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Abstract—Today deployments of massive Internet of Things
(IoT) applications are expected from 5G networks. A primary
challenge however is designing scalable wireless resource man-
agement schemes that can adapt to the varying temporal and
spatial demand of IoT applications. As such, intelligence-based
solutions that are agile to, and are able to exploit IoT traffic
patterns are emerging as key enablers for 5G IoT applications.
For example, Predictive Resource Allocation (PRA) has been
proposed in wireless network literature as a mechanism to
provide significant energy-savings and Quality of Experience
(QoE) gains by leveraging predictions of the user location. While
the results are very promising, further research is needed to 1)
model and handle the inherent uncertainty in the predicted rates
of PRA, and 2) develop low-complexity solutions for practical
adoption. This is the topic of this paper, where we present a
credibility-based chance-constrained fuzzy programming solution
for PRA that enables the operator to control the energy efficiency-
QoE tradeoff for different users and services. We demonstrate the
use of a Kalman Filter (KF) to adaptively model rate prediction
uncertainty by modifing the limits of the fuzzy membership
functions in real-time. Our simulation results indicate that the
proposed credibility-based framework provides a low-complexity
solution for robust PRA.

I. INTRODUCTION

Next generation 5G networks and beyond are anticipated
to transform modern societies by providing an ultra-reliable,
high speed communications infrastructure that will serve smart
city applications such as industrial automation and connected
and autonomous vehicles. However, providing scalable cost-
efficient deployments of "Internet of Things" based services
remains to be a primary challenge operators and network
vendors are facing. As such, intelligence-based, context-aware
and predictive solutions that are able to exploit IoT traffic
patterns are emerging as key enablers for the 5G era of IoT
applications. The key requirements however for practical adop-
tion are low-complexity and flexibility since the majority of
"machine learning" and stochastic optimization based solutions
are too complex for imminent industrial implementations.

The high predictability of user mobility, traffic patterns
and wireless channel quality has enabled a promising energy-
efficient QoS-aware radio resource management paradigm
referred to as Predictive Resource Allocation (PRA) [1]–[3]. It
has been shown that the radio signal strength and availability
of radio resources typically follow repetitive spatio-temporal
patterns [4] which can be used to anticipate the future radio
conditions. PRA leverages these forecasts of user demands
over an upcoming time-horizon to strategically decide the best

time period to deliver large chunks of data, and identify the
durations in which the base station can abandon data transmis-
sion and go into energy saving mode [1], [2]. One of the main
challenges facing PRA is the uncertainties associated with
the future information. As such, robust techniques that model
the uncertainty in predicted information are of paramount
importance to deliver a reliable QoE.

In this paper, we propose a fuzzy-based optimization model
that tackles uncertainty in network constraints and thus pro-
vides robust decisions that satisfies the application’s QoS
under typical prediction error models. We summarize the main
contributions of this paper in the following:

• We show how the uncertainty in the predicted channel ca-
pacity can be modelled using fuzzy trapezoidal numbers.
The models are compared to standard compliant transport
block sizes using an LTE simulator.

• We apply fuzzy credibility theory to perform robust
long term predictive resource allocation within a certain
degree of user satisfaction. The fuzzy approach provides a
low complexity based solution to the chance-constrained
programming problem of PRA.

• We periodically measure the degree of uncertainty in the
rate predictions and use this feedback to modify the fuzzy
trapezoidal membership functions in real-time. This is
achieved via Kalman Filter (KF) based tracking during
the time horizon. A thorough performance analysis is
provided to illustrate the interaction between the adaptive
models and the credibility-based PRA solution.

In the next section we present more details on PRA and
discuss the use of credibility based fuzzy optimization to
model uncertainty. Details of the proposed credibility-based
chance constrained PRA are presented in Section IV, and the
KF approach to track the level of uncertainty in Section V.
A thorough performance evaluation is made in Section VI,
followed with our conclusions in Section VII.

II. BACKGROUND & RELATED WORK

A. Predictive Resource Allocation

PRA exploits repetitive patterns of signal strength and
mobility prediction over a time horizon to calculate the future
channel conditions that will be experienced by a mobile
device. Based on these calculated values, the resource al-
location plan is created, which incorporates delivering the
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future content ahead of time or postponing the data delivery
until network conditions are improved [1]–[3]. To quantify
the potential performance gains over non-predictive schemes,
research in PRA typically assumes perfect prediction of future
channel rates and network conditions.

However, despite their high predictability, estimated channel
and mobility are typically prone to errors over time horizon
due to location prediction errors and uncertainty in the radio
environment maps due to varying interference levels and small
scale fading associated with the wireless signal [4]. Modeling
uncertainty and incorporating robustness in PRA has therefore
been considered in some previous work [5], [6]. Our prior
work in [5] tackled the problem from a stochastic optimization
approach, our work in [6] modelled the uncertain future
channel rate as a triangular fuzzy number and adopted α-cut
method to obtain a closed-form linear programming model. An
unresolved challenge in fuzzy optimization is the conservative
nature of constraint over-satisfaction which we address in this
paper by using chance-constrainted programming and and KF
adaptive tracking to estimate the channel variance.

B. Credibility-Based Fuzzy Optimization

In fuzzy optimization, uncertain variables and coefficients
in constraints or objective functions are represented as fuzzy
numbers. This results in a chance constraint programming
(CCP) model or multi-stage fuzzy programming problem [7].
The membership function represents the range of uncertainty
and possible outcomes for each uncertain coefficient. In the
CCP, the constraints of the optimization model have to be
satisfied by a certain predefined level that strikes a balance
between violating the design requirements and achieving the
global objective. A crisp model is then typically derived to
obtain a closed-form deterministic equivalent model for the
CCP. This can be done by using different measures such as
possibility [8], it’s dual necessity, or the self-dual credibility
which is the average of the former two measures [9]. Due to
it’s self-duality, the credibility measure is used to represent
the expected value of a fuzzy programming model and can
also be used as a probabilistic measure which best describes
the chance of satisfying the fuzzy constraint [9]. Credibility
measures have been applied in different applications such as
in portfolio selection [10] to control the investment risk, and
network routing [11] to guarantee the packet delay constraint.

In this paper we apply the credibility measure to obtain
the crisp deterministic form of the chance constraint that
represents the user quality of service (QoS). In particular, the
main source of uncertainty is assumed to be the predicted
channel rate which is represented as a fuzzy number with a
trapezoidal membership. The fuzzy constraint represents the
chance of meeting the user demand by the allocated radio
resources at a certain time slot is above a minimal satisfaction
degree representing the target QoS level of the user.

III. SYSTEM MODEL

We use the following notational conventions: X denotes a
set and it’s cardinality is denoted by X . Matrices are denoted

with subscripts, e.g. x = (xa,b : a ∈ Z+, b ∈ Z+).

A. Overview

The system is comprised of a wireless Base Station (BS)
with an active user set denoted by M, where each mobile
user is denoted by i ∈ M. The system applies predictive
allocation to the set of users M that request stored video
content which is transported over HTTP as a progressive
download. The core network bandwidth is set to 1Gbps and
the video content is assumed to be accessible at the BS.
The main source of uncertainty is the predicted channel rates
resulting from varying interference or inaccurate estimations
of user locations. We define the prediction window as the part
of the time horizon in which the users’ locations are known
for the upcoming T seconds at a per second granularity. From
the above information, a matrix of the average values of future
user rates, defined by r̂ = (r̂i,t : i ∈ M, t ∈ T) is computed.
The values in this matrix will then be fuzzified to account for
uncertainty according to the model presented in Section V-A1.

B. Resource Sharing and Scheduling

The BS airtime is assumed to be the radio resources that
are divided among the active users at each time slot t. We
define the resource allocation matrix x = (xi,t ∈ [0, 1] :
i ∈ M, t ∈ T) which computes the fraction of time during each
slot t that the BS bandwidth is assigned to user i. Airtime
sharing is implemented as a time division rate controller on
top of the Round-robin (RR) scheduler in ns-3.

C. Deterministic Predictive Video Delivery

The goal of predictive resource allocation for video stream-
ing is to opportunistically deliver content in advance to the
User Equipment (UE) during favorable radio conditions - and
thereafter suspend transmission while the user consumes the
buffer. Mathematically, this can be formulated as follows. If we
consider resource allocation over discrete time slot durations
of one second, and the user is requesting a video stream at
rate of V [bit/s], then the minimum cumulative video content
for smooth streaming is Di,t = V · t. Also, let us denote
the cumulative allocation made to a user i by slot t by
Ai,t =

∑t
t1=1

xi,t1 r̂i,t1 . To prevent video freezes, the PRA
should ensure that Ai,t ≥ Di,t ∀ t for user i. The optimization
problem can be formulated as the following Linear Program
(LP) [6]:

minimize
x

T∑
t=1

M∑
i=1

xi,t (1)

subject to: C1: Di,t −Ai,t ≤ 0, ∀ i ∈ M, t ∈ T,

C2:
M∑
i=1

xi,t ≤ 1, ∀t ∈ T,

C3: xi,t ≥ 0 ∀ i ∈ M, t ∈ T.

The solution of Eq. 1 will not cause streaming discontinu-
ities only if the predicted rates are accurate. However, if the
actual rate happens to be less than the predicted rate, the user
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will suffer from video stalls. On the other hand, a prebuffering
opportunity is considered lost if the actual rate is larger than
what was predicted. To capture and adapt to such variations,
we present a credibility-based robust PRA framework in the
following section.

IV. CREDIBILITY-BASED PREDICTIVE RA

A. Background: The Credibility Measure

The credibility measure for fuzzy numbers was first in-
troduced in [12] as the average of both the possibility and
necessity measures as follows:

Pos {ξ ≥ r} = sup
u≥r

μξ(u) (2)

Nec {ξ ≥ r} = 1− sup
u<r

μξ(u) (3)

Cr {ξ ≥ r} =
1

2
(Pos {ξ ≥ r} +Nec {ξ ≥ r}) (4)

Similarly,

Cr {ξ ≤ r} =
1

2
(Pos {ξ ≤ r} +Nec {ξ ≤ r}) (5)

Where ξ is a fuzzy number with membership function μξ {.}
and r is a crisp threshold value. The notations for possibility,
necessity and credibility are Pos, Nec, and Cr respectively.

B. Problem Formulation

The credibility based robust formulation of the optimiza-
tion problem described in Section III-C can be expressed as
follows:

minimize
x

T∑
t=1

M∑
i=1

xi,t (6)

subject to: C1: Cr

{
t∑

t′=0

r̃i,txi,t ≥ Di,t

}
≥ β, ∀ i ∈ M, t ∈ T,

C2:
M∑
i=1

xi,t ≤ 1, ∀t ∈ T,

C3: xi,t ≥ 0 ∀ i ∈ M, t ∈ T.

The above credibility formulation is converted to its deter-
ministic equivalent based on the membership function of the
fuzzy number r̃i,t, and is shown in Fig. 1. In this paper we
investigate how to model rate uncertainty using the credibility
measure for trapezoidal fuzzy numbers due to their suitability
in modeling the discrete levels of wireless transport block sizes
as demonstrated in Fig. 2 and Fig. 3.
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Fig. 1. Different membership representations for Fuzzy Rate R.

C. Trapezoidal Fuzzy Number Representation

In this section we assume the fuzzy number r̃i,t has a trape-
zoidal membership function μr̃i,t = (rLL

i,t , r
LU
i,t , rUL

i,t , rUU
i,t ).

The possibility, necessity and credibility measures of con-
straint (C1) in Eq. 6 can be expressed as:

Pos {r̃i,t ≥ Di,t} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, Di,t ≤ r̃LL
i,t

1, r̃LL
i,t < Di,t ≤ r̃LU

i,t

1, r̃LU
i,t < Di,t ≤ r̃UL

i,t

Di,t−rUU
i,t

rUL
i,t

−rUU
i,t

, r̃UL
i,t < Di,t ≤ r̃UU

i,t

0, Di,t > r̃UU
i,t

(7)

Nec {r̃i,t ≥ Di,t} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, Di,t ≤ r̃LL
i,t

1−
Di,t−rLL

i,t

rLU
i,t

−rLL
i,t

, r̃LL
i,t < Di,t ≤ r̃LU

i,t

0, r̃LU
i,t < Di,t ≤ r̃UL

i,t

0, r̃UL
i,t < Di,t ≤ r̃UU

i,t

0, Di,t > r̃UU
i,t

(8)

Cr {r̃i,t ≥ Di,t} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, Di,t ≤ r̃LL
i,t

1

2
(2−

Di,t−rLL
i,t

rLU
i,t

−rLL
i,t

), r̃LL
i,t < Di,t ≤ r̃LU

i,t

1

2
, r̃LU

i,t < Di,t ≤ r̃UL
i,t

1

2

Di,t−rUU
i,t

rUL
i,t

−rUU
i,t

, r̃UL
i,t < Di,t ≤ r̃UU

i,t

0, Di,t > r̃UU
i,t

(9)
Consequently, the deterministic equivalent of

Cr {r̃i,t ≥ Di,t} ≥ β depends on the value of constraint
satisfaction degree β as follows [13]:

• β ≤ 0.5

Cr {r̃i,t ≥ Di,t} =
1

2

Di,t − rUU
i,t

rUL
i,t − rUU

i,t

(10)

which corresponds to the region Di,t > rUL
i,t .

Therefore,
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Fig. 2. Simulated variations of predicted rate = 901 due to Gaussian
distribution shadowing with different variances σ.

1

2

Di,t − rUU
i,t

rUL
i,t − rUU

i,t

≥ β (11)

Di,t ≤ 2β rUL
i,t + (1− 2β)rUU

i,t (12)

Finally, the total deterministic equivalent of the credibility
constraint will be:

C1:
t∑

t′=0

(2β rUL
i,t +(1−2β)rUU

i,t ) xi,t ≥ Di,t, ∀ i ∈ M, t ∈ T,

(13)
• β > 0.5

Cr {r̃i,t ≥ Di,t} =
1

2
(2−

Di,t − rLL
i,t

rLU
i,t − rLL

i,t

) (14)

which corresponds to the region Di,t ≤ rUL
i,t .

Therefore,

1

2
(2−

Di,t − rLL
i,t

rLU
i,t − rLL

i,t

) ≥ β (15)

Di,t ≤ (2β − 1) rLL
i,t + (2− 2β)rLU

i,t (16)

Finally, the total deterministic equivalent of the credibility
based chance constraint will be:

C1:
t∑

t′=0

((2β−1) rLL
i,t +(2−2β)rLU

i,t ) xi,t ≥ Di,t, ∀ i ∈ M, t ∈ T,

(17)

V. ADAPTIVE UNCERTAINTY MODELING

A. Fuzzifier: Modeling Rate Uncertainty

1) Rate Membership Function: We represented the fuzzy
predicted rate r̃i,t by either a triangular or a trapezoidal
membership function. The rUU

i,t right and left rLL
i,t most

points on the x-axis define the limits of the trapezium‘s or
triangle’s base, which physically represent the boundaries on
the variation of the predicted rate r̂.
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Fig. 3. Trapezoidal membership function of the predicted fuzzy rate = 901
due to both correlated and uncorrelated gaussian distribution shadowing with
different variances σ.

2) Defining the Degree of Rate Uncertainty: Unlike the
traditional approaches of credibility-based optimization, we
adapt the membership function using the estimated degree of
rate variations which is represented by the uncertainty factor α.
As such, when the users are located in dynamic environment
with large channel variations due to high mobility or poor
prediction, the actual rate will experience wide variations from
the predicted value. This requires a membership function with
larger bounds that guides the resource allocator to provide
more conservative solutions. Where these larger bounds are
achieved by adopting a small value of α. On the contrary, a
high value of α represents a relatively stable channel and more
accurate prediction that result in small rate deviations. Thus,
a narrower membership function can be used to maximize the
energy-saving by allocating smaller airtime to users in poor
radio conditions.

B. Credibility-Based Chance Constraint for Robust PRA

The fuzzy representation of the cumulative constraint is as
follows

C̃1 : Di,t −
t∑

t1=1

r̃i,t1xi,t1 ≤ 0, ∀ i ∈ M, t ∈ T. (18)

According to IV-C and using the general form of the credibility
measure, the fuzzy constraint Eq. (18) is expressed as:

C̃1 : Cr

{
t∑

t1=1

r̃i,t1xi,t1 ≥ Di,t

}
≥ β, ∀ i ∈ M, t ∈ T.

(19)

and its deterministic crisp equivalent for a reliable QoS β ≥
0.5 is:

C1:
t∑

t′=0

((2β − 1) rLL
i,t + (2 − 2β)rLU

i,t ) xi,t ≥ Di,t, (20)

C. Adaptive α-Tuning: Tracking Rate Variability

Extensive measurements showed that the level of error in the
predicted channel rates varies over time and location [4]. As
such, adopting a constant membership function will result in
1) conservative solution that compromises the prediction gains
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when the estimation is accurate; and 2) non- robust decisions
that violate the QoS level if the prediction error is high

To that extent, we adopt KF to track the level of uncertainty
in the predicted information using periodic channel measure-
ments and then calculate the uncertainty factor α which adapts
the bounds of the membership function.

1) Kalman Filter based Uncertainty Estimation: We define
the KF state as the degree of uncertainty δi,t which represents
the degree of uncertainty in the predicted rate. The state is
updated using the measurement value Zi,t = δ̄i,t:

Zi,t = δ̄i,t =
|r̄i,t−1 − r̂i,t−1|

max(r̄i,t−1, r̂i,t−1)
, (21)

δ+i,t = δ−i,t +K(δ̄i,t − δ−i,t) (22)

where r̂i,t−1 is the predicted channel capacity, r̄i,t−1 is the
actual rate measured by the user in the previous time slot,
and K is the Kalman filter gain. δ−i,t and δ+i,t correspond to
the priori and posteriori state estimates. The details of our KF
implementation can be found in [6].

2) α-Tuning Utility: The KF estimated posterior degree of
uncertainty δ is then used to calculate the uncertainty factor
α at time slot t using the below utility function:

αt = 1− e−γ/|δi,t
+|, (23)

This function drives the uncertainty factor α to 1 as the
uncertainty approaches 0 (i.e., the predicted and measured
rates are equal), and vice versa. The left handside of the QoS
constraint Eq. 20 is then multiplied by α to scale the bounds
of the uncertain rate based on the measured uncertainty level.

VI. PERFORMANCE EVALUATION

A. Simulation Set-up and Metrics

The credibility-based PRA is evaluated by simulating an
LTE network using the Network Simulator (ns-3) with a a
highway mobility scenario. To solve the deterministic equiv-
alent of the credibility-based PRA optimization problem (in
Eq. 20 we have integrated the Gurobi solver into the simulator.

Video quality is captured by measuring the percentage
of video stops (or buffer underruns) that users experience,
referred to as VD. The average BS airtime used to transmit the
video to all the users is the second metric. We investigate the
performance of the credibility-based PRA under the following
system setup and model variations:

• Various settings of fixed rate uncertainty, and the KF
adaptive rate uncertainty.

• Degree of constraint satisfaction (0.75 and 1).
• Various degrees of channel error variances (2 and 6).

B. Simulation Results

1) Degree of Uncertainty and KF Tracking: In Fig. 4(a) we
illustrate the performance of the trapezoidal fuzzy membership
function under various degrees of uncertainty, and a target
constraint satisfaction rate β = 0.75. The the confidence
intervals of 0.95 are included in the plots to indicate the degree
of certainty in the achieved metrics. As shown the value of

α dictates the trade-off between constraint satisfaction (i.e.,
the average video degradation), and the consumed BS airtime.
For instance, an α = 0 guarantees minimal VD but results
in a very high airtime. The figure also shows the trade-off
achieved by the KF based approach of dynamically adapting
α based on the current rate prediction uncertainty. We can
observe that this adaptive approach provides a better VD-
airtime trade-off than the pareto-optimal achievable via a fixed
α. This approach of adaptive the degree of rate uncertainty
dynamically is particularly useful in practical systems where
channel variations are typically due to bursty interference from
neighboring transmissions,

2) Degree of Constraint Satisfaction: Fig. 4(b) illustrates
the effect of increasing the degree of constraint satisfaction
from 0.75 to 1. As expected the airtime increases considerably,
particularly for the most conservative case where α = 0.
The reduction of the VD is also clear for the intermediate
cases of α = 0.5, 0.75 where being stricter with the target
degree of constraint satisfaction improves the VD metric. The
performance of the KF based α tracking is also impacted by
the constraint satisfaction setting in terms of airtime increase
but the VD is already low in this scenario, so it is not affected.

3) Effect of the Error Variance: The impact of the variance
in the predicted error is investigated next. We repeat the same
simulations while increasing the predicted rate error variance
σ from 2 to 6 in Fig. 5. Here we observe the increase in VD
for all the degrees of uncertainty and constraint satisfaction
levels. The airtime confidence interval is also high due to the
high channel variability which can result in either bursty highs
or lows during each simulation. We note that the effectively
of the KF to track the rate uncertainty in such scenarios
decreases particularly when β = 0.75. As such under high
channel variance it is recommended to apply a higher degree
of constraint satisfaction to achieve reliable performance.

VII. CONCLUSION

Incorporating intelligence in wireless networks is paramount
to enabling scalable IoT deployments where the networks
adapt to the varying spatial and temporal traffic patterns. In
this paper we present a credibility-based chance-constrained
fuzzy programming solution for PRA under uncertainty. The
proposed solution was applied for energy-efficient resource al-
location of video streams using a standard compliant LTE sys-
tem to investigate the performance of the proposed solutions
under various environmental conditions. The effectiveness of
the KF to track uncertainty and modify the limits of the fuzzy
membership functions in real-time was demonstrated. The KF
provided a mechanism to meet the QoE constraints, while
significantly reducing BS energy. Our results indicate that the
proposed credibility-based fuzzy programming model provides
a low-complexity solution to incorporating uncertainty in
predictive resource allocation.
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Fig. 4. VD and average BS airtime for different degrees of uncertainty α under uncorrelated error with variance σ = 2 (trapezoidal membership function).
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