978-1-5386-7747-6/19/$31.00 ©2019 IEEE

CAPE: Continuous Access Policy Enforcement for
IoT Deployments

! Ashraf Alkhresheh, >Khalid Elgazzar, "Hossam S. Hassanein
1School of computing, Queen’s University, Kingston, ON K7L 3N6, Canada
2Department of Electrical, Computer and Software Engineering
University of Ontario Institute of Technology, Oshawa, ON L1H 7K4 Canada
Email: khashraf@cs.queensu.ca, Khalid.Elgazzar@uoit.ca, hossam @cs.queensu.ca

Abstract—Advancements and convergence in IoT enabling
technologies along with ubiquitous connectivity have led to the
generation of new wave of smart services and applications based
on real-time data access. The popularity of ubiquitous data
access and accelerated adoption of these services pose significant
challenges on user and data privacy. Thus, controlling access to
such services in highly dynamic environments with continuously
changing context becomes even more challenging. The wide
adoption of IoT in our everyday life in many vital domains such
as healthcare and military operations requires continuous and
tight access control to prevent unauthorized and unintended
access. A delay in making access decisions when context changes
may result in consequences that cause harm and property
damage. Therefore, continuity in access policy enforcement
becomes a necessity in highly dynamic IoT environments for
the entire access session not only at the time of request. This
paper presents CAPE, a continuous access policy enforcement
framework for IoT deployments. CAPE describes access control
elements using predicates, and stores them as primitive facts in
a K Dimensional tree data structure. Our algorithms automati-
cally match access requests with primitive facts, generate access
policies, make context-aware access decisions at run time and
continuously monitor access control parameters based on which
access decisions were made. Performance evaluation of CAPE
demonstrates that this framework efficiently controls access in
highly dynamic IoT environments.

I. INTRODUCTION

Traces of the IoT concept go back to the early work done
by Kevin Ashton in 1999, which has received continuous
attention from both academia and industry all over the world
[1]. The idea behind the IoT is to extend everyday objects,
not commonly considered computers, with computing capa-
bilities to identify themselves, generate, and communicate
information about their physical environments [2]. Typically,
these everyday objects are physical, and virtual sensors, radio
frequency identification (RFID) tags and smartphones [3].
IoT smart interaction has led to rapid developments of a
plethora of smart applications and services that bring benefits
to many aspects of our everyday life.

A recent study conducted by IoT analytics [4] to rank IoT
applications based on their popularity shows that, in 2018
most of identified IoT projects are associated with Smart
City (367 projects), Industrial Settings (265), and Connected
Building IoT projects (193). However, the proliferation of
smart devices in individual’s surroundings has enabled per-
vasive collection, processing, and dissemination of personal
information, raising a considerable privacy concerns among
IoT users that, even if not realized, could undermine the
user’s confidence of the new technology and impede its
widespread adoption [5]. In order to unleash the full potential
of IoT, smart devices should make their data accessible

to interested parties (e.g., smartphones, web services) in a
controlled manner; otherwise, potential IoT privacy breaches
will outweigh its benefits.

Access control schemes have been extensively studied
over the past few decades and remain an area of intense
research interest due to rapidly changing technology, growing
privacy concerns, and rapid adoption of the IoT. However,
the extremely large number of IoT devices with low power
requirements communicating over dynamic, distributed and
ad-hoc networks, creates a unique set of authorization and
access control challenges, rendering traditional access control
models such as Role Based Access Control (RBAC) [6] and
Attribute Based Access Control (ABAC) [7] unfit for IoT
scenarios. In general, these approaches lack the ability to
incorporate the operational context (e.g., time and location)
into the authorization process; a capability that is inevitably
required to cater for frequent changes in security and privacy
requirements. These contexts greatly affect the access control
decisions and subsequently the performance of an access
control system. Hereinafter, we refer to this information
collectively as context information.

A. Motivating Scenario

In the following, we provide an everyday life scenario
through which we point out unique access control chal-
lenges in dynamic IoT environments. We begin by consid-
ering an outpatient Bob is going on a tourist trip. While
in public spaces, Bob may share his location information
with family members, close friends and third-parties (e.g.,
hospitals, hotels and restaurants) businesses that
provide smart services based on proximity and personal
preferences. However, Bob may prefer to restrict access to
this information while visiting places that could indicate
health care, financial or shopping preferences. In addition,
Bob has a long term continuous health monitoring device
(e.g., mobile cardiac telemetry) attached to his chest
that can detect early health abnormalities and send alerts to
relevant personnel. While in normal health situations, Bob
may prefer that only his primary physician can have access
to his health data. However, if Bob defines that when his vital
signs go far above the norm and his health situation requires
urgent care, the closest health care provider can gain access
to this information and act accordingly.

B. Dynamic access control requirements

By analyzing the above scenario, we identify two dynamic
access control requirements:

1576

1) The interactions between IoT devices are generally
characterized as spontaneous and opportunistic, and can
result in frequent changes in operational context and
consequently in security and privacy requirements. For
instance, when Bob frequently changes his location
between private and public areas. In this case, the policy
management process (i.e., adding/removing users, re-
sources, and rules) becomes a more complex and error-
prone task, particularly for an entry level IoT device
owner. Therefore, an automation of the access policies
specification is necessary to minimize human interven-
tion in policy specification and to improve adaptability
of the access control policy to the high dynamic IoT
deployments.

2) The sensitivity of the data that is continuously streamed
from Bob’s IoT devices to interested users will be
frequently changing during the lifetime of an access
session. A delay in capturing changes in context can
result in an unauthorized access and could even endan-
ger Bob’s life in an emergency. Therefore, continuous
access control enforcement mechanism is required to
assign and revoke access privileges in real time.

In this paper, we propose CAPE a Continuous Access
Policy Enforcement framework. CAPE continuously enforces
access control policies over the lifetime of granted access
sessions. In response to changes in access context, CAPE
re-evaluates all ongoing access sessions and dynamically
updates access privileges assignments associated to them in
real time.

II. BACKGROUND AND RELATED WORKS

Access control (AC) is the process of enforcing the
system security requirements on protected services and re-
sources [8]. AC determines the level of authorization an
entity can be assigned by evaluating its associated proper-
ties (e.g., group membership, roles and proximity)
against access control rules.

AC systems consist of three abstraction: policies, models,
and mechanisms [9]. While AC policies determine the high-
level security rules according to which AC must be regulated,
AC models provide a formal description of the AC security
policy and procedures. AC mechanisms provide the low-
level functions that implement and enforce the security rules
defined in the AC policies and formalized by the AC model.
AC core elements represent the input upon which functions
of an AC mechanism enforces the access rules defined in the
AC policy.

Access control elements are: Subject (e.g., person,
device, application or process) that actively causes
information to flow between objects; Object (e.g., mobile
cardiac outpatient telemetry, GPS), which is a pas-
sive entity that stores, streams or receives information; and
Operation, which refers to a certain action (e.g., read,
write) invoked by a subject and applied to an object.

The literature of access control models that use context
information in making access decisions divide into two
implementation approaches [10]. The first (and most simply
implemented) is discontinuous enforcement, this approach
verifies the context information, assigns the access privileges
and makes the access decision only at the time access is
requested. It does not consider changes in context after the

Administrator Input

4 ‘, Access Request Access Response

== = Access Policy Updater {

New Facts
Access Engin

Automatic Access Policy

Primitive Facts Specification

Extract (‘Operatlona\ New —‘ Re-evaluate

context context sessions sessions

Continuous Enforcement
Policy update

notification Initiate instant

| Context | (mmceton Session
monitor) i
Re-evaluate Registry

1=

L] L] L]
Sensors Inputs

Fig. 1: Continuous access policy enforcement

access decision is made such as the work by authors in
[11, 12]. This approach can result in security and privacy
breaches by disclosing system resources to users whose
access context has changed since the time access decision
was enforced, and therefore they become non-authorized
users.

The second is, continuous enforcement, this approach
constantly monitors the operational context of an access ses-
sion and continuously updates the assigned access privileges
according to changes in access context and discloses system
resources only to those users who are authorized under the
current context. While discussion on the first approach has
dominated the research area in recent years, there is little,
if any, research investigating the practicality of the second
approach in high dynamic IoT environments.

Nehme et al.[13] propose a continuous access control
enforcement framework for dynamic data stream environ-
ments. In their work, they use predicates to describe the
current access authorization at the query specifier side (i.e.,
subject) and the security policy on data stream at data
provider side (i.e., object owner). Both types of predicates
are streamed with data to a security aware query processing
component, which continuously enforces access control pol-
icy on the data stream (i.e., object). Despite the promising
features that this solution supports, it does not fit IoT envi-
ronments due to the assumption that both the data provider
and query specifier sides have sufficient computation and
communication capabilities to specify, encode, and stream
access policies to the query processing component. As well,
such capabilities are not supported by most IoT devices.

III. CONTINUOUS ACCESS POLICY
ENFORCEMENT FRAMEWORK

At the core of our design and implementation of CAPE,
we aim to develop a policy enforcement mechanism that
can capture changes in access context at fine granularity
and continuously enforce the appropriate access permissions
in highly dynamic IoT scenarios while not posing extra
computation or communication overhead. Fig 1 depicts the
main components of CAPE framework and the interactions
between these components.

A. Automatic Access Policy Specification (APS)

In our previous work [14], we proposed a con-
text aware automatic access policy specification mecha-
nism in which we defined two types of security con-

1577

texts: The guard context, which is a set of a prede-
fined application dependent values and thresholds repre-
sented as key-value pairs (e.g., location: "Public",
time: "08:00-16:00") that regulate access to pro-
tected resources. These key-value pairs describe the con-
ditions defined by the object owner under which a re-
questing subject of certain attributes (e.g., identity:
"name", relationship: "family member") can per-
form the operation of certain attributes (e.g., type:
"read", granularity: "per minute") on a protected
object with certain attributes (e.g., CPU utilization:
"<70 %", energy level: ">80 %"), and the opera-
tional context, which is a set of real-time measurements,
also represented in key-value pairs, that reflect the real-
world conditions of the requesting entity, device owner,
and IoT device at the time of access. Thus, if operational
context measurements satisfy the guard context conditions,
then access is permitted. Otherwise, access is by default
denied.

B. Primitive Facts (PF): Attributes and Guard Context

In this section, we describe the core access control el-
ements (subject, operation, and object) using abstractions,
in a key-value pair representation, which contains both the
attributes that characterize elements and the guard context
that determines the qualification context (or constraints) rel-
evant to each element according to which access to protected
resources is regulated. We build these basic abstractions and
represent them in predicates as follows:

element(X) is a descriptor represented by a tuple
of the form: {type:value, keyl:valuel, key2:value2,
...}. The tuple contains a key rype whose value is
{subject |operation|object} to indicate that this tuple is
pertaining to one of the access core elements. For example,
the following basic abstraction represents a factual tuple for
a subject x:

element x= {type: "subject", name: "Any",
relationship: "Close Friend", location:"Public",
time:"8:00-16:00", coexistence: "True"}.

This descriptor contains a type key, two subject attributes
that basically identify the subject, and two access con-
straints that determine the guard context required for a
close friend to gain access to the location information
streamed by the Bob’s smart phone. In this example, the key
coexistence refers to collocation of both the requesting
subject and object owner.

The ideal request abstraction consists of a request tem-
plate that defines the request elements and their operational
contexts. The request descriptor contains patterns of the
form:

p={type:value, keyl:valuel, key2:value2, ...}

For example, the following tuple represents a localization
service request (pertaining only to operation):

p={type: "operation", name: "read",location:
"Public", time: "Any",Coexistence: \True"}.

A request descriptor matches a resource if there is an
operation in the fact base (i.e., primitive facts) that
satisfies every pattern in the request template. Our access
policy specification algorithm takes the primitive facts and

the access request as inputs and automatically produces the
access control decision as an output [14].

C. Continuous Access Policy Enforcement (CAPE)

As we mentioned earlier, both the guard and operational
context will be changing frequently over the lifetime of
an access session. CAPE keeps track of these changes
and maintains an authorized access over the lifetime of an
ongoing access session. CAPE ensures that, at any point of
time, the operational context of an access session satisfies its
guard context. CAPE has two sub components:

1) Session Registry (SR)

This component stores a status record for each active
session. Each status record maintains the session id, the
initial operational and guard contexts upon which the request
was granted, and a status flag that indicates the current
status of an access session (e.g., active, inactive or
suspended).

2) Context Monitor (CM)

CM continuously reads the inputs from available sensors
and potential notifications from the Access Policy Updater
(APU) and keeps track of changes in the contexts associated
to the access elements involved in an active session. The
APU provides a user-friendly interface through which the
object owners can define and manage access control policies
on their IoT objects.

The CM distinguishes two types of context changes: The
operational context changes, which are more frequent and
happen as a result of changes in real world conditions of the
access elements (e.g., proximity). The administrative con-
text changes, which are less frequent and happen as a result
of either updating the access policies (i.e., changing guard
contexts), or inferring new facts that could affect the access
decision of an ongoing access session. For example, when the
operational context of Bob’s heart monitor device indicates
an emergency health situation, our access engine can infer
the new fact that Bob’s privacy becomes less of a priority
and that the closest hospital or ER department should have
access to Bob’s medical information and his current location.

Listing 1: Automatic access control policy specification (APS)

input : Primitive Facts PF, Access Request AR
output: Access Decision: Permit/Deny

1 begin

2 for AR do

3 Extract all attributes and operational context values of the
subject x =
{type : “subject”, keyr : valuei, keyz : values ...}

4 Extract all attributes and operational context values of the
operation y =
{type : “operation”, key: : valuey, keys : valuey ...}

5 Extract all attributes and operational context values of the
object ,(if exist), z =
{type : “object”, keyi : value1, keyz : valuey ...}

6 end

7 Generate PF-query{x},PF-query{y}, PF-query{z}.

8 Result := Deny

9 for all element € PF do

10 if 3 element(x) and element(y) and element(z) in PF: then

1 Result:= Permit

12 CGC:= Zyqurdex N Ygaurdez N Zgaurdes

13 Call CAPE (AR CGC)

14 Break

15 end

16 end

17 end

1578

Listing 2: Continuous Access Policy Enforcement (CAPE)

input : Granted Access Request GAR , Common Guard Context
CGC, policy_update, sensor_inputs, Session Registry SR
output: Session Registry SR
1 begin

2 if GAR ¢ SR then

3 Create new status record R for GAR

4 R.session_ld := GAR

5 R.session_status := Active

6 R.guard_context := CGC

7 R.operational_context := sensor inputs

8 add R to SR

9 Initiate instant of context_monitor (GAR.contex_monitor)

10 while True do

11 if policy_update = False then

12 if GAR.context_ monitor(operational_context) L
R.Guard_Context then

13 R.session_status =: inactive

14 SR.Remove(R)

15 GAR.context_monitor.destroy()

16 end

17 end

18 if policy update = True then

19 for all R € SR do

20 Re-evaluate := Call APS(GAR)

21 if Re-evaluate = False

22 then

23 R.session_status =:inactive

24 SR.Remove(R)

25 GAR.context_monitor.destroy()

26 end

27 end

28 end

29 end

30 end

31 end

When APS grants access to new AR, it calculates the
Common Guard Context (CGC) in Listing 1,1line 12,
which is the intersection of the subject, object and operation’s
guard contexts that matches the AR’s operational context.
Subsequently, the APS passes the attributes and the CGC of
the permitted AR to CAPE. Based on these two parameters
and the current operational context of the Granted Access
Request GAR, CAPE continuously enforces the CGC con-
straints over the lifetime of an access session. In Listing
2, lines 14-19 ensure that the initial CGC of an ongoing
access session is always satisfied by the current sensor inputs.
Otherwise, the access session is suspended.

When the APU notifies the CAPE of administrative con-
text changes, our algorithm, lines 21-28, does not inter-
rupt the ongoing access sessions, rather it calls the APS to
re-evaluate all ongoing access sessions against the changes
in the primitive facts. If an access session is denied upon
re-evaluation, our algorithm, 1ines 25-27, sets the session
status to inactive and removes the session status record from
the SR. Otherwise, the access session resumes, however,
with new CGC that may restrict, relax or keep the access
permissions previously associated to the access session .

At any point in time, the SR will only contain the status
records of the active sessions. Yet we can choose to keep
the status records of inactive and suspended sessions in the
SR such that the APS can use these records to keep track of
AR access history. As an example, APS can prioritize access
decision making based on the history of the AR(s), it could
even deny an AR due to instability of its historical operational
context.

IV. USE CASE: HEALTH CARE DOMAIN

Returning to our motivation scenario we provided earlier,
according to Bob the security requirements are: (R;) all
family members and close friends and third-party companies
can have access to Bob’s location only while he is in public
places; Also, (R;) only Bob’s primary physician can have
access to the information streamed by the medical device
attached to him; and (R3) access to Bob’s health and location
information becomes open for the closest hospital ER in an
emergency situation.

In this scenario, Bob is sharing access to the data collected
by the (GPS) in his smartphone and the medical device
(MD) attached to his chest, and as policy administrator, Bob
uses the APU to define the attributes and guard contexts
for the two objects he owns based on the regulations and
assumptions detailed in the following Tables:

e TableI: A subject is described by two attributes and
three contextual conditions.

e Table II: An operation is described by two attributes
and two contextual conditions.

e Table III: An object is described by two attributes
and three contextual conditions.

TABLE I: Subject attributes and guard context.

Attribute/Guard-Context Range
Type subject
Relationship {family member, close
friend, primary
physician, third-party}
Location {Public,Private}
Time 24 hours
Coexistence {True,False }

TABLE II: Operation attributes and guard context.
Attribute /Guard-Context Range
Type operation
{ localize, read MD }
{Public,Private}
Time 24 hours

Operation-name

Location

TABLE III: Object attributes and guard context.
Attribute/Guard-Context Range
Type object
{Gps, BLE, MD}
{Public,Private}
Time 24 hours
{True,False }

Object-name

Location

Emergency-case

According to the resource profiles in Tables I to III
and Bob’s access regulations R; —R3, the system can generate
the set of required primitive facts and present them to Bob
for final approval. For example, Table IV lists the primitive
facts Bob needs to define to fulfill R;.

Alice, a friend of Bob’s, is interested in visiting new
tourist attractions during her upcoming vacation. Knowing
that Bob is on a trip and both are interested in same places,
Alice can subscribe to receive Bob’s location information
and submit an access request to Bob’s GPS streaming data.
Upon receiving Alice’s access request, for instance at 12:00,
our algorithm in Listing 1 extracts all attributes and oper-
ational contexts associated with Alice’s access request (i.e.,

1579

TABLE IV: Primitive facts.
PF; {type: "subject", Relationship:
"Family member", location: "Any",
Time:"Any", Coexistence:"False"}

PFy | {type:"subject", Relationship: "close
friend", location: "Any", Time:"Any",
Coexistence:"False"}.

PF3 {type:"subject", Relationship:
"third-party companies", location:
"Any", Time:"Any", Coexistence:"True"}.

PF4 | {type: "operation", Operation-name:
"localize", Location: "Any",
Time:"Any"}

PF5 {type: "object", Object-name:
"GPS", Location: "Public",
Time:"08:00-16:00",
Emergency-case:"False"}

through CM), and registers a continuous queries to the fact
base (i.e., PFs) as follows:
p1={Type: "subject", Relationship: "close

friend", Location: "Alice’s location", Time:
"12:00", Coexistence:"False"}.

p2={Type: "operation", "operation-name:
"localize", Location: "Alice’s location", Time:
"12:00"}.

p3={Type: "object", object-name: "Any", Location:

"Bob’s location", Time: "12:00"}.

These request patterns p1-p3 collectively match the prim-
itive facts PF;, PF; and PFs, see Table IV. Therefore,
access to Bob’s GPS information is granted. Afterward, our
algorithm in Listing 2 creates a status record for the GAR
and begins continuous monitoring of the granted session.

Now, suppose that the context changes when Bob’s health
declines and he suddenly requires immediate medical atten-
tion, our context manager will capture changes in Bob’s
context (e.g., Emergency-case: "True"), update the PFs
and inform CAPE to re-evaluate all ongoing access sessions
and update the status records of the access sessions affected.
Based on the new context, CAPE grants access to Bob’s
health and location information, which is not allowed in
normal cases. In addition, the status of Alice’s access session
becomes invalid when Bob enters a private place (i.e.,
hospital) and therefore, her current access permission to
Bob’s location will be immediately revoked.

V. FRAMEWORK EVALUATION

In this section, we evaluate the performance of CAPE
framework in two steps as follows:

A. Analysis of time complexity

By analyzing our algorithms, we found that the perfor-
mance of CAPE is limited only by the processing time
required for APS component to re-evaluate all ongoing
access sessions upon an administrative context change, see
Listing 2, lines 21 -28. To achieve fast access policy
specification, effective access policy management and incur
less overhead to access policy enforcement, we structured the
primitive facts in a K-Dimensional tree [15]. We chose KD
tree data structure because of its usefulness in applications
that involve multidimensional search key over large scale
datasets. We built three separate KD trees for the subjects,
objects, and the operations offline. The time complexity of
CAPE algorithm is simply bounded to the time required
to search each of the subject, object, and operation trees.
Assuming the three KD trees are of the same size n, and

the fact that KD is a special case of binary trees, CAPE has
logarithmic time complexity 7" which is given as follows:

T(n) = 3% N % O(log(n)) (1)

Where N is the number of ongoing access sessions. When
n >> 28 >> N , where k is the number of attributes
and context constraints that describe each type of the core
access control elements, the time complexity can be further
simplified to:

T(n) = O(log(n)) @

B. Implementation and performance significance

To quantify the processing overhead of CAPE, we im-
plemented a proof of concept prototype using a microcom-
puter Raspberry Pi 3 [16]. We developed Python modules
for the APS and CAPE components that run on the Pi
microcomputer to control access to two representative IoT
devices: Sensor Tag [17], and WeMo Switch [18]. Also,
We developed a mobile Java application using Android
Studio [19]. The application provides a user friendly interface
through which users can search for and connect to available
IoT devices in their proximity including their designated
authorization server. In addition, device owners can use the
mobile application interface to define and manage access
control policies on their IoT devices.

To show the feasibility of our approach in highly dynamic,
large-scale, and resource-limited environments such as IoT,
we conducted two performance evaluation experiments as
follows.

1) Access Response Time vs Primitive Facts Number

In this experiment, we compute the access response time,
which is the time that CAPE requires to search a certain
number of primitive facts and make an access decision in
response to an access request.

Figure 2, shows the results of the worst case access
response time against a variable number of primitive facts at
a constant number of attributes per access element. At each
number of primitive facts, we calculate the access response
time for 10 runs and take their average. We compare, our
search algorithm to the Brute Force(BF) search. KD Tree
search outperforms the BF search at primitive facts number
of 1250 with a response time of 2.25 ms. These results show
that our approach can efficiently scale to IoT deployments.

= Brute Force search
KD Tree search

Access Response Time (ms)

o 250 500 750 1000 1250 1500 1750 2000

Facts Number per Access Element

Fig. 2: Access response time Vs Number of Primitive Facts
Attributes Number = 13 per access element

1580

Average Re-enforcement Time (ms)

o
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Mumber of Active Access Sessions

Fig. 3: Average Re-enforcement Time Vs Number of Access Sessions
Primitive Facts = 1000, Attributes Number = 13
2) Average Re-enforcement Time vs Number of Access
Sessions

In this experiment, we compute the access re-enforcement
time, which is the time that CAPE takes to reevaluate
a certain number of active access session in response to
administrative changes in guard contexts. For each number of
access sessions, we calculate the average re-enforcement time
over 50 runs. As shown in Figure 3, the re-enforcement
time increases linearly as the number of active sessions
increases. Therefore, our proposed CAPE can perform ef-
ficiently in time-sensitive IoT applications.

VI. CONCLUSION

In this work, we propose a continuous access policy
enforcement (CAPE) framework based on automatic policy
specification. Our algorithm continuously enforces access
policies over the lifetime of an access session, and re-
evaluates every access session based on that session’s guard
and operational contexts. We conducted two performance
evaluation experiments based the access response time and
access re-enforcement time. The results show that our pro-
posed approach can efficiently control access in highly
dynamic, large-scale, and resource limited IoT environments.
In the future, we plan to augment our access control engine
with an offline fact matching mechanism that could further
enhance the access response and re-enforcement times of
CAPE. In addition, we plan to improve the access control
granularity through incorporating more contextual informa-
tion in access decision making (e.g., access history,
probability of misuse) and conduct experiments to see
the impacts of the added attributes and context constraints on
the performance of CAPE.

REFERENCES

[1] G. Santucci et al., “From internet of data to internet of
things,” vol. 28, 2009.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of
things: A survey,” Computer networks, vol. 54, no. 15,
pp. 2787-2805, 2010.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
“Internet of things (iot): A vision, architectural ele-
ments, and future directions,” Future generation com-
puter systems, vol. 29, no. 7, pp. 1645-1660, 2013.

[4] B. Janina, “The Top 10 IoT Segments in 2018
— based on 1,600 real IoT projects,” “https://iot-
analytics.com/top-10-iot-segments-2018-real-iot-
projects”, [Accessed : April, 2018].

1581

[5] E. T. Commission et al., “Internet of things: Privacy
& security in a connected world,” Washington, DC:
Federal Trade Commission, 2015.

[6] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman, “Role-based access control models,” Com-
puter, vol. 29, no. 2, pp. 38—47, 1996.

[7]1 V. C. Hu, D. R. Kuhn, and D. E Ferraiolo, “Attribute-

based access control,” Computer, vol. 48, no. 2, pp.

85-88, 2015.

J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans,

G. Gross, B. de Bruijn, C. de Laat, M. Holdrege, and

D. Spence, “Aaa authorization application examples,”

Tech. Rep., 2000.

[9] V. C. Hu, D. Ferraiolo, and D. R. Kuhn, Assessment of
access control systems. US Department of Commerce,
National Institute of Standards and Technology, 2006.

[10] H. Martin et al., “A generalized context-based access
control model for pervasive environments,” in Proceed-
ings of the 2nd SIGSPATIAL ACM GIS 2009 Interna-
tional Workshop on Security and Privacy in GIS and
LBS. ACM, 2009, pp. 12-21.

[11] G. Zhang and M. Parashar, “Context-aware dynamic
access control for pervasive applications,” in Proceed-
ings of the Communication Networks and Distributed
Systems Modeling and Simulation Conference, 2004,
pp. 21-30.

[12] D. Kulkarni and A. Tripathi, “Context-aware role-based
access control in pervasive computing systems,’ in
Proceedings of the 13th ACM symposium on Access
control models and technologies. =~ ACM, 2008, pp.
113-122.

[13] R. V. Nehme, H.-S. Lim, and E. Bertino, “Fence:
Continuous access control enforcement in dynamic
data stream environments,” in Proceedings of the third
ACM conference on Data and application security and
privacy. ACM, 2013, pp. 243-254.

[14] A. Alkhresheh, K. Elgazzar, and H. S. Hassanein,
“Context-aware automatic access policy specification
for iot environments,” in 2018 14th International Wire-
less Communications & Mobile Computing Conference
(IWCMC). 1EEE, 2018, pp. 793-799.

[15] J. L. Bentley, “Multidimensional binary search trees
used for associative searching,” Communications of the
ACM, vol. 18, no. 9, pp. 509-517, 1975.

[16] C. Corporation”, “Raspberry pi 3>
http://www.canakit.com/raspberry-pi-3-starter-kit.html,
[Accessed : May, 2017].

[17] SimpleLink™BluetoothSmart®/Multi-Standard, “Sen-
sotag,” http://www.ti.com, [Accessed : May, 2017].

[18] “Belkin’s wemo switch,” http://www.wemo.com/, [Ac-
cessed : May, 2016].

[19] “Android studio,” https://developer.android.com/studio/,
[Accessed : May, 2017].

[8

[

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

