which are two of the most powerful
machine learning algorithms, are utilized for this purpose.
Figure 1 depicts the complete flowchart of the proposed risk
scoring system. Each of the components is discussed in the
following sections.

IV. DATA FILTERING AND PREPROCESSING

A. Feature Selection

As previously stated, 12 driving behaviors as well as the
total driving time, reflected in terms of the total number of
base-line events for each driver, are used as risk predictors
to train and validate proposed models. Based on the adopted
selection criteria, the selected behaviors are comprehensive
and mutually exclusive in nature. They are chosen according
to the following procedure:

1) In the SHRP2 dataset, driving behaviors are classified
into 59 unique behaviors, which span all possible driving
behaviors. In the dataset, the three most apparent be-
haviors in a captured event are sorted according to their
dominance inside the event time frame. For simplicity,
only the most dominant behavior is chosen, which makes
behaviors mutually exclusive for a given event. This
eliminates having to apply additional orthogonaliza-
tion techniques, such as Principal Component Analysis
(PCA) algorithm, for correlated features.

2) Behaviors that can be possibly put under the same
category are combined to increase features’ importance.
For instance, all sign and signal violation behaviors
are put under the common behavior: “Signal or sign
violation”. By following the same procedure for other

Authorized licensed use limited to: Queen's University. Downloaded on August 05,2020 at 13:49:21 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Summary of driving behaviors
Behavior Description
Excessive speeding Exceeding safe speed/ speed limit
Inexperience or unfamiliarity Apparent general inexperience driving, unfamiliarity with a vehicle or a roadway
Avoiding an object Avoiding a vehicle, pedestrian, or an object
Sudden braking Sudden or improper stopping on a roadway
Right-of-way error Right-of-way error due to decision or recognition failures, or other unknown cause
Driving slow Driving slowly in relation to other traffic or below speed limit
Improper backing Improper backing due to inattentiveness or other causes
Illegal or unsafe lane change or turn Any improper or illegal lane change or turn
Aggressive driving Such as aggressive acceleration or aggressive lane changing
Signal or sign violation Violation action at traffic signs or signals
Safe No sign of risky behavior
Fatigue & neglectance Includes drowsiness, failure or improper signaling, and driving without lights

behaviors, a total of 12 distinct behavioral categories
are formulated.

The initial training and validating dataset is then formulated
as shown in equation 4.


Driver B1(%) . . . BM (%) Ttotal Outcome

1 F1 P (Risk|F1)

...
...

...

N FN P (Risk|FN )


(4)

B. Data Filtering

The initial formulated dataset was filtered to remove drivers
who has an unrepresentative number of captured events. A sen-
sitive analysis was applied to find the minimum optimal num-
ber of events a driver should have to be included (Eoptimal).
The tradeoff was to find the best model performance in terms
of model’s mean square error (MSE) without losing too much
data. Figure 2 depicts the histogram distribution for the number
of captured events for all drivers contributed in the SHRP2
project. A marginal enhancement in the proposed models’
average performance was obtained with Eoptimal > 6. So,
an Eoptimal = 6 was adopted as a filtering criteria.

Fig. 2: Histogram distribution for the number of captured events for drivers
in the SHRP2 dataset.

C. Feature Scaling

SVR algorithm does not work efficiently without feature
normalization. That is because if one of the features has
a broader range of values than others, the aforementioned
algorithm will be biased to this specific feature since the
minimum distance will be governed by it. As a result, it is
always a good practice to have the same range of values for
all features. In this work, feature normalization was applied
to the SVC model. The following normalization equation was
adopted:

X̂ =
X − µx

σx
(5)

where X is the raw feature vector. X̂ is the normalized feature
vector, µx is the mean of X and σx is the standard of deviation
of X .

V. IMPLEMENTATION

This section presents the adopted implementation details for
SVR and DTR algorithms that are used to predict drivers’ risk
probability P (Risk|FID). The algorithms are implemented
in Spyder (Python 3.6) integrated development environment
(IDE) using the scikit-learn library for machine learning and
data mining. All the tests were performed on a 3.40 GHz, intel
core i7-2600 CPU. The adopted training and testing splitting
approaches for these models as well as the choice of their
hyper parameters are presented next.

A. Training and testing splitting Methodologies

Two Training and testing splitting approaches have been
adopted to train and validate the models.

1) General splitting approach: This is the common ap-
proach of choosing a randomly selected portion of
the dataset for training and use the rest for testing.
The splitting ratio usually depends on the amount of
collected data and the application. In this work, 75% of
the dataset was utilized for training. As a result, 1505
training samples and 502 validation samples were used.

2) K-fold cross validation: In this approach, the entire
dataset is randomly divided into K equally sized par-
titions. In each training/ testing cycle, a single partition
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is kept for testing and all the remaining partitions are
used for training. Training and validation is performed
K times with each of the single partitions used exactly
once for testing. The mean and standard of deviation of
the results can then be obtained to have more a statistical
reflection on the model’s performance. This approach is
superior over the other approach since all data samples
are utilized for both training and testing. In this work, a
10-fold cross-validation is adopted for all models.

B. Hyper parameters optimization

In order to achieve the best performance for the two
prediction models, different hyper parameters for each model
need to be optimized. In this work, grid search technique is
applied to find the best hyper parameters for each model.
In this technique, different values for each parameter are
specified and the performance is computed exhaustively for
each combination. The algorithm returns the hyper parameters
combination that led to the best performance. The adopted
performance metric for grid search is the mean square error
and a 10-fold cross-validation is applied.

1) SVR: The optimization is performed over four hyper
parameters which are: the regularization parameter C, the
kernel function k, the tolerated margin of error ϵ, and the
sensitivity parameter γ. The parameter C is necessary to avoid
the overfitting problem. It determines which training samples
are considered as outliers. The k parameter specifies the
kernel type. For instance, a linear kernel means that SVR will
use linear separation hyperplanes. The ϵ parameter defines a
tolerance margin in which no penalty is applied to errors. And
finally the γ parameter is a sensitivity parameter to measure
the similarity between the feature vectors. For instance, if γ
is large, feature vectors will be considered similar only if the
Euclidean distance between them is small. A more detailed
explanation of these hyper parameters could be found in [17].
Table II shows the investigated hyper parameters and the best
combination is shaded.

TABLE II: SVR adopted Hyper-parameters
Parameter Values

Kernel Linear Polynomial
Gaussian radial

basis
- -

C 1 5 10 50 100
ϵ 0.01 0.05 0.1 0.2 0.3
γ 0.01 0.05 0.7 0.1 0.2

Poly degree 2 3 4 5 6

2) DTR: Only two hyper parameters are optimized. The
first is the decision tree maximum depth (MD), while the
second is the criterion of choosing the best split point in
each feature’s histogram (CR). Table III depicts the hyper
parameters used and the best combination is shaded.

VI. RESULTS AND DISCUSSION

The best hyper-parameters’ combination for each of the two
algorithms is adopted to measure their performance results.
Table IV shows the MSE, MAE and R2 performance results

TABLE III: DTR adopted Hyper-parameters
Parameter Values

Split Criterion MSE MAE - -
Tree maximum depth 6 7 8 9

for DTR and SVR algorithms using the general splitting
approach. Both algorithms seem to have good performance
results with some advantage of SVR over DTR. A particularly
important metric is the R2 which reflects the percentage of
variance in the outcome that the model can explain. As for
this metric, the results show that the SVR algorithm has a
difference gain of 12% over DTR.

TABLE IV: Prediction performance results using general splitting approach
Performance measures

Algorithm MSE MAE R2

DTR 0.017 0.1 0.38
SVR 0.014 0.086 0.5

To examine the consistency of these results over different
training and testing samples, a 10-fold cross-validation is
applied and the results are depicted in figure 3. Although the
SVR algorithm is consistently achieving better performance
results in the average sense, it is less consistent over the
individual training/ testing samples. This can be shown in the
extended whisker plot ranges especially for R2 metric which
makes DTR more preferable over SVR. The summary of these
results are shown in table V.

TABLE V: Prediction performance results using 10-fold cross-validation
Performance measures

Algorithm Average MSE Average MAE Average R2

DTR 0.016 0.096 0.47
SVR 0.0159 0.090 0.48

VII. CONCLUSION

In this paper, a data-driven robust framework for calculating
risk score for driver profiling applications was presented.
Predicted risk probability was adopted to signify a driver’s risk
score. By utilizing the behavioral driving context information
and the total exposure time for more than 2,000 drivers from
SHRP2 dataset, two risk predication models were devised
and compared. Two model training approaches, which are the
general splitting and 10-fold cross validation approaches, were
adopted and the results show that these models can accurately
predict the risk probability. One important finding is that
driving risk for a certain driver can be accurately predicted
with only few events captured with an appropriate sampling
time. The SVR model seems to outperform the DTR in all
performance measures with a consistency advantage for DTR
over SVR for different training/testing samples.
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