
Dynamic Controller Placement in
Software Defined Drone Networks

Mohannad Alharthi
School of Computing

Queen’s University
Kingston, Ontario

harthi@cs.queensu.ca

Abd-Elhamid M. Taha
Electrical Engineering Department

Alfaisal University
Riyadh, Saudi Arabia

ataha@alfaisal.edu

Hossam S. Hassanein
School of Computing

Queen’s University
Kingston, Ontario

hossam@cs.queensu.ca

Abstract—Controller placement is one of the most important
aspects in Software Defined Networking (SDN) as it is critical
in determining the performance of the network. While SDN
is mainly applied in wired networks, we attempt to utilize it
in a futuristic drone-based network architecture to capitalize
on the programmability and flexibility offered by SDN. Such
drone network comprises a multi-hop network of drones as the
nodes of the network which also act as programmable network
nodes and forwarding elements. In such a dynamic and mobile
network, maintaining SDN controller connectivity becomes a
challenge, especially when the drone network requires operating
independently from a ground infrastructure for some deployment
scenarios. In this work, we attempt to address this challenge
by implementing a dynamic scheme for controller placement
that deploys a minimum number of drones that operate as
SDN controllers and adjust their locations dynamically as the
controlled nodes adjust their locations to meet changing mission
requirements.

I. INTRODUCTION

The introduction of Software Defined Networking (SDN)
enabled powerful adaptive network programmability as well
as flexible network management. SDN enables this power
by separating the control and data plane by turning network
devices (switching devices) into simple but flexible devices
programmable via a standard API (such as OpenFlow). The
control plane, comprised of logically centralized controllers,
implement the control logic and dynamically program the data
plane, effectively able to implement a wide range of adaptive
functionalities. The decoupling of the control and the data
planes allows for central network management that is unified
and flexible regardless of the underlying hardware.

SDN is mainly utilized in data centers and wide area
networks (WANs) [1]. However, SDN has been proposed to
be utilized in other networking paradigms such as in wireless
networks [2] [3]. In our work, we proposed an architecture for
software defined drone networks [4]. This architecture enables
flexible and reusable infrastructure for various deployments of
drone networks such as for civilian monitoring, and as a flying
network infrastructure in remote areas and for temporary or
emergency situations. The architecture is based on SDN to
take advantage of programmability and flexibility in manage-
ment and configuration, and the ability to implement adaptive
network solutions according to current state and environment,

accommodating the dynamic nature of drone networks. We
briefly review this architecture in Section III-A.

The SDN controller is a key component in the network as
it has a direct effect on network performance, especially in a
dynamic environment. In such a dynamic network, maintaining
SDN controller connectivity becomes a challenge. As the
network has some degree of mobility, it has to maintain a
connection to controllers located in the ground infrastructure,
and this can limit the where nodes can be positioned. This
is especially challenging when the drone network requires
operating independently from the ground infrastructure for
some deployment scenarios, e.g., in a remote area or where
no other infrastructure is available. The deployment of addi-
tional drones as SDN controllers gives flexibility in network
deployment locations and movements away from a ground
control station, as this also ensures a reliable connection to
the controller with minimum delay.

In this work, we attempt to address this challenge by
implementing a dynamic scheme for controller placement
that deploys a minimum number of drones that operate as
SDN controllers, and adjust their locations dynamically as the
controlled nodes adjust their locations during the mission. This
may impose additional costs in terms of dedicating a number
of controllers for SDN control while ensuring their processing
capacity and availability to network nodes. The dynamic
location changes also consume drones power resources so
movement needs to be minimized.

The contribution of this work is twofold. First, we pro-
vide a controller placement scheme that initially places a
minimum number of drone SDN controllers in the space of
the deployment area within the budget of network operators,
and assigns each node to a controller within a threshold of
link quality metric, while ensuring that controllers are not
over capacitated. The placement prioritizes one-hop inter-
controller links but it also flexible to allow for overlay links.
Second, as locations of network nodes change, we update the
assignment while maintaining original placement constraints,
and when necessary we update controller locations to make
them available to moved nodes, while minimizing the total
distances traveled by controllers to make them available to
nodes as soon as possible without requiring high speeds to
potentially minimize energy consumption.

978-1-7281-0962-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: Queen's University. Downloaded on August 10,2020 at 17:53:33 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

SDN controller placement is one of the well-studied topics
in the SDN literature in datacenter and WAN contexts. The
work by Heller et al. [5] introduced the controller placement
problem (CPP) considering average latency between switches
and controllers, then others followed suit. Existing works
differ in the placement metrics used, such as switch-controller
latency [5], controller capacity [6], and deployment cost [7].
Other works focused more on the reliability, fault tolerance,
and availability of controllers [8][9]. CPP is also studied
considering inter-controller connectivity and the resilience of
the distributed control plane. One of the most recent works
in this aspect is [9], which targets Software-Defined WANs
(SD-WANs). In [9], Tanha et al. presented a capacity-aware
placement scheme that places and assigns multiple controllers
to each switch while guaranteeing switch-controller and inter-
controller delay. An important aspect in CPP is the dynamic
adjustment to controller placement and assignment to switches
considering current conditions of the network. In [7], authors
build a dynamic controller provisioning scheme that runs
at specified periods, activating and deactivating controllers
depending on current demand. The placement in this scheme
considers various costs in the network including flow-setup
time and statistics collection, as well as interactions between
controllers in terms of state synchronization.

In [10], Abdel-Rahman et al. introduced the wireless CPP
(WCPP) where links between switches and controllers are
wireless. A stochastic approach was used to model the uncer-
tainties of the wireless channel and the controller processing
delay, with the goal of restricting per-link response time and
minimizing the number of controllers. In [11], Dvir et al. intro-
duced another model for WCPP using a new placement metric
called transparency, which is the marginal average latency in
the data plane caused by the interference from controllers. The
objective of their model is minimizing the average outage of
control links and the average latency while constraining the
link throughput and transparency below certain thresholds.

In this work, we apply SDN in a different context, which
is a drone-based network. While incorporating SDN into this
domain has been discussed in works such as in [12], the
deployment of a control plane is not studied. As discussed
in III-A, certain deployments may require deploying drones
as controllers to increase the flexibility of the network. This
introduces additional challenges as such deployments require
considering the cost of deployment and the mobility of the
SDN network. Controller placement needs to be dynamically
adjusted so that all controlled nodes have reliable access to
controllers. None of the above works can be applied directly
to our architecture. In our architecture, the controllers are
placed anywhere in space, as opposed to existing works, in
which controllers are assumed to be located within any node
in evaluated topologies. As well, the mobility of network nodes
needs to be taken into account.

III. SYSTEM OVERVIEW

In this section, we describe the framework and architecture
of the SDN-based drone network. We also describe the de-
ployment scenario for the network and the system operations
that take place for deploying and placing SDN controllers.
Then, we define the placement problem given the framework
and architecture described.

A. Network Architecture

The architecture depicted in Fig. 1 provides a reconfig-
urable and reusable network for different drone applications.
Drones comprise the nodes of a multi-hop wireless network.
Drones are designated as either network drones or task drones.
Network drones act as switches in a typical SDN network
forwarding traffic. Network drones are SDN-enabled and pro-
grammable via an API such as OpenFlow. SDN is utilized to
enable programmability and configuration of network nodes
and to manage the forwarding of traffic using multiple network
interfaces installed on drones. Task drones perform the actual
tasks related by the mission, such as sensing, monitoring, or
providing wireless access to ground users. The network is
managed by a ground management system that carries out
the planning and deployment of drones, and the monitoring,
management, and control of the network during the mission.
The management system hosts the main SDN controller of the
network. The southbound interface (OpenFlow) is extended
to allow for configuring various aspects of drones such as
flight control in addition to networking. These aspects are
implemented as SDN applications that implement and config-
ure topology and flight control, networking, and configuring
task-specific functions. The network is sufficiently flexible to
enable deploying the network beyond the reach of the ground
system. In such cases, SDN controllers and applications are
deployed along with the network on controller drones as
discussed in III-B. We refer to network drones (all except
controllers) as nodes and drones interchangeably.

B. Deployment Scenario

We consider a specific deployment scenario of the drone-
based network. The drone network is deployed to provide
communication and connectivity at a remote area where all
or most of cellular networking infrastructure is not available.
Examples of such situations include missions targetting natural
disasters and remote scientific missions where some form
of a communication network is needed. In such settings,
network drones have a limited degree of mobility, such that
they hover most of the time to maintain a certain topology,
and then their locations are adjusted at some points of time
to enhance coverage or to accommodate new requirements.
The deployed network requires the deployment of drones as
SDN controllers. This is due to the impracticality of using a
fixed SDN controller on the ground due to lack of network
infrastructure. Additionally, the mission location may lack the
proximity needed to ground satiations to communicate with
SDN controllers.

Authorized licensed use limited to: Queen's University. Downloaded on August 10,2020 at 17:53:33 UTC from IEEE Xplore. Restrictions apply.

Controllers

Drone network nodes

End Devices and Infrastructure
(Optional)

Network links

Control links

Inter-controller
links
Inter-controller
overlay linksGround

Management System

Fig. 1. The architecture of the network and overview of controller placement

C. Problem Definition

A controller deployment scheme is needed to determine the
number and locations of controller drones and their assignment
to nodes. During the operation of the network, the formation
of the drone network may change, and controller links may
break as a result of changes. Then, drone-controller assignment
needs to be updated. Only updating assignment using the same
controller locations may not be feasible (not all moved drones
can establish links to controllers). In such cases, controller
locations need to be recomputed to accommodate changes
in the drone network and to allow establishing links with
their assigned drones. Since controllers are already deployed,
it will need to travel to their new locations in the shortest
possible time to become available to their assigned drones.
Controller travel distance needs to be minimized, as traveling
long distances at high speeds can drain energy quickly.

We assume without loss of generality that the topology
formation for the drone network is computed independently
from the deployment scheme for SDN controllers. Network
operators are free to use a topology formation scheme for
network drones without considering controller deployment.

IV. SYSTEM MODEL

The drone network comprises a connected and undi-
rected graph G = (D,E), where the vertices set D =
{d1, d2, . . . , d|D|} is the set of network drones which are
also considered SDN switches, and E is the set of edges
representing the wireless links formed between each pair
di, dj ∈ D. |D| is the number of drones in the network.
Each network drone di generates a number of requests to its
controller. The rate of requests in a unit of time is dratei . All
controller drones have a capacity for processing drone requests
expressed as Scapacity.

The network system will deploy a number of controllers
limited by the maximum number of controllers to deploy
N , which is defined by the network operators according to
available budget. The resulting number of controller drones
that will actually be deployed is Nd. Controllers can be
deployed anywhere in the 2D plane of the coverage area
at a suitable altitude. They attach to the network graph G
through the nearest drone di. L is the set of all allowable
controller locations, where li ∈ L represents a possible 2-
D coordinates for a controller location. The placement will
result in C = {c1, c2, ...cNd

}, which defines the resulting
set of controllers deployed. Each ci ∈ C is mapped with its
placement location li ∈ L.

The wireless communication model between all drones
including controllers is based on a Friis-based free space
propagation model, where path loss, in dB, over transmission
distance d is defined as [13]:

Pl(d) = Pl(d0) + nlog10(
d

d0
) (1)

where d0 is the reference distance (1m), and n is the path
loss exponent (n = 3), and Pl(d0) is the Friis transmission
equation defined as:

Pl(d0) =
PtGtGrλ

2

16π2d20L
(2)

where Pt is the transmission power, Gt and Gr are the
transmission and reception gains (1 dBm), λ is the wave
length, and L is the system loss (equals 1).

A. Initial Controller Placement and Assignment

Initially, the ground station deploys the drone network and
determines its topology and physical locations for drones.
Once a need for a flying control plane is determined, a
placement will be computed for controller drones. The number
of controller drones and their locations will be determined,
as well as the assignment of each node to a controller. The
joint placement and assignment scheme deploys a minimum
number of controllers, limited by the number of available
drones that can function as controllers. The assignment of
drones to controllers is based on link quality between them.

For connectivity between controllers, each controller must
maintain a connection to every other controller to enable
synchronization of the state of the network. Ideally, direct
connections between controllers are best to reduce latency.
However, this can make the placement difficult to achieve
or infeasible given a limited number of controller and how
drones are distributed in space. A possible approach is that
controllers utilize multi-hop connections through the actual
network, forming overlay links on underlying drone network
links when it is difficult to form direct connections. How-
ever, this approach may overuse much-needed network and
computational resources. A balanced approach can be placing
controllers in a way that maximizes single-hop connections
and leverage multi-hop connections to form a complete graph
for inter-controller links as shown in Fig. 1.

B. Placement Problem Formulation

Here we describe the formulation for the initial placement
problem, which is a joint controller placement and assign-
ment problem. Every placement of a controller at li and its
assignment to any di is constrained by achieving a maximum
value for a link quality metric for the wireless control channel
that need to be formed between them. Qdi,lj represents the
quality of wireless channel that can be achieved between di
and a controller placed at lj . The quality metric can be the
transmission delay or channel path loss. The threshold for this
required measurement is given by Qm.

We model inter-controller links by considering the cost of
direct and indirect links between any pair at li, lj . A direct

Authorized licensed use limited to: Queen's University. Downloaded on August 10,2020 at 17:53:33 UTC from IEEE Xplore. Restrictions apply.

link can be established if Qli,lj ≤ Qm. If a direct link cannot
be achieved, an indirect (overlay) link can exist if a multi-hop
link exists between drones that controllers at li, lj can connect
to (separate from control links). We express such cost of any
inter-controller links by Llilj

cc , which corresponds to hopslilj ,
the number of hops between controllers at li, lj :

Llilj
cc =

{
1 if Qlilj ≤ Qm

hopslilj if hopslilj ≥ 1 and Qlilj > Qm

(3)

We define yli = {0, 1} as a binary variable to indicate if a
controller is placed at li. We also define the binary variable
xdilj = {0, 1} to express assignment of drone di to a controller
located at lj . We also define the binary variable adi

= {0, 1}
to indicate whether di is assigned to any controller.

Then, the objective function aims to minimize the number
of deployed controllers:

Nd =
∑
lj∈L

ylj (4)

We attempt to minimize the sum of all Qdilj associated with
assignments Pltotal, which we found it improves assignments
by making assigned di, lj pairs closer:

Pltotal =
∑
di∈D

xdilj ·Qdilj (5)

We also minimize the number of hops for inter-controller
connections, which increases chances one-hop connections
(Llilj

cc = 1):

Htotal =
∑

li,lj∈L,i6=j

yliyljL
lilj
cc (6)

Then, the model becomes (program CPlace):

min
x,y

w1Nd + w2Pltotal + w3Htotal (7)

subject to xdilj ≤ ylj (8)
adi = or{xdilj=1 , . . . , xdilj=|L|},∀di ∈ D (9)

xdilj ·Qdilj ≤ Qm (10)∑
lj∈L

xdilj ≤ Zmax,∀di ∈ D (11)

∑
di∈D

xdilj · dratei ≤ Scapacity,∀lj ∈ L (12)∑
lj∈L

ylj ≤ N (13)

yljyljL
lilj
cc ≤ hopsmax,∀li, lj ∈ L, i 6= j (14)∑

di∈D

adi
= |D| (15)

where w1, w2, w3 are weight factors used to adjust the terms
of the objective function.

The first constraint (8) expresses the assignment and place-
ment relationship where di can be assigned to a controller
at lj only if a controller is placed at li. The constraint in
(9) ensures that adi = {0, 1}, which is derived from all
xdilj values using logical OR operator. The equivalent linear

programming constraints for this expression is omitted for
simplicity. Using the constraint in (10), the drone-controller
assignment is limited by the required path-loss Qm for the
link between them. The constraint in (11) ensures that each
drone can be assigned to a predefined number of controllers
Zmax. In this work, Zmax = 1. Then, using the constraint in
(12), each controller drone is assigned a number of drones with
demand dratei below its processing capacity. The constraint in
(13) limits the number of placed controllers to the number of
available controllers N , and the constraint in (14) selects inter-
controller links. Finally, we ensure that all drones are assigned
to controllers using the constraint in (15).

C. Dynamic Reassignment and Placement Scheme

The dynamic scheme first aims to compute updated assign-
ments for drones in new locations using already deployed
controllers without changing controller locations. This is ac-
complished using a reassignment algorithm that abides by the
constraints of the initial placement. For drones that cannot
be assigned to controllers at existing locations, we attempt
to change controller locations with minimum movements to
preserve their energy and minimizing the time needed for
controllers to reach their new locations. The algorithmic
framework for the dynamic scheme is shown in Algorithm 1.

The Reassign algorithm described in Algorithm 2 attempts
to assign drones to existing controllers without moving them.
The algorithm receives a set of updates U , each ui is expressed
as a tuple 〈d̄i, locdi

〉, where d̄i is the drone that will have its
position changed to locdi . The algorithm iterates the list of
updates, and for each updated drone, first it checks whether
the currently assigned controller is still able to communicate
with the drone at the new location. If it is, then the algorithm
continues to the next ui (lines 3-6). If the drone is not able to
communicate with its assigned controller at the new location,
then the algorithm, utilizing its global view of the other
controller locations, lists all controllers and computes their
achievable Qlidi

. If it satisfies Qm, then it is added to a list
of controllers that it is possible to be assigned to. The list is
sorted in ascending order, then we traverse the list and pick
the first controller that can also satisfy the capacity constraint
(lines 7-20).

If there are remaining nodes that cannot be assigned to any
current controllers, then we recompute a new placement and
assignment for controllers. To achieve this, we modify the
initial placement model described in IV-B. We limit N by the
number of deployed controllers Nd in constraint (13) as we

Algorithm 1 DynAssignPlace
1: Reassign(U)
2: if there are unassigned nodes then
3: sol = CReloc()
4: else if sol is infeasible then
5: CPlace()
6: end if

Authorized licensed use limited to: Queen's University. Downloaded on August 10,2020 at 17:53:33 UTC from IEEE Xplore. Restrictions apply.

are only repositioning existing controllers. We remove the first
term of the objective function and add the term:

Disttotal =
∑
lj∈L

ylj · dist(lj , l̄j) (16)

where dist(a, b) is the distance between a and b. We map each
candidate location lj ∈ L to the closest location of an existing
controller (from locations obtained in the previous solution).
This effectively clusters L into k clusters (k = Nd). Each
of the resulting clusters S = {S1, S2, . . . , Sk}, where each
Si ⊂ L, is assigned to an existing controller location. We
limit each cluster to one controller placement, and consider
each placement a new location for each existing controller.
This allows us to map new placements to existing ones and
compute the distance difference, and then minimize how far a
controller can move. We achieve this using the constraint:∑

lj∈Si

ylj = 1,∀Si ∈ S (17)

Then, we have the following (program CReloc):

min
x,y

w2Pltotal + w3Htotal + w4Disttotal (18)

subject to (8)-(15), (17) (19)

If no feasible solution can be obtained, then we resort
to applying the initial placement program with the original
objective function, without limiting N by Nd and without
constraint (17). Then we consider any extra controllers as new
ones that need to be deployed.

V. PERFORMANCE EVALUATION

In this section, we describe our evaluation process and
results. The optimization model and reassignment algorithm

Algorithm 2 Reassign
1: Output: new drone assignments for U , unassigned drones
2: unassignedDrones← empty
3: for ui ∈ U do
4: if path loss for current assignment ≤ Qm then
5: continue
6: end if
7: nearbyCtls← empty
8: for j = 0 to Nd do
9: if pathloss for cj to drone new loc ≤ Qm then

10: add cj to nearbyControllers
11: end if
12: end for
13: sort nearbyCtls by path loss to new drone location
14: while nearbyCtls not empty do
15: ctl← pop(nearbyCtls)

16: if ctl.load+ d̄i
rate ≤ Scapacity then

17: assign d̄ito ctl, continue
18: end if
19: end while
20: add to unassigned drone list
21: end for

TABLE I
EVALUATION PARAMETERS

Parameter Value Parameter Value
Pt 25 dBm Frequency 2 GHz
|D| 30, 60, 90 nodes Area 1× 1 km2

N 10 Controller cell size 100× 100 m2

Qm 85, 90, 95 dB Scapacity 5000 req/s
dratei 100 req/s w1, w2, w3, w4 100, 1, 50, 1

were implemented using Python and Gurobi solver (v8.1.1).
The optimization model contains quadratic terms in the ob-
jective function and quadratic constraints. Gurobi can solve
models with quadratic objective terms and constraints. Our
model gets solved in 3 to 19 seconds approximately depending
on |D| and |L|. Evaluations were ran on a laptop equipped
with a dual-core 2.4 GHz Core i5 CPU and 16 GB of RAM.

To simplify solving the model, we discretize controller
placement locations. The area is divided into a grid of w× h
cells. Each li ∈ L is positioned in the center of its cell. We
also remove any locations that do not satisfy Qm. We assume
controllers are at a higher altitude than regular nodes. We
also precompute the values for Lli,lj

cc before each scenario by
computing hopslilj through nearest d ∈ D and shortest paths
in G.

First, we evaluated initial placements. We ran three exper-
iments with three topologies of different sizes |D| shown in
Table I. Each topology was tested in three scenarios associated
with three values of Qm. We used randomly generated graphs
for the drone network, where nodes are placed in the simula-
tion area in a uniform distribution. Links between nodes were
formed between every pair that can achieve a path loss below
100 dB, and limited by a maximum node degree of 4. Only
connected graphs were selected. All simulation parameters are
shown in Table I. Fig. 2 shows the results of the initial place-
ments in terms of the number of deployed controller drones,
the average path loss for the channel between controllers and
assigned nodes, the average controller load, and the number
of hops for inter-controller links.

Second, we evaluated the dynamic scheme. We used a single
randomly generated topology for the drone network where
|D| = 40. We ran the CPlace program to initially place
controllers using parameters Qm = 90 dB and controller cell
size of 50 × 50 m2. The rest of the parameters are the same
as shown in Table I.

After the initial controller placement, we applied ten suc-
cessive topology update events to simulate changes in network
node locations. In each event, a random number of drones is
selected and moved to a random point within a 300× 300 m2

around each drone, as it is not intended for drones to move
anywhere across the network area. Drones are expected to
move only within a certain range to improve coverage or com-
munication. According to our system operation, the topology
control component sends the list of drones to be moved, U ,
to a controller to trigger the dynamic reassignment scheme
(Algorithm 1).

We compared the dynamic scheme with two other baseline
schemes. Here, we refer to our purposed dynamic scheme as

Authorized licensed use limited to: Queen's University. Downloaded on August 10,2020 at 17:53:33 UTC from IEEE Xplore. Restrictions apply.

30 60 90
1

2

3

4

5

6

7

8
Nu

m
be

r o
f C

on
tro

lle
rs

30 60 90

80

82

84

86

Av
er

ag
e

Pa
th

lo
ss

30 60 90

0.2

0.4

0.6

0.8

Av
er

ag
e

Co
nt

ro
lle

r L
oa

d

30 60 90
1

2

3

4

5

6

Av
g.

 H
op

s f
or

 In
te

r-c
on

tro
lle

r L
in

ks

Qm=85dB
Qm=90dB
Qm=95dB

Fig. 2. Outcomes of initial placements for different topologies with |D| = 30, 60, 90 nodes and Qm values

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

Di
st

an
ce

 (m
)

Drone total distance
Ctl total dist. (CP1)
Ctl total dist. (CP2)
Ctl total dist. (CP3)

1 2 3 4 5 6 7 8 9 10
Update Iterations

0

10

20

30

40

Tr
av

el
 ti

m
e

(s
)

Drone max travel time
Ctl max travel time(CP1)
Ctl max travel time(CP2)
Ctl max travel time(CP3)

Fig. 3. Result of the dynamic placement scheme

CP1, while the baseline schemes are CP2 and CP3. CP2 is
similar to CP1 but CP2 only executes Algorithm 2, then if
not all drones could be assigned, it applies CPlace (7), i.e., it
does not optimize for controller relocation distance. CP3 only
applies program CPlace (7) with each topology update event
(The initial placement program is reapplied with each event.)

The initial placement resulted in three controllers, with
single-hop inter-controller connections, and average controller
load of 0.26, and average path loss 82 dB.

The results of the dynamic scheme are shown in Fig. 3. The
top graph shows the total distances travelled by controllers af-
ter each update event for all schemes against the total distances
travelled by network nodes. The bottom graph shows the time
it takes for the update event to take place for the node traveling
the longest distance and the time it takes for controller drones
to relocate in response. We assume a speed of 10 m/s for
all drones including controllers. The total distances travelled
by controllers for are 503.22 for CP1, 1471.44 for CP2, and
1754.28 for CP3 in meters. This shows a significant reduction
of relocation distance compared to successive iterations of
placements, which is attributed to optimizing placement for
relocation distance. Through our tests, the dynamic scheme
rarely requires falling back to CPlace.

VI. CONCLUSION

In this paper, we introduced a controller placement scheme
for drone-based SDN networks. The scheme initially places a

minimum number of controllers while optimizing path loss for
node-controller links and maximizing one-hop links between
controllers. The placement is dynamically adjusted to accom-
modate underlying network topology changes. Our evaluation
shows that the dynamic scheme minimizes the relocation
distance of controllers, leading to minimizing the time of
relocation and potentially preserving energy of controllers.

ACKNOWLEDGMENT

The second author would like to acknowledge the financial
support of Alfaisal University through its Scientific Confer-
ence Attendance Award.

REFERENCES

[1] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” SIGCOMM Comput. Commun. Rev., vol. 43, pp. 3–14, aug 2013.

[2] H. Ghafoor and I. Koo, “CR-SDVN: A cognitive routing protocol for
software-defined vehicular networks,” IEEE Sensors J., vol. 18, no. 4,
pp. 1761–1772, Feb 2018.

[3] C. J. Bernardos et al., “An architecture for software defined wireless
networking,” IEEE Wireless Commun., vol. 21, no. 3, pp. 52–61, June
2014.

[4] M. Alharthi, A. M. Taha, and H. S. Hassanein, “An architecture for
software defined drone networks,” in IEEE Int. Conf. Commun. (ICC),
May 2019, pp. 1–5.

[5] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proc. 1st Workshop Hot Topics in Software Defined
Networks (HotSDN). New York, NY, USA: ACM, 2012, pp. 7–12.

[6] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller
placement problem in software defined networks,” IEEE Commun. Lett.,
vol. 18, no. 8, pp. 1339–1342, Aug 2014.

[7] M. F. Bari et al., “Dynamic controller provisioning in software defined
networks,” in Proc. 9th Int. Conf. Netw. Service Manag. (CNSM), Oct
2013, pp. 18–25.

[8] A. Alshamrani et al., “Fault tolerant controller placement in distributed
SDN environments,” in IEEE Int. Conf. Commun. (ICC), May 2018, pp.
1–7.

[9] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan, “Capacity-aware and delay-
guaranteed resilient controller placement for software-defined WANs,”
IEEE Trans. Netw. Service Manag., vol. 15, no. 3, pp. 991–1005, Sep.
2018.

[10] M. J. Abdel-Rahman et al., “On stochastic controller placement in
software-defined wireless networks,” in IEEE Wireless Commun. and
Netw. Conf. (WCNC), March 2017, pp. 1–6.

[11] A. Dvir, Y. Haddad, and A. Zilberman, “Wireless controller placement
problem,” in 15th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC),
Jan 2018, pp. 1–4.

[12] G. Secinti, P. B. Darian, B. Canberk, and K. R. Chowdhury, “SDNs in
the sky: Robust end-to-end connectivity for aerial vehicular networks,”
IEEE Commun. Mag., vol. 56, no. 1, pp. 16–21, Jan 2018.

[13] M. Lacage and T. R. Henderson, “Yet another network simulator,” in
Proc. Workshop NS-2: The IP Network Simulator, ser. WNS2 ’06. New
York, NY, USA: ACM, 2006.

Authorized licensed use limited to: Queen's University. Downloaded on August 10,2020 at 17:53:33 UTC from IEEE Xplore. Restrictions apply.

