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Abstract 

With the growth of network web services, web service recommendations based on the 

quality of service (QoS) attribute have become a research interest topic. Service 

recommendation technologies can help users discover new web services and make their 

online experience better. Further, by providing users with recommendations for high-

quality web services, these technologies ultimately benefit both users and service providers. 

In this thesis, we study the tensor decomposition in web service recommendations. In 

particular, we propose new tensor computational methods and algorithms for QoS attribute 

prediction to improve the recommendation accuracy. Our methods follow the machine 

learning techniques. 

First, to remedy the shortage of low prediction accuracy rates caused by the lack of initial 

data samples, a traversal-tensor method (TTM) is proposed to enhance the sampling 

scheme. The new method integrates the feature factor matrices to construct more data 

samples for tensor decomposition. We analyze and validate the new algorithm in 

comparison with the traditional tensor decomposition applied to service recommendations. 

Empirical studies with multiple datasets show that the TTM effectively improves the 

prediction performance. 

Second, a modified regularization term is designed and applied with the TTM to overcome 

the overfitting problem. This is done by using a linear combination of two commonly 

applied regularization models. It is shown that the updated term can increase the accuracy 

rate of predicting QoS attributes and better support the TTM method. 
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Third, a two-step strategy approach involving a K-means clustering with TTM is 

introduced to deal with the initial unorganized data. The pre-clustered data are used as input 

to the TTM to complete the QoS attribute prediction. This process is evaluated between 

our methods and the clustering method. 

The thesis describes a framework of tensor-based web service recommendation by 

synthesizing the above methods. This framework is centered on TTM, with a modified 

regularization term to support TTM and a method to handle the initial unorganized data. 
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Chapter 1  

Introduction 

This thesis presents a tensor decomposition method with QoS attribute prediction to 

improve the recommendation accuracy. We provide an overview of the research motivation 

and problems in Sections 1.1 and 1.2. We highlight the main contributions of this thesis in 

Section 1.3. Section 1.4 outlines the thesis structure. 

1.1 Motivation 

As more and more developers, enterprises, and organizations worldwide are becoming 

service providers, developing and delivering web services of varying functionality on 

various web service platforms has led to a dramatic increase in the number of services on 

each platform. As of June 26, 2021, more than 24,237 Web APIs are published on 

Programmable Web, a well-known web services and API provisioning platform, including 

over 1117 mapping services [Programmableweb, 2021]. The rapid development of web 

services has brought greater convenience to application developers. Web services have 

been increasingly used in e-commerce, multimedia services, and automation systems. Web 

service recommendation refers to the ability to predict the QoS attribute value using data 

analytics. The prediction results provide the most appropriate web service for users based 

on the QoS attributes of the service. QoS attribute prediction has become a hot research 

topic in service computing in recent years. Web services with the same or similar functional 

attributes can be directly ranked and recommended based on the magnitude of QoS 

attribute values. Web service recommendation systems usually use the collaborative 

filtering method to improve the accuracy of recommendation results. At present, with the 

dimensionality of the dataset increased, Web recommendation systems also apply the 

tensor decomposition model as an essential data analysis tool for the QoS attribute 
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prediction. These methods or models are based on a large sample and have been 

successfully applied to the web service recommendation system.  

However, these web recommendation methods are not satisfactory when the user-service-

time web recommendation data is sparse. The reason is that the samples in the initial 

recommendation dataset are only the corresponding values of the existing web services 

used by the existing users. The QoS attribute prediction is performed based on available 

historical data. When facing an increase of new users or new web services, no new 

invocation records are recorded due to the limitations of some conditions. For example, as 

a result, when the growing service dataset reaches four hundred thousand of service records 

totally, the corresponding number of samples is only thousands. The prediction values of 

the newly added services are unknown to the users. This issue will lead to a small sample 

problem [Stork, Duda, Hart, & Stork, 2001].  

Although the traditional tensor decomposition model is a powerful prediction tool for 

extracting valuable information from sample data, it also does not avoid the shortcoming 

of low accuracy prediction rate due to small sample data. It is challenged to construct a 

suitable method to address the small sample problem based on the traditional tensor 

decomposition model. To the best of our knowledge, there are few methods in the context 

of the tensor decomposition for QoS attribute prediction. Thus, this thesis focuses on the 

tensor decomposition and its application as the research object for web service 

recommendations.  

1.2 Problem statement  

In general, we study the tensor decomposition to enhance web service recommendation 

performance. In this area, our research following several open issues: constructing more 

sample records from the currently limited dataset, applying the regularization term to 

reduce the possibility of overfitting, and the initial data preprocessing.  

We observed the following shortcomings through data analysis:  
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(1) The number of samples of user-service-time QoS attribute is insufficient. With 

this limited sample data, the factor matrix iteration remains unchanged. If factor 

matrices can be reconstructed to speed up the iterative process, the QoS attribute 

prediction performance can be improved.  

(2) Appropriate regularization techniques are needed to solve the overfitting problem 

for a sparse web service dataset. The ridge regression is popular for tensor 

decomposition, while the lasso regression has higher efficiency in a sparse dataset. 

(3) The preprocessing of initial data affects the quality of web service 

recommendations. Research has shown that clustering methods are used in the 

initial unorganized preprocessing step.  

In the context of this thesis, we focus on the following details, 

Lack of sample data: Constructing the factor matrices from the limited response-time 

value of existing services that the existing users in the time slice have invoked. 

Decision issue of appropriate regularization techniques: Designing a suitable 

regularization term that applies ridge regression, lasso regression, or both.  

Initial unorganized data processing: Clustering the initial unorganized data at 

preprocessing step to evaluate the efficiency of the recommendation system.  
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1.3 Thesis contributions 

In this thesis, we propose an improved tensor decomposition method, and apply the 

regularization term and clustering method to the QoS attribute prediction of the Web 

service recommendation system.  The proposed method improves the QoS attribute 

prediction accuracy to obtain more reasonable and effective web service recommendation 

results. 

The significant contributions of this thesis and corresponding descriptions are listed below.  

(1) The traversal-tensor method (TTM), a tensor decomposition algorithm for 

enhancing sample schemes, is proposed. According to the dimension size of 

tensor data, this algorithm traversals all features by merging them into tensor 

decomposition steps. The algorithm aims to address the shortcomings of 

traditional recommendation methods with low accuracy due to insufficient initial 

recommendation data samples. The feature factor matrices are based on the 

current feature sample data to compensate for the missing items in the factor 

matrix of different time slices. Then the new matrices are applied to the tensor 

decomposition as a way to improve the prediction rate. The experiments are 

conducted on the web service WSDream and the traffic prediction datasets. 

Experimental results validate the effectiveness of the proposed TTM 

recommendation method. 

(2) A modified regularization term incorporating two regular models is proposed to 

support the TTM method further. The major updates of the modified 

regularization term are the integration of both the Lasso and ridge expressions. 

Experimental validation is conducted on the web service WSDream dataset to 

discuss and evaluate the weights of the different regularization models. 

Experimental results show that the modified regularization term can increase the 

correct rate of predicting QoS attributes and better support the TTM web service 

recommendation method. 



5 
 

(3) Regarding clustering and TTM a two-step strategy is proposed for the initial data 

preprocessing. Since the K-means algorithm is currently the most widely used 

clustering algorithm, it is suitable for classification applications with tensor data. 

We chose a K-means algorithm as preprocessing of TTM. The first step involves 

a preprocessing process based on a K-means algorithm designed to cluster the 

initial data to discover the implicit relationships between the data. In the second 

step, the clustered data objects are used as input and applied to the TTM method 

to complete the QoS attribute prediction. Experimental results on the relevant 

dataset show the evaluation between our methods and the clustering method. 

 

In summary, tensor-based modeling for web service recommendations is given to improve 

recommendation performance. By reconstructing the tensor decomposition model, 

regularization terms, and updating the clustering method, the high-dimensional data can be 

expressed more effectively, and the accuracy of QoS attribute prediction is improved. 
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1.4 Thesis organization 

The remainder of this thesis is organized as follows. 

Chapter 2 presents a background and an overview of web service recommendations. Basic 

ideas and applications of tensor representation are discussed. The development process 

from vector to tensor data processing is introduced. Tensor decomposition and its 

application in the recommendation system are described.  

Chapter 3 introduces the notations and operations of tensor algebra. Then, we describe the 

tensor decomposition process in the web service recommendation. Moreover, an overview 

of our research is given. 

Chapter 4 formally introduces a new tensor decomposition method, TTM, for QoS attribute 

prediction. Performance evaluation is given by validation of numerical examples and 

mathematical explanations. The results of the experiments conducted on real-world 

datasets and a thorough comparison with the benchmark methods are presented. 

Chapter 5 proposes a modified regularization term for supporting TTM. We introduce the 

lasso and ridge regression separately and formulate the modified regularization term. The 

experimental results show that it effectively improves the QoS attribute prediction 

performance. 

Chapter 6 proposes a two-step strategy based on the K-means algorithm and TTM to deal 

with the initial unorganized data. A series of experiments have been conducted to evaluate 

the effectiveness of the recommendation system combining the clustering technique and 

tensor decomposition algorithm. We discuss the impacts, such as selecting initial K values, 

computational performance, and distance calculation. 

In Chapter 7, the conclusion and the future research directions are presented. 
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Chapter 2 

Background and Literature Survey 

In this thesis, the main technologies involved in web service recommendation research 

include web services, QoS attribute prediction, and tensor representation and 

decomposition. This chapter first briefly introduces web services and the QoS attribute 

prediction techniques of web services. Then, tensor representation and decomposition 

concepts are introduced. 

2.1 Web service 

In the service computing and foundation service units, web services are the subject of 

conceptual expression and operation [Rao & Su, 2005] [Thomas & Immanuel, 2017]. Web 

service recommendation includes service recommendation based on user functional 

preferences and service quality [Liu & Fulia, 2015] [Zheng, Ma, Lyu, & King, 2010]. The 

current research on web service recommendation focuses on accurately predicting the QoS 

attribute values of users accessing different web services. QoS attributes are used to 

describe the non-functional attributes of web services, including response time and 

throughput [O'sullivan, Edmond, & ter Hofstede, 2002]. These QoS attributes are the 

critical index to measure the quality of web services which can be ranked based on the 

attribute values. 

2.2 QoS attribute prediction 

QoS values represent the quantitative measure of the quality of a specific web service. Web 

service recommendation predicts the QoS attribute value using data analytics. The 

prediction results provide the most appropriate web service based on the non-functional 

attributes of the service. These properties accurately reflect the actual performance of the 

web service. In recent years, QoS attribute prediction has become a major research topic 

in service computing. For web services with the same or similar functional attributes, the 

services can be ranked and recommended based on the scale of QoS attribute values. 
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Predicting the missing QoS attribute is not an easy task. As a metric describing the non-

functional attributes of a web service, the QoS attribute is easily influenced by other related 

information such as the relative user location and the access time. For example, if a user’s 

location is relatively close to the service provider, the service's response time for this user 

is likely to be shorter. Likewise, if a user accesses a web service during a smooth network 

time, the network's throughput would be correspondingly higher.  

QoS attribute prediction methods primarily utilize a user/service-based collaborative 

filtering algorithm and a model-based QoS prediction algorithm. 

(1) User/service-based collaborative filtering algorithm  

Collaborative filtering technology analyzes the access behavior of currently active users 

and users with similar interests to provide personalized recommendation solutions. The 

user/service-based collaborative filtering algorithm is the most used recommendation 

algorithm in personalized recommendation systems, such as Amazon’s e-commerce 

recommendation and movie ranking systems.  

User/service-based collaborative filtering algorithm uses the similarity calculation method 

to calculate the contribution of different users accessing the services to predict the QoS 

attribute values [Zheng, Ma, Lyu, & King, 2009]. The commonly used similarity 

calculation methods are listed below, 

• User-based collaborative filtering method using Pearson Correlation Coefficient 

(UPCC): this method generates a prediction based on similar user behavior [Shao et 

al., 2007]. 

• Item-based collaborative filtering method using Pearson Correlation Coefficient 

(IPCC): this method generates a prediction based on similar item properties [Sarwar, 

Karypis, Konstan, & Riedl, 2001]. 

• User-based and Item-based Pearson Correlation Coefficient (UIPCC): this is a hybrid 

collaborative algorithm combining the UPCC and IPCC methods. The prediction is 

applied to similar users and similar web services.  
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User/service-based collaborative filtering algorithms are unsuitable for web service 

recommendation scenarios with large-scale datasets [Yu & Huang, 2017]. Large-scale web 

service data are often sparse, with many non-zero elements. User/service-based 

collaborative filtering algorithms depend on historical data to make predictions, and the 

more historical data there is, the higher the correctness of prediction. Therefore, when 

encountering large-scale web service data, the prediction performance of these algorithms 

degrades and is not suitable for web service recommendations. 

(2) Model-based QoS attribute prediction algorithm  

The model-based QoS attribute prediction algorithm follows machine learning approaches 

to train the learning model based on the user's historical preferences for items [Ghafouri, 

Hashemi, & Hung, 2020]. After several iterations of learning to obtain the user's predicted 

ratings for unrated items, the model-based collaborative filtering algorithm can generally 

obtain better prediction results. Model-based QoS attribute prediction algorithms include 

the cluster analysis, matrix factorization [Zheng, Ma, Lyu, & King, 2012][ He, Zhu, Zheng, 

Xu, & Lyu, 2014], and tensor decomposition [Fan, Hu, Zhang, Chen, & Brézillon, 

2015][ Zhang, Sun, Liu, & Guo, 2014a]. There are two main methods as follows., 

• Probabilistic Matrix Factorization (PMF): a probabilistic method that uses Gaussian 

assumptions on the data matrices [Mnih & Salakhutdinov, 2007]. 

• Tensor decomposition: a user-service-time model based on regular tensor 

decomposition. It predicts the web service QoS attributes by considering the 

relationship between user, service, and time [Zhang, Sun, Liu, & Luo, 2014b].  

Since the model-based QoS attribute prediction algorithms use the entire known evaluation 

data as information input and then iteratively trains to obtain a prediction model, using this 

method results in better accuracy [Koren, Bell, & Volinsky, 2009]. However, the direct use 

of matrix factorization leads to information loss and can affect prediction accuracy. As an 

extension of matrix factorization, tensor decomposition uses slices in different directions, 

which preserves the information in each dimension. Thus, tensor decomposition ensures 
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information integrity. Moreover, the tensor modeling and decomposition techniques can 

handle high-dimensional data [Karatzoglou, Amatriain, Baltrunas, & Oliver, 2010].  

2.3 Tensor representation 

Analyzing data requires a method of sorting the data according to a specific representation. 

The large-scale data generated by various sensors and human activities can be naturally 

expressed in a two-dimensional or high-dimensional array. For example, the grayscale 

image (row-column) is a two-dimensional array, whereas the web service data forms in a 

three-dimensional user-service-time array. The human face image sets consist of four-

dimensional array data under different lighting and posture conditions as human-

illumination-pose-pixel. The multi-channel Electroencephalograms (EEG) signals are in a 

six-dimensional array with channel-frequency-time-sample-condition-person features. 

This method of representing data with multidimensional arrays is very intuitive and 

convenient.  

As an extension of vectors and matrices, tensor refers to a multidimensional array 

represented by multiple indicators. Mathematically, the strict definition of a tensor is 

described by a linear map, which refers to a set of ordered numbers that satisfy a specific 

coordinate conversion relationship when several coordinate systems are transformed 

[Kolda & Bader, 2009]. Tensor data can be folded into a lower-dimensional vector format 

in a certain way based on matrix analysis theory. The tensor data with a high-dimensional 

data structure is not only a simple promotion of adding dimensions based on vectors and 

matrices, but more importantly, it also has its unique properties and analysis methods. 

Some researchers conclude that the vectorized format of high-dimensional data presents 

the small sample problem [Shashua & Levin, 2001] [ Wolf, Jhuang, & Hazan, 2007] [ Tao, 

Li, Hu, Maybank, & Wu, 2005]. Reaching a learning performance often requires enough 

samples as a statistical point of view, but in practical applications, we obtain very few 

observation samples compared with the high-dimensional data. For example, a 128 × 128 

× 3 color image needs to be described by high-dimensional data with a length of 49152 
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dimensions, but under certain observation conditions, smaller amounts of samples that have 

less than the data dimension are obtained. 

• The high-dimensional data structure of the original data is destroyed. 

For example, when a two-dimensional grayscale image is unfolded to a vector format, 

vectorization destroys the two-dimensional structure information of the image, ignoring 

the local spatial correlation information. 

• The correlation between different modes of data is ignored. 

For example, under different user/service locations and accessed times, the web service 

sample forms a three-dimensional array according to the modes of the user-service-

timeline-response time. If we unfold one record into a large one-dimensional vector for 

processing, we ignore the correlation between different users, different services, and a 

different time. 

When a vector format represents data, the collection of data and linear transformation can 

be represented by a matrix. Matrix decomposition is a powerful tool for vector data analysis 

and processing. The conventional methods include Singular Value Decomposition (SVD) 

and Principal Component Analysis (PCA). The vectorization method is used for tensor data 

to rearrange the original high-dimensional data in a vector because it can be analyzed and 

processed by the matrix analysis theory. However, valuable structures and components are 

often sparsely distributed in the high-dimensional space, and this vectorization method 

destroys the high-dimensional structure of the original data. Thus, some studies extend the 

classical theoretical basis for processing vector to tensor algebra for processing tensors 

with a theoretical foundation for the tensor data analysis. Tensor and its representation can 

represent and handle high-dimensional data more naturally and intuitively. Google 

TensorFlow platform uses the tensor representation to store high-dimensional data, which 

has been widely used [Hao, Liang, Ye, & Xu, 2018]. In general, compared with vector 

representation methods, tensor representation methods are more benefits as follows 
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[Shashua & Levin, 2001] [ Wolf, Jhuang, & Hazan, 2007] [ Tao, Li, Hu, Maybank, & Wu, 

2005], 

• Tensor representation can maintain the high-dimensional structural characteristics of the 

data and make full use of the local spatial correlation of the data.  

• The dimensionality can be effectively reduced through tensor decomposition, and a more 

effective data representation can be obtained.  

2.4 Decomposition 

High-dimensional data can be unfolded to have a low-dimensional structure in the 

decomposition model. Chandrasekaran et al. prove that high-dimensional data can be 

expressed as a linear combination of several low-dimensional components 

[Chandrasekaran, Recht, Parrilo, & Willsky, 2012]. Thus, the decomposition model aims 

to discover the low-dimensional components. 

Matrix decomposition is a typical method for finding low-dimensional components of 

high-dimensional data, such as Principal Component Analysis (PCA) and Singular Value 

Decomposition (SVD). PCA finds a set of projection vectors that project high-dimensional 

vectors into a low-dimensional space to maximize the squared errors. SVD generally 

achieves data centralization by decomposing the matrix [Stork, Duda, Hart, & Stork, 2001].  

Tensor decomposition is extended from matrix decomposition and processes high-

dimensional data based on tensor representation. In the tensor decomposition model, the 

high-dimensional data represents directly in a tensor format, and the tensor is decomposed 

into several lower-dimensional format data. Tensor decomposition has the main method: 

CANDECOMP/PARAFAC (CP) methods [Kolda & Bader, 2009]. Carroll et al. and 

Harshman studied the rank-one decomposition of tensors and almost independently 

proposed Canonical Decomposition (CANDECOMP) and Parallel Factor Analysis 

(PARAFAC) [Carroll, Pruzansky, & Kruskal, 1980] [Harshman, 1970]. These two 

equivalent decomposition models are called CP decomposition [Kiers, 2000].   
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Chapter 3 

Tensor Decomposition for Web Service Recommendation 

In this chapter, we discuss and describe the three-dimensional tensor and its decomposition 

in the Web service recommendation. An overview of our research will also be given.   

3.1 Notations and operations 

First, basic concepts and formulas of tensor algebra will be introduced as follows.  We 

follow the notations from the literature of Kolda [Kolda & Bader, 2009]. 

The tensors are denoted by calligraphic bold capital letters 𝓧, 𝓧̅,𝓨, the capital letters 

𝐴, 𝐵, 𝑇, 𝑋, 𝑈  denotes the matrices, and the vectors are denoted by lower-case letters 

𝑎, 𝑏, 𝑥, 𝑢.  

3.1.1 Matrix products 

A matrix can be defined as two-dimensional arrays of 𝑚 rows and 𝑛 columns. Matrices are 

denoted by capital letters 𝐴. The 𝑖th row is denoted by 𝐴i∗ and the 𝑗th column is denoted 

by 𝐴∗j. Thus, an 𝑚 by 𝑛 matrix is 

𝐴𝑚×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) 

The first subscript on an individual entry in a matrix designates the row that the entry 

occupies, and the second subscript denotes the column that the entry occupies. 

(1) Adding 

Each matrix can add other matrices by adding the corresponding entries. 

(2) Product 

(a) General Matrix Multiplication 

Let 

𝐴𝑚×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) and 𝐵𝑛×𝑘 = (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑛1 𝑏𝑛2 𝑏𝑛𝑘

) 
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be a 𝑚 × 𝑛 matrix and a 𝑛 × 𝑘 matrix, respectively. Each entry (𝐴𝐵)mk is given by the 

result of the scalar product of the 𝑚th row of 𝐴 and the 𝑘th column of 𝐵, so that  

(𝑎𝑚1 𝑎𝑚2   𝑎𝑚𝑛) (𝑏𝑛1 𝑏𝑛2   𝑏𝑛𝑘) =< 𝐴𝑚∗ ,𝐵∗𝑘 > 

𝐴𝑚×𝑛 𝐵𝑚×𝑛 

= (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑛1 𝑏𝑛2 𝑏𝑛𝑘

) 

= (

< 𝑎1∗, 𝑏∗1 > < 𝑎1∗, 𝑏∗2 > < 𝑎1∗, 𝑏∗𝑘 >
< 𝑎2∗, 𝑏∗1 > < 𝑎2∗, 𝑏∗2 > < 𝑎2∗, 𝑏∗𝑘 >
< 𝑎𝑚∗, 𝑏∗1 > < 𝑎𝑚∗, 𝑏∗2 > < 𝑎𝑚∗, 𝑏∗𝑘 >

). 

(b) Hadamard Product: ∗ 

This matrix product is the elementwise matrix product defined by the French 

mathematician Jacques Hadamard. Let  

𝐴𝑚×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) and 𝐵𝑚×𝑛 = (

𝑏11 𝑏12 𝑏1𝑛
𝑏21 𝑏22 𝑏2𝑛
𝑏𝑚1 𝑏𝑚2 𝑏𝑚𝑛

) 

be two 𝑚 × 𝑛 matrices. Hadamard product 𝐴 ∗ 𝐵 is defined as 

𝐴𝑚×𝑛 ∗ 𝐵𝑚×𝑛 

= (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) ∗ (

𝑏11 𝑏12 𝑏1𝑛
𝑏21 𝑏22 𝑏2𝑛
𝑏𝑚1 𝑏𝑚2 𝑏𝑚𝑛

) 

=(

𝑎11𝑏11 𝑎12𝑏12 𝑎1𝑛𝑏1𝑛
𝑎21𝑏21 𝑎22𝑏22 𝑎2𝑛𝑏2𝑛
𝑎𝑚1𝑏𝑚1 𝑎𝑚2𝑏𝑚2 𝑎𝑚𝑛𝑏𝑚𝑛

). 

Hadamard product multiplies matrices of the same size, and the resulting matrix has the 

same size as the original matrices. 

(c) Kronecker Product ⊗ 

The Kronecker product multiplies any two matrices of any given size. Let 

𝐴𝑚×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) and 𝐵𝑗×𝑘 = (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 

be an 𝑚 × 𝑛 matrix and a 𝑗 × 𝑛 matrix, respectively. Then the Kronecker product 𝐴⊗ 𝐵 

is defined as follows, 
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𝐴𝑚×𝑛⊗𝐵𝑗×𝑘 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

)⊗ (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 

=

(

 
 
 
 
 
 
 
 𝑎11(

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎12(

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎1𝑛 (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

)

𝑎21(

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎22(

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎2𝑛 (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

)

𝑎𝑚1 (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎𝑚2 (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎𝑚𝑛 (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

)

)

 
 
 
 
 
 
 
 

. 

The output product is a matrix of size (𝑚𝑗) × (𝑛𝑘). 

(d) Khatri-Rao Product ⊙ 

The Khatri-Rao product multiplies matrices with the same number of columns. Let 

𝐴𝑚×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) and 𝐵𝑗×𝑛 = (

𝑏11 𝑏12 𝑏1𝑛
𝑏21 𝑏22 𝑏2𝑛
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑛

) 

be an 𝑚 × 𝑛 matrix and a 𝑗 × 𝑛 matrix, respectively. Then the Khatri-Rao product 𝐴⊙ 𝐵 

is defined as follows, 

𝐴𝑚×𝑛⊙𝐵𝑗×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

)⊙ (

𝑏11 𝑏12 𝑏1𝑛
𝑏21 𝑏22 𝑏2𝑛
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑛

) 

=

(

 
 
 
 
 
 
 
 𝑎11  (

𝑏11
𝑏21
𝑏𝑗1

) 𝑎12  (

𝑏12
𝑏22
𝑏𝑗2

) 𝑎1𝑛  (

𝑏1𝑛
𝑏2𝑛
𝑏𝑗𝑛

)

𝑎21  (

𝑏11
𝑏21
𝑏𝑗1

) 𝑎22  (

𝑏12
𝑏22
𝑏𝑗2

) 𝑎2𝑛  (

𝑏1𝑛
𝑏2𝑛
𝑏𝑗𝑛

)

𝑎𝑚1  (

𝑏11
𝑏21
𝑏𝑗1

) 𝑎𝑚2  (

𝑏12
𝑏22
𝑏𝑗2

) 𝑎𝑚𝑛  (

𝑏1𝑛
𝑏2𝑛
𝑏𝑗𝑛

)

)

 
 
 
 
 
 
 
 

. 

The output product is a matrix of size (𝑚𝑗) × 𝑛. 

Khatri-Rao product and the Kronecker product are identical when considering vectors, i.e., 

𝑎 ⊙ 𝑏 = 𝑎 ⊗ 𝑏.   
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3.1.2 Definitions 

The tensors are denoted by calligraphic bold capital letters 𝓧, 𝓧̅,𝓨, the capital letters 

𝑇, 𝑋, 𝑈 denote the matrices, and the vectors are denoted by lower-case letters 𝑎, 𝑏, 𝑥, 𝑢.  

Definition 1 (Tensor [Kolda & Bader, 2009])  

A tensor is a multidimensional array. More formally, an 𝑁-way tensor is an element of the 

tensor product of 𝑁 vector spaces, each of which has its own coordinate system. An 𝑁-way 

tensor is denoted as 𝓧 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑛×…×𝐼𝑁 , (𝑛 = 1,2, . . , 𝑁 ), which has 𝑁  indices 

(𝑖1𝑖2… 𝑖n… 𝑖𝑁 ) and its elements are denoted by 𝑥𝑖1𝑖2…𝑖n…𝑖𝑁.  

For example, a 3-way tensor 𝓧 ∈ ℝ𝑚×𝑛×𝑓  has three features responded to the three 

indexes: user, service, and time, as shown in Figure 3.1. The element (𝑖, 𝑗, 𝑘) − 𝑡ℎ entry is 

denoted by 𝑥𝑖𝑗𝑘.  

 

Figure 3.1 A 3-way tensor 

Figure 3.2 shows a 4-way tensor 𝓧 ∈ ℝm×i×j×k which has two group elements (1, 𝑖, 𝑗, 𝑘) −

𝑡ℎ and (2, 𝑖, 𝑗, 𝑘) − 𝑡ℎ entries both are in four dimensions.  
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Figure 3.2  A 4-way tensor 

A 3-way tensor can be identified by the vectors and matrices representations. A vector 

obtained by fixing the two of the three indexes of the entries of a tensor is a fiber of a tensor. 

A matrix obtained by fixing one of the three indexes of the entries of a tensor is a slice of 

a tensor [Ragnarsson & Van Loan, 2012]. 

For example, there are three vectors of a 3-way tensor 𝑡:𝑗𝑘, 𝑡𝑖:𝑘, 𝑎𝑛𝑑 𝑡𝑖𝑗:, the indexes denote 

𝑖, 𝑗, 𝑘 and colon ":" to represent all other elements of the unfixed index in Figure 3.3.  

• The vector 𝑡:𝑗𝑘 denotes mode-1 fibers when fixing the 𝑗 𝑎𝑛𝑑 𝑘 indexes (green column). 

• The vector 𝑡𝑖:𝑘 denotes mode-2 fibers when fixing the 𝑖 𝑎𝑛𝑑 𝑘 indexes (orange row).  

• The vector  𝑡𝑖𝑗: denotes mode-3 fibers when fixing the 𝑖 𝑎𝑛𝑑 𝑗 indexes (blue tube). 

 

Figure 3.3 Three fibers of a 3-way tensor 
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All fibers of the 3-way tensor are shown in Figure 3.4 [Cichocki, Zdunek, Phan, & Amari, 

2009].  

(a) Mode-1 fibers: 𝑡:𝑗𝑘 (b) Mode-2 fibers: 𝑡𝑖:𝑘 (c) Mode-3 fibers: 𝑡𝑖𝑗: 

Figure 3.4 All fibers of a 3-way tensor 

Furthermore, there are matrices examples of a 3-way tensor 𝑇i∷, 𝑇:j:, 𝑎𝑛𝑑 𝑇∷k, where the 

indexes denote 𝑖, 𝑗, 𝑘 = 1,2 and full colon ":" to represent all other elements of the unfixed 

index.  

• The matrix 𝑇i∷ denotes mode-1 slices when fixing the 𝑖 index (green horizontal slices in 

Figure 3.5). 

• The matrix  𝑇:j: denotes mode-2 slices when fixing the 𝑗 index (orange lateral slices in 

Figure 3.6).  

• The matrix  𝑇∷k denotes mode-3 slices when fixing the 𝑘 index (blue frontal slices in 

Figure 3.7). 

 

Figure 3.5 Mode-1 slices 
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Figure 3.6 Mode-2 slices 

 

Figure 3.7 Mode-3 slices 

Finally, Figure 3.8 shows all horizontal, lateral, and frontal slides of a 3-way tensor 𝓧 

[Cichocki, Zdunek, Phan, & Amari, 2009].  

(a) Horizontal slices: 𝑇i∷ (b) Lateral slices: 𝑇:j: (c) Frontal slices: 𝑇∷𝑘 

Figure 3.8 All slices of a 3-way tensor 

Definition 2 (Tensor Rank [Kolda & Bader, 2009])  

The tensor rank of a tensor 𝓧, denoted tensor rank (𝓧), is defined as the smallest number 
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of rank-one tensors that generate 𝓧 as their sum. 

For understanding easily, tensor description in mathematic context is also given as that a 

rank-k tensor in N-dimensional space is a mathematical object that has 𝑘  indices and 𝑁𝑘 

components. Each component is presented by the vectors. Each index ranges over the number 

of dimensions. From the view of element, rank is how many indexes are needed to refer to a 

specific element within the tensor. The number of tensor components is shown in Table 3.1. 

Table 3.1 Component numbers of the tensor 

 Dimension N 

N=1 N=2 N=3 ... N 

 

 

Rank k 

k=1 1 2 3 … 𝑁1 

k=2 1 4 9 … 𝑁2 

k=3 1 8 27 … 𝑁3 

… … … … … … 

k 1𝑘 2𝑘 3𝑘 … 𝑁𝑘 

For example, a 3-way tensor with rank two has twenty-seven components, which means the 

tensor has three dimensions, and each component of the tensor lies on two indexes. 

Definition 3 (Rank-One Tensors [Kolda & Bader, 2009]) 

An N-way tensor 𝓧 ∈ ℝI1×I2×…×I𝑁 is rank-one when it can be written as the outer product 

of 𝑁 vectors, 

𝓧 = 𝑢(1)°𝑢(2)°… °𝑢(𝑁)                                                (3.1) 

where 𝑢(𝑛) ∈ ℝI𝑛  𝑛 = 1,2, … , 𝑁 is a vector. The symbol ◦ represents the vector outer 

product. (Equation 3.1 is a formula of tensor decomposition) 

This thesis considers only a 3-way tensor with rank-one and its responding methods. If not 

specified, the default tensor is a rank-one tensor.  

Definition 4 (Norm of a Tensor [Kolda & Bader, 2009])  

The norm of a tensor 𝓧 ∈ ℝI1×I2×…×I𝑁 is the square root of the sum of the squares of all 

its elements, 

https://mathworld.wolfram.com/TensorIndex.html
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‖𝓧‖ = √∑ ∑ …∑ 𝑥𝑖1𝑖2…𝑖𝑁
2I𝑁

𝑖𝑁=1
I2
𝑖2=1

I1
𝑖1=1

= √〈𝓧,𝓧〉                       (3.2) 

where  〈⋅〉  denotes the inner product of the tensor. 𝑥𝑖1𝑖2…𝑖𝑁 , 𝑎𝑙𝑙 𝑖1, 𝑖2… 𝑖𝑁 =

1,2, … I𝑁 , denotes the elements, respectively. 

Furthermore, the difference between two tensors 𝓧 and 𝓨 is given by ‖𝓧 −𝓨‖. 

Definition 5 (Matricization [Kolda & Bader, 2009])  

Matricization is the process of rearranging the entries of a tensor as a matrix, called 

unfolding or flattening. When unfolding or flattening the tensor, the mode-𝑛 matricization 

operation maps a tensor into a matrix. For an N-way tensor 𝓧 ∈ ℝI1×I2×…×I𝑁, the mode-𝑛 

fibers become columns of the unfolding matrix, and the elements of tensor 𝓧 is mapped 

into the mode-𝑛 matrix X(n) ∈ ℝ
𝐼𝑛×(𝐼1𝐼2…𝐼𝑛−1𝐼𝑛+1…×𝐼𝑁), 𝑛 = 1,2, . . , 𝑁. The mode-𝑛 matrix 

is the 𝐼𝑛-dimensional matrix obtained from tensor 𝓧 by varying the index 𝑖n and keeping 

the other indices fixed.  

For example, a 2 × 2 × 2 3-way tensor 𝓧 is shown as follows, 

𝓧 =

𝑥112 𝑥122
𝑥212 𝑥222

𝑥111 𝑥121
𝑥211 𝑥221

 

where 𝓧  denotes the tensor, 𝑥𝑖1𝑖2𝑖3 denotes the tensor elements, and 𝑎𝑙𝑙 𝑖1, 𝑖2, 𝑖3 = 1,2 

denote each entry respectively of the tensor’s elements. 

The mode-𝑛 matricizaiton represented as the mode-𝑛 matrices 𝑋(𝑛), 𝑛 = 1,2,3 is given by 

the following, 

Mode-1 matricizaiton: X(1) = [
𝑥111 𝑥121
𝑥211 𝑥221

   
𝑥112 𝑥122
𝑥212 𝑥222

] 

Mode-2 matricizaiton: X(2) = [
𝑥111 𝑥211
𝑥121 𝑥221

   
𝑥112 𝑥212
𝑥122 𝑥222

] 

Mode-3 matricizaiton: X(3) = [
𝑥111 𝑥211
𝑥112 𝑥212

   
𝑥121 𝑥221
𝑥122 𝑥222

]. 
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3.1.3 Tensor operations 

(1) Tensor inner product  

The inner product of two same-sized tensors  𝓧,𝓨 ∈ ℝI1×I2×…×I𝑁  is the sum of their 

entries' products as follows, 

〈𝓧,𝓨〉 = √∑ ∑ …∑ 𝑥𝑖1𝑖2…𝑖𝑁y𝑖1𝑖2…𝑖𝑁
I𝑁
𝑖𝑁=1

I2
𝑖2=1

I1
𝑖1=1

                           (3.3) 

where 𝓧,𝓨  denote the two tensors, symbol 〈⋅〉 denotes the inner product of the tensor, 

𝑥𝑖1𝑖2…𝑖𝑁y𝑖1𝑖2…𝑖𝑁  denotes the elements of the 𝓧,𝓨 tensors respectively, and 𝑖1𝑖2…𝑖𝑁 denote 

each entry respectively of the 𝓧,𝓨 tensor’s elements. 

(2) Tensor outer product 

An N-way tensor 𝓧 ∈ ℝI1×I2×…×I𝑁  is rank-one tensor if it can be written as the outer 

product of N vectors, i.e.,  

𝓧 = 𝑢(1)°𝑢(2)°… °𝑢(𝑁)                                                  (3.4) 

where 𝓧  denote the tensor, 𝑢(𝑛) ∈ ℝI𝑛  𝑛 = 1,2, … ,𝑁  is a vector, and the symbol ◦ 

represents the vector outer product. 

Each element of the tensor x𝑖1𝑖2…𝑖𝑁 is the product of the vector sets, 

x𝑖1𝑖2…𝑖𝑁 = 𝑢𝑖1
(1)
𝑢𝑖2
(2)
…𝑢𝑖𝑁

(𝑁)
                                              (3.5) 

where 𝑢𝑖𝑛
(𝑛)

 is the 𝑖𝑛-th element of the vector 𝑢(𝑛). 

3.1.4 Tensor decomposition 

(1) Regular decomposition 

CANDECOMP/PARAFAC (CP) decomposition is the primary tensor decomposition 

method [Kolda & Bader, 2009]. We reference CP decomposition as a regular tensor 

decomposition (RTD). Its definition is described as following. 

For the N-way tensor 𝓧 ∈ ℝI1×I2×…×I𝑁, a regular tensor decomposition is summarized as, 

𝓧 = 𝑢1
(1)°𝑢1

(2)°… °𝑢1
(𝑁) + 𝑢2

(1)°𝑢2
(2)°… °𝑢2

(𝑁) +⋯+ 𝑢R
(1)°𝑢R

(2)°… °𝑢𝑅
(𝑁)

 

= ∑ 𝑢r
(1)°𝑢r

(2)°… °𝑢𝑟
(𝑁)𝑅

𝑟=1                                                  (3.6) 
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where 𝓧 denote the tensor, 𝑢𝑟
(1), 𝑢r

(2), … , 𝑢𝑟
(𝑁)

 are vector set and 𝑢r
(1) ∈ ℝI1 , 𝑢r

(2) ∈ ℝI2 , … ,

𝑎𝑛𝑑 𝑢r
(𝑁) ∈ ℝI𝑁, r = 1,… , 𝑅. 𝑅 is a positive integer which means the number of vector sets 

that compose tensor 𝓧 when added up. The symbol ° denotes the vector outer product. 

We notice that 𝑅 is not exactly equal to rank value, but at least is the smallest number of 

rank-1 tensors. 

Figure 3.9 illustrates a 3-way tensor decomposition 𝓧 = 𝑎 ◦ 𝑏 ◦ 𝑐, where 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 are 

three vectors, and the symbol ° denotes the vector outer product, 

 

Figure 3.9 A 3-way tensor decomposition 

(2) Factor matrices in decomposition 

The factor matrix is the combination of the vectors that form the rank-one components. For 

the N-way tensor 𝓧 ∈ ℝI1×I2×…×I𝑁 , the factor matrix is denoted by 𝑈(𝑛) ∈ ℝ𝐼N×R  as 

follows, 

𝑈(𝑛) = [𝑢1
(𝑛), 𝑢2

(𝑛), … , 𝑢𝑅
(𝑛)], 𝑛 = 1,2, … , 𝑁.                                   (3.7) 

where 𝓧 denote the tensor, 𝑈(𝑛) denotes the factor matrix, and  𝑢𝑟
(𝑛)

 is the 𝑟-th element of 

the vector 𝑢(𝑛), 𝑛 = 1,2, … ,𝑁 𝑎𝑛𝑑 𝑟 = 1,2, … , 𝑅. 

Following [Kolda, 2006], the regular tensor decomposition model can be expressed as 

follows, 

𝓧 = ⟦𝑈(1), 𝑈(2), … , 𝑈(𝑁)⟧                                           (3.8) 

where the symbol ⟦•⟧ denotes the collection of factor matrices. 

Based on the above equations (3.6) and (3.7), we illustrate how the regular tensor 
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decomposition converts to the new equation (3.8) as illustrated in Figure 3.10,  

 

 

 

𝑈(2) = [𝑢1
(2)
, 𝑢2
(2)
, … , 𝑢R

(2)
] 

 

𝓧 = 𝑢1
(1)
°𝑢1
(2)
°… °𝑢1

(𝑁)
+ 𝑢2

(1)
°𝑢2
(2)
°… °𝑢2

(𝑁)
+⋯+ 𝑢𝑅

(1)
°𝑢𝑅
(2)
°… °𝑢𝑅

(𝑁)
 

 

𝑈(1) = [𝑢1
(1)
, 𝑢2
(1)
, … , 𝑢R

(1)
]                               𝑈(N) = [𝑢1

(N)
, 𝑢2
(N)
, … , 𝑢R

(N)
] 

 

 

 

 

𝓧 = ⟦𝑼(𝟏), 𝑼(𝟐), … , 𝑼(𝑵)⟧ 

Figure 3.10 Regular tensor decomposition with factor matrix 

For example, if we assume 3-way tensor 𝓧 ∈ ℝI1×I2×I3 , 𝑁 = 3, 𝑅 is the rank of the tensor. 

After decomposition, the tensor 𝓧 consists of one set of 3-way rank-one tensors shown in 

Table 3.2. 

 

 

 

 

 

 

 

 

  

 

Equation (3.7) 

Equation (3.7)) Equation (3.7) 

Equation (3.6) 
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Table 3.2 Examples of regular tensor decomposition with factor matrix 

Rank Decomposition Factor matrix 

1 𝒳 = 𝑢1
(1)
°𝑢1
(2)
°𝑢1
(3)

 

= ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧ 

𝑈(1) = [𝑢1
(1)
], 

𝑈(2) = [𝑢1
(2)
],  

𝑈(3) = [𝑢1
(3)
] 

2 𝒳 = 𝑢1
(1)
°𝑢1
(2)
°𝑢1
(3)
+ 𝑢2

(1)
°𝑢2
(2)
°𝑢2
(3)

 

= ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧ 

𝑈(1) = [𝑢1
(1)
, 𝑢2
(1)
], 

𝑈(2) = [𝑢1
(2)
, 𝑢2
(2)
], 

𝑈(3) = [𝑢1
(3), 𝑢2

(3)]. 

3 𝒳 = 𝑢1
(1)
°𝑢1
(2)
°𝑢1
(3)
+ 𝑢2

(1)
°𝑢2
(2)
°𝑢2
(3)

+ 𝑢3
(1)
°𝑢3
(2)
°𝑢3
(3)

 

=⟦𝑈(1), 𝑈(2), 𝑈(3)⟧ 

𝑈(1) = [𝑢1
(1)
, 𝑢2
(1)
, 𝑢3
(1)
], 

𝑈(2) = [𝑢1
(2), 𝑢2

(2), 𝑢3
(2)], 

𝑈(3) = [𝑢1
(3), 𝑢2

(3), 𝑢3
(3)]. 

4 𝒳 = 𝑢1
(1)
°𝑢1
(2)
°𝑢1
(3)
+ 𝑢2

(1)
°𝑢2
(2)
°𝑢2
(3)

+ 𝑢3
(1)°𝑢3

(2)°𝑢3
(3) + 𝑢4

(1)°𝑢4
(2)°𝑢4

(3)

= ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧ 

𝑈(1) = [𝑢1
(1)
, 𝑢2
(1)
, 𝑢3
(1)
, 𝑢4
(1)
], 

𝑈(2)

= [𝑢1
(2), 𝑢2

(2), 𝑢3
(1), 𝑢4

(2)
],  

𝑈(3) = [𝑢1
(3), 𝑢2

(3), 𝑢3
(3), 𝑢4

(3)], 

𝑈(4) = [𝑢1
(4)
, 𝑢2
(4)
, 𝑢3
(4)
, 𝑢4
(4)
]. 

 

(3) Optimization of regular tensor decomposition 

The regular tensor decomposition aims to find a suitable approximation tensor 𝓧̅, which 

can fit the original tensor 𝓧 as much as possible. Thus, the regular tensor decomposition 

problem can be formulated as an alternating least-squares(ALS) optimization problem,  



26 
 

min
𝑈(1),𝑈(2),…,𝑈(𝑁)

( ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖ = ‖𝓧− ⟦𝑈(1), 𝑈(2), … , 𝑈(𝑁)⟧‖
2
)          (3.9) 

where ||𝓧 − 𝓧̅||2  is the tensor norm, ℓ(𝓧, 𝓧̅)  denotes the loss function, and  𝑈(𝑛) 𝑛 =

1,2, . . 𝑁 denotes the factor matrix. 

Following a regular tensor decomposition process [Kolda & Bader, 2009], the  𝑛-th frontal 

slices of an N-way tensor are applied in the optimization. Along the mode-𝑛 matricization, 

X(n), 𝑛 = 1,2, . . , 𝑁 denotes as the 𝑛-th frontal slices of an N-way tensor as follows, 

X(1) = U
(1)[U(2)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
                              (3.10) 

X(2) = U
(2)[U(1)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
                              (3.11) 

…… 

X(n) = U
(n)[U(1)⊙U(2)⊙U(n−1)⊙U(n+1)⊙…⊙U(N)]

𝑇
        (3.12) 

… 

X(N) = U
(N)[U(1)⊙U(2)⊙…⊙U(n)⊙…⊙U(N−1)]

𝑇
                3.13) 

where the symbol 𝑇  denotes the matrix transpose, 𝑈(𝑛) 𝑛 = 1,2, . . 𝑁  denotes the factor 

matrix. 

 

Substituting the equations (3.10), (3.11), (3.12), and (3.13), the equation (3.9) is written as 

follows, 

min
U(1)

‖X(1) − U
(1)[U(2)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
‖                               (3.14) 

min
U(2)

‖X(2) − U
(2)[U(1)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
‖                               (3.15) 

…… 

min
U(n)

‖X(n) − U
(n)[U(1)⊙U(2)⊙…⊙U(n−1)⊙U(n+1)⊙…⊙U(N)]

𝑇
‖  (3.16) 

… 

min
U(N)

‖X(N) − U
(N)[U(1)⊙U(2)⊙…⊙U(n)⊙…⊙U(N−1)]

𝑇
‖.                 (3.17) 

Solving the above equations, the factor matrix 𝑈(𝑛)  is obtained by iterative solution 
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formula, 

U(1) ← X(1) [[U
(2)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
]
+

                                        (3.18) 

U(2) ← X(2) [[U
(1)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
]
+

                                        (3.19) 

…… 

U(n) ← X(n) [[U
(1)⊙U(2)⊙…⊙U(n−1)⊙U(n+1)⊙…⊙U(N)]

𝑇
]
+

          (3.20) 

…… 

U(N) ← X(N) [[U
(1)⊙U(2)⊙…⊙U(n)⊙…⊙U(N−1)]

𝑇
]
+

                         (3.21) 

where the symbol ⊙ denotes the Khatri-Rao product, 𝑇 denotes the matrix transpose, and 

the symbol " + " denotes the pseudoinverse. The property of pseudoinverse is as follows 

[Kolda & Bader, 2009],  

[[𝑀 ⊙ N]𝑇]+ = [𝑀⊙N][𝑀𝑇𝑀 ∗ 𝑁𝑇𝑁]+                                 (3.22) 

where the symbol denotes the Hadamard product, 𝑀 and 𝑁 denote two matrices. 

 

Thus, we rewrite the equations (3.18), (3.19), (3.20), and (3.21) as follows, 

U(1) ← X(1)[U
(2)⊙U(3)⊙U(4)…⊙U(N)] [(U(2))

𝑇
U(2) ∗ (U(3))

𝑇
U(3) ∗ … ∗

(U(N))
𝑇
U(N)]

+

  

(3.23) 

U(2) ← X(2)[U
(1)⊙U(3)⊙U(4)…⊙U(N)] [(U(1))

𝑇
U(1) ∗ (U(3))

𝑇
U(3) ∗ … ∗

(U(N))
𝑇
U(N)]

+

  

(3.24) 

U(n) ← X(n)[U
(1)⊙U(2)⊙…⊙U(n−1)⊙U(n+1)⊙…⊙U(N)] [(U(2))

𝑇
U(2) ∗

    (U(3))
𝑇
U(3) ∗ … ∗ (U(n−1))

𝑇
U(n−1) ∗ (U(n+1))

𝑇
U(n+1) ∗ … ∗ (U(N))

𝑇
U(N)]

+

         (3.25) 

U(N) ← X(N)[U
(1)⊙U(2)⊙…⊙U(n)⊙…⊙U(N−1)] [(U(1))

𝑇
U(1) ∗ (U(2))

𝑇
U(2) ∗ … ∗
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(U(n))
𝑇
U(n) ∗ … ∗ (U(N−1))

𝑇
U(N−1)]

+

.                                                                        (3.26) 

 

In summary, given an N-way tensor 𝒳 ∈ ℝI1×I2×…×I𝑁, its factor matrix 𝑈(𝑛) ∈ ℝ𝐼N×R, and 

frontal slice X(𝑛)  obtained by unfolding along the nth-order, the resulting matrix U(n) 

describes as follows: 

U(n) ← X(n)[U
(1)⊙U(2)⊙…⊙U(n−1)⊙U(n+1)⊙…⊙U(N)] [(U(2))

𝑇
U(2) ∗

(U(3))
𝑇
U(3) ∗ … ∗ (U(n−1))

𝑇
U(n−1) ∗ (U(n+1))

𝑇
U(n+1) ∗ … ∗ (U(N))

𝑇
U(N)]

+

.           (3.27) 

3.1.5 Example of regular tensor decomposition 

Given a 𝟐 × 𝟐 × 𝟐 3-way tensor 𝓧,  

𝓧 =

2 4
6 12

1 2
3 6

. 

The 𝑛-th frontal slice X(𝑛), 𝑛 = 1,2, 𝑎𝑛𝑑 3 is obtained by the mode-𝑛 matricization,  

X(1) = [
1 2
3 6

   
2 4
6 12

] 

X(2) = [
1 3
2 6

   
2 6
4 12

] 

X(3) = [
1 3
2 6

   
2 6
4 12

]. 

The initial setup is fixing vectors 𝑏0 = (
1
−1
) 𝑎𝑛𝑑 𝑐0 = (

1
0
) in equation (3.21) to compute a 

vector 𝑎1,  

𝑎1 = 𝐗(1)[𝑐0⊙𝑏0][(𝑐0)
𝑇𝑐0 ∗ (𝑏0)

𝑇𝑏0]
+ 

= [
1 2
3 6

   
2 4
6 12

] [(
1
0
)⊙ (

1
−1
)] [(

1
0
)
𝑇

(
1
0
) ∗ (

1
−1
)
𝑇

(
1
−1
)]
+

 

= [
1 2
3 6

   
2 4
6 12

] [

1
−1
0
0

] [(1) ∗ (2)]+ 
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= (
−1/2
−3/2

). 

Then set vectors 𝑎1 = (
−1/2
−3/2

) 𝑎𝑛𝑑 𝑐0 = (
1
0
), compute vector 𝑏1, 

𝑏1 = 𝐗(2)[𝑐0⊙𝑎1][(𝑐0)
𝑇𝑐0 ∗ (𝑎1)

𝑇𝑎1]
+

= [
1 2
3 6

   
2 4
6 12

] [(
1
0
)⊙ (

−1/2
−3/2

)] [(
1
0
)
𝑇

(
1
0
) ∗ (

−1/2
−3/2

)
𝑇

(
−1/2
−3/2

)]

+

= [
1 3
2 6

   
2 6
4 12

] [

−1/2
−3/2
0
0

] [(1) ∗ (5/2)]+ = (
−2
−4
). 

Then set vectors 𝑏1 = (
−2
−4
) 𝑎𝑛𝑑 𝑎1 = (

−1/2
−3/2

), compute vector 𝑐1, 

𝑐1 = 𝐗(3)[𝑏1⊙𝑎1][(𝑏1)
𝑇𝑏1 ∗ (𝑎1)

𝑇𝑎1]
+

= [
1 3
2 6

   
2 6
4 12

] [(
−2
−4
)

⊙ (
−1/2
−3/2

)] [(
−2
−4
)
𝑇

(
−2
−4
) ∗ (

−1/2
−3/2

)
𝑇

(
−1/2
−3/2

)]

+

= [
1 3
2 6

   
2 6
4 12

] [

1
3
2
6

] [(20) ∗ (5/2)]+ = (
1
2
). 

Repeating the above steps to find vectors 𝑎2, 𝑏2, 𝑎𝑛𝑑 𝑐2, we obtain the vectors set 𝑎1 = 𝑎2 =

(
−1 2⁄

−3 2⁄
) , 𝑏1 = 𝑏2 = (

−2
−4
), and 𝑐1 = 𝑐2 = (

1
2
). An approximation tensor 𝓧̅ is constructed 

from the vector set 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐. Thus, tensor 𝓧 can write as 𝓧̅, 

𝓧 =

2 4
6 12

1 2
3 6

, 

𝓧̅ = (
−1 2⁄

−3 2⁄
) ◦ (

−2
−4
) ◦ (

1
2
) ==

2.0000 4.0000
6.0000 12.0000

1.0000 2.0000
3.0000 6.0000

. 
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3.2 Tensor decomposition processing 

The process of web service recommendation is that, given a web services dataset that 

includes the service invocation history between users and services, the recommendation 

system recommends an optimized list of services to users.  

We consider a web service dataset WSDream describes real-world QoS attribute evaluation 

results from 142 users on 4,500 web services over 64 different times [Zheng, Ma, Lyu, & 

King, 2010]. There are four attributes of WSDream highlighted in Table 3.3. 

Table 3.3 The attributes of web service dataset WSDream 

Attributes Content Number 

User all users whom the web services are recommended 142 

Service all web services that can be recommended 4500 

Time the access time when the user requests the service 64 

Rating the QoS attribute value (the response time or throughput) 

when the user accessing service in the time period 

 

 

Each rating value is described by three users, service and time dimensionality as follows, 

User × Service × Time → Rating. 

Thus, a 3-way tensor 𝓧 ∈ ℝ142×4500×64 with elements 𝑥𝑖𝑗𝑘 can be constructed, where 𝑥𝑖𝑗𝑘 

represents the rating value of user 𝑖 accessing service 𝑗 at time period 𝑘, i = 1, . . ,142, j =

1, … ,4500, and k = 1,… ,64. The rating value is always positive. If user 𝑖 has not accessed 

service 𝑗 at time period 𝑘, then 𝑥𝑖𝑗𝑘 is null.  

Since most users access only a very limited number of web services, the user-service-time 

tensor 𝓧 is a large number of records but sparse tensor. To obtain the missing QoS attribute 

in the tensor 𝓧 , the web service QoS attribute can be predicted by the observed service 

invocation records from the current user.  

The main purpose of the tensor decomposition is to iteratively decompose the user-service-

time tensor 𝓧, obtain the factor matrices 𝑈(1), 𝑈(2), … , 𝑈(𝑁), and construct an approximation 
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tensor 𝓧̅ based on 𝓧̅ = ⟦𝑈(1), 𝑈(2), … , 𝑈(𝑁)⟧. The approximation tensor 𝓧̅ fills the missing 

elements to predict the QoS attribute for users accessing different web services at different 

time periods. The prediction process based on tensor decomposition can be divided into 

five main steps:  

• First, the tensor decomposition rules are defined.  

The regular tensor decomposition model of the user-service-time tensor 𝓧 ∈ ℝ142×4500×64 

with factor matrix 𝑈(𝑛) 𝑛 = 1,2,3  is given in the following equation, 

𝓧 = ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧                                             (3.28) 

where 𝑈(1) is the factor matrix for user 𝑖,  𝑈(2) is the factor matrix for service 𝑗, and 𝑈(3) is 

the factor matrix for time period 𝑘. 

• Second, the loss function is defined. 

Given the user-service-time tensor 𝓧  and its approximate tensor 𝓧̅ , the loss function 

ℓ(𝓧, 𝓧̅) calculates the loss value between two tensors 𝓧 and 𝓧̅ as following, 

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 = ‖𝓧 − ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧‖
2
                 (3.29) 

where 𝑈(1) is the factor matrix for user 𝑖,  𝑈(2) is the factor matrix for service 𝑗, and 𝑈(3) is 

the factor matrix for time period 𝑘. 

• Third, the regularization term is added to the loss function. 

Tensor decomposition is a complex model. Generally, a more complex model usually leads 

to overfitting. It might fail to predict future observations reliably [Hawkins, 2004]. A 

regularization term needs to be added with the original loss function to handle more complex 

learning tasks to solve this problem. The commonly used regularization terms are the L2 

norm of each factor matrix of a tensor. The essential regularization term 𝛺(𝓧̅) is shown in 

the following formula, 

𝛺(𝓧̅) =
1

2
𝜆 (‖𝑈(1)‖

2
+ ‖𝑈(2)‖

2
+⋯+ ‖𝑈(𝑁)‖

2
)                           (3.30) 
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where 𝓧̅ denotes an approximate tensor. 𝑈(1) is the factor matrix for user 𝑖,  𝑈(2) is the 

factor matrix for service 𝑗, and 𝑈(3) is the factor matrix for time period 𝑘. 𝜆 are parameters 

of the factor matrix in the regularization term.  

• Fourth, the loss function is optimized and iteratively solved. 

The objective function is a function constructed as the sum of lost function and regularization 

terms. Given an original tensor 𝓧  and an approximate tensor 𝓧̅ , the objective function 

𝐿(𝓧,𝓧) is as follows: 

Objective function = Loss function + Regularization term 

⇒𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝛺(𝓧).                                (3.31) 

We perform an optimization task for the objective function 𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝛺(𝓧) as 

follows,  

𝑚𝑖𝑛
𝑈(𝑛)|𝑛=1

𝑁
𝐿(𝓧, 𝓧̅) + 𝛺(𝓧) 

⇒ 𝑚𝑖𝑛
𝑈(1),𝑈(2),𝑈(3)

(
1

2
‖𝓧 − 𝓧̅‖2) +

1

2
𝜆 (‖𝑈(1)‖

2
+ ‖𝑈(2)‖

2
+ ‖𝑈(3)‖

2
).           (3.32) 

The alternating least squares (ALS) method is applied to solve this optimization problem. 

The method fixes 𝑈(1) 𝑎𝑛𝑑 𝑈(2) to solve for 𝑈(3), fixes 𝑈(1) 𝑎𝑛𝑑 𝑈(3) to solve for 𝑈(2), and 

fixes 𝑈(2) 𝑎𝑛𝑑 𝑈(3) to solve for 𝑈(1). The iteration step is repeated until some convergence 

criterion is satisfied [Zhang, Sun, Liu, & Guo, 2014b]. 

• Finally, reconstruct approximate tensor and predict the QoS attribute 

According to the inverse operation of tensor decomposition, a user-service-time approximate 

tensor 𝓧̅ is constructed. The prediction QoS attributes are filled by the approximate tensor.  
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3.3 Overview of the research 

The tensor-based modeling for web service recommendation is given as the following, as 

illustrated in Figure 3.11. By reconstructing decomposition modes, improved 

regularization terms, and clustering method, the data is expressed as a tensor, and 

recommendation accuracy can be improved.  

 

Figure 3.11 Framework of Tensor-based modeling for web service recommendation 

(1) Traversal tensor method (TTM) 

Given a 3-way original tensor 𝓧 ∈ ℝ𝐼1×𝐼2×𝐼3 , an improved tensor decomposition can be 

expressed with new factor matrices 𝑈𝑛𝑒𝑤
(1)

, 𝑈𝑛𝑒𝑤
(2)

, and 𝑈𝑛𝑒𝑤
(3)

 as the following equation, 

𝓧 ≈ 𝓧̅ = ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧                                          (3.33) 

where 𝓧  is an original tensor which consists of QoS attribute value, 𝓧̅  denotes an 

approximation tensor. 

 

(2) TTM with a modified regularization term 

Objective function 𝐿 can be transformed with the regularization term as follows,  

𝐿(𝓧, 𝓧̅) =  ℓ(𝓧, 𝓧̅) + 𝛺(𝓧̅)                                          (3.34) 

 

Tensor-based modeling for web service recommendation 
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where  𝓧  is an original tensor which consists of QoS attribute value, 𝓧̅  denotes an 

approximation tensor, ℓ(𝓧, 𝓧̅)  denotes lost function as ℓ(𝓧, 𝓧̅) = ‖𝓧 − 𝓧̅‖2 , 𝛺(𝓧̅) 

denotes a regularization term. 

 

(3) TTM with K-means algorithm 

Using clustering as a preprocessing stage, the K-means algorithm is applied to obtain the 

clustered tensor, which is used as the input to the TTM as follows, 

𝓧

𝑲−𝒎𝒆𝒂𝒏𝒔 
𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒊𝒏𝒈 
→        𝓧̿

𝑻𝑻𝑴
→  𝓧̅                                                 (3.35) 

where 𝓧 is an original tensor which consists of QoS attribute value, 𝓧̿ is a clustered tensor 

after K-means algorithm, 𝓧̅ denotes an approximation tensor. 

 

From the above equations, tensor-based modeling for web service recommendation is 

summarized as the following: 

{
 
 
 
 

 
 
 
 𝓧 ≈ 𝓧̅ = ⟦𝑈𝒏𝒆𝒘

(𝟏)
, 𝑈𝒏𝒆𝒘
(𝟐)
, 𝑈𝒏𝒆𝒘
(𝟑)
⟧

improved tensor decomposition

𝐿(𝓧, 𝓧̅) =  ℓ(𝓧, 𝓧̅) + 𝛺(𝓧̅)
loss function with a regularization term

𝓧

𝑲−𝒎𝒆𝒂𝒏𝒔 
𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒊𝒏𝒈 
→        𝓧̿

𝑻𝑻𝑴
→  𝓧̅

clustered tensor

.                            (3.36) 

 

3.3.1 Traversal tensor method 

The motivation of the traversal-tensor method study is to a maximum possible acquisition 

of features based on a limited number of samples and could be considered to improving QoS 

attribute prediction. Moreover, the method is also motivated by how regular tensor 

decomposition factorizes a tensor into a sum of component rank-one tensors [Kolda & 

Bader, 2009]. 
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The traversal-tensor method defines three feature factor matrices ∆𝑈(1), ∆𝑈(2), and ∆𝑈(3), 

and refine the regular factor matrices 𝑈(1), 𝑈(2), 𝑈(3) as enhanced factor matrices follow,  

𝑈𝒏𝒆𝒘
(𝟏) = 𝑈(1) + ∆𝑈(1), 𝑈𝒏𝒆𝒘

(𝟐) = 𝑈(2) + ∆𝑈(2), 𝑎𝑛𝑑 𝑈𝒏𝒆𝒘
(𝟑) = 𝑈(3) + ∆𝑈(3) 

Thus, an approximation tensor 𝓧̅ satisfies 𝓧̅ = ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧ and the loss function 

ℓ(𝓧, 𝓧̅) is modified as follows, 

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 = ‖𝓧 − ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧‖

2

                  (3.37) 

where 𝓧 is an original tensor that consists of QoS attribute value, || • || denotes the norm 

of tensor. 

We find the optimal that minimizes the (3.37) equation in every iteration step, 

min
𝑈𝒏𝒆𝒘
(𝒏)
‖𝓧 − ⟦(𝑈(1) + ∆𝑈(1)), (𝑈(2) + ∆𝑈(2)), (𝑈(3) + ∆𝑈(3))⟧‖.             (3.38) 

In Chapter 4, we discuss the methods in detail and gives the corresponding decomposition 

algorithm. The traversal-tensor method algorithm is applied to QoS attribute prediction. 

The experimental results show that the traversal-tensor method improves the prediction 

performance. 

3.3.2 TTM with a modified regularization term 

The recommendation performance based on tensor decomposition is usually negatively 

affected by the overfitting problem and, consequently, cannot achieve state-of-the-art 

performance. This often requires regularization terms to enhance decomposition 

performance. The regularization method is part of the loss function in TTM, and its 

function is to help optimize the loss function and reduce overfitting. 

Benefited the advantages of both lasso and ridge regressions, we improve the TTM with a 

regularization term 𝛺(𝓧̅), which the function of proposed is denoted by, 

𝛺(𝓧̅) = 𝜆(
1−𝑝

2
 ||𝓧̅||2

2 + 𝑝||𝓧̅||1)                                     (3.39) 



36 
 

where 𝓧̅ denotes an approximation tensor, ‖•‖ denotes the tensor norm,  λ > 0  is the 

regularization parameter. The parameter 𝑝 = 0 corresponds to the ridge method ‖•‖2 and 

𝑝 = 1 to the lasso method ‖•‖1. 

To optimize the objective function 𝐿 as follows, 

𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝛺(𝓧̅)                                           (3.40) 

where  𝓧  is an original tensor which consists of QoS attribute value, 𝓧̅  denotes an 

approximation tensor, λ > 0 is the regularization parameter, ℓ(𝓧, 𝓧̅) denotes lost function 

as ℓ(𝓧, 𝓧̅) = ‖𝓧 − 𝓧̅‖2, 𝛺(𝓧̅) denotes a regularization term. 

We perform an optimization task for the above objective function in every iteration step as 

follows, 

min
𝑈𝒏𝒆𝒘
(𝒏)
,𝒏=𝟏,𝟐,𝟑

(‖𝓧− ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧‖) + 𝜆(

1 − 𝑝

2
 ‖⟦𝑈𝒏𝒆𝒘

(𝟏) , 𝑈𝒏𝒆𝒘
(𝟐) , 𝑈𝒏𝒆𝒘

(𝟑) ⟧‖
2

2

+ 

𝑝||⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧||1)                                      (3.41) 

where 𝓧̅ denotes an approximation tensor, || • || denotes the norm of tensor, λ > 0 is the 

regularization parameter, 𝛺(𝓧̅) = 𝛺 (⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧) , 𝑈𝒏𝒆𝒘

(𝟏)
, 𝑈𝒏𝒆𝒘

(𝟐)
, and 𝑈𝒏𝒆𝒘

(𝟑)
 are 

enhanced factor matrices, and 𝑝 denotes the parameter of the lasso or ridge method. 

Chapter 5 applies this optimization algorithm in that one of the decomposition elements is 

optimized at each iteration when other elements are kept fixed. The experiment result 

shows that the proposed tensor learning method can effectively improve the estimation 

performance. 
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3.3.3 TTM with K-means algorithm 

The purpose of clustering preprocessing is to deal with the initial unorganized data in the 

web service dataset. Since the K-means algorithm is currently the most widely used 

clustering algorithm, and it is suitable for classification applications with tensor data, we 

chose a K-means algorithm as a preprocessing method of TTM.  

Our proposed two-step strategy method, TTM with K-means algorithm, is applied to fit the 

QoS attribute prediction scenario as follows,  

𝓧

𝑲−𝒎𝒆𝒂𝒏𝒔 
𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒊𝒏𝒈 
→        𝓧̿

𝑻𝑻𝑴
→  𝓧̅                                                (3.42) 

where 𝓧 is an original tensor which consists of QoS attribute value, 𝓧̿ is a clustered tensor 

after K-means algorithm, 𝓧̅ denotes an approximation tensor. 

First, we compute the mean value in the same context cluster 𝑃𝑢𝑠𝑒𝑟 , 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝑎𝑛𝑑 𝑃𝑡𝑖𝑚𝑒 for 

prediction 𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒 items separately with an original tensor 𝓧. And we apply 

the 𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒  items to generate a clustered tensor 𝓧̿ =

⟦𝑈(user), 𝑈(service), 𝑈(𝑡𝑖𝑚𝑒)⟧, where 𝑈(user), 𝑈(service), 𝑎𝑛𝑑 𝑈(𝑡𝑖𝑚𝑒) are the factor matrices 

after clustering. 

Second, this clustered tensor 𝓧̿  is used as an input tensor of TTM. As same as 

decomposition processing in Chapter 4, we find the optimal that minimizes the objective 

function 𝐿 in every iteration step as follows, 

𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝜆𝛺(𝓧̅)                                      (3.43) 

where 𝓧  is an original tensor which consists of QoS attribute value, 𝓧̅  denotes an 

approximation tensor, λ > 0  is the regularization parameter, ℓ(𝓧, 𝓧̅)  denotes as 

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2, 𝛺(𝓧̅) denotes a regularization term. 

In Chapter 6, we explain the relationship between tensor and K-means algorithm. 

Furthermore, we introduce the tensor decomposition model based on the K-means 
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algorithm. The experiment result shows that the algorithm improves the clustering and 

recognition performance. 

3.3.4 Discussion 

1) The importance of large samples 

The sample size of the data volume is directly related to the prediction accuracy. The 

reasons are as follows. First, a few categories of samples make it difficult to train a model. 

Assuming that there are large categories of data, while there are few samples per category 

or even no sample for some categories, then it is not easy to train a model. Therefore, it is 

necessary to increase the sample size to cover all data categories. 

Second, the model generated by insufficient training samples cannot accurately predict the 

QoS values. In this case, tensor decomposition can produce serious overfitting problems. 

Therefore, the training samples should be as complete as possible. 

For example, there should be 2.7 billion records in the QoS dataset if all QoS values are 

fully collected. However, the current dataset only has 30 million records, which is 1% of 

what it should be. It is not possible to predict the other ninety data records based on just 

one record. However, the 30 million records of the QoS dataset are already a large amount 

of data. Therefore, the existing record can help TTM challenge this prediction task even 

though it is small compared to the whole dataset. 

 

2) Role of TTM in overcoming the cold start problem 

In this thesis, poor recommendation performance due to insufficient sample data is also 

referred to as the cold start problem. The typical approach to solve the cold start problem 

is to explore new data and utilize existing data. TTM focuses on utilizing existing data, 

enabling the system to make recommendations using limited QoS data to overcome the 

cold start problem. We observe that in the three-dimensional web service dataset, service 

is recommended to a user with a linear relationship between its QoS and the related features. 
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Moreover, the QoS correlates with the factor matrix composed of all features and the factor 

matrix composed of the certain feature itself. Based on this observation, the TTM first 

predicts the QoS value from the three-factor matrices of user-service, user-time, and 

service-time, which are composed of (user, service, time) triples, as in traditional tensor 

decomposition methods. 

On the other hand, TTM constructs three feature factor matrices, user-user, service-service, 

and time-time, composed of three features themselves, reusing a limited number of samples. 

TTM substitutes all the factor matrices into the tensor decomposition iteration process until 

satisfactory conditions are reached and finally produces new predicted QoS values. In this 

process, the schema of the feature factor matrix remedy for shortcomings of the limited 

sample data, allowing the system to collect recommendation data and pass the cold start 

phase smoothly. 

 

3) TTM and deep learning 

With the development of deep learning techniques, neural network-based research has been 

conducted in the field of QoS prediction in recent years. We also note the application of 

neural networks in this area. Xiong et al. employed hidden features to calculate the 

similarity between users and services by introducing a deep learning model [Xiong, Wu, 

Li, & Gu, 2017]. Wu et al. proposed a generalized deep neural model for QoS prediction 

using multiple contextual features [Wu, Zhang, Luo, Yue, & Hsu, 2018]. Zhou et al. 

developed a neural network-based approach to predict the QoS values in a spatial-temporal 

context [Zhou, Wu, Yue, & Hsu, 2019]. We are trying to implement this approach based 

on the neural network as one of our future research directions. 
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Chapter 4 

Algorithm for Tensor Decomposition and its Applications 

This chapter formally introduces a new tensor decomposition method, TTM, for QoS 

attribute prediction. Performance evaluation is given by validation of numerical examples, 

mathematical explanations, and experiments result. 

4.1 Introduction 

The feature extraction is critical in processing high-dimensional data of the web service 

recommendation system. As the prediction task, the purpose of feature extraction is to select 

the appropriate features for the task description. In practical QoS attribute prediction 

applications, we expect to get enough samples to extract the suitable features. However, when 

meeting a small sample data, the current feature extraction techniques based on tensor 

decomposition mainly decompose each dimension's data at once according to the spatial 

characteristics of multiple dimensions. The regular tensor decomposition model (RTD) lacks 

the capability cause of relying on limited sample data. To remedy the low prediction 

accuracy rate caused by the lack of initial data samples, we focus on a tensor decomposition 

algorithm for small sample data and proposes a feature-oriented decomposition algorithm to 

solve the above issue. The significant contributions of this chapter are summarized as follows.  

• Develop a feature factor matrix as a features-oriented collaboration scheme. The new 

method integrates the feature factor matrices to construct more data samples for tensor 

decomposition. The objective of a feature factor matrix is to the maximum possible 

acquisition of features based on a limited number of samples. 

• Perform a novel traversal-tensor method (TTM) by traversing all feature-oriented on 

tensor decomposition. The key idea is that this method invokes the feature factor 

matrices based on the regular factor matrices in the decomposition algorithm. Thus, the 

TTM increases the computational factor in the iteration step for convergence to get a 
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reasonable result. 

• Conduct comprehensive experiments in the real multiple datasets. The experimental 

results demonstrate that the TTM achieves better prediction performance by deducting 

the iteration number than the RTD.  

The chapter is structured as follows. Section 4.2 introduces the motivation and reviews our 

previous research work. Section 4.3 describes the new TTM algorithm. We first elaborate on 

the problem formulation of a feature factor matrix, then present the derivations for modeling 

the features-oriented collaboration scheme and highlight the differences to emphasize the 

novelty of this work. Section 4.4 discusses the comparison of TTM and RTD, including its 

properties, startup issues, computational complexity, and validation of its results. We 

present experiment setup and performance evaluation results in different real-world datasets 

in Section 4.5 and Section 4.6. Section 4.7 summarizes the chapter. We also give the 

supplementary concepts about matrix factorization and regular tensor decomposition as 

Appendix A and Appendix B. 
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4.2 Motivation 

The web service recommendation needs to extract the user and service historical data and 

predict the QoS attribute to recommend the relevant service for the user.  Many methods 

for historical data extraction have been developed in the past: collaborative filtering, matrix 

factorization, and tensor decomposition [BAĞIRÖZ, Güzel, YAVANOĞLU, & Özdemir, 

2019]. This thesis is concerned with the tensor decomposition to predict the QoS attribute. 

Tensor decomposition is a powerful computational tool for extracting valuable information 

from sample data [Shi, Cheung, Zhao, & Lu, 2018].  

The historical data (u, s, t, R) predicts the QoS attribute for a future period. The quartet set 

is represented using a tensor 𝓧. Each sample of quartet set represents the response-time R 

of a user u to a service s invoked at a given time slice t. For example, (1,2,3,10) means that 

the response-time of service #2 invoked by user #1 in time slice #3 is 10 seconds. 

By decomposing the tensor 𝓧, the corresponding factor matrices are obtained for different 

time slices. A factor matrix comprises multiple users, multiple services invoked, and 

response-time. After the outer product operation of the factor matrices, a new tensor is 

generated by the factor matrices in the iteration. The prediction of the response-time value 

for the next time slice is achieved. 

Zhang et al. proposed a tensor decomposition algorithm that is able to deal with the triadic 

relations of the user-service-time model [Zhang, Sun, Liu, & Guo, 2014a]. Ma et al. 

proposed an integrated QoS attribute prediction method that enables efficient service 

recommendation for web service-based mobile clients via regular tensor decomposition 

algorithm [Ma, Wang, Yang, & Chang, 2015]. Their prediction method is considered the 

access time context, which is from different services by different users. Since these 

methods focus on only the time attribute or context, Cheng et al. propose a QDSHTD 

prediction method based on a combination of features and contextual information [Cheng 

et al., 2019]. The experimental results show that the QDSHTD algorithm gives higher 

estimation accuracy than other QoS attribute prediction algorithms. Although the 
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successful applications show themselves to be based on a large amount of sample data, 

these methods above have the same assumption premise that the number of samples used 

for prediction is sufficient.  

However, the analysis reveals that new users will lack response-time value for the service 

at the time slice. New users may never access the existing service, or new users do not 

invoke the service at the time slice only. Thus, the number of samples of the quartet set is 

insufficient. With this limited sample data, the factor matrix remains unchanged, and the 

fixed factor matrix keeps the iteration processing stable. Factor matrices can be 

reconstructed if we need to speed up the iterative process to improve prediction 

performance [Rajih, Comon, & Harshman, 2008]. Rajih et al. proposed an enhanced line 

search (ELS) method based on the current sample in iteration processing. The ELS leads 

to an optimal solution that applies a summary of the factor matrix and direction indicator.  

The idea of the ELS method inspired us to consider a sample reconstruction for modeling 

a tensor-based pattern. We consider restructuring samples with limited historical data in 

the iteration processing of the tensor decomposition. The problem to be solved is to 

complete the reconstruction of factor matrices from the limited response-time value of 

existing services that the users in the time slice have invoked. 

In our previous research, a user collaboration model on tensor decomposition is proposed 

[Chai, Feng, & Hassanein, 2016]. We analyze the user collaboration tensorial data in tensor 

decomposition and design a user-oriented structure. The proposed method achieves better 

prediction accuracy than the regular model. Effectively extracting features computational 

algorithm from the limited samples deserves a more in-depth study. Our methods 

significantly reduce the iteration number overhead of the decomposition process for sparse 

tensors. To the best of our knowledge, this is one of the few methods in the context of the 

tensor decomposition algorithm.  
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4.3 The new algorithm: TTM 

We start with a brief description of our previous research work that we elaborate a features-

oriented collaboration scheme and propose a new algorithm of feature-oriented tensor 

decomposition TTM. Furthermore, we highlight the differences to emphasize the novelty of 

this work. 

4.3.1 Preliminary result 

The feature-oriented tensor data model has been studied in our previous work [Chai, Feng, 

& Hassanein, 2016]. To overcome the limitation of the CF method, we extend the data 

from the matrix representation into a three-dimensional tensor model. The model replaces 

the user-service matrix with user-user-service relations by considering the different QoS 

attributes for different users. We analyze how user collaboration of related services can 

help improve tensor decomposition performance. We conduct the experiments to evaluate 

the performance of the proposed method. The experimental results demonstrate that the 

proposed method achieves better QoS attribute prediction accuracy than the other methods.  

The above model reconstructs some sample data based on a single user feature only. If we 

load more features information as the sample data, or even all the features, would we still 

improve the prediction accuracy of the recommendation system? With this question in 

mind, we have done further research in this direction.  

4.3.2 Regular tensor decomposition 

The details of regular tensor decomposition have been investigated in Kolda’s related 

literature [Kolda, 2006]. More preliminary details are addressed in Appendix B. 

Given a 3-way tensor with rank-one 𝓧 ∈ ℝI1×I2×I3 , and an approximation tensor 𝓧̅ 

corresponding to 𝓧 , where ℝ  is for the set of real numbers, I𝑛 𝑛 = 1,2, 𝑎𝑛𝑑 3  is the 

dimension of the tensor. An approximation tensor 𝓧̅ from decomposition satisfies the 

following equation, 
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𝓧 ≈ 𝓧̅ = ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧                                            (4.1) 

where the regular factor matrix 𝑈(n) 𝑛 = 1,2, 𝑎𝑛𝑑 3. 𝑈(1), 𝑈(2), 𝑈(3)  represent the user, 

service, and time features, respectively. The symbol ⟦•⟧ denotes the collection of factor 

matrices. 

The goal of the decomposition of 𝓧 is to find the regular factor matrix 𝑈(n)  that produces 

the best approximation tensor 𝓧̅. The equation (4.1) can be written in a compact form using 

a Khatri–Rao product ⊙.  

{
 

 X(1) ≈ 𝑈
(1)(𝑈(2)⊙𝑈(3))

𝑇

X(2) ≈ 𝑈
(2)(𝑈(1)⊙𝑈(3))

𝑇

X(3) ≈ 𝑈
(3)(𝑈(1)⊙𝑈(2))

𝑇

                                             (4.2) 

where X(n) 𝑛 = 1,2, 𝑎𝑛𝑑 3 is the n-th frontal slice of the original tensor 𝓧, the symbol ⊙ 

denotes the Khatri-Rao product, and 𝑇 denotes the matrix transpose. 

The alternating least squares algorithm (ALS) is the most used algorithm for regular tensor 

decomposition. ALS estimates three factor matrices at each step by minimizing a loss 

function ℓ(𝓧, 𝓧̅) in the least squares sense the error like the following equation, 

ℓ(𝓧, 𝓧̅) = ||𝓧 − 𝓧̅||2 = ||𝓧 − ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧||2                      (4.3) 

where || • || denotes the norm of tensor. With regular factor matrices 𝑈(2) and 𝑈(3) fixed 

to initial values, the estimate of 𝑈(1) is given by, 

𝑈(1) = X(1)(𝑈
(2)⊙𝑈(3))

𝑇
 

⇒𝑈(1) = X(1)[𝑈
(2)⊙𝑈(3)] [(𝑈(2))

𝑇
𝑈(2) ∗ (𝑈(3))

𝑇
𝑈(3)]

+

                 (4.4) 

where the symbol + denotes the pseudoinverse, and * denotes the Hadamard product. 

We estimate regular factor matrices 𝑈(2) and 𝑈(3) equivalently, with 𝑈(2) = 𝐗(2)(𝑈
(1)⊙

𝑈(3))
𝑇
 and 𝑈(3) = 𝐗(3)(𝑈

(2)⊙𝑈(1))
𝑇
, and repeat the same steps until the convergence 

criterion is satisfied.  

 

 



46 
 

The regular tensor decomposition algorithm is given in Algorithm 4.1.  

Algorithm 4.1: the regular tensor decomposition algorithm 

Input: a tensor 𝓧 ∈  ℝI1×I2×I3, the regularization parameter λ. 

Output: the approximate tensor 𝓧̅ , the factor matrices are the index of users, 

services, and time, respectively. 

Step 1. Initialize regular factor matrices 𝑈(2), 𝑈(3) and slices X(1), X(2), X(3). 

Step 2a. Estimate the regular factor matrix 𝑈(1) = X(1)(𝑈
(2)⊙𝑈(3))

𝑇
. 

Step 2b. Estimate the regular factor matrix 𝑈(2) = X(2)(𝑈
(1)⊙𝑈(2))

𝑇
. 

Step 2c. Estimate the regular factor matrix 𝑈(3) = X(3)(𝑈
(1)⊙𝑈(2))

𝑇
. 

Step 3. Calculate the approximate tensor 𝓧̅ = ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧. 

Step 4. Repeat step 2 to step 3 to update the approximate tensor 𝓧̅. 

Step 5. Calculate the squared error ɛ  to reduce the loss function value until 

convergence is exhausted. 

Step 6. Return the final prediction tensor 𝓧̅. 

 

The RTD fixes 𝑈(2) and 𝑈(3) to find the factor matrix 𝑈(1), then fixes 𝑈(1) and 𝑈(3) to find 

the matrix 𝑈(2), then fixes 𝑈(1) and 𝑈(2) to find the matrix 𝑈(3), and continues to repeat 

the procedure until the convergence criterion is satisfied.  

 

4.3.3 Features-oriented collaboration scheme 

The loops of convergence can take several iterations and needs a large number of iterations 

[Paatero, 1997]. In each iteration step of the regular tensor decomposition algorithm, we 

further define feature factor matrices ∆𝑈(n), and the enhanced factor matrices 𝑈(𝑛)̅̅ ̅̅ ̅̅ . The 

feature factor matrix is a scheme that is formulated as a features-oriented collaboration in 

the iteration step. Furthermore, all enhanced factor matrices would minimize in equation 

(4.3). The objective is further specified via the following definitions. 
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Definition 4.1 ∆𝑈(n) 𝑛 = 1, 2, 𝑎𝑛𝑑 3  denotes feature factor matrices as a scheme of 

features-oriented collaboration. Feature factor matrix ∆𝑈(n)  is in connection with other 

fixed regular factor matrices 𝑈(i) (i ≠ n and i = 1, 2, 𝑎𝑛𝑑 3) and 𝑛-th frontal slice X(n) in 

the 𝑡-th (𝑡=1, 2, ….) iteration step. 

The feature factor matrix ∆𝑈(1) can be represented by,  

∆𝑈(1) = X(1)(𝑈
(2)⊙𝑈(2))

𝑇
+ X(1)(𝑈

(3)⊙𝑈(3))
𝑇
                       (4.5) 

where  𝑈(2)  and 𝑈(3)  denote regular factor matrices, and X(1)  denotes 1st frontal slice. 

∆𝑈(1), 𝑈(1), and X(1) are in the same iteration step. 𝑇 denotes the matrix transpose. 

The feature factor matrix ∆𝑈(2) and feature factor matrix ∆𝑈(3) are obtained equivalently 

as follows, 

∆𝑈(2) = X(2)(𝑈
(1)⊙𝑈(1))

𝑇
+ X(2)(𝑈

(3)⊙𝑈(3))
𝑇
                      (4.6) 

∆𝑈(3) = X(3)(𝑈
(1)⊙𝑈(1))

𝑇
+ X(3)(𝑈

(2)⊙𝑈(2))
𝑇
                      (4.7) 

where X(2) denotes 2nd frontal slice, X(3) denotes 3rd frontal slice. 

Definition 4.2 𝑈(𝑛)̅̅ ̅̅ ̅̅  𝑛 = 1,2, 𝑎𝑛𝑑 3 denotes enhanced factor matrices as a summary of 

regular factor matrices 𝑈(n) and feature factor matrices ∆𝑈(n), 

𝑈(1)̅̅ ̅̅ ̅̅ = 𝑈(1) + ∆𝑈(1)                                                  (4.8) 

where 𝑈(1) is regular factor matrices. ∆𝑈(1) is feature factor matrices. ∆𝑈(1) and 𝑈(1)  are 

obtained in the same 𝑡-th (𝑡=1, 2, ….) iteration step. 𝑈(1)̅̅ ̅̅ ̅̅  is an enhanced factor matrix that 

will be applied in the (𝑡 + 1)-th (𝑡=1, 2, ….) iteration step instead of 𝑈(n).  

With the enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅  , the enhanced factor matrices 𝑈(2)̅̅ ̅̅ ̅̅   and 𝑈(3)̅̅ ̅̅ ̅̅   are 

obtained equivalently as follows, 

𝑈(2)̅̅ ̅̅ ̅̅ = 𝑈(2) + ∆𝑈(2)                                                 (4.9) 

𝑈(3)̅̅ ̅̅ ̅̅ = 𝑈(3) + ∆𝑈(3)                                                (4.10) 
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where  𝑈(2) and 𝑈(3) denote regular factor matrices. ∆𝑈(2) and ∆𝑈(3) denote feature factor 

matrices.  

In the absence of more sample data, we expect to exhaust the association of each factor 

matrix with all other features to make up for the loss of information due to the lack of 

sample data. Therefore, the feature factor matrices load a mapping collaboration between 

each regular factor matrix and other features separately, potentially describing the tensor 

data object more accurately and increasing the iteration step's size. 

4.3.4 Example of remedy insufficient samples 

We illustrate two-dimensional and three-dimensional datasets to help clearly understand 

the proposed feature-oriented collaborations by the user-oriented, service-oriented, and 

time-oriented collaborations separately. 

(1) Two-dimensional data 

Let us focus on two-dimensional data first. Given a user-service matrix, we predict the 

missing QoS attribute relevant to user and service based on the current value's observations.  

For example, we set four records in an original web service dataset, such as Table 4.1. The 

response-time value of 10 seconds reflects the performance when user 1 requesting service 

1. The response-time value 20 and 30 seconds are generated by user 3 requesting service 2 

and 3, respectively. The last response-time value of 40 seconds is generated by user 4 

requesting service 4.  

Table 4.1 Four records in web service dataset 

 

 

 

From the records of Table 4.1, we obtain the (user, service, response-time) full records have 

three users, four services, and four response-time values in Table 4.2. 

Users Services Response-time 

user1 service1 10 seconds 

service 4 40 seconds 

user3 service 2 20 seconds 

service 3 30 seconds 
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Table 4.2 (user, service, response-time) full records 

 

 

 

 

 

 

 

There are two dimensions in these full records: user and service, three per user dimension, 

and four per service dimension. Based on the number of features and dimensions, there 

should be 12 records, but only four are observed as the sample. It means that the 8 (=12-4) 

latent records should be predicted in Table 4.3.  

Table 4.3 Statistics of (user, service, response-time) records 

Dimensions Features Sample records Latent records 

User 3 4 8 

Service 4 

 

The prediction encounters a problem of how to predict the latent records based on the 

limited sample records. If prediction uses more samples, the prediction performance will 

be enhanced more. To solve this problem, we proposed a reconstruction method to obtain 

more sample-based on historical sample records. 

First, we extract the sample records from a full recordset as follows in Table 4.4. 

 

 

User Service Response-time 

(seconds) 

Sample records 

1 1 10 Sample 

2 1   

3 1   

1 2   

2 2   

3 2 20 Sample 

1 3   

2 3   

3 3 30 Sample 

1 4 40 Sample 

2 4   

3 4   
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Table 4.4 (user, service, response-time) sample records 

Users Service Response-time 

(seconds) 

1 1 10 

3 2 20 

3 3 30 

1 4 40 

 

Moreover, we construct two new records sets by using only sample records, based on the 

above (user, service, response-time) record set in Table 4.4, 

• (user, user, response-time) recordset 

We replace (user, service) columns with (user, user) columns when fixing the response-

time value in sample records to construct a new record set in Table 4.5.  

• (service, service, response-time) recordset 

Following the same idea, we replace (user, service) columns with a (service, service) 

column when fixing the response-time value in sample records to construct a new record 

set in Table 4.6.  

We construct two new matrixes: the user-based matrix (user, user) and service-based 

matrix (service, service), respectively, based on the original matrix. Given a user-service 

matrix, the response-time value can be predicted by (user-service) as an original matrix. 

We proposed a new construction that combines two new matrixes and the original matrix 

to enhance the prediction performance as follows,  

((user, service), (user, user), (service, service)) --> response-time 

where the user and service are two dimensions, (user, service) is an original matrix, (user, 

user) is a user-based matrix, (service, service) is a service-based matrix.  
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Table 4.5 (user, user, response-time) sample records 

 

 

 

 

Table 4.6 (service, service, response-time) sample records 

 

 

 

 

To illustrate the above construct, the three-dimensional mapping is shown as follows in 

Figure 4.1. The (user, service, response-time) recordset is mapped in two records: (user, 

user, response-time) and (service, service, response-time).  

In Figure 4.1, we can see that the response-time value mapping reflects different 

distributions when a viewpoint is based on a different direction as the coordinate level. For 

example, when the viewpoint is based on the user-user matrix, the mapping of four 

response-time values will be distributed on two straight lines with user=1 and user=3, and 

when the viewpoint is based on the service-service matrix, the mapping of four response-

time values will be distributed on four different straight lines with service=1,2,3, and 4.  

Thus, the response-time value distribution in the three-dimensional data transfer to a two-

dimensional space, which is mapped from the user and service directions separately. We 

use three sets to predict latent response-time value: a (user, service, response-time) set, a 

(user, user, response-time) set, and a (service, service, response-time) set. 

  

User User Response-time 

(seconds) 

Sample records 

1 1 10 Sample 

3 3 20 Sample 

3 3 30 Sample 

1 1 40 Sample 

Service Service Response-time 

(seconds) 

Sample records 

1 1 10 Sample 

2 2 20 Sample 

3 3 30 Sample 

4 4 40 Sample 
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(user, service, response-time) 

 

 

 

(user, user, response-time) (service, service, response-time) 

  

Figure 4.1 A three-dimensional data mapping 
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(2) Three-dimensional data 

Let us apply the reconstruction idea to three-dimensional data. Given a user-service-time 

tensor, the missing QoS attribute is predicted with three dimensions: user, service, and time, 

based on the current value observations. For example, the (user, service, time, response-time) 

tensor has three users, four services, and two times for seven response-time values in Table 

4.7.  

Table 4.7 (user, service, time, response-time) tensor full records 

 

Observing Table 4.7, the response-time value of 10 seconds reflects the performance when 

user 1 requesting service 1 at time 1. The response-time values 20 and 30 seconds are 

generated by user 3 requesting service 2 and 3 at time 1. The response-time value of 40 

User Service Time Response-time 

(seconds) 

Sample records 

1 1 1 10 Sample 

1 1 2   

1 2 1   

1 2 2 50 Sample 

1 3 1   

1 3 2   

1 4 1 40 Sample 

1 4 2   

2 1 1   

2 1 2 60 Sample 

2 2 1   

2 2 2   

2 3 1   

2 3 2   

2 4 1   

2 4 2   

3 1 1   

3 1 2   

3 2 1 20 Sample 

3 2 2   

3 3 1 30 Sample 

3 3 2   

3 4 1   

3 4 2 70 Sample 
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seconds is generated by user 4 requesting service 4 at time 1. Moreover, the response-time 

value is 50 seconds when user 1 requests service 2 at time 2. The response-time value of 60 

seconds is generated by user 2 requesting service 1 at time 2. At the same time 2, the 

response-time value of 70 seconds is generated by user 3 requesting service 4. The value of 

latent records number 17 (=24-7) should be predicted in Table 4.8.  

Table 4.8 Statistics of a (user, service, time, response-time) tensor 

Dimension’s 

name 

Features 

number 

Sample records 

number 

Latent records 

number 

User 3 7 17 

Service 4 

Time 2 

 

Following the same idea, we extract the sample records from a tensor as follows in Table 

4.9. 

Table 4.9 (user, service, time, response-time) tensor samples records 

 

Moreover, we construct seven new tensors using only sample records, based on the above 

(user, service, time, response-time) tensor samples in Table 4.9. 

We replace (user, service, time) columns with (user, user, service) columns when fixing the 

response-time value in sample records to construct a new record set as follows in Table 

4.10.  

The rest can be done with the same processing, and we obtain the six new tensor 

constructions as follows in Tables 4.11 to 4.15.  

User Service Time Response-time 

(seconds) 

Sample records 

1 1 1 10 Sample 

1 2 2 50 Sample 

1 4 1 40 Sample 

2 1 2 60 Sample 

3 2 1 20 Sample 

3 3 1 30 Sample 

3 4 2 70 Sample 
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• (user, user, service, response-time) tensor 

• (user, user, time, response-time) tensor 

• (service, service, user, response-time) tensor 

• (service, service, time, response-time) tensor 

• (time, time, user, response-time) tensor 

• (time, time, service, response-time) tensor 

 

Table 4.10 (user, user, service, response-time) tensor samples records 

 

 

Table 4.11 (user, user, time, response-time) tensor samples records 

 

 

 

 

User User Service Response-time 

(seconds) 

Sample records 

1 1 1 10 Sample 

1 1 2 50 Sample 

1 1 4 40 Sample 

2 2 1 60 Sample 

3 3 2 20 Sample 

3 3 3 30 Sample 

3 3 4 70 Sample 

User User Time Response-time 

(seconds) 

Sample records 

1 1 1 10 Sample 

1 1 2 50 Sample 

1 1 1 40 Sample 

2 2 2 60 Sample 

3 3 1 20 Sample 

3 3 1 30 Sample 

3 3 2 70 Sample 
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Table 4.12 (service, service, user, response-time) tensor samples records 

 

 

Table 4.13 (service, service, time, response-time) tensor samples records 

 

 

Table 4.14 (user, time, time, response-time) tensor samples records 

 

 

Service Service User Response-time 

(seconds) 

Sample records 

1 1 1 10 Sample 

2 2 1 50 Sample 

4 4 1 40 Sample 

1 1 2 60 Sample 

2 2 3 20 Sample 

3 3 3 30 Sample 

4 4 3 70 Sample 

Service Service Time Response-time 

(seconds) 

Sample records 

1 1 1 10 Sample 

2 2 2 50 Sample 

4 4 1 40 Sample 

1 1 2 60 Sample 

2 2 1 20 Sample 

3 3 1 30 Sample 

4 4 2 70 Sample 

User Time Time Response-time 

(seconds) 

Sample records 

1 1 1 10 Sample 

1 2 2 50 Sample 

1 1 1 40 Sample 

2 2 2 60 Sample 

3 1 1 20 Sample 

3 1 1 30 Sample 

3 2 2 70 Sample 
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Table 4.15 (service, time, time, response-time) tensor samples records 

 

Finally, we divide the six tensors into three groups: 

• User-based: (user, user, service, response-time) and (user, user, time, response-time)  

• Service-based: (service, service, user, response-time) and (service, service, time, 

response-time)  

• Time-based: (time, time, user, response-time) and (time, time, service, response-time)  

 

We proposed a new construction that combines six new tensors and the original tensor to 

enhance the prediction performance as follows,  

((user, service, time), (user, user, service), (user, user, time), (service, service, user),  

(service, service, time), (time, time, user), (time, time, service))  

→ response-time 

where the user, service, and time are three dimensions, (user, service, time) is an original 

tensor, (user, user, service/time) are User-based tensors, (service, service, user/time) are 

Service-based tensors, (time, time, user/service) are Time-based tensors.  

Since the four-dimensional construction cannot be directly depicted, we illustrate the above 

construction by the flattening tables. For example, we construct the new tensor (user, user, 

service, response-time) from the original tensor (user, service, time, response-time) as in 

Figures 4.2 and 4.3. 

  

Service Time Time Response-time 

(seconds) 

Sample records 

1 1 1 10 Sample 

2 2 2 50 Sample 

4 1 1 40 Sample 

1 2 2 60 Sample 

2 1 1 20 Sample 

3 1 1 30 Sample 

4 2 2 70 Sample 
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Figure 4.2 (user, user, service, response-time) tensor data mapping 

(user, user, service) in four services 

(user, service, time, response-time) tensor  
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Figure 4.3 (user, user, time, response-time) tensor data mapping 

 

Finally, the rest of the tensors can be done in the same processing to obtain the six new 

tensor constructions, and we predict latent response-time value based on a (user, service, 

time, response-time) tensor with the user-based, service-based, time-based tensors. 

  

(user, user, time) at two time 

(user, service, time, Response-time) tensor  
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4.3.5 Traversal-tensor method (TTM) 

We proposed an improved tensor decomposition method, TTM. The TTM is based on the 

above definition and determination of increments to all three factor matrices. It consists of 

repeatedly solving for the feature factor matrices ∆𝑈(1), ∆𝑈(2), and ∆𝑈(3), and the enhanced 

factor matrices 𝑈(1)̅̅ ̅̅ ̅̅ , 𝑈(2)̅̅ ̅̅ ̅̅ , and 𝑈(3)̅̅ ̅̅ ̅̅ .  

Considering that the newly generated factor matrix may cause the approximation tensor to 

be farther away from the original tensor, we need to set up the control mechanism.  

Given three new factor matrices 𝑈𝑛𝑒𝑤
(1)

 , 𝑈𝑛𝑒𝑤
(2)

 , and 𝑈𝑛𝑒𝑤
(3)

 , and two errors ɛ  and ɛ𝑛𝑒𝑤  are 

denoted as follows, 

ɛ = ‖X(n) − X(n)̅̅ ̅̅ ̅‖
2
, 𝑛 = 1,2, 𝑎𝑛𝑑 3                              (4.11) 

ɛ𝑛𝑒𝑤 = ‖X(n) − X(n)̅̅ ̅̅ ̅′‖
2
, 𝑛 = 1,2, 𝑎𝑛𝑑 3                            (4.12) 

where 

X(n) 𝑛 = 1,2, 𝑎𝑛𝑑 3 denotes the n-th frontal slice of the original tensor 𝓧,  

X(n)̅̅ ̅̅ ̅ 𝑛 = 1,2, 𝑎𝑛𝑑 3 denotes the n-th frontal slice of the approximation tensor 𝓧̅ (𝓧̅ 

is generated by the regular factor matrices 𝑈(n) 𝑛 = 1,2, 𝑎𝑛𝑑 3), 

X(n)̅̅ ̅̅ ̅′ 𝑛 = 1,2, 𝑎𝑛𝑑 3 denotes the n-th frontal slice of the approximation tensor 𝓧̅′ 

(𝓧̅′ is generated by the enhanced factor matrices 𝑈(n)̅̅ ̅̅ ̅̅  𝑛 = 1,2, 𝑎𝑛𝑑 3). 

 

At every step of updating the factor matrix, we calculate two squared errors ɛ and ɛ𝑛𝑒𝑤 

separately, then compare these two errors:  

If ɛ𝑛𝑒𝑤  ≥  ɛ, this indicates that the approximation tensor 𝓧̅′  is further away from the 

original tensor 𝓧 than another approximation tensor 𝓧̅. The current iterative step size 

is slightly large, and the iteration seems to be going in the wrong direction. To keep 
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the optimization direction of the iteration, the regular factor matrices 𝑈(n) 𝑛 =

1,2, 𝑎𝑛𝑑 3 are set as new factor matrix 𝑈𝑛𝑒𝑤
(𝑛)  𝑛 = 1,2, 𝑎𝑛𝑑 3 at the next step.  

If ɛ𝑛𝑒𝑤 <  ɛ, the current computation will continue, and the enhanced factor matrices 

𝑈(𝑛)̅̅ ̅̅ ̅̅  𝑛 = 1,2, 𝑎𝑛𝑑 3 as new factor matrix 𝑈𝑛𝑒𝑤
(𝑛)  𝑛 = 1,2, 𝑎𝑛𝑑 3 at the next step.  

This judgment is made whenever a new factor matrix is computed to ensure that the 

iteration goes down correctly. 

 

Finally, an approximation tensor 𝓧̅  satisfies 𝓧̅ = ⟦𝑈𝑛𝑒𝑤
(1) , 𝑈𝑛𝑒𝑤

(2) , 𝑈𝑛𝑒𝑤
(3) ⟧  and the loss 

function ℓ(𝓧, 𝓧̅) of TTM is modified as follows, 

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 = ‖𝓧− ⟦𝑈𝑛𝑒𝑤
(1) , 𝑈𝑛𝑒𝑤

(2) , 𝑈𝑛𝑒𝑤
(3) ⟧‖

2

 

= ‖𝓧 − ⟦(𝑈(1) + ∆𝑈(1)), (𝑈(2) + ∆𝑈(2)), (𝑈(3) + ∆𝑈(3))⟧‖
2
.         (4.13) 

We find the optimal that minimizes the (4.11) equation in every iteration step, 

min
𝑈𝒏𝒆𝒘
(𝒏)
‖𝓧− ⟦(𝑈(1)+ ∆𝑈(1)), (𝑈(2)+ ∆𝑈(2)), (𝑈(3)+ ∆𝑈(3))⟧‖.          (4.14) 

We find that the loading feature factor matrix helps the computation evolve within a given 

loop by analyzing this algorithm. The convergence within the same loop requires multiple 

iterations. The following loops exhibit the same scenarios in the direction of the final 

solution for the optimization.  

Algorithm 4.2: Traversal-tensor Method  

Input: an original tensor 𝓧 ∈ ℝI1×I2×I3, the regularization parameter λ. 

Output: the approximate tensor 𝓧̅ , the factor matrices are the index of users, 

services, and time, respectively. 

Step 1. Initialize regular factor matrices 𝑈(2), 𝑈(3) and slices X(1), X(2), X(3).. 

Step 2a. Fixing the 𝑈(2) and 𝑈(3) to estimate the factor matrices 𝑈(1), 𝑈(1)̅̅ ̅̅ ̅̅ . 

Step 2b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ. 

Step 2c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(1)

. 
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Step 3a. Fixing the 𝑈𝑛𝑒𝑤
(1)

 and 𝑈(3) to estimate the factor matrices 𝑈(2), 𝑈(2)̅̅ ̅̅ ̅̅ . 

Step 3b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ. 

Step 3c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(2)

. 

Step 4a. Fixing the 𝑈𝑛𝑒𝑤
(1)

 and 𝑈𝑛𝑒𝑤
(2)

 to estimate the factor matrices 𝑈(3), 𝑈(3)̅̅ ̅̅ ̅̅ . 

Step 4b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ. 

Step 4c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(3)

. 

Step 5. Repeat step 2a to step 4c, calculate the approximate tensor 𝓧̅ =

⟦𝑈𝑛𝑒𝑤
(1)
,𝑈𝑛𝑒𝑤
(2)
,𝑈𝑛𝑒𝑤
(3)
⟧. 

Step 6. Reduce the loss function ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 until convergence is 

exhausted. 

Step 7. Return the final prediction tensor 𝓧̅. 

 

Comparing with RTD, the TTM also fixes two factor matrices to find another factor matrix. 

However, TTM has a parallel computational process in each factor matrix computation: 

• In step 2a, one fixes 𝑈(2)  and 𝑈(3)  to find an enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅  as in 

equation (4.5), and other is to obtain a regular factor matrix 𝑈(1) as in equation (4.4).  

• In step 2b, the two processing generate two approximate tensors 𝓧̅ and 𝓧̅′ separately. 

Based on the two tensors, TTM estimates the two slices X(1)̅̅ ̅̅ ̅ 𝑎𝑛𝑑  X(1)̅̅ ̅̅ ̅′, then computes 

the errors between these two slices and the corresponding slice X(1) of the original 

tensor 𝓧, respectively.  

• By comparing the two errors in step 2c, TTM chooses the factor matrix corresponding 

to the smaller error as a new factor matrix 𝑈𝑛𝑒𝑤
(1)

 for the next step.  

• As same as steps 2a to 2c, TTM generates the new factor matrices 𝑈𝑛𝑒𝑤
(2)

 and 𝑈𝑛𝑒𝑤
(3)

 

separately in step 3 and step 4.  

• Repeating the above steps, the approximate tensor 𝓧̅ = ⟦𝑈𝑛𝑒𝑤
(1) , 𝑈𝑛𝑒𝑤

(2) , 𝑈𝑛𝑒𝑤
(3) ⟧ is 

obtained until convergence is exhausted.  
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4.4 Comparisons of TTM and RTD 

In the 4.3 section, we focused on the solution for insufficient sample data, proposed a 

feasible algorithm, and summarized the steps of the TTM. We plotted two different 

algorithms for the feature-oriented and regular tensor decomposition in Figure 4.4 and 

Figure 4.5. Through the two figures, we point out two main differences between TTM and 

RTD. 

• TTM uses more factor matrices to compute enhanced factor matrices during the 

iterative process.  

The enhanced factor matrices are associated with more factor matrices, traversing all the 

features with the expectation that these features will affect the computation results. Later 

experiments demonstrate that the computation of the feature factor matrices increases the 

step size of the iterations. 

• TTM adds a comparison error component over RTD, which determines the next step 

inside the iteration.  

If the enhanced factor matrices lead the approximate tensor to move far away from the 

original tensor, TTM replaces the enhanced factor matrices instead of the regular factor 

matrices after error comparison. The next iterative process is prevented from moving in the 

wrong direction. Such a mechanism ensures that the TTM always has an optimal value.   
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Figure 4.4 RTD algorithm 

According to the algorithm shown in Figure 4.4, each iteration step of RTD are performed 

as the following: 

Step 1. Set initial values 𝑈(1), 𝑈(2), and 𝑈(3) 

Step 2a. Fixing the 𝑈(2)  and 𝑈(3) , compute the regular factor matrix 𝑈(1)  as in 

equation (4.4). 

Step 2b. Fixing the 𝑈(1) and 𝑈(3), compute the regular factor matrix 𝑈(2). 

Step 2c. Fixing the 𝑈(1) and 𝑈(2), compute the regular factor matrix 𝑈(3). 

Initial values 

𝑼(𝟏)                                                                  𝑼(𝟐)                                                                     𝑼(𝟑) 

Estimate 𝑈(1) using 𝑈(2) and 𝑈(3) from 𝑈(1) = X(1)(𝑈
(2)⊙𝑈(3))

𝑇
 

Compute the ɛ = ||X − X̅||2 = ||X − 𝑈(1)(𝑈(2)⊙𝑈(3))
𝑇
||2 

⚫ If ||X − X̅||2 >threshold, return to step 1 with 𝑈(1), 𝑈(2), and 𝑈(3) as initial values 

⚫ If ||X − X̅||2 <threshold, stop and output the 𝑈(1), 𝑈(2), and 𝑈(3) 

Estimate 𝑈(2) using 𝑈(1) and 𝑈(3) from 𝑈(2) = X(2)(𝑈
(1)⊙𝑈(3))

𝑇
 

Estimate 𝑈(3) using 𝑈(1) and 𝑈(2) from 𝑈(3) = X(3)(𝑈
(1)⊙𝑈(2))

𝑇
 

 

Step 1: 

 

 

 

Step 2a: 

 

 

 

 

Step 2b: 

 

 

 

 

Step 2c: 

 

 

 

 

Step 3: 
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Step 3. Perform steps 2a to 2c. Use 𝑈(1), 𝑈(2) , and 𝑈(3) to estimate each slice of the 

approximate tensor 𝓧̅ as in equation (4.2). Compare the norm of difference 

slices corresponding to each of the two tensors 𝓧 and 𝓧̅.   
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Figure 4.5 TTM algorithm 

According to the algorithm shown in Figure 4.5, each iteration step of TTM are performed 

as the following: 

Step 1. Set initial values 𝑈(2), and 𝑈(3) 

Step 2a. Fixing the 𝑈(2)  and 𝑈(3) , compute the regular factor matrix 𝑈(1)  as in 

equation (4.4), and compute the enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅  as in equation 

(4.5). 

Step 2b. Compute the corresponding error ɛ𝑛𝑒𝑤 given by equation (4.11) and error ɛ 

given by equation (4.12) separately.  

Step 2c. Compare the ɛ𝑛𝑒𝑤 and ɛ. If the value of ɛ𝑛𝑒𝑤 is greater than ɛ, then set the 

new factor matrix 𝑈𝑛𝑒𝑤
(1)

 to 𝑈(1), otherwise set 𝑈𝑛𝑒𝑤
(1)

 to 𝑈(1)̅̅ ̅̅ ̅̅ . 

Step 3a to 3c. Use 𝑈𝑛𝑒𝑤
(1)

 and 𝑈(3)  to estimate the regular factor matrix 𝑈(2)  and 

enhanced factor matrix 𝑈(2)̅̅ ̅̅ ̅̅ . Then TTM compares the ɛ𝑛𝑒𝑤 and ɛ: If the 

value of ɛ𝑛𝑒𝑤 is greater than ɛ, then set the new factor matrix 𝑈𝑛𝑒𝑤
(2)

 to 𝑈(2), 

otherwise set 𝑈𝑛𝑒𝑤
(2)

 to 𝑈(2)̅̅ ̅̅ ̅̅ . 

Step 4a to 4c. Use 𝑈𝑛𝑒𝑤
(1)

 and 𝑈𝑛𝑒𝑤
(2)

 to estimate the regular factor matrix 𝑈(3)  and 

enhanced factor matrix 𝑈(3)̅̅ ̅̅ ̅̅ . Then TTM compares the ɛ𝑛𝑒𝑤 and ɛ: If the 

value of ɛ𝑛𝑒𝑤 is greater than ɛ, then set the new factor matrix 𝑈𝑛𝑒𝑤
(3)

 to 𝑈(3), 

otherwise set 𝑈𝑛𝑒𝑤
(3)

 to 𝑈(3)̅̅ ̅̅ ̅̅ . 

Step 5. Perform steps 2 to 4. Use new factor matrices 𝑈𝑛𝑒𝑤
(1)

, 𝑈𝑛𝑒𝑤
(2)

 , and 𝑈𝑛𝑒𝑤
(3)

 as 

starting values for the iteration instead of 𝑈(1), 𝑈(2), and 𝑈(3). Estimate each 

slice of the approximate tensor 𝓧̅ by using the 𝑈𝑛𝑒𝑤
(1)

, 𝑈𝑛𝑒𝑤
(2)

 , and 𝑈𝑛𝑒𝑤
(3)

 as in 



68 
 

equation (4.2). Compare the norm of difference slices corresponding to each 

of the two tensors 𝓧 and 𝓧̅. 

 

From these two figures, it can be compared that the iteration processing of TTM adds the 

calculation of the feature factor matrix. The enhanced factor matrix is updated by the 

feature factor matrix and regular factor matrix for the next step. TTM needs to compare the 

approximate tensor and the original tensor when an enhanced factor matrix is obtained. 

This comparison of differences is used to determine the nesting direction to ensure that the 

algorithm can move in the direction of optimization. 

The RTD has neither the computation of this feature factor matrix nor the comparison of 

differences. Therefore RTD is simpler than the TTM. 
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Next, we discuss the TTM specifically in the following aspects: decomposition result, 

properties, computational complexity, and validation of its results. All these issues are 

further investigated as follows. 

4.4.1 Comparison of decomposition result 

To easily understand the decomposition of the two methods, we briefly describe the two 

decomposition results in one iterative step, which can be found by comparison in Table 

4.16:  

• After one iteration step, the approximation tensor obtained by the TTM is different 

from those obtained by the RTD.  

The reason is that TTM needs to calculate more factor matrices to complete the 

decomposition. 

• The norm of tensor generated by TTM is larger than that of the RTD. 

It is indicated that the iteration step of TTM is longer. The increase of iteration size 

has a positive effect on the improvement of the tensor decomposition performance. 

 

Table 4.16 Results comparison of TTM and RTD  

 TTM RTD 

 
𝓧 

2 4
6 12

1 2
3 6

 

2 4
6 12

1 2
3 6

 

𝒂𝟏 ◦𝒃𝟏 ◦ 𝒄𝟏 (
0.75
2.25

) ◦ (
3.5778
7.1556

) ◦ (
1.7408
3.4818

) (
−1/2
−3/2

) ◦ (
−2
−4
) ◦ (

1
2
) 

 

𝓧̅ 

9.3429 18.6858
14.0135 28.0271

4.6712 9.3424
14.0135 28.0271

 

2.0000 4.0000
6.0000 12.0000

1.0000 2.0000
3.0000 6.0000

 

𝑵𝒐𝒓𝒎 𝒐𝒇 𝓧̅ 73.8612 15.8114 

𝑵𝒐𝒓𝒎 𝒐𝒇  

（𝓧̅ − 𝓧） 

58.0498 4.4409×10−15 
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In table 4.16, 𝓧 ∈ ℝ𝟐×𝟐×𝟐  denotes a 3-way tensor with rank-one.  𝓧̅ = 𝒂𝟏 ◦ 𝒃𝟏 ◦ 𝒄𝟏 

denotes an approximation tensor. 𝒂𝟏, 𝒃𝟏, 𝒄𝟏  are vector after tensor decomposition 

separately. The decomposition detail is illustrated in Section 4.4.4. 

 

4.4.2 Convergence properties 

Examining the TTM as an optimization algorithm from a mathematical perspective, the 

following properties can be observed.  

I. The derivative of a loss function ℓ(𝓧, 𝓧̅)at the minimum is vanished, thus the 

minimum of the loss function is a fixed point.  

The ALS algorithm does not reach a global minimum from any starting point [Shi, Li, & 

Zhang, 2019]. Since our method is based on the ALS algorithm, TTM can only ensure that 

a local minimum is reached. 

II. The TTM result moves towards the minimum, no matter whether the negative or 

positive gradient. 

An example of gradient descent is shown as follows. 

Given a 2 × 2 × 2 3-way tensor 𝒳 =

0 1
−1 0

1 0
0 1

, the vectors 𝑎 = (
1
−1
), 𝑏 = (

cos 𝛼
sin 𝛼

), 

and 𝑐 = (
cos 𝛽
sin 𝛽

) denote the initial values, which are the trigonometric function value of 

angle variables 𝛼, 𝛽 respectively [De Lathauwer, De Moor, & Vandewalle, 2000]. 𝛼 and 𝛽 

are in a range from -π to π. 

Suppose the desired output of a TTM is an original tensor 𝓧. The TTM predicts an output 

of approximation tensor 𝓧̅ =  𝑎 ◦ 𝑏 ◦ 𝑐 . Difference between the real output and the 

predicted output (𝓧 − 𝓧̅) is converted into the loss function f(a, b, c) = ‖𝓧 −  𝑎 ◦ 𝑏 ◦
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𝑐‖2. Our goal is to optimize the loss function to make a loss as minimum as possible with 

the TTM result. 

The loss function above is shaped surface — the partial derivative of the loss function 

f(a, b, c) with respect to the weight is the slope of the surface at the location. By moving in 

the direction predicted by TTM, TTM moves towards the bottom of the surface - 

minimizing the loss function.  

It is observed from Figure 4.6 that the minimum of the function gives the best 

approximations highlighted in deep blue. 

 

 

Figure 4.6  An example of gradient descent 
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III. The TTM reduced the number of iterations for the convergence to get a 

reasonable result. 

The TTM uses more matrices to compute the same factor matrices in the iteration. This 

fact is noticed, which the large size step would reduce the number of iteration steps. Thus, 

the process of fitting the minimum value is easier than RTD. 

The fact that the TTM has a small number of iteration steps leads to a question: which is 

better for improving the fit or increasing the computational cost? Question is particularly 

important in cases where the iteration becomes slow because of more factor matrices. For 

example, one can imagine that a big-size steps method might trade off some slower steps 

for the same finish line, when the computer performance has been very high and the cost 

in time is not much. This question can be answered well by applying a method to simulated 

or real data. 

We give an example of a small number of iteration steps for comparing TTM and RTD. 

We set a simulated movie rating experiment, in which the movie dataset has three 

dimensions data: three users, four items, and four contexts. The movie rating is predicted 

using three-dimensional data in (user, item, context) -> rating. After prediction, the 

iteration number is recorded in Table 4.17.  

Table 4.17 Iteration steps number comparison 

 

Method 

Prediction Error rate 

1% 5% 10% 15% 20% 25% 30% 35% 40% 45% 

RTD 8969 1683 1289 1756 2018 1877 1293 1497 1755 1355 

TTM 1582 801 1094 605 1062 761 439 335 520 318 
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Figure 4.7 Iteration steps number comparison 

The horizontal coordinate of Figure 4.6 represents the error rate of the prediction, and the 

vertical coordinate represents the number of iteration steps. When the prediction error rate 

becomes larger, the accuracy of the prediction will be lower. 

We can find that the RTD curve decreases greatly as the error rate decreases, indicating 

that the number of iteration steps required for the RTD is gradually decreasing. At the same 

time, the TTM curve changes more slowly and requires fewer iteration steps than the RTD 

for the same error rate. For example, for an error rate of 1%, the number of iteration steps 

required for TTM is 1582, which is far less than 8969 for RTD. In the same way, comparing 

the number of iteration steps with the same error rate, the corresponding number of 

iterations for TTM is always smaller than that of RTD. Thus, we conclude that TTM can 

reach the minimum point faster and is more efficient. 

The algorithm's convergence requires many iterations, and the initial value of the missing 

data will also affect the number of iterations. A good choice of starting values will help to 

reach the minimum quickly in some cases. Therefore, we discuss the effect of different 
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missing initial values on convergence and find that choosing a good initial value improves 

convergence efficiency in the experiment. 

4.4.3 Validation of the results. 

In this subsection, we analyze the different results between TTM and RTD through the 

visualization representation.  

Given a 2 × 2 × 2  3-way tensor 𝓧 ∈ ℝI1×I2×I3  and its approximation tensor 𝓧̅ . The 

original tensor 𝓧 is defined as follows, 

𝓧 =

𝑥112 𝑥122
𝑥212 𝑥222

𝑥111 𝑥121
𝑥211 𝑥221

                                          (4.15) 

where 𝓧  denotes the tensor, 𝑥𝑖1𝑖2𝑖3 denotes the tensor elements, and 𝑎𝑙𝑙 𝑖1, 𝑖2, 𝑖3 = 1,2 

denote each entry respectively of the tensor’s elements. 

 

Setting three vectors 𝑎, 𝑏, 𝑐 ∈ ℝ2 , and 𝑎 = (
𝑎1
𝑎2
) , 𝑏 = (

𝑏1
𝑏2
) , 𝑐 = (

𝑐1
𝑐2
)  where 

𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 are the elements of the corresponding vectors, the definition of vector 

outer product is as follows, 

𝓧̅ = 𝑎 ◦ 𝑏 ◦ 𝑐 = (
𝑎1
𝑎2
) ◦ (

𝑏1
𝑏2
) ◦ (

𝑐1
𝑐2
) 

=

𝑎1𝑏1𝑐2 𝑎1𝑏2𝑐2
𝑎2𝑏1𝑐2 𝑎2𝑏2𝑐2

𝑎1𝑏1𝑐1 𝑎1𝑏2𝑐1
𝑎2𝑏1𝑐1 𝑎2𝑏2𝑐1

.                                  (4.16) 

 

To make a visual representation, we set the initial value for the vectors as follows (the same 

representation is used in De Lathauwer, etc. related literature [De Lathauwer, De Moor, & 

Vandewalle, 2000]), 

𝑏1 = cos 𝛼 , 𝑏2 = sin𝛼 , 𝑐1 = cos𝛽 , 𝑐2 = sin𝛽 

where two angle variables 𝛼 and 𝛽 are in a range from -π to π. 
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Substituting the above initial value of vectors 𝒃 𝑎𝑛𝑑 𝒄  into the equation (4.16), the 

approximation tensor 𝓧̅ is rewrite as follows,  

𝓧̅ = 𝑎 ◦ 𝑏 ◦ 𝑐 

= (
𝑎1
𝑎2
) ◦ (

cos 𝛼
sin 𝛼

) ◦ (
cos 𝛽
sin 𝛽

) 

=

𝑎1 cos 𝛼 sin 𝛽 𝑎1 sin 𝛼 sin 𝛽
𝑎2 cos 𝛼 sin 𝛽 𝑎2 sin 𝛼 sin 𝛽

𝑎1cos 𝛼 cos 𝛽 𝑎1 sin 𝛼 cos 𝛽
𝑎2 cos 𝛼 cos 𝛽 𝑎2 sin 𝛼 cos 𝛽

.                 (4.17) 

where two variables 𝛼 and 𝛽 are in a range from -π to π. 

Thus, the loss function ℓ(𝓧, 𝓧̅) of the original tensor 𝓧 and its approximation tensor 𝓧̅ 

is obtained by substituting the equation (4.15) and (4.17), 

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖ 

= ‖

𝑥112 𝑥122
𝑥212 𝑥222

𝑥111 𝑥121
𝑥211 𝑥221

−

𝑎1 cos 𝛼 sin𝛽 𝑎1 sin 𝛼 sin 𝛽
𝑎2 cos𝛼 sin𝛽 𝑎2 sin 𝛼 sin 𝛽

𝑎1cos𝛼 cos𝛽 𝑎1 sin𝛼 cos𝛽
𝑎2 cos𝛼 cos𝛽 𝑎2 sin𝛼 cos𝛽

‖ 

= (𝑥111 − 𝑎1 cos 𝛼 cos𝛽)
2 + (𝑥121 − 𝑎1 sin 𝛼 cos 𝛽)

2 + (𝑥211 − 𝑎2 cos 𝛼 cos 𝛽)
2 

+(𝑥221 − 𝑎2 sin 𝛼 cos𝛽)
2 + (𝑥112 − 𝑎1 cos 𝛼 sin 𝛽)

2 + (𝑥122 − 𝑎1 sin 𝛼 sin 𝛽)
2 

+(𝑥212 − 𝑎2 cos 𝛼 sin 𝛽)
2 + (𝑥222 − 𝑎2 sin 𝛼 sin 𝛽)

2.                                       (4.18) 

where the vectors 𝑏 and 𝑐 can be normalized by using the trigonometric function of 𝛼 and 𝛽. 

The vector 𝑎 is a set of different initial values as 𝑎 = (
1
1
) , 𝑎 = (

1
−1
) , and 𝑎 = (

−1
1
). The 

ℓ(𝓧, 𝓧̅) can be generated by two variables 𝛼 and 𝛽 when fixing the vector 𝑎. 

By adjusting the equation (4.20) to satisfy the TTM and RTD, we obtain visualization 

results for both TTM and RTD methods by the curves of ℓ(𝓧, 𝓧̅) in Table 4.18 to 4.21. 
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Table 4.18 First approximation tensor with rank 3 

𝒳 =

0 1
−1 0

1 0
0 1

 

 𝒂 = (
𝟏
𝟏
) 𝒂 = (

𝟏
−𝟏
) 𝒂 = (

−𝟏
𝟏
) 

RTD 

   

TTM 
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Table 4.19 Second approximation tensor with rank 3 

𝒳 =

5 6
7 8

1 2
3 4

 

 𝒂 = (
𝟏
𝟏
) 𝒂 = (

𝟏
−𝟏
) 𝒂 = (

−𝟏
𝟏
) 

RTD 

  
 

TTM 
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Table 4.20 Third approximation tensor with rank 2 

𝓧 =

𝟎 𝟏
𝟏 𝟎

𝟏 𝟎
𝟎 𝟏

 

 𝒂 = (
𝟏
𝟏
) 𝒂 = (

𝟏
−𝟏
) 𝒂 = (

−𝟏
𝟏
) 

RTD 

  
 

TTM 
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Table 4.21 Fourth approximation tensor with rank 1 

𝒳 =

2 4
6 12

1 2
3 6

 

 𝒂 = (
𝟏
𝟏
) 𝒂 = (

𝟏
−𝟏
) 𝒂 = (

−𝟏
𝟏
) 

RTD 

 
 

 

TTM 
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The coordinate system in which the curves are located is represented as that the horizontal 

plane is composed of two axes, representing the two variables 𝛼 and 𝛽, and the vertical 

coordinate represents the value of the ℓ(𝓧, 𝓧̅)  lost function. The color of the curve 

changes progressively from warm to cool color, with cooler colors indicating lower values 

of the ℓ(𝓧, 𝓧̅) lost function. The deep blue color indicates the lowest value, and the deep 

red color indicates the highest value. 

Observing that these curves, we conclude that the proposed decomposition method is 

convergent.  

(1) The lowest value obtained of lost function by the TTM remains a fixed positive 

value. 

The concave point of the curve indicates the location of the lowest value of the function. 

All the curve of TTM has a concave point. The vertical coordinates of the positions of these 

points are all above the zero value.  

(2) The process of finding the lowest value in TTM is easier than that of RTD.  

If the curve has more concave points, indicating that it has a more minimal value, it may 

require more complicated processing steps. Since the number of convergence points 

obtained by the RTD is smaller than that of RTD, as shown in Table 4.22, the process of 

finding the lowest in RTD is more complex and less easy than that in TTM.  

Table 4.22 Number of convergence points 

Tensor Rank RTD TTM Input vector 

Rank = 1 3 1  

 

 

𝒂 = (
𝟏
−𝟏
) 

Rank = 2 >2 2 

Rank = 3  

(First approximation tensor) 

3 1 

Rank = 3 

(Second approximation tensor) 

>2 2 
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Meanwhile, the curve obtained by TTM is smoother than that of RTD. Especially after 

decomposing, it is evident that the curve of RTD is steeper than the curve of TTM in Table 

4.21. This means that the iteration size in the TTM is larger than the RTD iteration size, 

which is consistent with the conclusion we discussed in section 4.4.1. 

 

(3) The lowest value obtained of lost function by the TTM is lower than or equal to 

that of RTD.  

The lowest value indicates the difference between the approximate tensor and the original 

tensor.  

The lower this value is, the lower the difference is. The result shown in Table 4.23 shows 

that the approximate tensor obtained by TTM is closer to the original tensor.  

Table 4.23 Lowest value of lost function  

Tensor Rank RTD TTM Input vector 

Rank = 1 220 100  

𝒂 = (
𝟏
−𝟏
) Rank = 2 4 0 

Rank = 3  

(First approximation tensor) 

190 100 

Rank = 3 

(Second approximation tensor) 

0 0 

 

4.4.4 Computational complexity 

TTM has a higher computational complexity. In the following, we further compare the 

computational complexity of the two methods. 

(1) Complexity computation 

Let a 3-way tensor 𝓧 ∈ ℝ𝐼1×𝐼2×𝐼3, where 𝐼1, 𝐼2, and 𝐼3 is the dimensionality of first, second, 

and third-dimensional data, respectively. 𝑅 is the tensor’s rank. 𝑈(1), 𝑈(2), and 𝑈(3) are the 

factor matrices. 
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According to the analysis of computational complexity in [Zhang et al., 2014b], for each 

iteration of RTD, the primary cost of the computation complexity is step 2a -2c of the RTD 

algorithm, each of which is 𝑂(𝐼1𝐼2𝐼3𝑅 + (2𝐼1 + 𝐼2 + 𝐼3)𝑅
2 + 𝐼1𝐼2𝐼3𝑅), and step3 of the 

RTD algorithm  is 𝑂(𝐼1𝐼2𝐼3𝑅). The computation complexity can be considered in one 

iteration as follows, 

𝑂(𝐼1𝐼2𝐼3𝑅 + (2𝐼1 + 𝐼2 + 𝐼3)𝑅
2 + 𝐼1𝐼2𝐼3𝑅) + 𝑂(𝐼1𝐼2𝐼3𝑅).               (4.19) 

In contrast, the prediction step of TTM includes extra operations, which means the TTM 

may take more time than expected. Such extra computation time depends on the 

implementation, the CPU performance, the system platform, and other factors. Therefore, 

its impact can not be computed exactly. The summarization of the TTM computational 

complexity is shown as follows, 

The steps of the ELS and their computational complexities are listed as follows:  

• Calculate the increments 𝑈𝑛𝑒𝑤
(𝑛) = 𝑈(𝑛) + ∆𝑈(𝑛) 𝑛 = 1,2, 𝑎𝑛𝑑 3 , which needs no 

multiplications. 

• Calculate the feature factor matrices of the following (given ∆𝑈(1) as an example),  

∆𝑈(1) = 𝑋(1)(𝑈
(2)⊙𝑈(2))

𝑇
+ 𝑋(1)(𝑈

(3)⊙𝑈(3))
𝑇
, 𝑛 = 1,2, 𝑎𝑛𝑑 3. 

The cost of the computation complexity is, 

𝑂 ((10𝐼1 + 9𝐼2 + 9𝐼3)𝑅
2 + (𝐼1𝐼2𝐼3 + 𝐼1

2(𝐼2 + 𝐼3) + 𝐼2
2(𝐼1 + 𝐼3) + 𝐼3

2(𝐼1 + 𝐼2))𝑅) 

+𝑂(2(𝐼2𝐼3 + 𝐼1𝐼2 + 𝐼1𝐼3 + 𝐼2𝐼3)𝑅).                                                        (4.20) 

• Calculate the approximate tensor 𝓧̅ = ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧ , and the cost of the 

computation complexity is, 

𝑂(𝐼1𝐼2𝐼3𝑅).                                                    (4.21) 

Therefore, the computation complexity of the TTM prediction step is as follows, which is 

higher than that of RTD, 
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𝑂(𝐼1𝐼2𝐼3𝑅 + (10𝐼1 + 9𝐼2 + 9𝐼3)𝑅
2

+ (𝐼1𝐼2𝐼3 + 𝐼1
2(𝐼2 + 𝐼3) + 𝐼2

2(𝐼1 + 𝐼3) + 𝐼3
2(𝐼1 + 𝐼2))𝑅) 

+𝑂(2(𝐼2𝐼3 + 𝐼1𝐼2 + 𝐼1𝐼3 + 𝐼2𝐼3)𝑅).                                   (4.22) 
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(2) Numerical examples 

Considering that the tensor decomposition process uses rather cumbersome mathematical 

notation, the numerical examples are visualizations to facilitate understanding. Thus, we 

give numerical examples to compare the regular tensor decomposition model RTD and the 

proposed decomposition method TTM. The original tensor example is selected from the 

classical example in Kolda’s literature [Kolda, 2006]. It is noted that we only consider the 

tensor with rank one. Because computing the rank of a three-dimensional tensor over any 

finite field is NP-complete, it cannot be determined randomly[Hillar & Lim, 2013].  

The complexity can also be verified through the following examples that TTM has higher 

complexity since it requires more steps to calculate the enhanced factor matrices.  

 

Given a 3-way tensor with rank-one 𝓧 ∈ ℝ𝟐×𝟐×𝟐,  

𝓧 =

2 4
6 12

1 2
3 6

 

by when unfolding tensor, the frontal slices X(𝑛), 𝑛 = 1,2, 𝑎𝑛𝑑 3 are obtained as follows, 

X(1) = [
1 2
3 6

   
2 4
6 12

] 

X(2) = [
1 3
2 6

   
2 6
4 12

] 

X(3) = [
1 3
2 6

   
2 6
4 12

]. 

The initial setup is fixing the vectors 𝑏0 = (
1
−1
) 𝑎𝑛𝑑 𝑐0 = (

1
0
). Next, we calculate the new 

vectors 𝑎1, 𝑏1, 𝑎𝑛𝑑 𝑐1. 

According to the properties of the tensor decomposition with rank-one, the factor matrices 

𝑈(1), 𝑈(2), 𝑎𝑛𝑑 𝑈(3)   are updated sequentially by these vectors 𝑎𝑛, 𝑏𝑛, 𝑎𝑛𝑑 𝑐𝑛 𝑛 = 0,1  in 

iteration steps. Finally, the approximation tensor with rank-one 𝓧̅  is calculated by the 

following equation, 

𝓧̅ = ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧ = 𝑎1◦ 𝑏1 ◦ 𝑐1. 
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Based on the initial factor matrices: 𝑈(2) = 𝑏0 = (
1
−1
)𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (

1
0
) , we are 

computing other factor matrices 𝑈(1) = 𝑎1, and updating the factor matrices 𝑈(2), 𝑈(3) by 

𝑈(2) = 𝑏1 and 𝑈(3) = 𝑐1 separately. 

A. RTD 

The initial setup is fixing the initial factor matrices 𝑈(2) = 𝑏0 = (
1
−1
)𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (

1
0
) 

to compute the factor matrix 𝑈(1) = 𝑎1,  

𝑈(1) = X(1)[𝑈
(3)⊙ 𝑈(2)] [(𝑈(3))

𝑇
𝑈(3) ∗ (𝑈(2))

𝑇
𝑈(2)]

+

 

⟹ 𝑎1 = X(1)[𝑐0⊙𝑏0][(𝑐0)
𝑇𝑐0 ∗ (𝑏0)

𝑇𝑏0]
+

= [
1 2
3 6

   
2 4
6 12

] [(
1
0
)⊙ (

1
−1
)] [(

1
0
)
𝑇

(
1
0
) ∗ (

1
−1
)
𝑇

(
1
−1
)]
+

= [
1 2
3 6

   
2 4
6 12

] [

1
−1
0
0

] [(1) ∗ (2)]+ = (
−1/2
−3/2

). 

Then fixing the factor matrices 𝑈(1) = 𝑎1 = (
−1/2
−3/2

)𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (
1
0
) to update the 

factor matrix 𝑈(2) = 𝑏1, 

𝑈(2) = X(2)[𝑈
(3)⊙ 𝑈(1)] [(𝑈(3))

𝑇
𝑈(3) ∗ (𝑈(1))

𝑇
𝑈(1)]

+

 

⟹ 𝑏1 = 𝐗(2)[𝑐0⊙𝑎1][(𝑐0)
𝑇𝑐0 ∗ (𝑎1)

𝑇𝑎1]
+

= [
1 3
2 6

   
2 6
4 12

] [(
1
0
) ⊙ (

−1/2
−3/2

)] [(
1
0
)
𝑇

(
1
0
) ∗ (

−1/2
−3/2

)
𝑇

(
−1/2
−3/2

)]

+

= [
1 3
2 6

   
2 6
4 12

] [

−1/2
−3/2
0
0

] [(1) ∗ (5/2)]+ = (
−2
−4
). 

Then fixing the factor matrices  𝑈(2) = 𝑏1 = (
−2
−4
) 𝑎𝑛𝑑 𝑈(1) = 𝑎1 = (

−1/2
−3/2

) to update the 

factor matrix 𝑈(3) = 𝑐1, 

𝑈(3) = X(3)[𝑈
(2)⊙ 𝑈(1)] [(𝑈(2))

𝑇
𝑈(2) ∗ (𝑈(1))

𝑇
𝑈(1)]

+
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⟹ 𝑐1 = X(3)[𝑏1⊙𝑎1][(𝑏1)
𝑇𝑏1 ∗ (𝑎1)

𝑇𝑎1]
+

= [
1 3
2 6

   
2 6
4 12

] [(
−2
−4
)

⊙ (
−1/2
−3/2

)] [(
−2
−4
)
𝑇

(
−2
−4
) ∗ (

−1/2
−3/2

)
𝑇

(
−1/2
−3/2

)]

+

= [
1 3
2 6

   
2 6
4 12

] [

1
3
2
6

] [(20) ∗ (5/2)]+ = (
1
2
). 

Finally, the factor matrices 𝑈(1) = 𝑎1 = (
−1/2
−3/2

) , 𝑈(2) = 𝑏1 = (
−2
−4
) , and 𝑈(3) = 𝑐1 = (

1
2
) 

are obtained. According to the rule of tensor decomposition, these vectors are used as factor 

matrices to calculate the approximation tensor 𝓧̅ as follows, 

𝓧̅ = 𝑎1 ◦ 𝑏1 ◦ 𝑐1 = (
−1/2
−3/2

) ◦ (
−2
−4
) ◦ (

1
2
) =

2.0000 4.0000
6.0000 12.0000

1.0000 2.0000
3.0000 6.0000

. 

B. TTM 

TTM compute the regular factor matrix 𝑈(𝑛)  and feature factor matrix ∆𝑈(n) . And the 

enhanced factor matrix 𝑈(𝑛)̅̅ ̅̅ ̅̅  𝑛 = 0,1 is obtained by the 𝑈(𝑛)̅̅ ̅̅ ̅̅ = 𝑈(𝑛) + ∆𝑈(n). Finally, the 

approximation tensor with rank-one 𝓧̅ is calculated by the following equation, 

𝓧̅ = ⟦𝑈(1)̅̅ ̅̅ ̅̅ , 𝑈(2)̅̅ ̅̅ ̅̅ , 𝑈(3)̅̅ ̅̅ ̅̅ ⟧ = 𝑎1 ◦ 𝑏1 ◦ 𝑐1. 

Based on the initial factor matrices: 𝑈(2) = 𝑏0 = (
1
−1
)𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (

1
0
) , we are 

computing another enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅ ,  and generating the enhanced factor 

matrices 𝑈(2)̅̅ ̅̅ ̅̅ = 𝑏1 and 𝑈(3)̅̅ ̅̅ ̅̅ = 𝑐1 separately. 

(a) Enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅ = 𝑈(1) + ∆𝑈(1) 
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First, as same as the factor matrix computation of regular tensor decomposition, when 

fixing the initial factor matrices 𝑈(2) = 𝑏0 = (
1
−1
) 𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (

1
0
), we compute the 

regular factor matrix 𝑈(1) as follows, 

𝑈(1) = 𝑋(1)[𝑈
(3)⊙𝑈(2)] [(𝑈(3))

𝑇
𝑈(3) ∗ (𝑈(2))

𝑇
𝑈(2)]

+

 

= X(1)[𝑐0⊙𝑏0][(𝑐0)
𝑇𝑐0 ∗ (𝑏0)

𝑇𝑏0]
+ 

= [
1 2
3 6

   
2 4
6 12

] [(
1
0
)⊙ (

1
−1
)] [(

1
0
)
𝑇

(
1
0
) ∗ (

1
−1
)
𝑇

(
1
−1
)]
+

 

= [
1 2
3 6

   
2 4
6 12

] [

1
−1
0
0

] [(1) ∗ (2)]+ 

= (
−1/2
−3/2

). 

 

Second, we compute the feature factor matrix ∆𝑈(1) as follows,  

∆𝑈(1) = X(1)(𝑈
(2)⊙𝑈(2))

𝑇
 + X(1)(𝑈

(3)⊙𝑈(3))
𝑇
 

= 𝐗(1)[𝑏0⊙𝑏0][(𝑏0)
𝑇𝑏0 ∗ (𝑏0)

𝑇𝑏0]
+ + X(1)[𝑐0⊙ 𝑐0][(𝑐0)

𝑇𝑐0 ∗ (𝑐0)
𝑇𝑐0]

+ 

= [
1 2
3 6

   
2 4
6 12

] [(
1
−1
)⊙ (

1
−1
)] [(

1
−1
)
𝑇

(
1
−1
) ∗ (

1
−1
)
𝑇

(
1
−1
)]
+

 + [
1 2
3 6

   
2 4
6 12

] [(
1
0
)⊙ (

1
0
)] [(

1
0
)
𝑇

(
1
0
) ∗ (

1
0
)
𝑇

(
1
0
)]
+

 

 

= 
[
1 2
3 6

   
2 4
6 12

] [

1
−1
−1
1

] [(2) ∗ (2)]+ 

 

+ 
[
1 2
3 6

   
2 4
6 12

] [

1
0
0
0

] [(1) ∗ (1)]+ 

= 
(
1/4
3/4

) 
+ (

1
3
). 

Third, the enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅ = 𝑈(1) + ∆𝑈(1) is computed based on the above 

results as follows: 

𝑈(1)̅̅ ̅̅ ̅̅ = 𝑈(1) + ∆𝑈(1) 

= 𝐗(1)[𝑐0⊙𝑏0][(𝑐0)
𝑇𝑐0 ∗ (𝑏0)

𝑇𝑏0]
+ + 𝐗(1)[𝑏0⊙𝑏0][(𝑏0)

𝑇𝑏0 ∗ (𝑏0)
𝑇𝑏0]

+

+ 𝐗(1)[𝑐0⊙ 𝑐0][(𝑐0)
𝑇𝑐0 ∗ (𝑐0)

𝑇𝑐0]
+ 

= (
−1/2
−3/2

) + (
1/4
3/4

) + (
1
3
) = (

3/4
9/4

) = (
0.75
2.25

). 
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Finally, we obtain the enhanced factor 𝑈(1)̅̅ ̅̅ ̅̅ = (
3/4
9/4

). This enhanced factor is used as the 

initial factor matrix to generate a second enhanced factor matrix 𝑈(2)̅̅ ̅̅ ̅̅  in the next step.  

(b) Enhanced factor matrix 𝑈(2)̅̅ ̅̅ ̅̅ = 𝑈(2) + ∆𝑈(2) 

When fixing the factor matrices 𝑈(1)̅̅ ̅̅ ̅̅ = 𝑎1 = (
3/4
9/4

)  𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (
1
0
) , we are 

computing the enhanced factor matrix 𝑈(2)̅̅ ̅̅ ̅̅ .  

First, we compute the regular factor 𝑈(2) as follows,  

𝑈(2) = 𝑋(2) [𝑈
(3)⊙𝑈(1)

̅̅ ̅̅ ̅̅
] [(𝑈(3))

𝑇
𝑈(3) ∗ (𝑈(1)

̅̅ ̅̅ ̅̅
)
𝑇

𝑈(1)
̅̅ ̅̅ ̅̅

]
+

 

= X(2)[𝑐0⊙𝑎1][(𝑐0)
𝑇𝑐0 ∗ (𝑎1)

𝑇𝑎1]
+ 

= [
1 3
2 6

   
2 6
4 12

] [(
1
0
)⊙ (

3

4
9

4

)]

[
 
 
 

(
1
0
)
𝑇

(
1
0
) ∗ (

3

4
9

4

)

𝑇

(

3

4
9

4

)

]
 
 
 
+

 

= [
1 3
2 6

   
2 6
4 12

] [

3/4
9/4
0
0

] [(1) ∗ (45/8)]+ = [
15/2
15

] [(1) ∗ (45/8)]+ = (
4/3
8/3

). 

Second, we compute the feature factor matrix ∆𝑈(2) as follows,  

∆𝑈(2) = X(2)(𝑈
(1)̅̅ ̅̅ ̅̅ ⊙ 𝑈(1)̅̅ ̅̅ ̅̅ )

𝑇
 + X(2)(𝑈

(3)⊙𝑈(3))
𝑇
 

= X(2)[𝑎1⊙𝑎1][(𝑎1)
𝑇𝑎1 ∗ (𝑎1)

𝑇𝑎1]
+ + X(2)[𝑐0⊙ 𝑐0][(𝑐0)

𝑇𝑐0 ∗ (𝑐0)
𝑇𝑐0]

+ 

= [
1 3
2 6

   
2 6
4 12

] [(
3/4
9/4

)⊙ (
3/4
9/4

)] [(
3/4
9/4

)
𝑇

(
3/4
9/4

) ∗ (
3/4
9/4

)
𝑇

(
3/4
9/4

)]

+

 
+ [

1 3
2 6

   
2 6
4 12

] [(
1
0
)⊙ (

1
0
)] [(

1
0
)
𝑇

(
1
0
) ∗ (

1
0
)
𝑇

(
1
0
)]
+

 

 

= [
1 3
2 6

   
2 6
4 12

] [

9/16
27/16
27/16
81/16

] [(45/8) ∗ (45/8)]+ 

 

+ [
1 3
2 6

   
2 6
4 12

] [

1
0
0
0

] [(1) ∗ (1)]+ 

= 
(
56/45
112/45

) 
+ (

1
2
). 

 

Third, the enhanced factor matrix 𝑈(2)̅̅ ̅̅ ̅̅ = 𝑈(2) + ∆𝑈(2) is computed based on the above 

results as follows: 
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𝑈(2)̅̅ ̅̅ ̅̅ = 𝑈(2) + ∆𝑈(2) 

= 𝐗(2)[𝑐0⊙𝑎1][(𝑐0)
𝑇𝑐0 ∗ (𝑎1)

𝑇𝑎1]
+ + 𝐗(2)[𝑐0⊙ 𝑐0][(𝑐0)

𝑇𝑐0 ∗ (𝑐0)
𝑇𝑐0]

+

+ 𝐗(2)[𝑎1⊙𝑎1][(𝑎1)
𝑇𝑎1 ∗ (𝑎1)

𝑇𝑎1]
+ 

= (

4

3
8

3

) + (
1
2
) + (

56

45
112

45

) 

= (
161/45
322/45

) = (
3.5778
7.1556

). 

 

Finally, we obtain the enhanced factor 𝑈(2)̅̅ ̅̅ ̅̅ = (
161/45
322/45

). This enhanced factor is used as 

the initial factor matrix to generate the enhanced factor matrix 𝑈(3)̅̅ ̅̅ ̅̅  in the next step. 

(c) Enhanced factor matrix 𝑈(3)̅̅ ̅̅ ̅̅ = 𝑈(3) + ∆𝑈(3) 

When fixing the factor matrices 𝑈(1)̅̅ ̅̅ ̅̅ = 𝑎1 = (
3/4
9/4

)  𝑎𝑛𝑑 𝑈(2)̅̅ ̅̅ ̅̅ = 𝑏1 = (
161/45
322/45

), we are 

computing the factor matrix 𝑈(3)̅̅ ̅̅ ̅̅ .  

First, we compute the regular factor 𝑈(3) as follows,  

𝑈(3) = 𝑋(3) [𝑈
(1)̅̅ ̅̅ ̅̅
⊙𝑈(2)
̅̅ ̅̅ ̅̅

] [(𝑈(1)
̅̅ ̅̅ ̅̅

)
𝑇

𝑈(1)
̅̅ ̅̅ ̅̅

∗ (𝑈(2)
̅̅ ̅̅ ̅̅

)
𝑇

𝑈(2)
̅̅ ̅̅ ̅̅

]
+

 

= X(3)[𝑏1⊙𝑎1][(𝑏1)
𝑇𝑏1 ∗ (𝑎1)

𝑇𝑎1]
+ 

= [
1 3
2 6

   
2 6
4 12

] [(

161

45
322

45

)⊙(

3

4
9

4

)]

[
 
 
 

(

161

45
322

45

)

𝑇

(

161

45
322

45

) ∗ (

3

4
9

4

)

𝑇

(

3

4
9

4

)

]
 
 
 
+

 

= [
1 3
2 6

   
2 6
4 12

] [

161/60
483/60
322/60
966/60

] [(
1612 + 3222

452
) ∗ (

45

8
)]

+

 

= [

161

60
+
1449

60
+
966

60
+
5796

60
322

60
+
2898

60
+
1932

60
+
11592

60

] [(
1612

72
)]

+
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= [

8372

60
16744

60

] (
72

25921
) = (

0.3876
0.7752

). 

 

Second, we compute the feature factor matrix ∆𝑈(3) as follows,  

Third, the enhanced factor matrix 𝑈(3)̅̅ ̅̅ ̅̅ = 𝑈(3) + ∆𝑈(3) is computed based on the above 

results as follows: 

𝑈(3)̅̅ ̅̅ ̅̅ = 𝑈(3) + ∆𝑈(3) 

= X(3)[𝑏1⊙𝑎1][(𝑏1)
𝑇𝑏1 ∗ (𝑎1)

𝑇𝑎1]
+ + 𝐗(3)[𝑎1⊙𝑎1][(𝑎1)

𝑇𝑎1 ∗ (𝑎1)
𝑇𝑎1]

+

+ 𝐗(3)[𝑏1⊙𝑏1][(𝑏1)
𝑇𝑏1 ∗ (𝑏1)

𝑇𝑏1]
+ 

= (
0.3876
0.7752

) + (
1.2444
2.4889

) + (
0.1088
0.2177

) = (
1.7408
3.4818

). 

Finally, we obtain the enhanced factor 𝑈(3)̅̅ ̅̅ ̅̅ = (
1.7408
3.4818

).  

 

∆𝑈(3) = X(3)(𝑈
(1)̅̅ ̅̅ ̅̅ ⊙ 𝑈(1)̅̅ ̅̅ ̅̅ )

𝑇
 + X(3)(𝑈

(2)̅̅ ̅̅ ̅̅ ⊙ 𝑈(2)̅̅ ̅̅ ̅̅ )
𝑇
 

= X(3)[𝑎1⊙𝑎1][(𝑎1)
𝑇𝑎1 ∗ (𝑎1)

𝑇𝑎1]
+ + X(3)[𝑏1⊙𝑏1][(𝑏1)

𝑇𝑏1 ∗ (𝑏1)
𝑇𝑏1]

+
 

= [
1 3
2 6

   
2 6
4 12

] [(
3/4
9/4

)

⊙ (
3/4
9/4

)] [(
3/4
9/4

)
𝑇

(
3/4
9/4

)

∗ (
3/4
9/4

)
𝑇

(
3/4
9/4

)]

+

 

+ [
1 3
2 6

   
2 6
4 12

] [(
161/45
322/45

)

⊙ (
161/45
322/45

)] [(
161/45
322/45

)
𝑇

(
161/45
322/45

)

∗ (
161/45
322/45

)
𝑇

(
161/45
322/45

)]

+

 

 

= [
1 3
2 6

   
2 6
4 12

] [

9/16
27/16
27/16
81/16

] [(45/8)

∗ (45/8)]+ 

 

+ [
1 3
2 6

   
2 6
4 12

] [

25921/2015
51842/2015
51842/2015
103684/2015

] [(129605

/2015) ∗ (129605/2015)]+ 

= (
1.2444
2.4889

) + (
0.1088
0.2177

). 
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Based on the above results, the enhanced factor matrices 𝑈(1)̅̅ ̅̅ ̅̅ = 𝑎1 = (
0.75
2.25

) , 𝑈(2)̅̅ ̅̅ ̅̅ =

𝑏1 = (
3.5778
7.1556

), and 𝑈(3)̅̅ ̅̅ ̅̅ = 𝑐1 = (
161/45
322/45

) are obtained. According to the rule of tensor 

decomposition, these vectors are used as factor matrices to calculate the approximation tensor 

𝓧̅ as follows, 

𝓧̅ = 𝑈(1)̅̅ ̅̅ ̅̅ ◦  𝑈(2)̅̅ ̅̅ ̅̅ ◦ 𝑈(3)̅̅ ̅̅ ̅̅ = 𝑎1 ◦ 𝑏1 ◦ 𝑐1 

= (
0.75
2.25

) ◦ (
3.5778
7.1556

) ◦ (
1.7408
3.4818

) 

=

9.3429 18.6858
14.0135 28.0271

4.6712 9.3424
14.0135 28.0271

. 

 

4.5 Experiment in QoS attribute prediction 

This subsection implements the prediction experiments on the web service datasets to 

evaluate the proposed method TTM.  

4.5.1 Web service dataset 

We use the web service dataset WSDream offered by Zheng et al. [Zheng, Ma, Lyu, & King, 

2010]. This dataset describes real-world QoS attribute evaluation results from 142 users on 

4,500 web services over 64 different time slices. This dataset is the main benchmark dataset 

in web service recommendation and is still under research application [Hasnain et al., 2020] 

[Pandharbale, Mohanty, & Jagadev, 2021]. In addition, this dataset is still under research 

application.  

The experiment is conducted on a Lenovo THINKCENTRE M58 desktop with a 3.0 GHz 

Intel Core™ 2 Duo CPU and an 8 GB RAM, running Ubuntu operation system. The 

program is implemented with Python 3.4 and Microsoft C++. 

We use the standard mean absolute error (MAE), and root mean square error (RMSE) to 
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compare the quality of our prediction [Zheng et al., 2010].  The calculation formula or MAE 

and RMSE are 

MAE is defined as follows: 

𝑀𝐴𝐸 =
∑ |𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗|𝑖,𝑗

𝑁
 

RMSE is defined as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗)2𝑖,𝑗

𝑁
 

where 𝑟𝑖,𝑗 denotes the expected QoS attribute of Web service 𝑗 observed by user 𝑖, 𝑟̂𝑖,𝑗 is 

the predicted QoS attribute, and 𝑁 is the number of the predicted value. 

In this thesis, we focus on the mean value of the error between the QoS value predicted and 

the actual QoS value accessed service. MRSE and MAE are the most popular metrics, and 

they mainly describe the difference in QoS predicted by the algorithm, which is between the 

service that the user expects to access and the service that is accessed. Since the errors are 

squared before averaging, the RMSE gives relatively high weight to large errors. In addition 

to QoS service prediction, recommendation systems also use Normalized Discounted 

Cumulative Gain (NDCG), precision, and recall metrics. These metrics are mainly used to 

measure the quality of a set of recommendation lists. However, the recommendation lists are 

not in the context of the discussion in this thesis. Therefore, we used the MRSE and MAE as 

our evaluation criteria. 

We verify the proposed algorithm's effectiveness, and the comparison is based on service 

collaboration with the following other methods. 

• Probabilistic Matrix Factorization (PMF) This method is a probabilistic method using 

Gaussian assumptions on the data matrices. [Mnih & Salakhutdinov, 2007]. 

• User-based collaborative filtering method using Pearson Correlation Coefficient 

(UPCC): this generates a prediction based on similar user behavior [Shao et al., 2007]. 
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• Item-based collaborative filtering method using Pearson Correlation Coefficient 

(IPCC): this generates a prediction based on similar item properties [Sarwar, Karypis, 

Konstan, & Riedl, 2001]. 

• User-based and Item-based Pearson Correlation Coefficient (UIPCC): this is a hybrid 

collaborative algorithm combining the UPCC and IPCC methods. The prediction is 

applied to similar users and similar web services.  

• Tensor factorization (TF): This method is a user-service-time model based on RTD. It 

predicts the QoS attribute by considering the relations among user, service, and time 

[Zhang, Sun, Liu, & Guo, 2014b].  

 

In this thesis, the above baseline methods are based on a three-dimensional QoS dataset. We 

need to address the issue of low prediction performance due to few sample features. However, 

along with the explosive growth of information, the dimensionality and feature types of data 

are increasing, and our method needs to be extended further to solve the issue. To deal with 

higher dimensional data, deep learning technology becomes a powerful recommendation tool. 

Besides, a recent study [Zhou, Wu, Yue, & Hsu, 2019] established a neural network-based 

approach to predict QoS values in a spatial-temporal context. As part of our future work, this 

approach can be further integrated into our tensor-based modeling framework for QoS 

prediction studies of higher-dimensional data. 

The baseline methods predict the response time and throughput value with the MAE and 

RMSE values. Response time is defined as the persistent time between the user call the 

service and obtain the response. Throughput value is defined as the average rate of the 

message numbers per second. The smaller value means the method has high performance. 

The details of response time and throughput are shown in Table 4.24. 
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Table 4.24 Response Time Performance comparison in MAE 

 Response Time (second) Throughput (kbps) 

Scale 0-200 0-1000 

Mean 0.6840 7.2445 

 

Since a user does not revoke all web services, the dataset is usually sparse in the real world. 

The implement will randomly remove QoS attribute with different density from 5%, 10%, 

15%, 20%, 25%, and 30%. The 5% density means that 5% of the data is used for training, 

and 95% of the data is used for testing.  

4.5.2 Recommendation performance evaluation 

The comparison result of this experiment is presented in Table 4.25 to 4.28, and the 

discussion is introduced in the following subsections. 

In table 4.25 and Table 4.26, the TTM has smaller MAE and RMSE values for most densities.  

 

Table 4.25 Response Time Performance comparison in MAE 

Methods MAE 

Density 

5% 

Density 

10% 

Density 

15% 

Density 

20% 

Density 

25% 

Density 

30% 

PMF 0.9252 0.8305 0.7932 0.7704 0.7538 0.7412 

UPCC 0.9373 0.8496 0.7980 0.7688 0.7477 0.7309 

IPCC 1.0290 0.9458 0.9243 0.8972 0.8740 0.8581 

UIPCC 0.9329 0.8478 0.8002 0.7711 0.7496 0.7329 

TF(RTD) 0.8227 0.7792 0.7451 0.7484 0.7332 0.7343 

TTM 0.6858 0.6730 0.6678 0.6698 0.6622 0.6662 
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Table 4.26 Response Time Performance comparison in RMSE 

Methods RMSE 

Density 

5% 

Density 

10% 

Density 

15% 

Density 

20% 

Density 

25% 

Density 

30% 

PMF 2.2624 2.0070 1.8774 1.7991 1.7472 1.7105 

UPCC 1.8935 1.7854 1.7363 1.7012 1.6724 1.6478 

IPCC 2.0181 1.8766 1.8464 1.8189 1.7922 1.7679 

UIPCC 1.8860 1.7832 1.7361 1.7003 1.6695 1.6429 

TF(RTD) 1.8562 1.7852 1.7459 1.7359 1.7224 1.7233 

TTM 1.5922 1.5745 1.5638 1.5660 1.5613 1.5592 

 

 

In Table 4.27 and Table 4.28, the TTM obtains smaller MAE and RMSE values for 

throughput with different matrix densities. Thus, TTM achieves better performance than 

others. 

Table 4.27 Throughput Performance comparison in MAE 

Methods MAE 

Density 

5% 

Density 

10% 

Density 

15% 

Density 

20% 

Density 

25% 

Density 

30% 

PMF 6.5653 5.9829 5.8317 5.7069 5.5513 5.3889 

UPCC 10.3860 9.5014 8.9477 8.4906 8.1474 7.8938 

IPCC 10.0405 9.6518 9.5135 8.9333 8.3484 7.9666 

UIPCC 9.8959 9.3041 8.9638 8.3983 7.8756 7.5158 

TF(RTD) 4.2583 4.2046 4.1276 4.0935 4.1902 4.2415 

TTM 4.1921 4.0458 4.0906 4.0514 4.0290 3.9897 
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Table 4.28 Throughput Performance comparison in RMSE 

Methods RMSE 

Density 

5% 

Density 

10% 

Density 

15% 

Density 

20% 

Density 

25% 

Density 

30% 

PMF 40.3278 35.9576 33.8194 32.4923 31.1695 30.2369 

UPCC 43.2909 40.7598 38.8087 37.1719 35.6727 34.6294 

IPCC 45.3464 43.1114 42.4567 41.0629 39.2411 37.8419 

UIPCC 43.9639 41.5855 40.1955 38.5635 36.7211 35.2921 

TF(RTD) 24.0221 23.423 21.9477 21.6142 21.8390 21.8049 

TTM 22.8952 22.5691 22.6834 22.0979 21.6888 21.6414 

 

The web service dataset is commonly very sparse since a service user just invokes a very 

small number of web services usually. We dismiss QoS attribute value to sparse the dataset 

and access the sparser dataset with different density from 5% to 30%, ascending by 5% 

each time. For instance, a dataset density 5% means that we leave 5% of the dataset for 

training at random, and the other 95% value is the testing set.  

With the increase of the training matrix density from 5% to 30%, the prediction accuracy 

in the methods can also be improved. It indicates that the prediction has high accuracy if 

data with more significant density provides more QoS attribute values. The TTM can 

significantly improve the accuracy result of a sparse tensor if more information is provided. 

Better result's reason is that more contextual information that influences the client-side QoS 

attribute prediction’s performance (e.g., the service servers' workload, network conditions 

of the users) should be considered to improve the prediction accuracy.  
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4.5.3 Impact of tensor density 

 Tensor density impact relates to a finite number of latent factors. Figure 4.7 and Figure 4.8 

are the RMSE and MAE of response-time. We noticed that all methods possessed high 

MAE/RMSE values in lower tensor density. The result shows that the sparse tensor needs to 

provide more information if improving the prediction. With the training density rise, 

prediction performance is enhanced by the TTM. 

Figure 4.8 MAE in QoS attribute prediction 
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 Figure 4.9 RMSE in QoS attribute prediction 

4.5.4 Execution time comparison 

We record the execution time as computation performance. In Table 4.29, the execution time 

of the methods is evaluated for different performances. 

Table 4.29 Execution time comparison 

 
Response time computation 

HH: MM: SS 

Throughput computation 

HH: MM: SS 

PMF 2:35:51 2:36:38 

UPCC 0:17:7 0:25:0 

IPCC 0:17:7 0:25:0 

UIPCC 0:17:7 0:25:0 

TF(RTD) 7:51:26 5:0:0 

TTM 8:13:43 5:16:36 
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It is evident from Table 4.29 that the UPCC, IPCC, and UIPCC methods have better 

execution performance than other methods. These methods require less dimensional data to 

computation the performance. The total execution time has around 60 minutes against PMF 

running time of 155 minutes, TF running time of 471 minutes, and TTM running time of 493 

minutes for the response time computation.  

UPCC, IPCC, and UIPCC methods execution performance are better (75 minutes). Moreover, 

the TTM execution performance is expected to be better than the TF one because the TTM 

has more factors to calculate.  

4.5.5 Summary of experiment 

The experimental result shows that the QoS attribute can be predicted using the TTM, which 

adds all user-service-time feature factor matrices. When the enhanced factor matrices in each 

iteration are obtained, the prediction results enhance the accuracy rate. Moreover, TTM 

makes predictions by constructing more sample data. With the increase of missing data, the 

accuracy of the other methods has a relatively large decrease, while TTM reaches higher 

prediction performance than other methods. 

On the other hand, although TTM spends much time generating the feature factor matrices, 

the overall algorithm does not significantly increase running time than the RTD.  
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4.6 Experiment on recovering the missing traffic flow data 

To evaluate the TTM, we applied the TTM on a traffic flow prediction and obtained positive 

results. Tensor decomposition is a part of the recovery missing data method with high 

accuracy and high applicability. We adopt TTM and RTD to the decomposition part of the 

recovery method with different missing rates. The comparative analysis is completed 

between two methods' effects in missing data cases. 

4.6.1 Traffic flow prediction 

Accurate traffic flow prediction information can help city managers make a traffic control 

decision and help drivers choose smoother routes to avoid traffic jams. A traffic flow dataset 

is mainly used for traffic flow prediction. Since missing data situations always occur, it is 

difficult to predict traffic flow accurately. Research of traffic flow prediction with missing 

data has been popular. The prediction methods are often adopted to recover the missing data.  

Tensor decomposition has been applied in recovery methods. The factor matrices are 

extracted by tensor decomposition, and the approximation tensor is generated as the outer 

product of these factor matrices. By setting the projection function 𝑃𝛺(𝓧) of the revealed 

dataset, the missing data can be recovered with the error between the approximation tensor 

and the original tensor as the optimization objective. The question of recovering is a tensor 

decomposition when only a small number of entries are revealed in a traffic dataset as follows 

[Song, Ge, Caverlee, & Hu, 2019] [Jain & Oh, 2014]. 

Given a tensor 𝒳 ∈ ℝI1×I2×I3，𝒳 is recovered by using the given entries 𝑃𝛺(𝒳), 

𝑃𝛺(𝓧)𝑖𝑗𝑘 {
𝓧𝑖𝑗𝑘       if (i, j, k) ∈ 𝛺

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝑃𝛺(⋅) denotes the projection of a tensor 𝓧 onto the revealed set. 𝛺 ⊆ I1 × I2 × I3 

denotes a subset revealed out of I1 × I2 × I3 entries of 𝓧. Each (i, j, k) i ≦ I1, j ≦ I2, k ≦ I3 

is included in a subset revealed 𝛺. 

In the context of this section, we are concerned with the problem of how to apply TTM in 

the decomposition part of the recovery method. We assume three values as the initial missing 
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data: 0, 6, and 55 (0 means no traffic count, 6 means the lowest average traffic count in the 

current dataset, and 55 means the average of all traffic data in the current dataset). 

4.6.2 Traffic dataset 

The data are collected in real-time from One-ITS Toronto Traffic Dataset for each 

intersection of a section of highway in Toronto city [Middleware Systems Research Group, 

2020]. It is assumed that the number of vehicles in the inlet lane of the intersection of the 

section is the traffic volume of the corresponding section. The traffic flow data is collected 

daily by 162 loop detectors. We construct traffic tensor data, including thirteen relevant road 

sections, seventeen days, and twenty-four hours per day of relevant traffic information. 

Data recovery experiments are implemented for both RTD and TTM. For the simulation of 

missing data, the experiments randomly select 5%, 15%, ..., 95% of the historical data in 10 

sections of 17 days at 5% intervals, and Figure 4.9 shows the example of random missing 

data. 

 

 1 2 3 4 5 6 7 8 9 10    

1              

2             Missing data 

3              

4             Full data 

5              

6              

7              

8              

9              

10              

Figure 4.10 Example of random missing data 

Two types of errors are used to measure the recovery effect of missing data: relative error 

MAE (mean absolute error) and root-mean-square error RMSE (root-mean-square deviation). 

The two types of errors are calculated as follows. 

MAE is defined as follows: 
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𝑀𝐴𝐸 =
∑ |𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗|𝑖,𝑗

𝑁
 

RMSE is defined as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗)2𝑖,𝑗

𝑁
 

where 𝑟𝑖,𝑗 denotes the expected QoS attribute of web service 𝑗 observed by user 𝑖, 𝑟̂𝑖,𝑗 is the 

predicted QoS attribute, and 𝑁 is the number of predicted values. 

4.6.3 Data recovery performance 

Table 4.30 and Table 4.31 show the recovery errors of the two methods in the case of ten 

times simulation of random missing data, and the results are the average of 10 round 

experiments for each missing rate according to the literature. The larger the value of the 

missing rate, the fewer data are available in the dataset. The smaller the error value, the better 

the recovery performance.  
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Table 4.30 MAE errors in the random missing rates 

Initial value Number of flows=0 Number of flows= 6 Number of flows= 55 

Missing rate TTM RTD TTM RTD TTM RTD 

5% 0.5284 0.1876 0.543 0.1897 0.6273 0.1999 

10% 0.4601 0.2013 0.4768 0.1949 0.6543 0.2151 

15% 0.3942 0.2164 0.4108 0.2141 0.6731 0.2425 

20% 0.3238 0.2399 0.3577 0.2304 0.6999 0.271 

25% 0.2687 0.2733 0.3056 0.2574 0.7303 0.3024 

30% 0.2319 0.3086 0.2641 0.2864 0.7512 0.3333 

35% 0.2151 0.3484 0.2364 0.3192 0.7892 0.3728 

40% 0.2143 0.3909 0.2257 0.353 0.8211 0.4048 

45% 0.2391 0.4368 0.229 0.3901 0.8553 0.446 

50% 0.2774 0.4835 0.2495 0.4284 0.8971 0.4826 

55% 0.3314 0.5333 0.2826 0.4688 0.9318 0.5224 

60% 0.3929 0.5832 0.3223 0.5096 0.9808 0.5655 

65% 0.4628 0.6345 0.3707 0.5508 1.0316 0.6121 

70% 0.5347 0.6855 0.4235 0.593 1.0821 0.6523 

75% 0.6095 0.7371 0.4799 0.6355 1.1379 0.6983 

80% 0.6869 0.7901 0.5388 0.6786 1.1884 0.7442 

85% 0.7659 0.8439 0.5999 0.7208 1.2472 0.7904 

90% 0.8467 0.8973 0.6628 0.7641 1.309 0.8407 

95% 0.9264 0.9498 0.7261 0.8062 1.3748 0.8879 
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Table 4.31 RMSE errors in the random missing rates 

Initial value Number of flows=0 Number of flows= 6 Number of flows= 55 

Missing rate TTM RTD TTM RTD TTM RTD 

5% 35.2342 13.7778 35.803 13.5521 38.8253 13.2141 

10% 30.0366 15.7724 30.8491 15.2414 37.134 13.641 

15% 25.2614 18.1651 26.1761 17.6964 35.3394 14.548 

20% 20.7516 20.9704 21.9691 20.1599 33.7469 15.5895 

25% 17.0253 24.2158 18.2339 22.9864 32.4756 16.8063 

30% 14.8968 27.5279 15.5684 26.1248 31.3799 18.3777 

35% 14.8014 30.7798 14.449 29.3071 30.5568 19.8605 

40% 16.7132 34.3626 15.4077 32.4305 30.014 21.3546 

45% 20.3172 37.9138 17.9337 35.8464 29.7642 22.9892 

50% 24.5642 41.6046 21.7558 38.9337 29.842 24.6458 

55% 29.6531 45.2418 25.8747 42.5423 30.1475 26.5184 

60% 34.6874 49.0597 30.3599 46.0807 30.8274 28.2337 

65% 39.6862 53.0356 35.3599 49.3968 31.7732 30.0507 

70% 45.2889 56.4309 40.1336 52.8259 32.9926 31.8841 

75% 51.1029 60.1379 45.3329 56.3854 34.4334 33.5332 

80% 56.5173 63.877 50.3796 59.8021 35.959 35.4371 

85% 62.0534 67.6802 55.7179 63.3642 37.7278 37.3047 

90% 67.7637 71.5787 60.9097 66.9731 39.6247 39.1858 

95% 73.5912 75.2673 66.1629 70.3741 41.5641 40.9428 
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Figure 4.11 MAE error curve of TTM vs. RTD 

 

 

Figure 4.12 RMSE error curve of TTM vs. RTD 
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Figure 4.10 and Figure 4.11 show that the effectiveness of RTD recovered data does not 

differ much for different missing rates, and all errors increase with the increasing missing 

rate. However, the recovery performance of TTM needs to be viewed in segments. When the 

missing rate is lower than 30-35%, the MAE generated by the TTM decreases with the 

increase of the missing rate. When the missing rate is higher than 30-35%, his MAE decreases 

with the increase of the missing rate. Moreover, the error generated by the TTM is lower than 

those generated by the RTD, which means that the TTM is more effective when the missing 

data rate is higher than 30-35%. 

It can also be found that the difference in MAE between TTM and RTD is the largest when 

the missing rate reaches 50%. The difference of RMSE between TTM and RTD is the largest 

when the missing rate reaches 60%. 

4.6.4 Impact of initial missing values 

In the traffic dataset, the missing data is represented by a null value. However, before the 

tensor decomposition, it is usually necessary to set an initial value for the null element of the 

original tensor. We call this setting the initial missing value. 

In order to further investigate the recovery effect of TTM and RTD, a comparison of the 

recovery error rates is conducted by selecting different initial missing values. Table 4.32 

shows the MAE/RMSE average with initial missing values under different initial missing 

values. We use three initial values, such as lowest flow value 0, lowest average flow value 6, 

and average flow value 55. The results show how the initial missing value influences the 

TTM and RTD as follows. 

• The initial missing value is settled as 0: the MAE average reaches the lower values for 

both TTM and RTD. 

• The initial missing value is settled as 6: the MAE average reaches the lowest values for 

both TTM and RTD. 

• The initial missing value is 55: the MAE average reaches the top values for TTM, and 

the RMSE average reaches the lowest values for RTD. 

In tensor decomposition, the initial values are usually estimated based on experience, such 

as zero values, the average of the observed data, etc. This estimation is often adjusted until a 

better prediction performance is obtained. 
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In this experiment, three initial values were selected by experience. In general, the recovery 

performance of TTM is better than RTD when the initial value is lower than the average 

traffic flow value. When the initial value is higher than the average traffic flow value, the 

recovery performance of TTM becomes worse than RTD. The initial missing value should 

be as close as possible to the lowest average value. 

Table 4.32 MAE/RMSE average with initial missing values 

Initial value Content MAE average RMSE average 

TTM RTD TTM RTD 

0 No flow 0.46 0.51 35.78 42.49 

6 Lowest Average flow 0.41 0.45 33.07 40.00 

55 Average flow 0.94 0.50 33.90 25.48 

 

4.6.5 Summary of experiment 

We implement the missing data recovery experiments based on TTM and RTD. The 

experimental results show that the recovery error of the RTD increases gradually with the 

increase of the missing rate. For different random missing rates, the recovery error of the 

TTM all varies as the missing rate increases. 

By further analyzing the recovery errors under different initial missing rates, it is found that 

how the initial missing values more influence the TTM. When the missing rate is lower than 

30-35%, the recovery error of the TTM is larger than that of the RTD. In the case of the same 

large initial missing rate, for example, the missing rate is higher than 35%, the recovery error 

of the TTM is smaller than that of the RTD, which means that the TTM is better at this time. 
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4.7 Summary 

We addressed the problem of the lack of samples for the high-dimensional limited sample 

dataset, and the goal is set on how to construct more sample records from the current limited 

information, expecting to improve the prediction performance. The feature factor matrix as 

a features-oriented collaboration scheme is established, and an improvement method TTM 

is implemented according to the definition of this scheme. The iteration step size of the TTM 

is increased making the convergence efficient, and the TTM converges with better accuracy 

than other methods for the same number of iterations. 

At the core of the work presented in this chapter, we argue for the importance of 

(1) designing a feature-oriented collaboration scheme, which mapping the limited 

sample into feature factor matrices as the base of the method. 

(2) proposing TTM, the feature-oriented tensor decomposition algorithm based on the 

regular tensor decomposition for fitting the feature-oriented collaboration scheme. 

(3) establishing a comparative analysis to validate the TTM, including discussing the 

convergence properties, verifying the convergence results, and presenting the 

computational complexity. 

(4) conducting experiments on the real datasets to reach data prediction and recovery 

application requirements. The experiments demonstrate that TTM enhances the 

level of prediction accuracy. 

Overall, TTM outperforms RTD in predicting and recovering information with a consistent 

rate of missing data. 
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Chapter 5 

A Modified Regularization Term 

This chapter focuses on a modified regularization term for supporting TTM.  The lasso and 

ridge regression are introduced separately. The modified regularization term is formulated.  

The experimental results effectively improve the QoS attribute prediction performance in the 

traversal tensor method (TTM).  

5.1 Introduction 

We propose a novel regularization term for tensor decomposition based on TTM. The major 

novelty is a combination method for estimating prediction results for the web service 

recommendation, which simultaneously exploits lasso and ridge regression. Using this 

modified regularization term, we can prevent them from the overfitting problem. 

The main contributions of this chapter are:  

(1) Identify the lasso and ridge regression and find an effective way to help to predict 

the QoS attribute. 

(2) By combining the lasso and ridge regression regularization, the modified 

regularization term based on TTM could enhance the prediction performance and 

reduce overfitting. 

The chapter’s structure follows: Section 5.2 introduces a motivation and reviews our previous 

research work. Section 5.3 introduces the regularization techniques: ridge regression, lasso 

regression, and Elastic Net regression, respectively. Section 5.4 shows the modified 

regularization term based on TTM to obtain the solution of the factor matrix. Section 5.5 

applies the proposed algorithm to the web service prediction problem in the experimental 

and analyzes the results. Finally, Section 5.6 summarizes the work of this chapter. 

5.2 Motivation 

Overfitting is a phenomenon in which the method is overfitted to the observed data due to 

few sample data in the analysis method so that the prediction by the method will be very 

different from the expected value. The recommendation performance based on tensor 

decomposition is usually negatively affected by the overfitting problem and, consequently, 

cannot achieve state-of-the-art performance. This often requires regularization techniques to 

enhance decomposition performance.  
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Commonly used regularization techniques are lasso, ridge, and Elastic Net regressions 

[Ogutu, Schulz-Streeck, & Piepho, 2012] [ Ji, Wang, Li, & Liu, 2019]. Lasso regression 

uses the L1 norm, and the model that uses the L2 norm is called ridge regression. Elastic Net 

regression, also called elastic network regression, combines ridge regression and lasso 

regression. Signoretto et al. extends the matrix norm to tensor data and uses it for supervised 

tensor learning to find low-rank projection matrices [Signoretto, De Lathauwer, & Suykens, 

2010]. The success of the matrix trace norm inspires Lacroix et al. and they propose a tensor 

p-norm regularization term [Lacroix, Usunier, & Obozinski, 2018] [Candès & Recht, 2009]. 

The ridge regression is a popular regularization technique applied to the tensor 

decomposition modes [Nickel, Tresp, & Kriegel, 2011].  

The ridge regression is mainly used to prevent overfitting when all features are extracted 

from the sample dataset [Zhang, Han, & Jiang, 2016]. However, experiments show that ridge 

regression might reduce performance for sparse data while the lasso regression has higher 

efficiency in the sparse dataset [Ruffinelli, Broscheit, & Gemulla, 2019]. Since the web 

service dataset is sparse, it is desirable to consider a suitable regularization term to avoid 

overfitting and support the TTM method.  

In recent studies, we also note that there are researchers who use the 𝑁3 method to calculate 

the norm [(Lacroix, Usunier, & Obozinski, 2018]. It is not suitable for a more general model. 

We have also conducted corresponding experiments, and the experimental results show no 

significant difference between those who use the 𝑁3 method to compute paradigms and our 

method. 

 

5.3 Regularization techniques 

This section introduces the loss function based on ridge regression, lasso regression, and 

Elastic Net regression method. 

The commonly used regularization terms are L1 norm and L2 norm.  

• Least absolute shrinkage and selection operator regression (Lasso) 

Lasso regression is a regression model that uses the L1 norm ||𝑊||1. It is defined to be the 

sum of the absolute values of each element of the 𝑊. In feature selection, the L1 norm helps 

us minimize the objective function by making 𝑊  equal to zero to remove these useless 

features and reduce the interference with the prediction of the sample.  
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The object function for the lasso regression uses the L1 norm as follows.  

‖𝒳‖1 = ∑ ∑ ∑ |𝑥𝑖1𝑖2𝑖3
I3
𝑖3=1

I2
𝑖2=1

I1
𝑖1=1

|.                                  (5.1) 

• Ridge regression 

Ridge regression is a regression model that uses the L2 norm ||𝑊||2. The L2 norm is a square 

root of the sum of the squares of the values 𝑊. The L2 norm makes each element of 𝑊 small 

and close to zero. The smaller the parameter, the simpler the model, and the simpler the 

model is, the less likely it is to produce overfitting. The ridge regression solves the objective 

function, which is altered by adding a penalty equivalent to the square of the coefficients as 

follows,  

‖𝒳‖2 = √∑ ∑ ∑ 𝑥𝑖1𝑖2𝑖3
2I3

𝑖3=1
I2
𝑖2=1

I1
𝑖1=1

= √〈𝒳,𝒳〉.                       (5.2) 

 

• Elastic Net regression 

Elastic Net regression is a model that combines ridge regression and lasso regression. 

 

5.4 A modified regularization term 

In this section, the solution for optimizing the objective function is introduced. An alternating 

optimization algorithm is applied in that one of the decomposition elements is optimized at 

each iteration when other elements are kept fixed.  

Regular tensor decomposition commonly uses ridge regression as the regularization term. 

The essential regularization term 𝛺(𝓧̅) is shown in the following formula,  

𝛺(𝓧̅) =
1

2
𝜆 (‖𝑈(1)‖

2
+ ‖𝑈(2)‖

2
+⋯+ ‖𝑈(𝑁)‖

2
)                         (5.3) 

where 𝓧̅ denotes an approximate tensor. 𝑈(1) is the factor matrix for user 𝑖,  𝑈(2) is the 

factor matrix for service 𝑗, and 𝑈(3) is the factor matrix for time period 𝑘. 𝜆 are parameters 

of the factor matrix in the regularization term.  

Motivated by the Elastic Net regression, we propose a modified regularization term that 

benefited the advantages of both lasso and ridge regressions:  

𝛺(𝓧̅) = 𝜆 (
1 − 𝑝

2
 ‖𝓧̅‖2

2 + 𝑝‖𝓧̅‖1) 

= 𝜆 (
1−𝑝

2
 ‖⟦𝑈𝒏𝒆𝒘

(𝟏) , 𝑈𝒏𝒆𝒘
(𝟐) , 𝑈𝒏𝒆𝒘

(𝟑) ⟧‖
2

2

 + 𝑝‖⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧‖

1
)               (5.4) 
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where 𝝀 denotes the regularization parameter, and its default value is 35. The parameter 

𝑝 = 0  corresponds to the ridge method ||𝑊||2  and 𝑝 = 1  to the lasso method ||𝑊||1 . 𝓧̅ 

denotes an approximation tensor. 𝑈𝒏𝒆𝒘
(𝒏)

= 𝑈
(n)+∆𝑈(n) n = 1,2,3  denotes the new factor 

matrices. 

 

We perform an optimization task for the objective function 𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝛺(𝓧) as 

follows,  

min (ℓ(𝓧, 𝓧̅)) + 𝛺(𝓧̅) 

⇒min (ℓ(𝓧, 𝓧̅)) + 𝜆 (
1 − 𝑝

2
 ||𝓧̅||2

2 + 𝑝||𝓧̅||1) 

⇒ min
𝑈𝒏𝒆𝒘
(𝒏)
,𝒏=𝟏,𝟐,𝟑

(‖𝓧− ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧‖)

+ 𝜆 (
1 − 𝑝

2
 ‖⟦𝑈𝒏𝒆𝒘

(𝟏) , 𝑈𝒏𝒆𝒘
(𝟐) , 𝑈𝒏𝒆𝒘

(𝟑) ⟧‖
2

2

 + 𝑝‖⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧‖

1
) 

⇒ min
𝑈𝒏𝒆𝒘
(𝒏)
,𝒏=𝟏,𝟐,𝟑

(‖𝓧− ⟦𝑈(n) + ∆𝑈(n)⟧‖) + 𝜆 (
1−𝑝

2
 ∑ |𝑈(n) + ∆𝑈(n)|

23
𝑛=1 +

𝑝∑ |𝑈(n) + ∆𝑈(n)|3
𝑛=1 )                                                                                               (5.5) 

where the feature factor matrices ∆𝑈(n) n = 1,2,3 are required to solve in the least squares 

sense the overdetermined the above equation. The new factor matrices denote as 𝑈𝒏𝒆𝒘
(𝒏)

=

𝑈
(n)+∆𝑈(n) n = 1,2,3. λ > 0 is the regularization parameter.  

The regularization can be treated as a compromise between finding a small penalty and 

minimizing the loss function ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 . The regularization parameter λ 

controls the compromise: the smaller the λ., the more it minimizes the loss function, and 

conversely, the smaller the penalty. 

The setting of the regularization parameters is related to the size of the dataset. Usually, 

the regularization parameters are set larger for large datasets and smaller for small 

datasets. To facilitate comparison with other methods, we use the default value λ = 35 in 

the experiment. 

The following is the updated algorithm of TTM with the regularization term method 

(TTMwR), which is the iteration process optimization of ⟦𝑈𝒏𝒆𝒘
(𝟏)
,𝑈𝒏𝒆𝒘
(𝟐)
,𝑈𝒏𝒆𝒘
(𝟑) ⟧  until 
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convergence. Each iteration computing is performed in two steps: computing the feature 

factor matrices and updating the iteration. 

Algorithm 5.1 TTM with a regularization term 

Input: an original tensor 𝓧 ∈ ℝI1×I2×I3 , the regularization term parameter 𝜆 , the weight 

parameter 𝑝 

Output: the approximate tensor 𝓧̅, the factor matrices are the index of users, services, and 

time, respectively. 

Step 1. Initialize regular factor matrices 𝑈(2), 𝑈(3) and slices X(1), X(2), X(3). 

Step 2a. Fixing the 𝑈(2) and 𝑈(3) to estimate the factor matrices 𝑈(1), 𝑈(1)̅̅ ̅̅ ̅̅ . 

Step 2b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ. 

Step 2c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(1)

. 

Step 2d. Compute the corresponding regularization 𝜆𝛺(𝓧̅), update the approximate tensor 𝓧̅ 

Step 3a. Fixing the 𝑈𝑛𝑒𝑤
(1)

 and 𝑈(3) to estimate the factor matrices 𝑈(2), 𝑈(2)̅̅ ̅̅ ̅̅ . 

Step 3b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ. 

Step 3c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(2)

. 

Step 3d. Compute the corresponding regularization 𝜆𝛺(𝓧̅), update the approximate tensor 𝓧̅ 

Step 4a. Fixing the 𝑈𝑛𝑒𝑤
(1)

 and 𝑈𝑛𝑒𝑤
(2)

 to estimate the factor matrices 𝑈(3), 𝑈(3)̅̅ ̅̅ ̅̅ . 

Step 4b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ. 

Step 4c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(3)

. 

Step 4d. Compute the corresponding regularization 𝜆𝛺(𝓧̅), update the approximate tensor 𝓧̅ 

Step 5. Repeat step 2a to step 4d, update the approximate tensor 𝓧̅ = ⟦𝑈𝑛𝑒𝑤
(1)
,𝑈𝑛𝑒𝑤
(2)
,𝑈𝑛𝑒𝑤
(3) ⟧. 

Step 6. Reduce the objective function 𝐿(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 + 𝜆𝛺(𝓧̅) until convergence is 

exhausted. 

Step 7. Return the final prediction tensor 𝓧̅. 

 

5.5 Experiment 

In this subsection, we implement the prediction experiments on the web service dataset to 

evaluate the novel regularization term for tensor decomposition based on TTM.  
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5.5.1 Experimental setup 

To evaluate the proposed QoS attribute prediction method, we use the web service dataset 

offered by Zheng et al. [Zheng, Ma, Lyu, & King, 2010]. This dataset describes real-world 

QoS attribute prediction results from 142 users on 4,500 web services over 64 different time 

slices. This experiment focused on the response time and proposed a method to predict 

missing QoS attribute values. 

The experiment is conducted on a Lenovo ThinkCentre M58 desktop with a 3.0 GHz Intel 

Core™ 2 Duo CPU and an 8 GB RAM, running Ubuntu operation system. The program is 

implemented with Python 3.4 and Microsoft C++. 

We use the standard mean absolute error (MAE), and root mean square error (RMSE) to 

compare the quality of our prediction. The calculation formula or MAE and RMSE are 

MAE is defined as follows: 

𝑀𝐴𝐸 =
∑ |𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗|𝑖,𝑗

𝑁
 

RMSE is defined as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗)2𝑖,𝑗

𝑁
 

where 𝑟𝑖,𝑗 denotes the expected QoS attribute of web service 𝑗 observed by user 𝑖, 𝑟̂𝑖,𝑗 is the 

predicted QoS attribute, and 𝑁 is the number of the predicted value. 

We verify the effectiveness of the proposed TTMwR method, and the comparison is based 

on service collaboration with the following other methods. 

• Web service QoS attribute prediction framework (WSPred): As a benchmark method, 

this is a tensor factorization-based recommendation with a time-aware personalized QoS 

attribute prediction service for different service users [Zhang, Zheng, & Lyu, 2011]. 𝝀 =

35 denotes the default value. 

• TTM with regularization term method (TTMwR): This tensor-based method combines 

lasso and ridge regressions based on TTM. 𝝀 = 35 denotes the default value. 

• TTM when 𝝀 = 0: This is a traversal-tensor method without the regularization term. 

The above methods predict the response time and compute the MAE and RMSE values.  The 

smaller value means the method has high performance. 
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Since a user does not revoke all web services, the dataset is usually sparse in the real world. 

The implement will randomly remove QoS attribute with different density from 5%, 

10%,15%, 20%, 25%, and 30%. The 5% density means that 5% of the data is used for training, 

and 95% of the data is used for testing. We randomly set the parameter 𝑝  in TTMwR 

corresponding to the lasso and ridge. For example, the parameter 𝑝 = 0 is to the ridge, 𝑝 =

1 to the lasso, and 𝑝 = 0.25 means that result is generated by combing 25% by ridge and 

75% by lasso regression.  

5.5.2 Experimental results and discussion 

We examine the prediction performance of three methods.  

We set the different parameter 𝝀 value: when setting 𝝀 default value is 35, the TTM has 

the regularization term. When 𝝀 = 0 , it means that TTM has no regularization term. 

TTMwR shows better predictive performance than TTM without regularization and 

WSPred methods in Table 5.1 and Table 5.2. 

Table 5.1 Performance comparison in MAE 

Methods 𝝀 P Density 

5% 

Density 

10% 

Density 

15% 

Density 

20% 

Density 

25% 

Density 

30% 

WSPred 35  0.7913 0.7603 0.7535 0.7629 0.7520 0.7687 

TTM 0  0.8183 0.7745 0.7417 0.7415 0.7345 0.7382 

 

TTMwR 

 

35 

0 0.6850 0.6806 0.6723 0.6683 0.6604 0.6693 

0.25 0.6892 0.6721 0.6663 0.6672 0.6594 0.6763 

0.5 0.6859 0.6695 0.6721 0.6665 0.6635 0.6629 

0.75 0.6872 0.6711 0.6680 0.6682 0.6667 0.6619 

1 0.6884 0.6679 0.6675 0.6676 0.6647 0.6670 
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Table 5.2 Performance comparison in RMSE 

Methods 𝝀 P Density 

5% 

Density 

10% 

Density 

15% 

Density 

20% 

Density 

25% 

Density 

30% 

WSPred 35  1.8006 1.7741 1.7695 1.7764 1.7780 1.7823 

TTM 0  1.8569 1.7852 1.7408 1.7366 1.7226 1.7214 

 

TTMwR 

 

35 

0 1.5891 1.5788 1.5687 1.5680 1.5609 1.5645 

0.25 1.5989 1.5710 1.5669 1.5637 1.5617 1.5637 

0.5 1.5959 1.5721 1.5681 1.5635 1.5614 1.5590 

0.75 1.5950 1.5738 1.5673 1.5643 1.5633 1.5595 

1 1.6010 1.5725 1.5666 1.5631 1.5601 1.5621 

 

(1) Accuracy with different methods 

The TTMwR method has smaller MAE and RMSE values for all densities than the other 

methods in Figures 5.1 and 5.2. The prediction accuracy can also be improved with the 

training matrix density increase from 5% to 30%. The total average MAE of the TTMwR 

method (0.67) has 14% more than the WSPred method (0.7648). Thus, the TTMwR method 

can significantly improve the accuracy result. 

We also illustrate the evaluation results in the different values of the parameter 𝑝 separately 

in Figures 5.3 and 5.4 for the TTMwR method. The result shows that the method has the 

worst prediction accuracy for 5% density. With density increasing, the accuracy 

performance curve drop-down during 5% to 25% density. The best accuracy result appears 

when the density is 25% for both MAE and RMSE, and the MAE result generates a sharp 

decline curve at the point. Then the curve rises slightly after 25% density, and the accuracy 

decrease for 30% density. 
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  Figure 5.1 Impact of density on prediction accuracy MAE 

Figure 5.2 Impact of density on prediction accuracy RMSE 
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(2) Impact of the weight parameter 𝒑 

We focus on the impact of the regression parameter 𝑝 for the TTMwR method in Figures 

5.3 and 5.4. In Figure 5.3, the high MAE result is shown for density 10% when 𝑝 = 1, which 

means the lasso regularization help to achieve a better MAE result. As well as the best RMSE 

result appears when 𝑝 = 0.25. Conversely, the minimum MAE result is shown when 𝑝 =

0.25, and the minimum RMSE result is shown when 𝑝 = 1 from density 15% to 25%. For 

density 30%, the best MAE result is shown when 𝑝 = 0.75, and the best RMSE result is 

shown when 𝑝 = 0.5 𝑜𝑟 0.75.  

For the lower data densities (less than 25%), with the parameter 𝑝 increases, the accuracy 

value rises. The ridge regularization contributes more to improve the performance of the 

method. However, when data density is higher, the performance depends on both lasso and 

ridge regularization contributes. The best regularization ratio is 25% by the lasso and 75% 

by the ridge, or an equal split. 

Thus, from the experimental results, it can be observed that the impact of the parameter 𝑝 is 

not significant. Nevertheless, some subtle differences are observed. 

 Figure 5.3 Impact of the parameter 𝑝 on MAE 
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 Figure 5.4 Impact of the parameter 𝑝 on RMSE 

 

5.6 Summary 

A modified regularization term for tensor decomposition based on TTM is proposed. This 

method aims to reduce the possibility of overfitting and increase the method's robustness. 

Based on TTM, a combination method for estimating prediction results for the web service 

recommendation is established, exploiting lasso and ridge regression simultaneously. The 

experimental results show that the proposed tensor method can effectively improve the 

estimation performance. 
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Chapter 6 

TTM with K-means Method for Recommendation 

This chapter focuses on a two-step strategy based on the K-means algorithm and TTM to 

deal with the initial unorganized data.  

6.1 Introduction 

We implement a two-step strategy combining clustering and tensor analysis, which 

computes the K-means algorithm and TTM tensor decomposition for the initial data 

preprocessing.  

(1) Propose a two-step strategy method. 

A two-step strategy method is given as following Figure 6.1. 

 

 

 

Figure 6.1 Two-step strategy method 

• In the first step, the dataset is clustered using the K-means algorithm technique.  

The goal is to find a pre-processing way to deal with the initial unorganized data. We 

selected two different distance computations, Euclidean and cosine similarity, 

respectively. The cosine similarity was chosen because it is suitable for calculating 

angles between two vectors and is insensitive to the absolute length of the label vectors. 

• In the second step, after clustering the dataset, the tensor decomposition is performed 

by applying the TTM. 

The tensor decomposition is used to remove the empty parts of the model, and the 

approximate tensor is obtained by reconstruction to generate the corresponding 

recommended values. This method can remove the vacant parts in the dataset to reduce 

data sparsity. 

(2) Analyze the issues such as selecting initial K values, computational performance, and 

distance calculation are discussed by experimenting on the web service dataset.  

𝓧

𝐾−𝑚𝑒𝑎𝑛𝑠
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔
→       𝓧̿

𝑻𝑻𝑴
→  𝓧̅ 

1st step              2nd step 
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The recommendation system's effectiveness based on the clustering technique and tensor 

decomposition algorithm proposed in this paper is compared with the recommendation 

effect of similar algorithms. 

The chapter is structured as follows. Section 6.2 introduces the motivation and reviews our 

previous research work.  Section 6.3 introduces the K-means algorithm and data clustering 

process for web service recommendation. In Section 6.4, the TTM with the K-means 

algorithm for recommendation is proposed. Section 6.5 introduces that the algorithm's 

performance was evaluated by experimentally discussing two impacts. Finally, Section 6.6 

summarizes the entire chapter. 

6.2 Motivation 

Integrating tensor and clustering algorithms is one of the research topics to use high 

dimensional data to provide an accurate web service recommendation.  

The clustering methods look for hidden valuable information in datasets [Dubey & 

Choubey, 2017]. The generally used clustering analysis algorithm is the K-means 

algorithm. The K-means algorithm is currently the most widely used clustering algorithm, 

which MacQueen first proposed in 1967 [MacQueen, 1967], and Hartigan optimized and 

implemented an efficient K-means algorithm based on Fortran [Hartigan, 1975]. The K-

means algorithm is particularly suitable for classification applications with high-

dimensional data [Liu, Hu, Ge, & Xiong, 2012].  

The first one to introduce the K-means algorithm into the tensor model is Symeonidis, who 

applied over the user-tag cluster-item tensor instead of the user-tag-item tensor to represent 

the ternary relationship in social tagging systems [Symeonidis, 2015]. Silic etc. proposes a 

K-means algorithm method, CLUStering (CLUS), based on a similar tensor structure using 

two-dimensional feature vectors for users and services, respectively [Silic, Delac, & Srbljic, 

2014]. Shang et al. propose K-means and the time-context-based tensor decomposition 

method. The initial clustering of datasets is carried out through K-means to improve the 

data aggregation and algorithm efficiency [Shang, Wang, & Huang, 2018].  

When TTM starts running and predicts the QoS attribute, the initial dataset is unprocessed, 

and the records are sparse and unclassified. If pre-processing of the dataset is implemented, 

it might improve the prediction performance of TTM. The reason for used the K-means 
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algorithm is that it is currently the most widely used clustering algorithm, and it is suitable 

for applications with tensor data. Motivated by the above research, we chose a K-means 

algorithm to find a pre-processing way to deal with the initial unorganized data. Due to 

time limitations, we will continue to complete the evaluation based on this study for the 

other clustering methods in the future. 

6.3 K-means algorithm  

This section focuses on the K-means algorithm and how K-means is handled in a web 

service recommendation. 

(1) K-means algorithm 

K-means algorithm classifies a group of objects into a 𝐾 number clusters based on the 

object’s attributes or features. First, it requires data points (objects), 𝐾 number of clusters, 

and the earliest randomly selected centroid in the dataset. Clustering is determined by two 

factors: calculating the distance between members and the degree of association with the 

nearest centroid. The algorithm keeps calculating the distance and the centroid of the 

partition until the stop condition is met. Euclidean distance is the most used distance 

measurement method. The stopping condition is that the recalculated centroid no longer 

changes with iterations, and no members in the result are reassigned.  

The K-means algorithm is as follows, for 𝑁  data objects located in a continuous 

dimensional space and 𝐾 number of clusters 𝑃, all clusters are independent and have a 

compact interior.  

Algorithm 6.1 K-means algorithm 

Input: N dataset, 𝐾 number of clusters 

Output: 𝐾 clusters 𝑃 

Step l. Randomly select one object as the centroid 𝑞 of a cluster. 

Step 2. For all m objects, calculate the distance 𝐷 from the centroid and divide it into 

the nearest centroid cluster. 

Step 3. Recalculate the centroids of 𝐾 clusters, whose centroid is the average of all 

object values in the cluster. 

Step 4. Repeat steps 2 and 3 until the distance between the objects in the cluster and 

each centroid is the smallest.  
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(2) Clustering process 

Given a service invocation dataset X which contain 𝑁 samples, 

X(u, s, t) = [𝑥1, 𝑥2, … , 𝑥𝑁]
𝑇𝜖𝑅𝑁×𝐷 , 𝑥𝑖𝜖𝑅

𝐷                              (6.1) 

where 𝑢 is the user executing the invocation, 𝑠 is the service invoked, and 𝑡 is the actual 

time of the service invocation. 𝑋(𝑢, 𝑠, 𝑡) is the service response time as QoS attribute value. 

𝑥𝑖 is a sample data containing 𝑁 samples. 

The goal of clustering is to divide these 𝑁 samples with the sample similarity degree into 

𝐾 clusters 𝑃 = [𝑃1, 𝑃2, … , 𝑃𝐾]. The K-means algorithm objective function is following [Li 

& Ding, 2013], 

𝑚𝑖𝑛
𝑞𝑘|𝑘=1

𝐾
∑ ∑ ‖𝑥𝑖 − 𝑞𝑘‖

2
𝑥𝑖𝜖P𝐾

𝐾
𝑘=1                                        (6.2) 

where 𝑞𝑘  is the center of a cluster P𝐾 , let 𝑄 = [𝑞1, 𝑞2, … , 𝑞𝐾]𝜖𝑅
𝐷×𝐾, 𝑉 =

[𝑣1, 𝑣2, … , 𝑣𝑁]
𝑇𝜖𝑅𝑁×𝐾, where 𝑣𝑖 is the category of indicator vector. If 𝑥𝑖𝜖P𝐾, then 𝑣𝑖𝑘 = 1, 

otherwise 𝑣𝑖𝑘 = 0. The K-means algorithm in equation (6.2) can be expressed in the form 

of matrix decomposition: 

{
𝑚𝑖𝑛
𝑈,𝑉
‖𝑋 − 𝑄𝑉𝑇‖2

𝑠. 𝑡.     𝑄𝑇𝑄 = 𝐼 
.                                               (6.3) 

K-means algorithm is based on the 𝑋(𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒) is as follows.  

Algorithm 6.2 K-means algorithm 

Input: N user-service-time dataset 𝑋(𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒), 𝐾 number of clusters 

Output: 𝐾 clusters 𝑃 

Step l. Retrieve all 𝑢𝑠𝑒𝑟  items, which is denoted as user cluster 𝑃𝑢𝑠𝑒𝑟 =

{𝑢1, 𝑢2, … , 𝑢𝑚, },𝑚 𝑖𝑠 𝑛𝑢𝑏𝑚𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠. 

Step 2. Retrieve all 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 items, which is denoted as service cluster 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒 =

{𝑠1, 𝑠2, … , 𝑠𝑛, }, 𝑛 𝑖𝑠 𝑛𝑢𝑏𝑚𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠. 

Step 3. Retrieve all 𝑡𝑖𝑚𝑒  items, which is denoted as time cluster 𝑃𝑡𝑖𝑚𝑒 =

{𝑡1, 𝑡2, … , 𝑡𝑙 , }, 𝑙 𝑖𝑠 𝑛𝑢𝑏𝑚𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒. 

Step 4. Select the 𝐾  number of the cluster as the initial cluster centers 𝑄 =

{𝑞𝑢𝑠𝑒𝑟 , 𝑞𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝑞𝑡𝑖𝑚𝑒} for each cluster 𝑃𝑢𝑠𝑒𝑟 , 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝑎𝑛𝑑 𝑃𝑡𝑖𝑚𝑒 respectively. 

Step 5. Calculate the distances 𝐷  between items of responding cluster and each 

cluster center 𝑞𝑢𝑠𝑒𝑟 , 𝑞𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝑞𝑡𝑖𝑚𝑒 as follows, 
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𝐷𝑢𝑠𝑒𝑟(𝑢𝑚, 𝑞𝑢𝑠𝑒𝑟), 𝐷𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝑠𝑛, 𝑞𝑠𝑒𝑟𝑣𝑖𝑐𝑒), 𝑎𝑛𝑑 𝐷𝑡𝑖𝑚𝑒(𝑡𝑙, 𝑞𝑡𝑖𝑚𝑒) 

Step 6. Set the item belongs to cluster 𝑃 if the distance 𝐷 is minimum. 

Step 7. Calculate the cluster's average in the same cluster to generate a new cluster 

center.  

Step 8. if the clustering center no longer changes, exit; otherwise, go to step 5 and 

recalculate.  

 

This clustering algorithm aims to make the generated clusters denser and more independent 

by dividing items into 𝐾 clusters. This algorithm is suitable for the scenario that the clusters 

are relatively dense, and the distinction between clusters is obvious. The K-means 

algorithm can be used as the basic algorithm in the system analysis as a pavement. 

Although it is inefficient in handling systems with large datasets due to the increased 

complexity of the system, the data preprocessing with K-means clustering can make the 

main algorithm of the system more efficient. This chapter uses TTM as the main algorithm 

to further process the data after the clustering process. 

 

6.4 TTM with K-means method 

This section describes the TTM with the K-means method and algorithm. 

Considering a K-means algorithm as preprocessing of TTM for prediction QoS attribute 

provides an idea to further refine the web service recommendation. Thus, our proposed 

two-step strategy method, TTM with K-means method, is applied to fit the QoS attribute 

prediction scenario as follows,  

𝓧

𝑲−𝒎𝒆𝒂𝒏𝒔 
𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒊𝒏𝒈 
→        𝓧̿

𝑻𝑻𝑴
→  𝓧̅                                              (6.4) 

where 𝓧 is an original tensor which consists of QoS attribute value, 𝓧̿ is a clustered tensor 

after K-means clustering, 𝓧̅ denotes an approximation tensor. 

 

First, we compute the mean value in the same context cluster 𝑃𝑢𝑠𝑒𝑟 , 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝑎𝑛𝑑 𝑃𝑡𝑖𝑚𝑒 for 

prediction 𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒 items separately with an original tensor 𝓧.  
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Then we apply the 𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒  items to generate a clustered tensor 𝓧̿ =

⟦𝑈(user), 𝑈(service), 𝑈(𝑡𝑖𝑚𝑒)⟧, where 𝑈(user), 𝑈(service), 𝑎𝑛𝑑 𝑈(𝑡𝑖𝑚𝑒) are the factor matrices 

after clustering. 

Second, this clustered tensor 𝓧̿  is used as an input tensor of TTM. As same as 

decomposition processing in Chapter 4, we find the optimal that minimizes the objective 

function 𝐿(𝓧, 𝓧̅) in every iteration step as follows, 

𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝜆𝛺(𝓧̅)                                       (6.5) 

where 𝓧  is an original tensor which consists of QoS attribute value, 𝓧̅  denotes an 

approximation tensor, λ > 0  is the regularization parameter, ℓ(𝓧, 𝓧̅)  denotes as 

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2, 𝛺(𝓧̅) denotes a regularization term. 

 

To verify the tensor clustering decomposition method under unsupervised learning, the 

updated algorithm proposed in this chapter is applied to the QoS attribute prediction and 

compared with CLUS. The algorithm is a tensor decomposition based on K-means 

clustering, updating the distance measure with cosine similarity. The algorithm is as 

follows: 

Algorithm 6.3 TTM with K-means Clustering 

Input: N user-service-time dataset 𝓧(𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒) , Response time value, 

the regularization parameter 𝜆, 𝐾 Numbers of clusters. 

Output: the approximate tensor 𝓧̅, the factor matrices are the index of users, services, 

and time, respectively. 

Step l. K-means clustering process in dataset 𝓧(𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒) based on 𝐾 

Numbers of clusters. 

Step 2. Compute mean value in the same context cluster 𝑃𝑢𝑠𝑒𝑟  for predicting 𝑢𝑠𝑒𝑟 

items. 

Step 3. Compute mean value in the same context cluster 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒  for predicting 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 items. 

Step 4. Compute mean value in the same context cluster 𝑃𝑡𝑖𝑚𝑒  for predicting 𝑡𝑖𝑚𝑒 

items. 

Step 5. Generate a clustered tensor 𝓧̿ based on 𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒 items clustered. 
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Step 6. Inputting the clustered tensor 𝒳̿, apply the TTM. 

Step 7. Reduce the loss function until convergence is exhausted. 

Step 8. Return the final prediction tensor 𝓧̅. 

6.5 Experiment  

In this subsection, we implement the QoS attribute prediction experiments to evaluate the 

two-step strategy. This section describes the experiment setup, including methods 

compared, dataset, hardware system, and evaluation standard. Section 6.3.3 analyses and 

discusses the number of cluster impactions with accuracy and prediction time. Section 6.3.4 

analyses and discusses the distance metrics impaction with accuracy and prediction time. 

6.5.1 Experiment setup 

We use the web service dataset WSDream, which describes real-world QoS attribute 

prediction 30,287,611 results from 142 users on 4,500 web services over 64 different time 

slices. This section focused on the response time and proposed a method to predict the 

missing QoS attribute.  

The experiment hardware is conducted on a Lenovo THINKCENTRE M58 desktop with 

a 3.0 GHz Intel Core™ 2 Duo CPU and an 8 GB RAM, running Ubuntu operation system. 

The program is implemented with Python 3.4 and Microsoft C++. 

We use the standard mean absolute error (MAE), and root mean square error (RMSE) to 

compare our prediction quality. The calculation formulas are 

MAE is defined as follows: 

𝑀𝐴𝐸 =
∑ |𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗|𝑖,𝑗

𝑁
 

RMSE is defined as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗)

2
𝑖,𝑗

𝑁
 

where 𝑟𝑖,𝑗 denotes the expected QoS attribute of web service 𝑗 observed by user 𝑖, 𝑟̂𝑖,𝑗 is the 

predicted QoS attribute, and 𝑁 is the number of the predicted value. 

The above methods predict the response time and compute the RMSE values. The smaller 

the RMSE value, the better the prediction performance. The implement will randomly 
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remove the QoS attribute with different densities from 5% to 55%. The 5% density means 

that 5% of the data is used for training, and 95% of the data is used for testing.  

6.5.2 Prediction performance  

This section analyzes the impacts of the number of clusters on the prediction performance.  

The number of clusters K of the K-means algorithm is difficult to determine. If the k value 

is too small, it will lead to significant differences between data objects within the same 

cluster, and if the K value is too large, it will lead to a close distance between different 

clusters. Simultaneously, the improper value of K can also lead the final clustering results 

into local optimum, which is often the most criticized aspect of using the traditional K-

means algorithm. As early as 1998, Rezaee et al. [Rezaee, Lelieveldt, & Reiber, 1998] 

proposed that the optimal K-value is in the range of (1, √𝑛), with 𝑛 being the size of the 

dataset, which also provided the direction for the later improvement of the traditional K-

means algorithm. 

We compare our method with the CLUStering (CLUS), a method for predicting web 

services based on the K-means algorithm. TTM is also compared in the experiment. 

• CLUStering (CLUS): This method incorporates user-service parameters and 

aggregates past data using the K-means algorithm [Silic, Delac, & Srbljic, 2014].  

• TTM with K-means method (K+TTM): This is proposed in this chapter. This 

method is a tensor decomposition TTM based on K-means clustering. 

• TTM: This is a traversal-tensor method proposed in Chapter 4.  

The above methods predict the response time and compute the MAE and RMSE values.  The 

smaller value indicates the method has high performance. 

To compare the effects of the initial K values, we use different initial K value selection 

criteria separately. According to the maximum value of optimal K is √𝑛  [Rezaee, 

Lelieveldt, & Reiber, 1998], we have chosen different initial values.  

For the dataset which have 142 users on 4,500 web services over 64 different time slices, 

we set 𝑛=142 users, 𝑛=4,500 web services, and 𝑛=64 time slices separately, and the 

maximum value of optimal K is obtained as follows, 

𝐾𝑢𝑠𝑒𝑟 = 12, 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 67, and 𝐾𝑡𝑖𝑚𝑒 = 8  
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We have also chosen the same initial values for 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑡𝑖𝑚𝑒 = 10 based on 

the default value [Silic, Delac, & Srbljic, 2014] in Table 6.2. 

Table 6.1 Prediction performance comparison in RMSE 

for 𝐾𝑢𝑠𝑒𝑟 = 12,𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 67, and 𝐾𝑡𝑖𝑚𝑒 = 8 

Methods RMSE 

Density 

5% 

Density 

15% 

Density 

25% 

Density 

35% 

Density 

45% 

Density 

55% 

CLUS 2.2015 2.2188 2.1208 2.0068 1.9939 1.9513 

K+TTM 2.0150 2.0222 1.9995 1.9488 1.9127 1.8897 

TTM 1.5908 1.5675 1.5150 1.5569 1.5589 1.5584 

 

 

 

Figure 6.2 Prediction performance comparison in RMSE 

for 𝐾𝑢𝑠𝑒𝑟 = 12,𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 67, and 𝐾𝑡𝑖𝑚𝑒 = 8 
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Table 6.2 Prediction performance comparison in RMSE 

for 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑡𝑖𝑚𝑒 = 10 

Methods RMSE 

Density 

5% 

Density 

15% 

Density 

25% 

Density 

35% 

Density 

45% 

Density 

55% 

CLUS 2.2320 2.2560 2.1890 2.1118 2.0498 1.9924 

K+TTM 2.0192  1.9150 1.8969 1.8597 1.8472 1.8225 

TTM 1.5908 1.5675 1.5150 1.5569 1.5589 1.5584 

 

 

 

Figure 6.3 Prediction performance comparison in RMSE 

for 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑡𝑖𝑚𝑒 = 10 
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The K+TTM method has a higher prediction accuracy than the CLUS method. The 

prediction accuracy results show that accuracy depends on the different data densities in 

Figure 6.2 and Figure 6.3. For example, for the CLUS method, the RMSE value is 2.0068 

at 35% density, while the K+TTM’s RMSE value is 1.9488 at the same density in Table 

6.1. It is evident from the presented figures at higher density K+TTM improves more 

performance RMSE value from 2.0150 to 1.8897 while CLUS is in (2.2015, 1.9513) for 

𝐾𝑢𝑠𝑒𝑟 = 12, 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 67, and 𝐾𝑢𝑠𝑒𝑟 = 8 in Table 6.1. The same result is obtained when 

the number of clusters in 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑢𝑠𝑒𝑟 = 10 in Table 6.2.  

We find that obtaining the same initial value yields better results for different initial values 

of the number of clusters than giving different initial values in both methods. RMSE value 

is 1.8897 at 55% density for 𝐾𝑢𝑠𝑒𝑟 = 12,𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 67,  and 𝐾𝑡𝑖𝑚𝑒 = 8 , while the 

K+TTM’s RMSE value is 1.8225 at the same density for 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑡𝑖𝑚𝑒 = 10 

in Table 6.2.  

The silhouette result also is evident that showed in Figure 6.4. 

 

Figure 6.4 Silhouette value comparison  

for 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑡𝑖𝑚𝑒 = 10 
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6.5.3 Computational performance 

The execution time of the methods is evaluated for computational performances is 

presented in Table 6.3.  

Table 6.3 Execution time comparison 

Methods 𝑲𝒖𝒔𝒆𝒓 = 𝟏𝟐,𝑲𝒔𝒆𝒓𝒗𝒊𝒄𝒆 = 𝟔𝟕,  

𝑲𝒖𝒔𝒆𝒓 = 𝟖 

𝑲𝒖𝒔𝒆𝒓 = 𝟏𝟎,𝑲𝒔𝒆𝒓𝒗𝒊𝒄𝒆 = 𝟏𝟎,  

𝑲𝒖𝒔𝒆𝒓 = 𝟏𝟎 

CLUS 32 min 27min 

K+TTM 11 hours 7 min 11 hours 54 min 

 

The CLUS method has the shortest execution time than the K+TTM method. The CLUS 

method is not influenced by altering the number of clusters. The reason is that the tensor 

decomposition needs more complex calculations against CLUS. 

The outstanding advantage of clustering is that it is fast, but the accuracy is very low. It is 

worth the cost of using tensor decomposition in order to get higher prediction values, 

especially when the hardware computational performance is already high. 

6.5.4 Impact of number of clusters 

The number of clusters is a parameter that can be adjusted to a specific environment. To 

evaluate the impact of the number of clusters, we consider the missing rate conditions with 

various cluster numbers. In the evaluation process, we vary the number of users, service, 

and time clusters. The initial value of 2 for the number of users, service, and time clusters 

is chosen. Moreover, we increase the number of clusters from 2 to 67 to calculate the RMSE 

values. Finally, we evaluate the impact of the number of clusters for the data densities of 

5% to 55% separately, as shown in Figure 6.5 and Figure 6.6. 
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Figure 6.5 Impact of different number of clusters in TTM with K-means clustering 

Figure 6.5 depicts the RMSE values concerning the number of clusters for the data density 

range (5%, 55%) in TTM with the K-means method. 

For the TTM with the K-means method, with the same number of clusters, the value of 

RMSE decreases as the data density increases, which means that the prediction accuracy 

increases. On the other hand, when having the same data density, the RMSE value decreases 

with the increase of the number of clusters, but there is a difference: starting from about 

12% to 55% of the data density, the RMSE value for 8 clusters is the lowest, while the 

RMSE value for 2 clusters is the lowest value when the data density is less than 12%.  
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Figure 6.6 Impact of different number of clusters in CLUS 

For the CLUS method, Figure 6.6 depicts the relationship between the different RMSE 

values and the number of clusters. Compared to the TTM with the K-means method, the 

distribution of the RMSE value curves is scattered. From the start at 5% data density, with 

the number of clusters increases, the value of the RMSE increases for 8 clusters and 10 

clusters until reaching the highest value at the data density of 15%. After 15% data density, 

the value of the RMSE increases for 8 clusters and 10 clusters. In contrast, the other three 

curves for 10, 12, and 67 clusters keep downward. 

Overall, the values of the RMSE for 2 clusters and 67 clusters are lower than the other 

curves. The RMSE value for 67 clusters is the lowest when the data density is less than 

27%. When the data density is greater than 27%, the RMSE value for 2 clusters is the lowest. 

As shown, we summarize the following, 

• Compared with the TTM using the K-means method, the distribution of the RMSE 

value curve of CLUS is a little scattered. 
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• With the value of K increases, the prediction accuracy increases. 

• When having the same missing rate, the higher the K value, the higher the prediction 

accuracy. 

A higher number of clusters means less clustering, which improves the prediction accuracy. 

The reason is that clustering reduces redundancy, and the tensor decomposition method 

enhances the prediction performance.  

6.5.5 Impact of distance metrics 

Most clustering algorithms calculate data objects' similarity using distance metrics to group 

related data objects [Silic, Delac, & Srbljic, 2014]. Since each algorithm uses a different 

distance metric, the similarity between two data objects can be calculated differently using 

different algorithms, so choosing the appropriate distance metric plays a crucial role in any 

clustering algorithm. In the traditional K-means algorithm, the Euclidean distance is used 

to measure the similarity between data objects, and the Euclidean distance assumes that all 

attribute values of data objects are equally crucial by default in real life. This indiscriminate 

treatment of attribute importance will likely lead to distance distortion of data objects in 

Euclidean space: although two points in the space are close on essential attributes. However, 

due to distance amplification by other irrelevant attributes, these two points are likely to be 

measured as farthest in Euclidean space [Li & Man, 2013]. 

In particular, for high-dimensional data, the cosine similarity between two data points 

𝑥(𝑥1, 𝑥2, … , 𝑥𝑛) 𝑎𝑛𝑑 𝑦(𝑦1, 𝑦2, … , 𝑦𝑛) sometimes is better in clustering than the Euclidean 

distance in such a spherical space [Liu, Hu, Ge, & Xiong, 2012]. The angle between two 

vectors indicates the cosine similarity, 

cos(x, y) =
∑𝑥𝑖𝑦𝑖

√∑𝑥𝑖
2∑𝑦𝑖

2
                                                      (6.6) 

where 𝑥𝑖 , 𝑦𝑖 (𝑖 = 1,2, … , 𝑛) are matrix variants in the cluster assignment. 

We compare the cosine and the Euclidean distance formula. Figures 6.7 to 6.10 illustrate 

the evaluation results in the different data densities separately while applying the two 

distance formulas.  

In Figure 6.7, it is evident that the cosine-based method provides improved prediction 

accuracy than the Euclidean-based method at all numbers of clusters in 5% density. With 
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the increase of clusters from 70 to 140, the MAE value increases, and the prediction 

accuracy worsens. The worst MAE value of the Euclidean-based method appears at 140 

clusters in Figure 6.7. As shown in Figure 6.8, for 5% density, the curve still rises slightly 

after 70 clusters. For 20% and 30% density, the MAE values show that the accuracy 

performance curve drop-down when crossing 70 clusters in Figure 6.9 and Figure 6.10 

separately.  

As shown, we summarize the following, 

The MAE values obtained by the two methods are not significantly different in 10%, 20%, 

and 30% density separately.  

We summarize as follows. 

• Compared with the Euclidean method, the cosine method improves the correct 

prediction accuracy rate when having the same K value.  

The reason is that the vector data are more sensitive to angle calculation and less 

sensitive to absolute length calculation. The distance between members can be 

measured more accurately by angle calculation. 

• The prediction accuracy rate obtained by both methods is higher when the K value is 

smaller.  

If the category size of users or services sample data may not be high, the lower cluster 

number fits exactly the sample categories. We will evaluate different datasets to 

analyze this issue in future studies. 

• The prediction accuracy rate obtained by the two methods is almost the same in 

K=5,10, and 70 separately. 

We note that these three values are almost the same as the initial set of K values. This 

problem shows that the choice of the initial cluster number is important in the 

clustering method, and it determines the performance of the clustering. 
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Figure 6.7 Impact of the distance metrics on MAE in 5% density 
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Figure 6.8 Impact of the distance metrics on MAE in 10% density 
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Figure 6.9 Impact of the distance metrics on MAE in 20% density 
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Figure 6.10 Impact of the distance metrics on MAE in 30% density 

6.6 Summary 

We propose a two-step strategy based on the K-means algorithm and TTM to deal with the 

initial unorganized data. The TTM with the K-means method removes the empty parts of 

the model, and the approximate tensor is obtained by reconstruction to generate the 

corresponding recommended values.  

A series of experiments have been conducted to evaluate the effectiveness of the 

recommendation system combining the clustering technique and tensor decomposition 

algorithm. We discuss the issues such as selecting initial K values, computational 

performance, and distance calculation. The TTM with the K-means method improves the 
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prediction accuracy in a recommendation with a lower RMSE value than the K-mean 

clustering algorithm.  
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Chapter 7 

Conclusions and Future Directions 

QoS attribute prediction has become a popular research topic in service recommendation. 

Most of the existing prediction methods are based on a large sample and have been 

successfully applied to the web service recommendation system. These web 

recommendation methods are not satisfactory when the user-service-time web 

recommendation data is sparse. The reason is that the samples in the initial 

recommendation dataset are only the corresponding values of the existing web services 

used by the existing users. The QoS attribute prediction is performed based on available 

historical data. When facing an increase of new users or new web services, no new 

invocation records are recorded due to the limitations of some conditions. Although the 

traditional tensor decomposition model is a powerful prediction tool in the web service 

recommendation system, it also does not avoid the shortcoming of low accuracy prediction 

rate due to small sample data. It is challenged to construct a suitable method to address the 

small sample problem based on the traditional tensor decomposition model. Thus, we 

addressed these issues and proposed a modified tensor decomposition method for QoS 

attribute prediction to improve the recommendation accuracy.  

7.1 Summary 

This thesis conducts a new tensor decomposition method to enhance QoS attribute 

prediction performance. 

(1) A tensor-based modeling for web service recommendation is proposed to meet 

the added sample data and preprocess demand. Data analysis reveals the 

observation that the number of samples of user-service-time data is insufficient, 

and the preprocessing of initial data affects the QoS recommendations. Based on 

these two observations, the methods add an enhanced sample scheme and a K-

means clustering preprocessing compared to the regular tensor decomposition 

method to solve low prediction accuracy due to sample data lack. In the tensor 

decomposition stage, a new two regularization term is implemented to avoid 

overfitting. Analysis of experimental results on real datasets shows that the 

proposed method improves the quality of prediction. 



142 
 

(2) An improved tensor decomposition method, TTM, is proposed to address the 

shortcomings of traditional recommendation methods with low accuracy due to 

insufficient initial samples. The data analysis reveals the observation that 

constructing new samples from existing samples can compensate for the 

insufficient samples in the user-service-time data. Based on this observation, the 

feature factor matrices are designed based on the current feature sample data to 

compensate for the missing items in the factor matrix of different time slices. 

Then, it is applied to the tensor decomposition as a way to improve the prediction 

rate. Finally, the experiments are conducted on the web service WSDream and 

the traffic prediction datasets. Experimental results validate the effectiveness of 

the proposed TTM recommendation method. 

(3) A regularization term incorporating two regular models is proposed to support a 

web service recommendation TTM method. The different roles of these two 

different regularization models are analyzed to solve the overfitting problem of 

web service recommendation systems. A modified regularization term is 

designed and applied to the TTM method by integrating the lasso and ridge 

models. Experimental validation is conducted on the web service WSDream 

dataset to discuss and evaluate the weights of the different regularization models. 

Experimental results show that the modified regularization term can help increase 

the correct rate of predicting QoS attributes and better support the web service 

recommendation TTM method. 

(4) A two-step strategy approach is proposed, which includes clustering and TTM 

methods. Data analysis revealed the observation that the preprocessing of the 

initial unorganized data may impact the service recommendation performance. 

Based on this observation, first, a preprocessing process based on K-means 

clustering was designed to cluster the initial data. In the second step, the clustered 

data objects are used as input and applied to the TTM method to complete the 

QoS attribute prediction. Experimental results on the relevant dataset show the 

evaluation between our methods and the clustering method. 
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7.2 Future Directions 

Research on the theory and technology of QoS attribute prediction-based is constantly 

evolving, and new requirements are emerging as web services are widely used and 

application scenarios continue to be extended. Therefore, the following issues in web 

service recommendations need to continue to be studied in depth. 

(1) Real-time update technology for web service recommendation methods.  

Whether it is an easy-to-understand collaborative filtering recommendation method or a 

tensor decomposition model with better recommendation results, the computational 

complexity of these methods is high. In the application scenario of real-time update of QoS 

attribute, to capture the user's interest and web service performance changes in the latest 

context, repeated training of prediction methods should be avoided, and incremental 

updates based on the current training models should be performed. Therefore, the design 

of prediction models supporting update mechanisms has significant theoretical research 

and application value. 

(2) Research on web service recommendation algorithms in different network 

environments.  

In the actual application scenarios of web services, the network environment in which the 

services are located may differ, such as the difference between fixed and mobile data 

network environments. This difference will lead to a significant difference in QoS attribute 

prediction performance among users. Therefore, studying the service recommendation 

methods under various network environment scenarios is essential, especially in mobile 

internet environments.  

(3) Investigate efficient and parallelized tensor decomposition algorithms. 

Tensor decomposition helps estimate and recover missing data from a sample dataset; 

however, the decomposition is the most time-costing in the whole process, especially for 

higher-dimensional data, even four-dimensional and five-dimensional data, the algorithm 

complexity can be a very high degree. The TTM method proposed in this thesis has a high 

accuracy prediction rate, but this follows at the high complexity cost. Thus, it is practical 

to consider algorithmic parallelization to investigate decomposition algorithms to reduce 

processing time effectively. 
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(4) Higher dimensions data 

For large-scale recommender systems, millions of users send tens of thousands of service 

requests to the system at each moment. The huge QoS data brings us complete service 

information and the challenge of higher dimensions data analysis. In the past decades, deep 

learning techniques have been widely studied and applied in recommender systems. 

However, less research has been done on QoS prediction, which deserves future research. 

The unique challenges need to be addressed: processing large amounts of QoS data brings 

a significant challenge to the efficiency of traditional QoS prediction techniques. It is 

expected that additional research efforts will address this unique challenge and further 

advance current QoS prediction techniques. 
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Appendix A  

Matrix factorization 

Given a dataset of 𝑚-dimensional data vectors, the vectors are placed in the columns of a 

𝑚 × 𝑛 matrix 𝑽 ∈ ℝ𝑚×𝑛, 𝑛 is the number of examples of the dataset. 

The matrix 𝑽 is approximately equal to an approximation data matrix 𝑽̅ ∈ ℝ𝑚×𝑛 . The 

approximation data matrix 𝑽̅ is factorized into a matrix 𝑊 ∈ ℝ𝑚×𝑟 and a matrix 𝐻 ∈ ℝ𝑟×𝑛 

as shown as follows, 

𝑽 ≈ 𝑽̅ = 𝑊𝐻 

Set the data vector 𝑣𝑟 is the corresponding columns of 𝑽̅ = [𝑣1, 𝑣2,… , 𝑣𝑟,] ∈ ℝ
𝑚×𝑛, each 

data vector 𝑣𝑟 ≈ 𝑊ℎ, where ℎ is the corresponding columns of 𝐻, and the 𝑟 usually is 

smaller than 𝑚 or 𝑛. 

To find an approximate factorization 𝑽̅ = 𝑊𝐻, the matrix factorization (MF) method seeks 

a decomposition of the data matrix 𝑽̅ with matrices 𝑊 and 𝐻. We consider the objective 

function 𝐸(𝑊,𝐻) which is given by 

𝐸(𝑊,𝐻) = ||𝑽 − 𝑽̅||2 = ||𝑽 −𝑊𝐻||2 =∑(𝑽𝑖𝑗 − [𝑊𝐻]𝑖𝑗)
2

𝑖,𝑗

 

MF involves the following optimization problem:  

arg min
𝑊,𝐻

𝐸(𝑊,𝐻) 

= arg min
𝑊,𝐻

||𝑽 −𝑊𝐻||
2
 

= arg min
𝑊,𝐻

∑(𝑽𝑖𝑗 − [𝑊𝐻]𝑖𝑗)
2

𝑖,𝑗

 

  



152 
 

 

Appendix B  

Regular tensor decomposition 

The tensor decomposition method applies in the high dimensional dataset from the matrix 

factorization in Kolda’s literature. We focus on a 3-way tensor with rank-one 𝓧, and an 

approximation tensor with rank-one 𝓧̅ = ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧  where the factor matrix 

𝑈(1), 𝑈(2), 𝑎𝑛𝑑 𝑈(3), X(1) is the 1st frontal slice of the tensor 𝒳, X(2) is the 2nd frontal slice 

of the tensor 𝒳 , and X(3)  is the 3rd frontal slice of the tensor 𝒳 . The frontal slices are 

generated as the following equations, 

X(1) = 𝑈
(1)(𝑈(2)⊙𝑈(3))

𝑇
 

X(2) = 𝑈
(2)(𝑈(1)⊙𝑈(3))

𝑇
 

X(3) = 𝑈
(3)(𝑈(2)⊙𝑈(1))

𝑇
 

where the symbol ⊙ denotes the Khatri-Rao product, 𝑇 denotes the matrix transpose. 

 

Given a loss function ℓ(𝓧, 𝓧̅), the loss value is calculated between two tensors 𝓧 and 𝓧̅. 

where ||𝓧 − 𝓧̅||2 is the L2 norm. When minimizing the function ℓ(𝓧, 𝓧̅) and it becomes 

zero, a decomposition of the tensor 𝓧 is completed, and the components are generated.  

ℓ(𝓧, 𝓧̅) = ||𝓧 − 𝓧̅||2 = ||𝓧 − ⟦𝑼(𝟏), 𝑼(𝟐), 𝑼(𝟑)⟧||2. 

Following the Alternating Least Squares (ALS) algorithm, we obtain the regular factor 

matrix U(n) 𝑛 = 1,2, 𝑎𝑛𝑑 3 as follows equations,  

𝑈(1) = 𝐗(1)(𝑈
(2)⊙𝑈(3))

𝑇
⇒𝑈(1) = 𝐗(1)[𝑈

(2)⊙𝑈(3)] [(𝑈(2))
𝑇
𝑈(2) ∗ (𝑈(3))

𝑇
𝑈(3)]

+

 

𝑈(2) = 𝐗(2)(𝑈
(1)⊙𝑈(3))

𝑇
⇒𝑈(2) = 𝐗(2)[𝑈

(1)⊙𝑈(3)] [(𝑈(1))
𝑇
𝑈(1) ∗ (𝑈(3))

𝑇
𝑈(3)]

+

 

𝑈(3) = 𝐗(3)(𝑈
(2)⊙𝑈(1))

𝑇
⇒𝑈(3) = 𝐗(3)[𝑈

(2)⊙𝑈(1)] [(𝑈(2))
𝑇
𝑈(2) ∗ (𝑈(1))

𝑇
𝑈(1)]

+

 

where the symbol ⊙ denotes the Khatri-Rao product, 𝑇 denotes the matrix transpose, and 

the symbol + denotes the pseudoinverse, and * denotes the Hadamard product. 

Substituting the above equations, the function 𝑓(𝓧, 𝓧̅) is written as follows, 

𝑓(𝓧, 𝓧̅) = ||𝓧 − 𝓧̅||
2
= ||𝓧 − ⟦𝑼(𝟏), 𝑼(𝟐), 𝑼(𝟑)⟧||

2
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= ||𝓧 − (𝐗(1)[𝑈
(2)⊙𝑈(3)] [(𝑈(2))

𝑇
𝑈(2) ∗ (𝑈(3))

𝑇
𝑈(3)]

+

)°(𝐗(2)[𝑈
(1)

⊙𝑈(3)] [(𝑈(1))
𝑇
𝑈(1) ∗ (𝑈(3))

𝑇
𝑈(3)]

+

)°(𝐗(3)[𝑈
(2)

⊙𝑈(1)] [(𝑈(2))
𝑇
𝑈(2) ∗ (𝑈(1))

𝑇
𝑈(1)]

+

)||2 

where the symbol ⊙ denotes the Khatri-Rao product, 𝑇 denotes the matrix transpose, and 

the symbol + denotes the pseudoinverse, and * denotes the Hadamard product. 

 

There is another representation of this algorithm. Set the 𝑢(1) is the corresponding vector 

of the factor matrix 𝑈(1) = [𝑢(1)] , 𝑢(2)  is the corresponding vector of the factor matrix 

𝑈(2) = [𝑢(2)], and 𝑢(3) is the corresponding vector of the factor matrix 𝑈(3) = [𝑢(3)]. The 

3-way original tensor 𝓧 ∈ ℝI1×I2×I3 is a result of the outer product of three vectors set as 

follows,  

𝒳 ≈ 𝒳̅ = [𝑢(1)] ◦ [𝑢(2)] ◦ [𝑢(3)]  

where the symbol “◦” represents the vector outer product, [•] denotes the vector set.  

We rewrite the loss function ℓ(𝓧, 𝓧̅) as the outer product of three vectors, 

ℓ(𝓧, 𝓧̅) = ‖𝒳 − [𝑢(1)] ◦ [𝑢(2)] ◦ [𝑢(3)]‖
2
 . 

The regular tensor decomposition method involves the following optimization problem:  

arg min
𝑢(1),𝑢(2),𝑢(3)

‖𝒳 − [𝑢(1)] ◦ [𝑢(2)] ◦ [𝑢(3)]‖
2
. 

 


