
 

Utilization of Wavelet Packet Sensor De-noising for 

Accurate Positioning in Intelligent Road Services 

 

Abstract—Recently, smart cities functionality and 

management have captured notable consideration. Owing to the 

rapid development in the information and communication 

technologies (ICT), various applications and services are highly 

engaged in the cities’ operation. Specifically, intelligent road 

services as traffic management, driver behavior assessment and 

crowdsensing based road condition monitoring contribute towards 

better operability. To sustain decent performance of these 

applications, accurate and continuous positioning is an essential 

concern. Generally, Global Navigation Satellite System 

(GNSS) receivers are vulnerable to partial or complete outages due 

to multipath or signal blockage. Consequently, inertial navigation 

systems integrated with GNSS receivers are affected by inertial 

sensors noises and biases. In this paper, we apply wavelet packet 

de-nosing to eliminate noises of the Micro-Electro-Mechanical 

Systems (MEMS) grade inertial sensors. Afterwards, we integrate 

the de-noised reduced inertial sensor system (RISS) with GNSS 

receivers in real road experiment to assess the system 

performance. In addition, we show the significance of the proposed 

integration over the conventional one during multiple GNSS 

outages under various driving scenarios.       

Keywords—Intelligent Road Services, GNSS, INS, Geo-

referencing, Spectral Analysis, Wavelet Packet De-noising; 

I. INTRODUCTION  

The expeditious advancement of ICT is boosting smart cities 
services and functionalities. Correspondingly, Internet of Thing 
(IoT) world wide investment has been estimated to approach 
$772 billions in 2018 [1]. Consequently, broad IoT applications 
are confidently capable of serving smart cities dynamic 
operation, specifically in Intelligent Transportation Systems 
(ITS) and Road Information Services (RIS) components [2, 3].  
In light of the vehicles motion sensors and smart devices, land 
vehicles are qualified to act as dynamic sensor hubs [2, 4]. 
Seeing figure 1, motion sensors (accelerometers, 
gyroscopes,..etc) and GNSS receivers can provide vital data to 
RIS cloud for analyzing and processing. This processed data can 
be used for providing information related to road surface 
conditions [2, 5], driver behavior [6, 7], trip planning [8] and 
traffic management [9]. 

 

Figure 1. Cloud Road Information Services System Configuration. 
     
    Nevertheless, most if not all of these applications and services 
have a high demand of accurate and continuous location 
information. While the wide majority of the smart devices are 
equipped with GNSS receivers, they are considered the main key 
player in location determination for RIS. However, GNSS stand 
alone positioning solution may encounter high errors and 
uncertainties while providing geo-referencing [10]. On one 
hand, in down town and urban driving scenarios GNSS signals 
suffer from multipath or poor satellite geometry leading to 
partial or complete outages. On the other hand, complete outages 
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also occur while driving under bridges or in tunnels [10, 11]. To 
bypass these limitations, integrated positioning systems are 
adopted for providing continuous geo-referencing [10, 12].  
    Furthermore, integrating GNSS with Inertial Navigation 
Systems (INS) is the most popular forms of positioning 
integrations [13, 14].  Generally, inertial sensors mounted in land 
vehicles or embedded in ubiquitous smart devices are low 
MEMS grade. Therefore, during GNSS outages, INS geo-
referencing solutions drift by virtue of inertial sensors noises and 
biases [13, 14]. For sensor noises, the low-frequency noises are 
named long term errors. On the contrary, high-frequency noises 
are called short term errors [15, 16].   
    In order to supress the inertial sensor noises consequences on 
the INS attainments, various filtering and spectral analysis 
techniques have been adopted in literature. In [17] a Daubechies 
wavelet-based de-noising technique was used to eliminate 
inertial sensor noise before integrating INS with GNSS. The 
proposed solution utilized soft thresholding for noise 
suppressing. Accordingly, the integrated system after de-noising 
was compared with low pass filtering (LPF) - based system 
integration. The results didn't show significant enhancement in 
terms of root mean square error, as the wavelet-based integrated 
system outperforms the LPF with approximately 20% only. 
Moreover, singular spectrum analysis was cascaded with 
independent component analysis to cut out accelerometers low-
frequency noise [18]. However, the analysis neglected the effect 
of gyroscopes noises which have notable influence in INS. Also, 
it was assumed that the effects of the high-frequency noises were 
eliminated by Kalman Filter (KF), which is not always 
guaranteed. On the other hand, in [19] Fast Orthogonal Search 
(FOS) was adopted. It models the low-frequency band that 
contains the vehicle dynamics, to get rid of short and long-term 
errors of the inertial sensors. The main advantage of FOS is in 
the usage of  a non-orthogonal candidate function that is capable 
of determining a frequency component between Fast Fourier 
Transform (FFT) bins. This technique can also averts the energy 
dissemination into another integer frequency component which 
is called spectral leakage [20]. The main limitation of the FOS 
algorithm in inertial sensor de-noising is that it divided the data 
into small windows to assume stationarity within each time 
window, which is not relevant in the case of high-frequency 
dynamics.  
    In this paper, we propose the adoption of Wavelet Packet De-
nosing (WPD) for raw inertial sensors measurement in order to 
supress both low and high frequency noises. Consequently, in 
the proposed approach de-noising maintained both the low 
frequency vehicle dynamics and the high frequency that describe 
driver behaviour and road surface conditions. In addition, we 
integrate the de-noised RISS with GNSS utilizing closed loop 
Extended Kalman Filter (EKF). To show the improvement of the 
integrated positioning solution, we conduct real road trajectory 
and show the system results under 6 different GNSS outages 
including various driving scenarios.  

II. SYSTEM STRUCTURE 

    In this section, we present the system configuration used to 
integrate RISS/GNSS to provide a 3D positioning solution.  

 

Figure 2. RISS/GNSS closed loop loosely coupled integrated positioning 

system. P, V and A are the position velocity and attitude, respectively.  

 

    In RISS, the gyroscope with its sensitive axis is aligned with 
the land vehicle vertical axis, the forward and transverse 
accelerometers, which together with a land vehicle odometer are 
all used to provide the INS solution [10, 21].   The main 
advantage of using the RISS is that the noises of the two 
discarded gyroscopes are avoided. As per figure 2. we use a 
closed loop 3D RISS loosely coupled integration, that is an 
efficient and low complexity when compared to the other 
integration methods [10]. 

A. Wavelet Packet De-noising 

    In Wavelet Analysis, the details in a signal are captured by a 

wavelet function, 𝜳𝒕, and this operation is considered a  high 

pass filtering. On the other hand, signal approximations are 

analyzed using a scaling function, 𝝓𝒕, which is designed to 

smooth the input signal in a process equivalent to low pass 

filtering [22]. These two functions are usually orthonormal 

functions. The main drawback in utilizing wavelet analysis is 

some high-frequencies are suppressed while they may carry 

information about the driver behavior or a signature of a road 

anomaly [3, 23].  

    On the contrary, the wavelet packet analysis, as shown in 

Figure 3, applies an initial decomposition step that separates the 

signal into low-frequency approximation (A) and high 

frequency-details (D). Afterwards, both components are further 

decomposed for multiple levels, as the analysis aims to get fine 

resolution components of a signal [24].  

 

 
Figure 3. Wavelet Packet Analysis 
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    Initially, the analysis uses wavelet packet bases to break 

down the frequency axis into distributed splits with various 

sizes and these slots are translated in time to cover the whole 

time-frequency plane [22]. As any space, 𝑽𝒋, can be 

decomposed into sub-spaces of approximation, 𝑽𝒋−𝟏, and 

details, 𝑾𝒋−𝟏, where: 

 

                                  𝐕j = 𝐕j−1 + 𝐖j−1                                (1) 

   

    In the case of orthogonal bases, this is carried out by breaking 

the orthogonal basis of  𝑽𝒋 into orthogonal bases for the 

approximation and details as {𝛟𝐣−𝟏(𝒕 − 𝟐
𝒋−𝟏𝒏)}

𝒏 𝝐ℤ
 and  

{𝚿𝐣−𝟏(𝒕 − 𝟐
𝒋−𝟏𝒏)}

𝒏 𝝐ℤ
 , respectively, this signal decomposition 

is specified by a pair of conjugate mirror filters 𝒉[𝒏] 
and 𝒈[𝒏] =  (−𝟏)𝟏−𝒏 𝒉[𝒏 − 𝟏]. 
    Due to sensor signals irregularities, nonlinear thresholding in 

wavelet bases is much promising than linear estimators. 

Regarding thresholds, we adopt the soft threshold mechanism 

of Stein unbiased risk estimator (SURE) provided in [22]. 

Reducing the thresholding risk could present through choosing 

a threshold less than  𝜎√2𝑙𝑜𝑔𝑒𝑁 , where 𝜎 is the noise standard 

deviation and 𝑁 is the signal length. For the SURE thresholding 

[25, 26], the threshold value T, stands as: 

 

                           𝑇 =  √2 𝑙𝑜𝑔𝑒(𝑁𝑙𝑜𝑔2(𝑁)                            (2) 

 

    In our analysis, we utilize Daubechies wavelet family of 

order 8 and we apply 5 levels of signal decomposition. These 

selections assure the best performance while de-noising the 

inertial sensors in this work.  
 

B. RISS/ GNSS Integration 

   Consequently, the de-noised sensor signals along with the 

odometer measurements are considered the inputs for the 

mechanization process. The navigation state vector of 3D RISS 

is given by 𝑥 =  [𝝋, 𝝀, 𝒉, 𝒗𝒆, 𝒗𝒏, 𝒗𝒖, 𝒓, 𝒑, 𝑨 ]
𝑇 as 𝝋 is the 

latitude,  𝝀 is longitude, 𝒉 is altitude, 𝒗𝒆 is the velocity towards 

east, 𝒗𝒏 is the velocity towards north, 𝒗𝒖 is the up velocity, 𝒓 is 

the roll angle, 𝒑 is the pitch angle, and 𝑨 is the azimuth. Pitch 

angle is given by [10, 21]: 

𝒑 =  𝒔𝒊𝒏−𝟏 (
𝒇𝒚−𝒂𝒐𝒅

𝒈
)                                                                   (3) 

    Where 𝒇𝒚 is the forward acceleration, 𝒂𝒐𝒅 is the vehicle 

acceleration collected by the odometer, and  𝒈 is the 

gravitational acceleration. The roll angle is computed as follows 

[10, 21]: 

 

𝒓 =  − 𝐬𝐢𝐧−𝟏 (
𝒇𝒙+𝒗𝒐𝒅𝝎𝒛

𝒈 𝐜𝐨𝐬 𝒑
)                                                        (4) 

  

    The transversal acceleration is 𝒇𝒙, the vehicle speed extracted 

from the odometer measurement is 𝒗𝒐𝒅, the angular rotation 

around the vertical Z-axis is 𝝎𝒛. Also, with the assumption of 

relatively low values of pitch and roll in 2D navigation, the 

azimuth angle is calculated as follows: 

𝑨̇ =  − (𝝎𝒛 − 𝝎𝒆 𝐬𝐢𝐧𝝋 − 
𝒗𝒆 𝐭𝐚𝐧𝝋

𝑹𝑵+𝒉
)                                    (5) 

    Where 𝑹𝑵  is the normal radius of the earth curvature and 𝒉 

is altitude. All the linear acceleration and angular rotation are 

compensated for their biases and de-noised. Moreover, the three 

velocities can be transformed from forward velocity and 

calculated as follow: 

𝒗𝒆 = 𝒗𝒐𝒅  𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝒑                                                           (6) 

𝒗𝒏 = 𝒗𝒐𝒅  𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝒑                                                          (7) 

𝒗𝒖 = 𝒗𝒐𝒅  𝐬𝐢𝐧 𝒑                                                                      (8) 

 

    𝑅𝑀 is the meridian radius of curvature, the latitude 𝝋, the 

longitude 𝝀, the altitude 𝒉, can be calculated as follow: 

𝝋̇ =  
𝒗𝒏

(𝑹𝒎+𝒉)
                                                                                 (9) 

 

𝝀̇ =  
𝒗𝒆

(𝑹𝑵+𝒉)𝐜𝐨𝐬𝝋
                                                                     (10) 

 

𝒉̇ =  𝒗𝒖                                                                                  (11) 

 

    Gyroscope measurement error is the major source of error in 

3D RISS the [10]. As it provides errors in horizontal velocity 

and positions which is not the case while using the 

accelerometers as their effects are small.  

    For the EKF, the discrete time domain is given by [10, 21]:  

 

𝜹𝒙𝒌+𝟏 = 𝚽𝒌,𝒌+𝟏𝜹𝒙𝒌 + 𝑮𝒌𝒘𝒌∆𝒕                                           (12) 

 

    Given that the state transition matrix is 𝚽𝒌,𝒌+𝟏, the error state 

vector is noted by 𝜹𝒙𝒌, the noise parameter matrix is 𝑮𝒌,   𝒘𝒌 

is a Gaussian noise vector with a zero mean and ∆𝒕 is the time 

interval. The system dynamic matrix 𝐹 can be downsized to 

provide the state transition matrix  𝚽𝒌 . The measurement 

model of the discrete KF is given by [13]:  

    The 3D RISS error state vector is provided by [21]: 

 

𝛿𝑥 = [𝛿𝝋, 𝛿𝝀, 𝛿𝒉, 𝛿𝒗𝒆, 𝛿𝒗𝒏, 𝛿𝒗𝒖, 𝛿𝑨, 𝛿𝒂𝒐𝒅, 𝛿𝒃𝒛 ]
𝑇               (13) 

 

    where 𝛿𝝋 is latitude error, 𝛿𝝀 is longitude error, 𝛿𝒉 is altitude 

error, 𝛿𝒗𝒆 is east velocity error, 𝛿𝒗𝒏 is north velocity error, 𝛿𝒗𝒖 

is upward velocity error, 𝛿𝑨 is azimuth error, 𝛿𝒂𝒐𝒅 is error in 

acceleration extracted from odometer measurements, and 𝛿𝒃𝒛 
is gyroscope bias error. These equations are linearized to get the 

error model of the closed-loop EKF used for RISS/GNSS 

integration. This linearization process is performed by keeping 

only the first term of Taylor's series expansion. Accordingly, 

these linearized equations are used to build the F   matrix, and 

the position of each term can be indicated by 𝐹𝑚𝑛, where m is 

for the row, and n is for the column. These equations are given 

by [21]: 

 

𝛿𝝋̇ =  
𝛿𝒗𝒏

(𝑅𝑀+ℎ)⏟      
𝐹15

                                                                          (14) 
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𝛿𝝀̇ =  
 𝛿𝒗𝒆

(𝑹𝑵+𝒉)cos𝛗⏟          
𝐹24

+ 
𝐯𝐞  𝐭𝐚𝐧𝛗

(𝑹𝑵+𝒉) cos𝛗⏟          
𝐹21

                                                     (15) 

 

𝛿ℎ̇ =  𝛿𝒗𝒖⏟
𝐹36

                                                                                (16) 

 

𝜹𝒗𝒆̇ =  𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝒑⏟      𝜹𝒂𝒐𝒅
𝑭𝟒𝟖

+ 𝒂𝒐𝒅  𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬𝑷⏟          
𝑭𝟒𝟕

−

 (𝝎𝒛 − 𝒃𝒛 − 𝝎𝒆 𝐬𝐢𝐧𝝋 −
𝒗𝒆 𝐭𝐚𝐧𝝋

𝑹𝑵+𝒉
)

⏟                    
𝑭𝟒𝟓

𝜹𝒗𝒏 + 𝒗𝒏⏟
𝑭𝟒𝟓

𝜹𝒃𝒛 +

 𝒗𝒏 (𝝎𝒆 𝐜𝐨𝐬𝝋 +
𝒗𝒆 𝒔𝒆𝒄

𝟐𝝋

𝑹𝑵+𝒉
)

⏟                
𝑭𝟒𝟏

 𝜹𝝋 + 
𝒗𝒏 𝐭𝐚𝐧𝝋

𝑹𝑵+𝒉⏟  
𝑭𝟒𝟒

 𝜹𝒗𝒆                           (17) 

 

𝜹𝒗𝒏̇ =  𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝒑⏟      𝜹𝒂𝒐𝒅
𝑭𝟓𝟖

+ 𝒂𝒐𝒅  𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬𝑷⏟            𝛿𝑨
𝑭𝟓𝟕

−

 (𝝎𝒛 − 𝒃𝒛 − 𝝎𝒆 𝐬𝐢𝐧𝝋 −
𝟐𝒗𝒆 𝐭𝐚𝐧𝝋

𝑹𝑵+𝒉
)

⏟                    
𝑭𝟓𝟒

𝜹𝒗𝒆 + 𝒗𝒆⏟
𝑭𝟒𝟓

𝜹𝒃𝒛 +

 𝒗𝒆 (𝝎𝒆 𝐜𝐨𝐬𝝋 +
𝒗𝒆 𝒔𝒆𝒄

𝟐𝝋

𝑹𝑵+𝒉
)

⏟                
𝑭𝟓𝟏

 𝜹𝝋                                              (18) 

 

𝜹𝒗𝒖̇ = 𝐬𝐢𝐧 𝒑⏟  
𝑭𝟔𝟖

 𝛿𝒂𝒐𝒅                                                                (19) 

 

𝜹𝑨̇ =  𝜹𝒃𝒛⏟
𝑭𝟕𝟗

+ (𝝎𝒆 𝐜𝐨𝐬𝝋 +
𝒗𝒆 𝒔𝒆𝒄

𝟐𝝋

𝑹𝑵+𝒉
)

⏟              
𝑭𝟕𝟏

 𝜹𝝋 + 
𝐭𝐚𝐧𝝋

𝑹𝑵+𝒉⏟
𝑭𝟕𝟒

 𝜹𝒗𝒆        (20) 

 

    The odometer and gyroscope errors are modeled as a Gauss-

Markov process of the first order [25] and given by: 

 

𝛿𝒂𝒐𝒅̇ =  𝛽𝑜𝑑⏟
𝑭𝟖𝟖

 𝛿𝒂𝒐𝒅 + √𝟐𝛽𝑜𝑑𝜎𝑜𝑑
2𝝎(𝒕)                                 (21) 

 

𝛿𝒃𝒛̇ =  −𝛽𝑧⏟
𝑭𝟗𝟗

 𝛿𝒃𝒛 + √𝟐𝛽𝑧𝜎𝑧
2𝝎(𝒕)                                       (22) 

 

Where 𝜷𝒐𝒅 and 𝝈𝒐𝒅 are the Gauss-Markov process parameters 

for 𝛿𝑎𝑜𝑑, while 𝜷𝒛 and 𝝈𝒛 are for 𝜹𝒃𝒛. Thus, the full dynamic F 
matrix can be constructed given the terms denoted at each 

corresponding place, and the rest of terms are set to zero. 

Consequently, the measurement model for the loosely coupled 

integration of GNSS/INS gives the difference between the 

GNSS position/velocity and INS position/velocity as: 

 

𝛿𝑧 = 𝐻 𝛿𝑥 + 𝑣                                                                      (23)   

 

Where the measurements vector 𝛿𝑧 is given by: 

 

𝛿𝑧 =

[
 
 
 
 
 
𝝋𝐺𝑁𝑆𝑆 − 𝝋𝐼𝑁𝑆
𝝀𝐺𝑁𝑆𝑆 − 𝝀𝐼𝑁𝑆
𝒉𝐺𝑁𝑆𝑆 − 𝒉𝐼𝑁𝑆
𝒗𝒆𝐺𝑁𝑆𝑆 − 𝒗𝒆𝐼𝑁𝑆
𝒗𝒏𝐺𝑁𝑆𝑆 − 𝒗𝒏𝐼𝑁𝑆
𝒗𝒖𝐺𝑁𝑆𝑆 − 𝒗𝒖𝐼𝑁𝑆]

 
 
 
 
 

                                                            (24) 

And the design matrix 𝐻 is given as: 

 

𝐻 =  

[
 
 
 
 
 
1 0 0
0 1 0
0 0 1

   0 0 0
   0 0 0
   0 0 0

   0 0 0
   0 0 0
   0 0 0

0 0 0
0 0 0
0 0 0

   1 0 0
   0 1 0
   0 0 1

   0 0 0
   0 0 0
   0 0 0]

 
 
 
 
 

                                        (25) 

  

Where the term 𝑣 is a Gaussian noise vector with zero mean 

with covariance matrix 𝑅 =  〈𝑣𝑣𝑇〉.   

III. RESULTS AND DISSCUSSION 

    In order to assess the significance of the WPD in RISS/GNSS 

integration. We held a road test experiment in Kingston, ON, 

Canada utilizing a land vehicle. The testbed shown in figure 4 

was mounted in the land vehicle during the trajectory shown in 

figure 5. Regarding the equipment used, the MEMS-grade IMU 

provided by Crossbow (model IMU300CC-100) (Xbow) was 

utilized as the RISS component in the integration system and 

was logged at 100 Hz. The land vehicle forward speed was 

collected from the OBD interface using the CarChip device at a 

data rate of 1 Hz. To examine the performance of the proposed 

system, the reference solution was obtained by a NovAtel Span 

integrated solution. This solution is conducted by the 

integration of an OEM4 GPS receiver with fiber optic grade 

IMU-CPT logged at 100 Hz. Although the final navigation 

solution was provided at 1 Hz.      

 

 

 
Figure 4. Testbed Utilized in Road Trajectory.  
 

 

 
Figure 5. Road experiment in Kingston, ON, Canada, with 6 GNSS Outages. 
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    To show the significance of WPD, in figure 6 we compare 

the performance of the angular rotation measurement around the 

vertical axis of the MEMS grade Xbow before and after WPD 

with the reference high end IMU-CPT. Figure 6. Shows a time 

window of 35 seconds where the land vehicle had to complete 

successive turns. The figure illustrates the coincident 

performance of WPD measurements with the high end 

measurements provided by IMU-CPT.   

 

 
 
Figure 6. Angular rotation measurements around the vertical axis of Xbow, 

WPD-Xbow and IMU-CPT 

 

 

TABLE 1. 2D RMS HORIZONTAL POSITION ERROR IN 

METERS DURING GNSS OUTAGES 

 

 

 

 

 

 

 

 

 

 

 
 

TABLE 2. 2D MAXIMUM POSITION ERROR IN METERS 

DURING GNSS OUTAGES 

 

 

 

 

 

 

 

 

 
 

 

Figure 7. Positioning solution during GNSS outage no.1 

 

 

Figure 8. Azimuth of 3D RISS/GNSS, WPD 3D RISS/ GNSS and Novatel 
reference during GNSS outage no.1. 

 

For further assessment, we examined and compared the 
performance of the WPD based RISS/GNSS integration system 
to the conventional RISS/GNSS during six simulated GNSS 
outages as shown in figure 5.  All the outages were designed to 
be 60 seconds. While choosing the outages we considered 
multiple driving scenarios to include various dynamics such as 
straight driving, left and right turns, traffic lights stops, yields, 
stop signs and regular traffic frequent stops. Table 1 shows 
results of the 2D root mean square position error of the 3D 
RISS/GNSS and the WPD 3D RISS/ GNSS compared to the 
reference provided by NovAtel span unit.   The results states that 
the WPD 3D RISS/GNSS provides average better positioning 
accuracy by approximately 68%.  Regarding maximum 3D 
positioning errors, WPD 3D RISS/GNSS has enhanced the 

OUTAGE 

NO. 

OUTAGE 

DURATION 

(SECONDS) 

3D 

RISS/GNSS 

WPD-3D 

RISS/GNSS 

1 60 10.48 1.86 

2 60 5.00 3.34 

3 60 10.63 1.76 

4 60 4.17 1.25 

5 60 9.80 2.24 

6 60 4.75 3.98 

Average 60 7.47 2.40 

OUTAGE 

NO. 

OUTAGE 

DURATION 

(SECONDS) 

3D 

RISS/GNSS 

WPD-3D 

RISS/GNSS 

1 60 20.28 5.35 

2 60 9.23 5.59 

3 60 17.68 6.89 

4 60 12.53 3.26 

5 60 8.08 7.73 

6 60 6.48 6.07 

Average 60 12.38 5.81 
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conventional 3D RISS/GNSS positioning errors by 53%. 
Moreover, figure 7 displays the continuous positioning solutions 
of 3D RISS/GNSS, WPD 3D RISS GNSS and NovAtel span 
reference solution during GNSS outage no.1. The outage 
includes two portions of straight driving separated by a right 
turn. The WPD 3D RISS/GNSS solution is within the road and 
almost coincide with reference solution while the 3D 
RISS/GNSS starts to drift since the early beginnings of the 
outage. Also, the azimuth results during the same outage 
presented in figure 8 supports the better performance of WPD 
3D RISS/GNSS over the conventional one when compared to 
the reference azimuth. 

IV. CONCLUSION 

     Intelligent road services receive high attention in smart cities 

operation. As they are highly related to residents safety and 

comfort. In order to sustain efficient performance of such 

services, accurate and continuous positioning are always 

required. Stand alone GNSS receivers suffer from partial or 

complete outages in downtown and urban canyons. While 

integrated INS/GNSS solutions are exposed to errors during 

GNSS outages as a result of inertial sensors noises. Leveraging 

WPD in RISS/GNSS, has improved the average 2D RMS 

positioning errors by 68 % while the average 2D maximum 

positioning errors by 53 % during typical GNSS outages in 

down town cores. 
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