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Abstract—The unforeseen proliferation of smart devices has
set in motion research efforts aimed at building Smart Cities
(SCs) that improve the well-being of their citizens. One of the
key technologies to achieve a SC is Mobile Crowd Sensing (MCS).
In MCS, data is collected from the environment surrounding the
smart device owners and utilized in the provision of a wide array
of SC services. A prevalent class of services which is attracting
increasing attention is smart emergency services, where MCS is
leveraged to facilitate the detection and mitigation operations
of crises. In this paper, we study the problem of an emergency
situation detection based on MCS-provided data from heteroge-
neous participants. Specifically, we formulate our problem based
on Detection Theory and underline its computational complexity.
We present a greedy algorithm that aims to balance the trade-off
between the decision time and the quality of the final decision.
We perform extensive simulation experiments that show how our
scheme improves the correct detection rate compared to a naive
reputation-unaware baseline.

I. INTRODUCTION

With the unprecedented prevalence of sensor-enriched smart
devices, Mobile Crowd Sensing (MCS) has emerged as a
building block of the Smart City (SC) paradigm. An SC
employs solutions to monitor and automate city operations, in
an effort to mobilize the evolution of efficient and sustainable
infrastructures. This is achieved by leveraging data collected
from a combination of technologies in the orchestration of
urban dynamics, with the aim to promote prosperity and
enhance the quality of life of its citizens [1].

Towards this end, MCS prompts citizens to share real-time
data from their surrounding environments, by utilizing the
sensing and communications capabilities of their smart devices
[2]. In particular, the average smart device is equipped with a
wide array of sensors (e.g., the camera, microphone, etc), and
it possesses powerful communication potential (e.g., 4G/5G,
WiFi, etc). These capabilities secure MCS access to a rich
spectrum of heterogeneous data, which is processed to infer
information used in various SC services. A prevalent class of
services is smart emergency services, which is our focus in
this work.

An MCS-based Smart Emergency (MCS-SE) framework
improves emergency response services by enhancing the situa-
tional awareness. The core functions of an MCS-SE framework
are a) timely detection of the emergency, b) precise estimation
of incurred damages, c) rapid and efficient recovery planning,
and d) provision of real-time assistance to guide the affected

crowds to safety. Evidently, the lack and/or tardiness of
information will aggravate the crisis situation. The immediate
result of this is not only misplaced response and recovery
efforts, but also inevitable significant economic and human
losses.

As outlined in [3], leveraging heterogeneous data im-
proves the performance of SE systems in three ways: 1)
the collection and integration of real-time data from non-
conventional sources, 2) robust and efficient data delivery
and analysis techniques, and 3) reliable and situation-aware
decision-making. An MCS-SE system relies on the crowd to
create real-time feedback loops on the emergency, which in
turn are used to plan, implement, and update the appropriate
response measures. It is easily seen that traditional emergency
management systems, such as those based on Wireless Sensor
Networks (WSNs), are usually lacking in many aspects, es-
pecially timeliness, robustness and resilience, rendering them
appropriate to use in a limited scope of emergency situations.

In general, the field of SE systems is a new one, particularly
MCS-based systems, where the basic idea is to exploit the
availability of smart phones to achieve better management
services. In this work, we focus our attention on the first
core function of MCS-SE framework, i.e., the detection of
an emergency situation based on MCS-generated data. For
this function, a common metric used to benchmark the ef-
fectiveness of the detection process is the time needed by
the decision maker to recognize that the data indicates an
evident emergency situation, which we call the decision time.
Intuitively, a fast decision time is pivotal to the efficacy of the
SE system.

However, each data item accessible by the decision maker
carries varying levels of certainty and veracity in accordance
to the MCS participant who provided it. The impact of
stress or disinformation, inadequate sensor-calibration, and
communication-related issues are of crucial importance [3].
In worse cases, misleading data can be provided by malicious
participants intentionally to hinder end-service delivery (e.g.,
in the case of terrorist attacks) [4]. Cursory and hasty evalu-
ation of the data bears high risks that increase the possibility
of a false alarm, or worse, the complete miss detection of an
emergency situation.

Thus, the decision-making process involves a time-quality
trade-off to balance the performance of the MCS-SE detection
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system to provide a prompt and reliable service. Specifically,
the decision maker aims to arrive at a decision as quickly
as possible such that the decision satisfies a given quality
threshold. In this paper, we present this problem based on
concepts drawn from Detection Theory [5], where we aim
to minimize the decision time subject to a Bayesian risk
criterion. We first show our problem is NP-hard and entails
high computational complexity. We propose an algorithm that
greedily selects participants based on their expected tardiness
and uses an optimal fusion rule to make its final decision.

The remainder of the paper is organized as follows. In sec-
tion II, we discuss related work. In section III, we introduce the
system model followed by the proposed scheme in Section IV.
Section V presents and discusses simulation results. Finally,
section VI presents our conclusions.

II. RELATED WORK

Although the advancements in the Internet of Things (IoT)
technology have unfolded infinite possibilities for the realiza-
tion of SC services and applications, there is still a scarcity
of research exploring the field of smart emergency system.

The majority of previous research focuses on smart emer-
gency response services aiming to navigate the crowd to safety
by leveraging WSNs. In [6] the authors propose a distributed
WSN-based algorithm for evacuation assistance. The goal of
the proposed model is to maximize the time that a crowd
member will stay ahead of the hazard as it progresses through
the emergency location. Additionally, [7] develops an adaptive
WSN-based guiding protocol that takes several factors into
account such as distance to exits and exit capacity. The proto-
col guides crowd members to safety while aiming to balance
the load across multiple exits. Additionally, [8] propose an
integrative distributed simulation environment. The goal is to
build a robust software framework to improve the real-time
emergency response system’s flexibility and scalability.

Other more relevant works utilize WSNs for the detection
of an emergency. For example, the authors in [9] propose
a new WSN-based approach for early forest fire detection
based on data mining techniques. The approach partitions
nodes into sets that detect fires in an energy-efficient manner.
The work in [11] presents a WSN-based approach assisted
by satellite monitoring and aerial patrolling for fire detection.
A cluster-based network hierarchy is proposed to detect and
extinguish a fire in a timely manner. As explained earlier,
MCS offers a more appealing solution for its advantages
over WSNss, including infrastructure-less operation, mobility,
coverage, costs, connectivity, lifetime, and power-efficiency.

The work in [12] presents an efficient convolutional neural
network technique for fire detection in surveillance videos.
While similar machine learning techniques can be tuned for
high accuracy, one major drawback is the need of huge datasets
required for training and decision-making, which might be
infeasible in an emergency situation. On the other hand,
the work in [10] proposes a reputation-based contribution
assessment scheme aiming to provide the rescue personnel
with trusted data. The scheme works by dividing the area into

sectors and performs inter- and intra-sector filtering rounds to
evaluate the data.

A few recent works specifically consider the realization
of a smart city emergency management framework. In [3]
the authors present a futuristic view of an information in-
frastructure that leverages MCS and heterogeneous data to
improve emergency services. Their proposed three-component
infrastructure details the integration of large-scale MCS with
heterogeneous data analytics, along with a strategic decision-
making process that improves the overall efficacy of the
system.

In addition, [13] presents a comprehensive discussion of
state-the-art IoT-supported protocols that facilitate response
services such as early warning, data analytics, knowledge
aggregation, remote monitoring, and victim localization. An-
other work [14] proposes a novel end-to-end infrastructure
for disaster detection, prediction, and response in smart cities.
The proposed smart system relies on MCS for constant data
collection for event detection and prediction, and the internet
of everything for disaster management and response. These
works are restricted to visionary discussions of the infras-
tructures, protocols, trends and open challenges pertaining
to SE detection and response systems. Contrary, our work
addresses the specific problem of an emergency detection
in a heterogeneous MCS environment and provides a direct
mathematical treatment of the proposed problem.

III. SYSTEM MODEL

We adopt a general MCS system model, consisting of a
central server referred to as the administrator whose goal
is to to make a decision about a certain assumption. This
assumption is referred to as the hypothesis, which can be
one of two types: the null hypothesis Hy, or the alternative
hypothesis H;. In our context, H indicates that no emergency
situation exists, while H; reflects an emergency situation.
The administrator has access to a set of possible participants
denoted by P {pr,k = 1,2,...,|P|}, each of which
owns a smart device with an application that facilitates the
communication with the administrator. The veracity of each
participant is determined by a reputation value denoted by
T, obtained by the participant’s previous history with other
MCS applications. The administrator aims to recruit a subset
of K < |P| participants who travel from their current location
to the area of interest to survey the existence of an emergency
situation at that given area. Subsequently, each recruited
participant makes a binary decision denoted by dj € {0,1},
where d; = 0 indicates that participant k£ reports the null
hypothesis Hj (no emergency situation), and d;, = 1 indicates
that participant k£ communicates the alternative hypothesis
H, (an emergency situation exists). The administrator gathers
participants’ decisions and combines them to arrive at a final
decision D regarding the hypothesis test, where D € {0,1}.

Ideally, we desire to have the administrator make its fi-
nal decision D in the fastest manner possible, subject to a
predefined quality constraint. We interpret the quality of D
as a function of the individual participants’ decisions, which
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TABLE I: Testing hypotheses

Decision
Truth Accept Hy Accept H;
Hy True negative False positive
H False negative True positive

are based on their respective reputation levels r;. Therefore,
our problem is to select a subset of the participants Pg
to minimize the expected decision time of the administrator
ta(Pk), such that the quality of D is maintained above a
threshold ¢*. Mathematically, this can be expressed as:

min ta(Px)

st QD) > ¢ M

where (D) is a function that quantifies the quality of our
decision.

Viewing the administrator’s task as a decision problem
related to a hypothesis test, we opt to borrow mathematical
concepts from Detection Theory [5] to solve our optimization
problem in Eq. (1). In Detection Theory, a bank of sensors
observes a given phenomenon (e.g., a target) and form binary
decisions that are transmitted to an administrator for fusion. In
our context, these sensors correspond to our MCS participants.
Usually, the objective in a Detection Theory problem is to find
optimal data-dependent decision rules at the local (i.e., for ev-
ery participant) or the global (i.e., for the administrator) level,
such that certain performance characteristics (e.g., probability
of error) are satisfied. Now, we define some probabilistic
concepts that characterize the performance of the administrator
as follows:

o Probability of detection Pp: The conditional likelihood
of a true positive, i.e., accepting H; when an emergency
situation exists in reality.

o Probability of miss Pp;: The conditional likelihood of
a false negative, i.e., accepting Hy when an emergency
situation is actually present.

o Probability of false alarm Pr4: The conditional like-
lihood of a false positive, i.e., accepting H; when no
emergency situation exists.

Obviously, these probabilities along with the probability
of a true negative P(Hy|H,) are mutually-exclusive and
collectively exhaust the sample space, as illustrated in Table
I. A well-known concept in Detection Theory is Bayesian risk
0, used to gauge the incurred cost for all possible courses of
action associated with these probabilities. In other words, the
value of 3 is representative of the posterior expectation of a
loss function associated with the all possible outcomes of the
detection procedure. Let the a priori probabilities of H, and
H, be Py = P(Hy) and P, = P(H,), respectively. Then the
Bayesian risk at the administrator is:

B = CooPy(1 — Ppa) + C11 P Pp+
CioPoPra+ Coi PiPy (2)

where Cj;,i,j € {0,1} is the loss associated when D =
H; given that H; is true. Note that in a general emergency
situation, correctly detected positives and negatives should not
incur any losses for the system administrator. Therefore, we
set Cj;,1 € {0,1} to zero, and rewrite Eq. (2) as:

B8 = CioPyPra + CorPi Py 3)

In the case that C;g = Cp; = 1, it is easily seen that
Eq. (3) becomes the average probability of error made at
the administrator level. In our context, C( indicates the loss
brought by a false alarm causing a waste of the administrator’s
resources (e.g., calling emergency responders where they are
not needed). A high number of false alarms can lead to
alarm fatigue, where one chooses to ignore an alarm given
the high probability that it is false, which further worsens
the time-effectiveness of the system. On the other hand, Cy;
indicates the losses resulting from a false negative, which
intuitively has much more serious effects as it directly affects
human lives. Here, we note that the Bayesian risk in Eq.
(3) is complementary to the quality function constraining our
optimization problem Eq. (1). Therefore, we can rewrite:

Ir%n td(PK)
st. B(Pk) < Bo

where [y is the maximum Bayesian risk allowed by the
system. Note that 3 is dependent on the values of C; ; and the
global probabilities Pr4 and Py as in Eq. (3). Clearly, these
global probabilities are also strongly dependent on the subset
of participants Py because Pr4 and P, are functions of the
local probabilities of false alarm and miss detection for each
participant in the recruited set Pg . In the following discussion,
we aim to establish this dependence mathematically and
illustrate the relationship between these local probabilities and
the reputation values for each participant.

As explained earlier, participants’ provided decisions have
varying levels of reputations obtained from previous history
(e.g., acquired from other MCS applications). In our context,
we recognize the unique nature of the emergency situation
where irrational behaviour is observed. This behaviour results
from contagious panic and distress, causing participants to
provide incorrect decisions. Nevertheless, there is a close rela-
tionship between participants’ reputations and the probabilities
of correct decisions. Therefore, we define the kth participant’s
probabilities of miss detection and false alarm as:

(4)

(5a)
(5b)

Py, =1— ppmri
Pra, =1~ pr sri

where pr.,, € [0,1] and pi s € [0,1] are scaling factors
defined to adjust the value of the reputation to the probabil-
ities of miss detection and false alarm. From Eq. (5), it is
straightforward that Pp j, = pg 7, Which is self-explanatory.
Note that py, ,,, and py, ¢ are participant-specific, and they allow
the administrator to distinguish between the probabilities of
a participant providing a miss detection and a false alarm
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decision. The final step in our mathematical treatment is to
write the probabilities of miss detection and false alarm at
the administrator level as functions of the local probabilities
in Eq. (5). Here, we assume that participants’ decisions are
statistically independent. It is well-established that the optimal
fusion rule for the administrator in a minimum Bayesian risk
distributed detection network is actually a Likelihood Ratio
Test (LRT) given by [5]:

P(d| Hy) - PyCro
P(d| Hy) 7, P,Co

where d = [dy,ds,...,dk] is the collection of k decisions
delivered to the administrator and 7 is called the decision
threshold. Based upon Eq. (6), we can write the probabilities
of false alarm and miss detection at the administrator as:

L) = ©)

K
Pra= Y P(d|H) ZlH (dk — Pra,) |

L(d)>n
) ()
U —_— — 7
Ll:[l(PFAk 1— Ppa, @
K
Py= Y Pd|H)=Y_|]]d:-Pu)l|
L(d)>n J k=1
) ()
Uln— : 8
|:] kl:[1<PFAk 1_PFAk ®)

where J contains all the possible permutations of the binary
variables dj, and U/(.) is the unit step function. In general, the
summation over D for k participants indicates 2! cases to be
considered. Specifically, for only two participants, 22! = 24
cases should be considered to evaluate Pry and P,;. The
implication of this is that the optimization problem in (4) can
be reformulated by introducing a binary scheduling variable
for each participant. By doing so, the problem becomes a non-
linear binary integer program, which is known to be NP-hard
[15]. Hence, in the following subsection we propose a greedy
algorithm that selects participants based on their respective
arrival times to the time of the emergency, and then uses
an optimal fusion rule once quality-based stopping criterion
is satisfied to combine their decisions to arrive at the final
decision D.

IV. PROPOSED SOLUTION

In the previous section, it was shown that the selection of
a subset Py that minimizes the decision time ¢4(P)) under
a maximum Bayesian risk constraint is a computationally
difficult task. In order to develop our greedy algorithm, let
Iy = (xk, yx) be a two-tuple denoting the current location of
participant k, and let time be divided into equal-length epochs
denoted by {e = 1,2,...}. To achieve minimal ¢4(P%), the
administrator needs to select participants closest to the area of
interest, such that the travel time is minimized. Participants’

reputation levels are leveraged to a) calculate a reputation-
based stopping criterion, and b) make the final decision D
according to a certain fusion rule. This is achieved by carrying
Algorithm 1 and 2, as follows.

Specifically, at the beginning of each epoch e, the ad-
ministrator recruits the participants’ subset P, C P, where
P. contains the set of participants whose estimated arrival
time { . falls within the time epoch e. In this manner,
the administrator has access to on-site real-time information
delivered by decisions from the recruited set of participants.
The participants report a decision, hereinafter denoted by dj, .
to distinguish between decisions delivered in different epochs.
Here, we assume that a recruited participant continues to pro-
vide reports in each subsequent epoch until the administrator
halts the sensing process. Once the decisions are collected
from in P,. the administrator checks its stopping criterion in
Algorithm 2, which will be explained shortly. If Algorithm 2
decides to continue the sensing process, the administrator
recruits another subset at e 4 1 until stopped by Algorithm 2.

Algorithm 1 The participant selection algorithm

Input: P, 7y, L, proms i,k
Output: D

: flag <1

e+ 1

Pk — @

. Get tVk € P

P, < all k with k <e
. while flag # 0 do
P\ P

Get di.Vk € Py

R AN A R ol

10: for all k£ € P, do

11: if dk& — dk,e—l =1 then

12: ri < max{0,ry — 61Co1}

13: ]'_)]\4,C +—1- Pk,mTk

14: PFAk, +—1- Pl fTk

15: end if

16: if di o —drc—1 = —1 then

17: Tk < mal‘{o, T — 52010}

18: PMk +—1- Pk,mTk

19: PFAk +—1- Pl fTk

20: end if

21: end for

22: Get A > Call Algorithm 2
23: if A = ‘stop’ then

24: flag <0

25: Calculate D according to Eq. (9)
26: else

27: e+—e+1

28: P+ all k£ with k < e

29: end if

30: end while
31: return D
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Algorithm 2 The stopping criterion algorithm

Input: 7, r,Vk € Py, tp,Vk € P
Output: A

Per1 < all k with k <e+1
if Pey1 = 0 then
A « stop

else
2vkep, Tk
K
R« [Pkl

A

6 if B> TUPEEEL then
7: A « stop

8 else

9: A <« continue
10: end if

11: end if

12: return A

Once the sensing process stops, the administrator combines
the decisions of the participants dj, . delivered in the last epoch
according to the LRT test in Eq. (6), which can be rewritten
as [5]:

ke

1— Py Py o

dj. log ———* 1—dp.)log ———| =1
dctog L 41— ) tog ] 2ty
©)

Here, Eq. (9) resembles the optimal fusion rule that min-
imizes the average Bayesian risk at the administrator when
making the final decision D. Obviously, D is composed based
on a reputation-based weighted sum of individual participants
decisions.

Note that in Algorithm 1, if an already recruited participant
changes the decision from dy = 1 to dy = 0, then the algo-
rithm penalizes this participant by decreasing its reputation 7y
by the value §;Cy1, where d; is an adjusting factor to ensure
that r, is € [0, 1]. On the other hand, if a participant changes
the decision from dy = 0 to d = 1, its reputation score is
deducted by the value 92Cp;, where 02 is also an adjusting
factor to ensure that 75 is € [0,1] (as seen in Algorithm 1I:
lines 10 through 21). In this manner, we decrease the weight
that this participant carries in the fusion rule. These measures
ensure that participants who provide fluctuating decisions are
gradually eliminated in the decision making process.

At the end of each epoch e, the administrator executes
Algorithm 2 to decide an action denoted by A, which indicates
to the administrator whether to continue or stop the sensing
process. The algorithm works as follows. At epoch e, the
administrator has already recruited a set of |Py| participants
Pr = UPe. Let R denote the average reputation score for

k=1

all recrz‘iated participants contained in Pj. We are interested in
estimating the probability that the majority of the participants
in the set P, will generate the correct decision. The Condorcet
Jury Theorem (CJT) states that the majority of a group is better
at choosing one of two alternatives than any single individual,

as long as individual decisions are independent of each other
[16]. Specifically, for a group of heterogeneous participants
(varying r), the probability that a proportion of the group,
denoted by m > 0.5 will make the correct decision is higher
than an individual decision as long as the following condition
is satisfied:

(10)

Hence, Algorithm 2 halts the sensing process if the probabil-
ity that 7 of the subset P will make the correct decision, and
continues the sensing process otherwise. Note that a pre-check
is done on the expected number of participants to arrive in
e+ 1. If no participants are expected to join Py, the algorithm
stops in order to preserve the timeliness of the decision.

V. PERFORMANCE EVALUATION

In this section, we first introduce our simulation setup envi-
ronment and parameters, then present performance evaluation
results.

A. Simulation Environment

We conduct simulation experiments to evaluate our pro-
posed detection scheme. The scheme recruits a new set of
participants in each epoch, where the maximum number of
new participants is varied in [2,20]. For each participant,
r, is randomly generated from a uniform distribution. We
set pm = Pk = 1Vk, and set 1 = do = 0.001. Let
the a priori probability that the null hypothesis Hy is true
be Py = 0.95, and for the alternative hypothesis H; be
P; = 0.05. At each run, a ground truth is generated from a
Bernoulli distribution according to these a priori probabilities.
Each participant generates a decision at each epoch dj, . from
a Bernoulli distribution, where the probability of generating
the ground truth is its current reputation score r;. Moreover,
let the Bayesian risk coefficients be C1o = Cy; = 1. We let
the proportion of the CJT majority 7 vary in [0.5,0.9].

B. Simulation Results

In order to evaluate our proposed scheme, we compare it
to a widely used baseline where the decision is based on the
majority in the first epoch e = 1. Specifically, the administrator
recruits the first set of participants, and performs a simple
majority test to decide D. In case of a tie, the administrator
randomly chooses between Hy and H;. We will study two
performance metrics: a) the Correct Detection Rate (CDR)
defined as the ratio of correctly detected ground truths to the
total number of instances, and b) the average number of epochs
needed to arrive at the final decision D, to denote the delay
in the system. We study the performance of our scheme under
various values of the CJT majority proportion 7 and compare
it to the baseline aforementioned.

We begin by plotting the CDR in Fig. 1 against an increasing
number of the maximum new participants who join at each
epoch e. The figure shows that the baseline achieves a virtually
constant CDR with slight variation around 50%, and the
reason is that it follows a simple majority rule regardless of
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Correct detection rate (%)
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2 4 6 8 10 12 14 16 18 20

Maximum number of new participants at each epoch

Fig. 1: Correct detection rate vs. the maximum number of new
participants.

participants’ reputation levels. On the contrary, our scheme
begins with a CDR close to that of the baseline when the
maximum number of new participants is 2, but drastically
increases from the baseline’s achieved CDR as the number
of participants increases. Intuitively, as we set 7 to a larger
value, more participants have a higher probability of choosing
the correct decision, and thus the CDR grows more quickly
to peak at around 98%. However, we notice that the CDR
growth almost saturates for m > 0.7 when the number of new
participants exceeds 10.

In Fig. 2, we plot the average number of epochs needed to
arrive at the final decision D for a variable maximum number
of new participants. Note that here we do not include the
baseline because it makes its decision in the first epoch solely
e = 1. For our scheme, it is seen that a higher CJT majority
value 7 will require longer time to reach to the final decision
D. Here, the time-quality trade-off is clear, in the sense that
a higher CJT majority enforces a better quality constraint on
the decision D when compared to the previous figure. Finally,
as the maximum number of new participants increases, it is
shown that the administrator needs a higher number of epochs
to satisfy the quality criterion according to CJT, because as
the number of participants increases, it is less probable that
they achieve a majority proportion equal to 7.

9 T T
=@ Our scheme, == 0.5
~—4—Our scheme, 7 = 0.6

~»—Our scheme, 7 = 0.9

Average number of epochs

2 I I I I I I I I
2 4 6 8 10 12 4 16 18 20

Maximum number of new participants at each epoch

Fig. 2: Average number of epochs vs. the maximum number
of new participants.

VI. CONCLUSIONS

In this paper, we explore the problem of emergency detec-
tion based on Mobile Crowd Sensing (MCS) in a reputation-

aware environment. We draw on concepts from Detection The-
ory to formulate our optimization problem, where the objective
is to minimize the time needed to detect an emergency under a
predefined Bayesian risk constraint. We show that our problem
is NP-hard, and propose a greedy reputation-based algorithm
that reduces the tardiness of the decision-making process.
Simulation results highlight the trade-off between the delay
and quality, and show that our scheme improves the correct
detection rate compared to the baseline technique.
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