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Abstract—Car accidents are one of the leading causes of human
fatalities worldwide. Given the variation in capabilities of drivers
in different driving conditions, a personalized safety-based rout-
ing - that considers the variation in driving skills - is a step
towards minimizing drivers’ individual and aggregate risk. In this
paper, we propose iRouteSafe, a novel cloud-based route planner
that utilizes drivers’ individualized risk profiles in suggesting
routing options based on drivers’ personal skillfulness levels.
Using graph theory concepts, the routing problem is formulated
as a combinatorial multi-objective optimization problem where
the objective is to find the optimal route that minimizes cost
function composed of a route’s travel time, expected risk, and the
personal driver-specific risk in such driving routes. To highlight
the significance of the proposed route planning, a case study is
presented.

Index Terms—Route planning, driver profiling, driving behav-
ior classification, cloud computing, telematics, intelligent trans-
portation systems (ITS)

I. INTRODUCTION

Despite the recent safety measures that are being adopted
by governments and car manufacturers to ensure safe driving,
the road traffic death rate is still high. The 2018 global status
report on road safety issued by the World Health Organization
(WHO) indicated that 1.35 million people across the world are
losing their lives every year due to road injuries [1]. Such a
significant fatality number has made road injuries the eighth
global cause of death in 2016. Moreover, the report dictates
that most countries spend approximately 3% of their gross
domestic products (GDP) to cover road crash expenses in the
form of injury treatment, helping bereaved families, etc. [2].
With these alarming statistics, more innovative proposals are
needed to minimize road crash rates.

Considering the effect that driving conditions can have on
drivers, providing them with the choice to avoid driving in
risky environments could certainly mitigate crash risk. Current
navigation systems only provide route suggestions based on
travel time or distance, hence, safety-based routing systems
that suggest routes based on their expected risk are needed
[3]. Safety-based routing terminology comes in different levels
of abstraction. A general definition of such terminology is
to find the safest route between a source and a destination
among several potential routes based on the expected crash
risk of each route. A common approach to predict such risk
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is through analyzing the crash records of roads with similar
static (e.g., road alignment, traffic control) and dynamic (e.g.,
traffic density, weather conditions) environmental attributes.
Although this approach covers the safety-based routing notion
from a holistic perspective, it ignores the variation in the
personal driving skill levels of drivers in the same driving
conditions.

With the recent advancements in vehicular sensing technolo-
gies and low-cost platforms such as On-Board Diagnostics
(OBD) and smartphone sensors, the accurate detection of
various driving behaviors and the ability to profile drivers has
become affordable [4]. Furthermore, the recent developments
in vehicle-to-cloud (V2C), and cloud computing technologies
have made it easy to send detected behaviors from vehicles to
a cloud and couple the detected behaviors with the real-time
environmental context as they occurred [5]. Such coupling
paves the road to an environmental-aware driver profiling
which measures the individual competence levels of drivers in
different driving environments. With this information stored
in the cloud, a personalized safety-based route planning that
considers the individual risk profile of a driver is now possible.

In this paper, the personalized safety-based route planning is
formulated as a multi-objective optimization problem in which
the cost function is composed of the travel time of a route,
and weighted general and personal expected risks taking such
a route. The main contributions of this paper are summarized
as follows:

1) A novel personalized safety-based routing framework
that is founded on the personal risk profiles of drivers
in various driving environments is proposed with the
underlying in-vehicle and on-cloud processes.

2) The personalized safety-based routing problem is for-
mulated as a multi-objective optimization problem and a
possible solution is provided using a linear programming
approach.

3) A real-world case study from the province of Ontario,
Canada is presented and discussed to demonstrate the
difference between current and proposed routing sys-
tems and to highlight the importance of the envisioned
framework.

The remainder of this paper is organized as follows. In section
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Fig. 1: iRouteSafe: proposed personalized safety-based route planning system.

II, background and related work are presented. Section III
discusses the proposed cloud-based routing framework with
the underlying sub-systems. In section IV, the route planning
optimization problem is formulated and discussed. Section V
presents a real-world case study to demonstrate the proposed
routing system. The conclusion is given in section VI.

II. BACKGROUND AND RELATED WORK

Current popular route planning systems such as Google
Maps primarily rely on the expected travel time in suggesting
routes. Vehicle routing based on the estimated travel time
problem has been extensively covered in the literature. The
main objective in this problem revolves around finding the
optimal route that has the minimum overall travel time among
a number of potential routes given the static and dynamic
attributes of the route [6]. Eco-route planning has been recently
studied in the literature. In [7], authors proposed a cloud-based
system that provides heavy duty vehicles with optimal routes
that minimizes fuel consumption while satisfying a constraint
on the maximum travel time. Recently, authors in [8] proposed
a fuzzification route recommendation system that suggests a
route based on the condition of its segments. Safety-based
route planning has also been studied in literature. In [9], the
author discussed an envisioned IoT-based framework that is
expected to facilitate the employment of safety-based routing.
Authors in [10] proposed a risk prediction model that utilizes
a large-scale road and crash dataset to predict crash rates in
road segments based on eight static road features.

Despite the research efforts mentioned above, to the best
of our knowledge a safety-based route planner that takes
into account the individual differences in driving competence
levels among drivers in different driving environments is still
missing. For instance, although curved roads with high traffic
density and foggy weather conditions could be risky from a
holistic standpoint, drivers may have various risk rates in such
an environment depending on their personal competence lev-

els. Using the individual risk profile of a driver in calculating
his/her personal overall risk in different routes is presented
and thoroughly explained next.

III. IROUTESAFE: SYSTEM ARCHITECTURE

In this section, we present an overview of the personalized
safety-based routing system followed by an explanation of the
individual safety-based system’s components.

A. Overview

Figure 1 depicts the proposed iRouteSafe system’s architec-
ture. In the proposed iRouteSafe system, the route planning
process is initiated by the subject driver (sd) who commu-
nicates his/her current GPS co-ordinates, desired destination,
identification number, and desired personalized routing pref-
erences to the cloud through a cellular wireless link. An sd
can choose a route based on the minimum expected travel
time (ETT), minimum risk (from both personalized and
holistic perspectives), or based on the joint inclusion of these
preferences in the route’s optimization cost function.

In the cloud, the sd’s GPS current location (source) and
desired destination are inputted to a road information retrieval
module which retrieves the potential road segments (R) from
source to destination as abstracted directed graph edges, and
the segments’ corresponding static features (Envg) from the
road information data-base. Then, with an access to the real-
time road information, a mapping function f matches the
potential road segments with their corresponding real-time
information (Env,) including their weather conditions, traffic
density levels, and lighting conditions.

f:R— Envg (h

After that, the static and dynamic features of each potential
segment are merged together through a coupler in a matrix
structure (Env = [Envs, Envg]) with each row representing
the overall features of one potential road segment. Given the
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TABLE I: Features of driving environments

Static features Dynamic features
Traffic flow Traffic control Alignment Weather Traffic density Lighting
Divided No traffic control Straight Normal Free flow Darkness; lighted
Not-divided Traffic signal Curved left Fog Flow with some restrictions Darkness; not lighted
One-way traffic Traffic sign Curved right Mist Unstable flow Dawn
No lanes - - Rain and fog Forced traffic flow conditions Daylight
- - - Rain - Dusk
- - - Sleet - -
- - - Snow - -
- - - Snow/sleet and fog - -

static and dynamic features of potential road segments, a
trained supervised risk prediction model predicts the relative
risks (RRs) of the segments, where RR is calculated as the
relative crash and near-crash risk probability as further ex-
plained in section III.B. Moreover, to retrieve the personalized
competence levels of the sd for the potential road segments,
Env is fed to a database containing updated risk scores of
the sd in road segments with similar features to the potential
road segments. The personalized risk scores of the sd in the
potential road segments are extracted from the personalized
driver profile database given the identification number of the
sd. Also, Env is utilized to calculate the expected travel
times of the road segments (E717's). The information of
the general RR, personalized risk scores, and ETTs of
potential road segments is then passed to the “per segment
risk indexing” module which hosts two utility functions F(.)
and G(.) that respectively assign two risk indices Ry, and
RI,., for each road segment corresponding to its general and
personalized risks. The calculation of RIy., and RI,., is
detailed in section IIL.D. Finally, the segment E1"T's, general
and personalized risk indices are provided to the proposed
multi-objective safety-based route optimizer which, based on
the sd’'s preferences, calculates the optimal route and sends it
back to the sd.

B. Road risk prediction model

Road risk in the context of this paper refers to the general
risk imposed on a driver when exposed to a certain road
environment, regardless of the personal driving skills of that
driver. By definition, such risk does not vary between drivers
as it solely depends on the road’s architecture and dynamic
features. Road risk is calculated herein in terms of the road’s
crash and near-crash rates, where near-crash events are the
events that require a defensive driving maneuver from the
driver to avoid being involved in a crash.

In this paper, SHRP2, a large-scale naturalistic driving study
[11], is utilized to develop the road risk prediction model.
In SHRP2 event details table, more than 29,000 events are
recorded from 3,542 drivers, with each event being linked to
the environmental context it occurred in. Events are divided
into three main classes: crash, near-crash, and balanced base-
line events (i.e., normal driving episodes randomly captured

for each driver and their number per driver depends on
the total amount of his/her total driving time). Using the
environmental context during such events as risk predictors,
the risk prediction is defined as the process:

F : Env; = RR(Env;) (2)

where RR(Enwv;) is defined as the relative risk of Env; in
SHRP2 dataset and is mathematically expressed as:

_ P(Risk|Env;)

Envi) = oo————7%
RE(Env:) P(Risk|Env,)

3
where P(Risk|Env;) is the risk probability given the expo-
sure to driving environment i, and P(Risk|Enuv,) is the risk
probability in all other environments except 7. Risk probability
in a certain driving environment is calculated in terms of the
number of crash, near-crash, and baseline events as:

: Ci+ NC;

P(Risk|Env;) = B 1 C. 1 NG, 4)
where C;, NC;, and B; are respectively the number of
crash, near-crash, and baseline events captured in driving
environment ¢. Since P(Risk|Env;) depends on the sampling
rate at which the baseline events are taken, the relative risk
probability rather than risk probability has been adopted as a
risk measure.

In this work, a random forest (RF) regressor with 100 deci-
sion trees and M S E splitting criterion is trained using SHRP2
data samples to reflect the relative risk of different driving
environments. Table I depicts the considered environmental
road features.

C. Individualized drivers’ profiles database

Driver profiling is a dynamic personalized process that
targets the detection of a driver’s competencies based on
his/her driving behaviors. Driver profiling is composed of
behavior detection and scoring sub-processes [12]. Figure 2
depicts a summary of the driver profiling process which starts
by communicating a detected behavior, sd's current location
and identification number to the cloud. Behavior detection is
usually performed inside the vehicle by utilizing the in-vehicle
sensors such as smart-phone sensors (e.g., accelerometers,
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Fig. 2: Driver profiling update after each driving trip.

gyroscopes, GPS) or OBD units. Using such data, behaviors
are categorized using a multi-class classifier.

In the cloud, static and real-time features of the road
segment where the behavior is detected are extracted and fed
to the “per environment” scoring module. This module hosts
a trained risk prediction model which predicts risk based on
the joint effect of the detected behavior and its environmental
context. The scoring module also hosts a feedback sub-module
which compares the relative risk of detected behavior to an
ad-hoc threshold. A warning is issued to the sd during a
driving trip if the relative risk of the detected behavior is
high. Based on the average relative risk of different detected
behaviors and the sd’s compliance to warnings, the sd’s “per
environment” profile is updated by the end of each trip. The
risk score (RS) of sd in a driving environment Enuv; is
expressed mathematically as:

RSsa(Env;) = max (RRsa(Env;) — B8.Csa(Env;),0) (5)

where RR;sq(Env;) and Csq(Env;) are respectively the av-
erage relative risk and compliance of driver sd in driving
environment Env;, and [ is a weighting factor the system
administrator chooses to specify the importance of Csq(Enuv;)
in the calculation of RSsq(Env;) [5].

D. Per segment risk indexing

Two risk indices, SRI and PRI, are assigned to a road
segment 7 based on the RR of the segment and the sd's
personal RS in that segment, respectively. SRI is assigned
based on two factors. The first is the ETT of the segment
which reflects how much time the sd will be exposed to the
risk imposed by 7, while the second is the R value of the
segment as expressed in equation 6.

SRI(r) = F(ETT(r), RR(r)) (6)

Since the risk of the segment has a positive relationship
between its ETT and RR values, the SRI utility function
can in the form:

SRI(r) = (ETT(r) x RR(r))™ %

ETT(r) can be viewed as a factor that weighs the risk of
the segment based on the sd’s exposure to that risk. n; is an
integer chosen by the system administrator that determines the
effect of the risk of individual route segments on the choice
of the overall optimal route. For instance, considering two
potential routes R1 and R2. R1 may have a smaller sum of
weighted relative risks compared to R2 but still be avoided if
ny is large in case that R1 contains a segment or more with
very high weighted relative risk.

Similarly, PRI is assigned based on the 77" of a segment
and the sd’s personal risk score RS in that segment (or in
another segment with similar environmental features). The
truthfulness (T'R) of the RS score is another weighting factor
that is utilized to calculate PRI. T'R value depends herein
on the total exposure time of the sd driver in a driving
environment similar to the segment’s environment. TR €
[0,1], with a value of 1 indicating full truthfulness. The
mathematical expression of the personal risk index PRI is
shown in equation 8.

PRIs(r) = (ETT(r) x TRsq(r) x RSsa(r))™  (8)

IV. PERSONALIZED SAFETY-BASED ROUTING

In this section, the proposed route planning problem is
formulated using graph theory and linear programming (LP).
Planning a route between a source and destination in a
road network can be modelled as a digraph where nodes in
the graph resemble road network intersections while edges
represent road segments.

A digraph is formally represented by the tuple G, where
G = (N,€&). N and & are respectively representing the set of
all nodes in the graph, and the set of all edges (i.e., ordered
pairs of nodes) in the graph.

In our proposed route planning problem, each edge €, n;,
where €,,,;, € &, is uniquely characterized by the 3-tuple
(tgnwj,SRI(EWWLPRIsd(Enmj)), where n;,n; € N
are any two consecutive nodes in the graph with a direct
path, t,, n, is the expected travel time between n; and
nj, SRI(sni,nj) is the segment risk index of &, ,,, and
PRIsq(en, n,) is the personalized risk index of sd in ey, p,;.
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Fig. 3: Route planning case study in Ontario, Canada.

Fig. 4: Road network as a graph.

A path from source to destination in the digraph is a
sequence of edges (road segments in our problem) starting
from source and ending to destination. Let P denote a matrix
containing all paths, where P, is a vector of nodes that form

a possible path in P. The personalized safety-based routing
problem is formulated as a combinatorial multi-objective op-
timization problem as shown in equation 9:

i=M—1,j=M
mlin Z tep, i T N-SRI(ep,6).p)) 9)
i=0,j=i+1
+72.-PRIsa(ep,(i),pi(j))

where P;(7) is the node that corresponds to the i, index of
P, M is the last node in path P, which is the destination
node, v; and 7, are weighting factors which reflect how much
importance is given to the safety terms. So the problem is to
find the integer [ which corresponds to the optimal path P;.

The problem is further formulated as a linear integer
programming (LIP) problem. Lets define the binary variable
T m; as follows:

1, if ey, n,;is a segment in the optimal path

mnn”j -

0, otherwise
(10)
And let C(g,,; n;) be the cost of travelling in edge e, n,
which is expressed as:
C(Eni,nj> = tsni,nj + 71.SRI(€ni7nj) + '72~PRIsd(5ni,nj)
(11

So the LIP problem can be formulated as:
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Minimize > Clenin,)Tnim, (12)
Vani,nj c&
subject to Z Tng,ny, = 1 (13)
Veng,ny, €€
Z Tngn; — Z Ty, = 0 (14)
Ven, n; €E Ven nm €E
Z Ink,nM = 1 (15)
Ven ny €€
> N.SRI(en,n,)+
Ven, n; €E
Y2-PRIsa(en; n;) < Stn (16)

where the constraints in equations 13 and 15 are necessary
to ensure that there is only one arc leaving the source node
and only one arc arriving to the destination node, respectively.
The constraint in equation 14 is important to ensure the path
continuity where n; is any intermediate node in the graph (i.e.,
n; # ng and n; # nyy). The constraint in equation 16 defines
a user-specific safety constraint for which a route is avoided
if its total risk is above sy,

V. CASE STUDY

In this section, a route planning case study which highlights
the effectiveness of the proposed route planning scheme is
discussed. The case study is from the province of Ontario in
Canada where the requested route is from the city of Kingston
to Ottawa. The trip request was performed on Sunday, June
2nd at 10:15 PM EDT. Figure 3a depicts the proposed
Google Maps route. Considering the real-time traffic and road
conditions, the selected Google Maps route resulted in the
minimum expected travel time. Figure 4 shows the extracted
graph that represents the road network. In this figure, the 3-
tuple presented on each road segment represents the expected
travel time of the segment, general risk index, and personalized
risk index, respectively. General and personalized risk indices
were generated using equations 7 and 8 considering both the
static and real-time environmental features shown in table I.
The nodes in this figure resemble the major road intersections.
To choose the optimal route which jointly considers the travel
time and risk, we used Gurobi optimizer to solve the optimiza-
tion problem in equations 12 through 15. The optimization
parameters that are used in this case study are presented in
table II. In table II, the values of ~; ad 72 shows that more
weight was given to the personalized risk index of the subject
driver than the general segment risk index. Also road segments
in this case study are linearly penalized for their SRI and
PRI values as indicted from n; and ny values. The optimal
iRoutesafe route follows Figure 4 node sequence 1-2-3-4-5-
11-12-13-14-15 and is depicted in Figure 3b.

VI. CONCLUSION

In this paper, a novel cloud-based route planning framework
was presented. In the proposed framework, the system selects

TABLE II: Optimization parameters of the case study

Optimization Parameter  Value
7 1
Y2 2
ni 1
ng 1
TR T
Sth 210

the route which jointly minimizes the expected travel time and
the risk from a holistic and personalized perspectives. Using
static and dynamic environmental attributes, a customized
regressor was trained to reflect the expected relative risk of
road segments. The novelty in the proposed framework appears
in the incorporation of the personalized drivers’ risk profiles
in the calculation of the overall route risk. Taking to account
such variation in drivers’ skillfulness levels in the same driving
environment is certainly crucial to minimize the aggregate risk.
Using graph theory and linear programming, the problem was
formulated as an integer linear programming (LIP) problem.
To highlight the effectiveness of the proposed system, Gurobi
optimizer was utilized to solve a real route planning problem
from the province of Ontario in Canada.
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