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Abstract—Greenhouses are proliferating across Canada.
Greenhouse crop production requires considerable attention. The
only way to maintain the production growth is by controlling the
greenhouse atmosphere and monitoring the plants so that they
remain healthy in the greenhouse. In this paper, we utilize a
Wireless Visual Sensor Network (WVSN) with machine learning
and image processing to observe any deficiency, pest, or disease
presenting on the leaves of the plants. We distribute camera
sensors throughout the greenhouse. Each camera sensor node
captures an image from inside the greenhouse and use machine
learning and image processing techniques to detect the presence
of fungus. When a fungus is detected, the camera sensor node
sends a message to the sensor node via the wireless sensor
network to measure the humidity and then send a message to
the actuator to re-set accordingly. This paper demonstrates how
Hough forest machine learning and image processing can be
successful in detecting fungus present on crop plant leaves from
the images taken from camera sensors in the greenhouse. Cross-
validation was applied to measure the performance of the system.
The results are highly promising. There was a 94% success rate
in detecting the fungus.

Index Terms—Wireless Visual Sensor Network, Machine
Learning, Hough Forest, Image Processing.

I. INTRODUCTION

Large production crop greenhouses are growing rapidly.
With this growth, comes a significant need to maintain pro-
duction for economic reasons. The only way to do this is by
ensuring that plants remain healthy by providing a healthy
atmosphere. First, to ensure healthy weather in greenhouses,
we must control the atmosphere parameters of the greenhouse,
such as temperature, humidity, CO2, water, and light. We can
achieve this by applying a wireless sensor network (WSN)
which will measure and control these parameters, then send a
message from the sensor node to the actuator to perform the
necessary actions if any parameter is not optimum, such as
watering and spraying the required herbicides, fungicides and
insecticides. Second, to have healthy plants in greenhouses,
we must monitor the growth of the plant. We can do this
by applying a Wireless Visual Sensor Network (WVSN) with
camera nodes that will monitor the growth of the plant and
detect any disease in the plant from the captured images. In

our case, we are trying to detect fungus which grows on the
plant leaves. Powdery mildew is a fungal disease that looks
like a powdery white coating on the leaves and stems of
infected plants. A powdery mildew infection usually begins
as a few spores on the leaves but quickly spreads. The white
powdery surface is a thick coating of the fungi spores [1]. It
can eventually cause yellowing the leaves and premature leaf
drop. This type of fungus increases in 99% humid conditions
with moderate 25oC temperatures. In a greenhouse when the
summer is humid, powdery mildew almost always makes
an appearance. It can affect any plant. In extreme cases, it
results in leaf yellowing and dropping; stunted plant growth;
distortion of buds, blooms, and fruit; and eventually, overall
weakening of the plant. As in Fig. 1.

Fig. 1. Powdery Mildew

It is well documented that this type of fungus can cause
many diseases in the plant. These diseases can reduce crop
production, which will lead to economic losses. Several meth-
ods can be used to diagnose and determine what harmful agent
is affecting the plant leaves. These methods include visual
inspection, soil analysis, plant tissue analysis, bioassays, and
field tests [2]. These methods are used as the first step in
exploration; however, since field tests are expensive, difficult to
administer, and they can be done only in a laboratory we need
a new in-house, inexpensive technology to detect and diagnose
different kinds of diseases with minimal human interaction.

The use of technology in agriculture has been increas-
ing. Depending on its nature agriculture technology can be
biochemical (pesticides and fertilizers), or implemented into
farm machinery. Mechanical and information technology can
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be applied to agriculture, for example in monitoring growth
and controlling pests, geophysical measurement systems, flood
detection and precision agriculture [3] [4]. Moreover, there
are sensor systems for monitoring the environment, such as
ambient temperature, humidity, wind, to name a few [5].
Monitoring systems are based on Wireless Sensor Network
(WSN) technology [6]. WSN technology will not create a new
agricultural product but will help improve existing techniques
to improve the diagnosis of plant diseases and ensure final
product quality [7].

Wireless Sensor Networks (WSNs) have been used in
countless applications [22]- [24]. One of these applications
is measuring environmental parameters inside a greenhouse.
However, in a greenhouse, we need more than WSNs to
monitor parameters, we need to maintain healthy plants and
find plant diseases. In this paper, we propose a Wireless Visual
Sensor Network (WVSN) that uses machine learning with
image processing in each wireless node to determine if a plant
has unhealthy leaves. When the WVSN detects an unusual
status in the plant leaves, it will send a message to the sensor
node to measure the humidity inside the greenhouse. If the
humidity is high, the sensor node will send a message to the
actuator to decrease the humidity in the greenhouse.

This paper is structured as follows: In the next section, we
review current work related to the problem. Then, in section III
and IV, we present the fundamental methodology used in our
proposed solution. Next, in section V, we describe the results
of the algorithm applied to a variety of test images, and draw
a comparison with other previous works. Finally, in section
VI, we conclude our proposed system.

II. RELATED WORKS

There is very little research in the area of combining WSNs
with image processing and pattern recognition in agriculture.

The authors in [8] mentioned two systems for image recog-
nition. They explained the structure, the recognition algo-
rithms, and the neural classifier. Of many applications created,
one of their applications was for image recognition based on
an adaptive control system for micro mechanics where a neural
classifier was used for texture recognition of metal surfaces.
The authors also used pesticides to kill insects by using a
web-camera based computer vision system to automate the
recognition of larvae. Their system sought to locate the insect
and larvae early so that they could reduce the use of pesticides.
The system consisted of neural classifiers which would detect
the insect from a captured image. Recognizing the larvae and
sensing warmth to indicate the larvae was active are not easy
tasks because of the existence of different colors, shapes,
sizes and positions. They used pre-processing techniques, then
trained the system. Their system still was not efficient enough
to distinguish between textures related to the larvae and those
related to the background of the image.

Research done by the authors in [9] had the same type of
the system used in the previous work, but the purpose of this
work was to use a back-propagation ANN model to distinguish
between weeds and baby corn. The authors used a series

of cameras to obtain high-quality images. Each image was
preprocessed from the bitmap format with image processing
to indexed images based on the (RGB) color system. Then,
each index color acted as input for the ANN. The output value
was 0 or 1, which represented whether the image was weeds
or baby corn. The processing time was 20 hours for training
the network. This process can help reduce the use of herbicide
sprays if it decreases the training time.

Another work involved in recognizing weeds [10] used a
fuzzy logic system to create a weed map that would help
determine the location of the weed to use the right amount
of herbicide. They also used a digital camera and a personal
computer for more testing. Their system was able to locate
some of the weeded areas resulting in using less herbicides,
reduced soil and water pollution, and cost savings.

The authors of [11] used machine vision to detect a worm
in maize plantings. They used a pre-processing technique that
converted the image from grayscale to binary images using an
iterative algorithm. First, the system segmented the leaves and
divided them into pixels. Second, the images were divided into
blocks. Blocks that contained a more significant amount of leaf
surface were selected. These selected blocks were recognized
as damaged or undamaged by counting the objects in each
block. Their system performed well in some cases.

In [12], the authors merged three thresholding strategies,
fuzzy method, Otsu method, and Isodata algorithm, to deter-
mine whether the field was covered with oat or frost. They
stated that this merger provided better results than taking each
method separately.

In addition, the work in [13] presented the use of image
processing to measure the water droplet size and distribution
of agricultural sprinklers. They used the properties of Fourier
analysis and correlation in the frequency domain. The purpose
of this paper was to obtain a direct measurement of sprinkler
drops, which would help avoid exceeding the size of the drop
that would lead to soil erosion, surface sealing, and infiltration,
as well as to minimize the size of the drop to not be affected
by wind drift and that alters the pattern of irrigation. This
study would help the farmer control the size of the drops and
maintain the right amount of water for the crop.

Another use of visible light image processing and machine
vision system was presented in [20] and [21] to detect diseases
in the field. Their systems achieved a good detection rate with
some restrictions on input, such as taking images only from
the top view of the plant with uniform background and taking
images only of a single centered leaf. These restrictions make
the system unsuitable for autonomous detection.

Using a camera provides more information and benefits over
sensor networks alone as in [14]. The authors used a camera
sensor network for recognition, tracking and detection. Their
work introduced low-latency detection, low power, and effi-
cient recognition. However, their work depended on using light
image processing which would not be efficient in detecting
pests or disease.

Most of the previous works done on detecting diseases and
pests used a digital camera with image processing. To the
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best of our knowledge, no work such as our proposed system
has been done in a greenhouse. We utilize a wireless visual
sensor network, a wireless sensor network, a machine learning
technique and image processing in a greenhouse that is fully
cluttered with varying light degrees to detect the diseases, pests
and, in our case, powdery mildew fungus on plant leaves.

III. WIRELESS VISUAL SENSOR NETWORKS (WVSNS)

A wireless Visual Sensor Network has a camera-equipped
sensor node. The very small sensor camera can capture visual
data, as well as process and transmit image/video information
[15]. The greenhouse will have a WSN with actuator that
controls the environmental atmosphere and communicate with
a WVSN that capture images to monitor the growth of the
plants, detect any fungal diseases or pests that can affect the
plant. This communication will minimize human interaction,
as shown in Fig. 2. In general, the monitored area is an
immense place, which means we must deal with a large
number of images. To improve the performance (in terms
of storage and processing) and reduce the response time of
the image processing unit, we must place cameras such that
there is no overlap between images taken by those cameras.
Each camera has the same focal length, angle of view, and
resolution. The placement of the camera sensor in greenhouse
is beyond the scope of this paper.

Fig. 2. Typical Greenhouse

IV. MACHINE LEARNING

Using WVSN to capture images in a greenhouse internally
requires Hough forests machine learning for detection. Hough
forest is a combination of the generalized Hough transform
with Random forests [16] [25]. The generalized Hough trans-
form is a method of estimating the parameters of a shape
from its boundary points [17]. It extends the classic version
for simple shapes like lines and circles by parameterizing in
an R-table, with no need for an analytical form. Random
forest is a supervised learning method that consists of a
collection of weaker random classification decision trees. In
these decision trees, the mean and the mode of the classes are
calculated, and that is the output of the forest [18]. During

the day, using many camera sensors, images were taken from
greenhouses. Several issues were faced with concerning the
detection of fungus in the vision system. Inconsistencies in
lighting, occlusion, diffusion, and color similarity were some
of the problems in greenhouses. Hough forest was chosen
as the detection algorithm due to its robustness to occlusion
and noise. The detection of mildew fungus occurs in three
steps. First, the images are captured using WVSN. Second,
the captured images are processed to remove the background
clutter using image processing. Third, the mildew fungus is
detected. The following sections describe each of these stages.

A. Captured Images Using WVSN

Camera sensor nodes are distributed in a greenhouse in a
way such that there is no overlap between each one. The
camera is located in a position that will creat maximum
resolution images. Images are taken from different placements
and angles of different camera sensor nodes in a greenhouse
during the daytime. The sensor camera that has been used
has (12MP, 50mm focal length, 1/2.55-inch sensor, dual-pixel
PDAF, and f/1.5-2.4 variable-aperture lens), as well as another
camera sensor (12MP, 2x focal length, f/2.4 lens, 1/3.6-inch
sensor, AF). Also, a single LED flash and OIS is in both
cameras. The distance between the camera sensor and the plant
was between approximately 30 and 40cm to achieve better
resolution at the same time with no overlap. Samples of the
plant leaves in the greenhouse images are shown in Fig. 3. The
data set consisted of 282 images at 1960 x 4032 pixels/image.
Images were taken with different levels of occlusion. The
levels varied between images from low to highly occluded
and cluttered. The images were visually inspected for fungus
(powdery mildew), which was observed in the images. These
images were then used to create labeled image samples in
which each image sample either had fungus or did not have
fungus.

Fig. 3. Plants in the Greenhouse
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B. Image Processing

One of the most prominent issues in disease detection
techniques is background clutter in a greenhouse setting. The
problem with background clutter is the high possibility of
false detection, which will decrease efficiency and accuracy
by searching to cover an area that does not contain the object
of interest. The use of segmentation image processing for the
fungus will remove the background clutter. The first step is to
take the RGB color spaces from the image. The second step
is to take the difference of R color image and G color image.
The third step is to convert the images to grayscale. The fourth
step is to create the mask. The fifth step is to apply a median
filter over the mask to remove the noise. The sixth step is to
extract the foreground. The final result will have the region of
interest (ROI) image, as shown in Fig. 4. The results are now
ready to be used as input into the machine learning detection.

Fig. 4. Preparing Images

C. Machine Learning Detection

In this section, we propose to use Hough forest machine
learning for detection. Hough forests combine the learning
properties of random forests with the detection properties of
Hough transforms. As explained in Section IV. The Hough
transform used Hough space, which is an accumulator matrix
that counts the vote generated from R-table, for each pixel.
Now, random forests use multiple decision trees. Each tree
generates an output to create a prediction. A random subset of
features was chosen for each split of tree branches. A training
process is shown in Fig. 5, and a detection process is shown
in Fig. 6.

1) Data Set: Our data set consisted of 282 images at 1960 x
4032 pixels/image. Labeled sample images were prepared us-
ing a semi-automatic approach to create patches. Five hundred
and two patches were created; 260 positive patches had fungus
and 242 negative patches did not. All patches were re-sized to
256 x 256. A Hough forest was trained with positive fungus
images with the negative background removed. Samples of the
patch images used for training are shown in Fig. 7 and Fig.
8. These images are not part of the testing set.

Fig. 5. Hough Forest Training

Fig. 6. Hough Forest Detection

Fig. 7. Positive Training Patches Fig. 8. Negative Training Patches

2) Training Process: A general outline of training and
detection is shown in Fig. 5, and Fig. 6. These patches
were extracted randomly from each image sample and carried
different features. These features had information used for
constructing each tree that included each channel of the L*a*b
color space, first and second discrete differentials, using the
Sobel operator, as well as nine histograms of gradients, as
described by Leibe et al. in [19]. J. Gall’s re-implementation
of the Hough forest described in [16] was used to train the
classifier. The patches will be selected randomly with their
location and image classification. Then they will be passed
along to the root node of the decision tree. It will split into
two new nodes which will maximize the information gain.
Every node knows the position of the patches relative to the
center of the image and image classification. The process will
keep repeating until it reaches the stopping point. Many trees
were trained using the same steps thus creating a forest. The
forest contained ten trees, each with a depth of 18 nodes, as
shown in Fig. 9.

The detection of a fungus started by inputting an image
into the system, then creating sample patches and their feature
spaces. Each patch processed through a tree until it reached
a leaf node. The leaf node had the position and the class
information about that patch, which would be used to create a
vote into a Hough space. All trees have votes in Hough space.
The highest number of votes indicates the correct location of
the object i.e., fungus.
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Fig. 9. Tree Forest

V. RESULTS

With a machine learning algorithm, it is necessary to divide
the dataset into training, testing, and validation. The training
will be in the training set, and the testing will be in the
testing set. This process will be repeated n times. Each time,
the data will have been randomly selected to create different
training and testing subsets. Here, k-fold cross-validation will
be applied, and this will divide the data into training and
testing. In our case, k=5. This approach ensures that every
image sample will be tested and that testing sets will not
overlap. Matlab software was used to apply 5-fold cross-
validation on 280 images taken from inside the greenhouse.
The results of 5-fold cross-validation are presented in Fig. 10.
Using the receiver operating characteristic (ROC) parameter,
the ROC is calculated by comparing the true positive (TP) rate
to the false positive (FP) rate. Also, in Fig. 10, we calculated
the area under ROC curve (AUC) which evaluates how good
the classifier is, and how accurate the output is. In our case,
the AUC was 96.96%.

Fig. 10. ROC for Hough Forest Trained with Fungus Image Patches

The results of testing 100 images are shown in Table I. The

results show detection rates of 71% true positive, and 23%
true negative. The total of all positive detection rates is 94%.
The rate of false negatives was low at 5 %, and the rate of
false positives was much lower at 1%.

TABLE I
RESULTS OF FUNGUS DETECTION ON THE TESTING DATASET

Test Fungus in image No fungus in image
% %

Detected fungus TP (71) FP (1)
No detected fungus FN (5) TN (23)

A. Result Statistics

In Table II, statistics show how well our system performed
in predicting fungus based on the images.

TABLE II
STATISTICS RESULTS

Sensitivity 93.4% Specificity 95.8%
Positive Likelihood 22 Negative Likelihood 0.06

Ratio Ratio
Poistive Predictive 98.6% Negative Predictive 82.1%

Value Value

• Sensitivity shows the probability that our test results are
positive when fungus is present. In our case, we have
high probability 93.4 %.

• Specificity shows the probability that our test results are
negative when fungus is not present. In our case, we have
high probability 95.8 %.

• A positive likelihood ratio of greater than 1 indicates the
test result is associated with fungus. In our case, the result
was 22, which conforms with our output results.

• A negative likelihood ratio of less than 1 indicates that
the test result is associated with an absence of fungus. In
our case, the result was 0.068, which confirms with our
output results.

• Positive predictive value shows the probability that the
fungus is present in the images when the test is positive.
In our case, the probability value was 98.6% (very high).

• Negative predictive value shows the probability that the
fungus is not present in the images when the test is
negative. In our case, the probability value was 82.1%
(very high).

Sample output results of applying the Hough forest machine
learning on the images were true negative detection (healthy
plant) and true positive detection (fungus found), shown in
Fig. 11 and Fig. 12, respectively. False negative detection and
false positive detection are shown in Fig. 13 and Fig. 14,
respectively.

B. Comparison with Other Works

Table III compares our proposed system of applying Hough
forest machine learning on images taken from WVSN from
different angles and placement against each image process
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Fig. 11. True Negative Detection Fig. 12. True Positive Detection

Fig. 13. False Negative Detection Fig. 14. False Positive Detection

used by authors in previous works. The images in the work
in [20] were taken from the top view, which minimized the
clutter from the background images. The work in [21] cropped
the leaf images before applying color-texture detection, which
also reduced the clutter of background images.

TABLE III
COMPARISON WITH OTHER WORKS

Author Method Images Detection
Rate%

[20] Color feature Images with 70
detection top view

[21] Color-texture Images contain 67-88
detection leaves only

This paper Hough forest, Images with 94
color and background different view and

removal varying light

VI. CONCLUSION

Early and fast detection of any diseases or pests in a
greenhouse is an essential step and part of an integrated
management strategy needed to maintain the health of the
plants. Automated plant disease detection in an environment
like a greenhouse is complex due to the surroundings are a
fully cluttered, large-scale, and uncontrolled environment. This
paper shows how Hough forest machine learning can detect
powdery mildew fungus in images of the leaves of plants taken
from a wireless visual sensor network. The detection rate of
94% is a good indication of our proposed system performance.
Maintaining a low false positive rate is very important for a
successful detection system, as each positive detection would
require sending messages to sensor nodes to measure the
humidity of the greenhouse and re-set accordingly.
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