

Tensor Decomposition Method Applied to Recommendation

Systems

by

SHENG CHAI

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen's University

Kingston, Ontario, Canada

September 2021

Copyright © Sheng Chai,2021

i

Abstract

With the growth of network web services, web service recommendations based on the

quality of service (QoS) attribute have become a research interest topic. Service

recommendation technologies can help users discover new web services and make their

online experience better. Further, by providing users with recommendations for high-

quality web services, these technologies ultimately benefit both users and service providers.

In this thesis, we study the tensor decomposition in web service recommendations. In

particular, we propose new tensor computational methods and algorithms for QoS attribute

prediction to improve the recommendation accuracy. Our methods follow the machine

learning techniques.

First, to remedy the shortage of low prediction accuracy rates caused by the lack of initial

data samples, a traversal-tensor method (TTM) is proposed to enhance the sampling

scheme. The new method integrates the feature factor matrices to construct more data

samples for tensor decomposition. We analyze and validate the new algorithm in

comparison with the traditional tensor decomposition applied to service recommendations.

Empirical studies with multiple datasets show that the TTM effectively improves the

prediction performance.

Second, a modified regularization term is designed and applied with the TTM to overcome

the overfitting problem. This is done by using a linear combination of two commonly

applied regularization models. It is shown that the updated term can increase the accuracy

rate of predicting QoS attributes and better support the TTM method.

ii

Third, a two-step strategy approach involving a K-means clustering with TTM is

introduced to deal with the initial unorganized data. The pre-clustered data are used as input

to the TTM to complete the QoS attribute prediction. This process is evaluated between

our methods and the clustering method.

The thesis describes a framework of tensor-based web service recommendation by

synthesizing the above methods. This framework is centered on TTM, with a modified

regularization term to support TTM and a method to handle the initial unorganized data.

iii

Co-Authorship

Journal Article

Sheng Chai, Wenying Feng, and Hossam S. Hassanein. Tensor decomposition-based web

service QoS prediction. Journal of Coupled Systems and Multiscale Dynamics, vol. 4, no.

2, pp.113-118, June. 2016.

Posters

1. Sheng Chai, Wenying Feng, and Hossam S. Hassanein. A Tensor Decomposition

Approach Based on User Trust for QoS Web Service Recommendation. Poster presented

at AMMCS-CAIMS Congress, Waterloo Canada, June 2015.

2. Sheng Chai, Wenying Feng, and Hossam S. Hassanein. Fuzzy Control Based on Local

Path Planning for Mobile Robot. Poster presented at 5th Annual Queen's Graduate

Computing Society Conference, Kingston, Ontario, Canada, May 2014.

Presentation

1. Sheng Chai, Wenying Feng, and Hossam S. Hassanein. QoS Prediction New Strategy

with Clustering and Tensor Decomposition. Presentation at CAIMS annual meeting 2021,

Waterloo Canada, June 2021.

2. Sheng Chai, Wenying Feng, and Hossam S. Hassanein. QoS Recommendation

Approach in Web Services. Presentation at IV International AMMCS Interdisciplinary

Conference, Waterloo Canada, August 2017.

3. Sheng Chai, Wenying Feng, and Hossam S. Hassanein. Multi-View Recommendation

Model Using Adaptive Resonance Theory and Canonical Correlation Analysis.

Presentation at ICML 2016 Workshop on MVRL, New York USA, June 2016.

iv

Acknowledgments

Please allow me to express my gratitude to the kindest people.

Firstly, my deep gratitude goes to Dr. Wenying Feng and Dr. Hossam S, Hassanein. Thank

my professors very much for always being so helpful to me. I could not have done it without

you.

I also want to say how I would greatly appreciate the thesis committee: Prof. Nick Graham

and Prof. Abd-Elhamid Taha. Thank you many for your comments which provided me

many insightful suggestions on my proposal and thesis work.

I would like to seriously thank Debby Robertson for being helpful throughout the program

process. In particular, she gave me clear guidance and encouragement when I was going

through the process of medical leaving.

I would also like to give a special thanks to Basia. Thanks to her help in review working, I

can have the confidence to continue the thesis writing.

Thanks also to Dr. Yaser Al Mtawa and Dr. Hesham Farahat from the Telecommunications

Research Lab (TRL). I appreciate your encouragement during my studies.

Finally, I would like to thank my family and parents. I hope I can repay all of you for all

you have done.

https://qspace.library.queensu.ca/handle/1974/15774
https://qspace.library.queensu.ca/handle/1974/22817

v

Statement of Originality

I hereby certify that this Ph.D. thesis is original and that all ideas and inventions

attributed to others have been properly referenced.

vi

Table of Contents

Abstract .. i

Co-Authorship.. iii

Acknowledgments.. iv

Statement of Originality .. v

Table of Contents ... vi

List of Figures ... x

List of Tables .. xii

Glossary ... xiv

Chapter 1 Introduction ... 1

1.1 Motivation ... 1

1.2 Problem statement ... 2

1.3 Thesis contributions .. 4

1.4 Thesis organization ... 6

Chapter 2 Background and Literature Survey .. 7

2.1 Web service ... 7

2.2 QoS attribute prediction .. 7

2.3 Tensor representation .. 10

2.4 Decomposition .. 12

Chapter 3 Tensor Decomposition for Web Service Recommendation 13

3.1 Notations and operations ... 13

3.1.1 Matrix products... 13

vii

3.1.2 Definitions .. 16

3.1.3 Tensor operations ... 22

3.1.4 Tensor decomposition... 22

3.1.5 Example of regular tensor decomposition .. 28

3.2 Tensor decomposition processing ... 30

3.3 Overview of the research... 33

3.3.1 Traversal tensor method ... 34

3.3.2 TTM with a modified regularization term ... 35

3.3.3 TTM with K-means algorithm .. 37

3.3.4 Discussion ... 38

Chapter 4 Algorithm for Tensor Decomposition and its Applications 40

4.1 Introduction ... 40

4.2 Motivation ... 42

4.3 The new algorithm: TTM .. 44

4.3.1 Preliminary result ... 44

4.3.2 Regular tensor decomposition ... 44

4.3.3 Features-oriented collaboration scheme ... 46

4.3.4 Example of remedy insufficient samples.. 48

4.3.5 Traversal-tensor method (TTM) ... 60

4.4 Comparisons of TTM and RTD .. 63

4.4.1 Comparison of decomposition result .. 69

4.4.2 Convergence properties .. 70

4.4.3 Validation of the results. ... 74

4.4.4 Computational complexity ... 81

4.5 Experiment in QoS attribute prediction .. 91

viii

4.5.1 Web service dataset .. 91

4.5.2 Recommendation performance evaluation ... 94

4.5.3 Impact of tensor density ... 97

4.5.4 Execution time comparison .. 98

4.5.5 Summary of experiment ... 99

4.6 Experiment on recovering the missing traffic flow data 100

4.6.1 Traffic flow prediction .. 100

4.6.2 Traffic dataset ... 101

4.6.3 Data recovery performance .. 102

4.6.4 Impact of initial missing values .. 106

4.6.5 Summary of experiment ... 107

4.7 Summary ... 108

Chapter 5 A Modified Regularization Term ... 109

5.1 Introduction ... 109

5.2 Motivation ... 109

5.3 Regularization techniques ... 110

5.4 A modified regularization term ... 111

5.5 Experiment .. 113

5.5.1 Experimental setup ... 114

5.5.2 Experimental results and discussion ... 115

5.6 Summary ... 119

Chapter 6 TTM with K-means Method for Recommendation.. 120

6.1 Introduction ... 120

6.2 Motivation ... 121

6.3 K-means algorithm .. 122

ix

6.4 TTM with K-means method .. 124

6.5 Experiment .. 126

6.5.1 Experiment setup .. 126

6.5.2 Prediction performance ... 127

6.5.3 Computational performance ... 131

6.5.4 Impact of number of clusters .. 131

6.5.5 Impact of distance metrics .. 134

6.6 Summary ... 139

Chapter 7 Conclusions and Future Directions .. 141

Bibliography ... 145

Appendix A Matrix factorization ... 151

Appendix B Regular tensor decomposition ... 152

x

List of Figures

Figure 3.1 A 3-way tensor .. 16

Figure 3.2 A 4-way tensor ... 17

Figure 3.3 Three fibers of a 3-way tensor ... 17

Figure 3.4 All fibers of a 3-way tensor ... 18

Figure 3.5 Mode-1 slices... 18

Figure 3.6 Mode-2 slices... 19

Figure 3.7 Mode-3 slices... 19

Figure 3.8 All slices of a 3-way tensor ... 19

Figure 3.9 A 3-way tensor decomposition .. 23

Figure 3.10 Regular tensor decomposition with factor matrix ... 24

Figure 3.11 Framework of Tensor-based modeling for web service recommendation 33

Figure 4.1 A three-dimensional data mapping .. 52

Figure 4.2 (user, user, service, response-time) tensor data mapping 58

Figure 4.3 (user, user, time, response-time) tensor data mapping 59

Figure 4.4 RTD algorithm... 64

Figure 4.5 TTM algorithm .. 67

Figure 4.6 An example of gradient descent ... 71

Figure 4.7 Iteration steps number comparison .. 73

Figure 4.8 MAE in QoS attribute prediction ... 97

Figure 4.9 RMSE in QoS attribute prediction ... 98

Figure 4.10 Example of random missing data .. 101

Figure 4.11 MAE error curve of TTM vs. RTD .. 105

Figure 4.12 RMSE error curve of TTM vs. RTD .. 105

Figure 5.1 Impact of density on prediction accuracy MAE .. 117

Figure 5.2 Impact of density on prediction accuracy RMSE .. 117

Figure 5.3 Impact of the parameter 𝑝 on MAE ... 118

Figure 5.4 Impact of the parameter 𝑝 on RMSE ... 119

Figure 6.1 Two-step strategy method ... 120

Figure 6.2 Prediction performance comparison in RMSE .. 128

Figure 6.3 Prediction performance comparison in RMSE .. 129

xi

Figure 6.4 Silhouette value comparison.. 130

Figure 6.5 Impact of different number of clusters in TTM with K-means clustering 132

Figure 6.6 Impact of different number of clusters in CLUS ... 133

Figure 6.7 Impact of the distance metrics on MAE in 5% density 136

Figure 6.8 Impact of the distance metrics on MAE in 10% density 137

Figure 6.9 Impact of the distance metrics on MAE in 20% density 138

Figure 6.10 Impact of the distance metrics on MAE in 30% density 139

xii

List of Tables

Table 3.1 Component numbers of the tensor .. 20

Table 3.2 Examples of regular tensor decomposition with factor matrix 25

Table 3.3 The attributes of web service dataset WSDream .. 30

Table 4.1 Four records in web service dataset .. 48

Table 4.2 (user, service, response-time) full records .. 49

Table 4.3 Statistics of (user, service, response-time) records ... 49

Table 4.4 (user, service, response-time) sample records .. 50

Table 4.5 (user, user, response-time) sample records ... 51

Table 4.6 (service, service, response-time) sample records .. 51

Table 4.7 (user, service, time, response-time) tensor full records 53

Table 4.8 Statistics of a (user, service, time, response-time) tensor 54

Table 4.9 (user, service, time, response-time) tensor samples records 54

Table 4.10 (user, user, service, response-time) tensor samples records 55

Table 4.11 (user, user, time, response-time) tensor samples records 55

Table 4.12 (service, service, user, response-time) tensor samples records 56

Table 4.13 (service, service, time, response-time) tensor samples records 56

Table 4.14 (user, time, time, response-time) tensor samples records 56

Table 4.15 (service, time, time, response-time) tensor samples records 57

Table 4.16 Results comparison of TTM and RTD ... 69

Table 4.17 Iteration steps number comparison ... 72

Table 4.18 First approximation tensor with rank 3 ... 76

Table 4.19 Second approximation tensor with rank 3 .. 77

Table 4.20 Third approximation tensor with rank 2 ... 78

Table 4.21 Fourth approximation tensor with rank 1 ... 79

Table 4.22 Number of convergence points ... 80

Table 4.23 Lowest value of lost function.. 81

Table 4.24 Response Time Performance comparison in MAE ... 94

Table 4.25 Response Time Performance comparison in MAE ... 94

Table 4.26 Response Time Performance comparison in RMSE 95

xiii

Table 4.27 Throughput Performance comparison in MAE ... 95

Table 4.28 Throughput Performance comparison in RMSE ... 96

Table 4.29 Execution time comparison .. 98

Table 4.30 MAE errors in the random missing rates ... 103

Table 4.31 RMSE errors in the random missing rates ... 104

Table 4.32 MAE/RMSE average with initial missing values .. 107

Table 5.1 Performance comparison in MAE ... 115

Table 5.2 Performance comparison in RMSE ... 116

Table 6.1 Prediction performance comparison in RMSE .. 128

Table 6.2 Prediction performance comparison in RMSE .. 129

Table 6.3 Execution time comparison .. 131

xiv

Glossary

ALS Alternating least squares algorithm

CANDECOMP Canonical decomposition

CP decomposition CANDECOMP and PARAFAC decomposition

EEG Electroencephalogram

PARAFAC Parallel factor analysis

PCA Principal components analysis

QoS Quality of service

R Rank of the tensor. Its default value is 1

RTD Regular tensor decomposition model

TTM Traversal-tensor method

𝑎, 𝑏, 𝑐 Vectors that belong to ℝ2. 𝓧̅ = 𝑎 ◦ 𝑏 ◦ 𝑐

𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 Element of the corresponding vector

𝛼, 𝛽 Angle variables are in a range from -π to π

𝑇, 𝑈, 𝑋 Matrix

ℝ Set of real numbers

I1 × I2 × I3 Dimensionality. I1, I2, and I3 is the dimensionality of

first, second, and third-dimensional data, respectively

𝑁-way N-dimensions

𝓧 Original tensor

𝓧̿ Aggregated tensor of 𝓧

xv

𝓧̅, 𝓧̅′ Approximation tensor of 𝓧

𝑥𝑖𝑗𝑘 (i, j, k) − 𝑡ℎ entry of 3-way tensor

𝑥𝑖1𝑖2…𝑖𝑁 Elements of the 𝓧 tensors

𝑖1, 𝑖2, … , 𝑖𝑁 Each entry of the 𝓧 tensor’s elements.

X(n), X(n)̅̅ ̅̅ ̅, X(n)̅̅ ̅̅ ̅′ Mode-n matricization of the tensor 𝓧, 𝓧̅, and 𝓧̅′ (Or

𝑛-th frontal slice of 𝓧, 𝓧̅, and 𝓧̅′) 𝑛 = 1,2, 𝑎𝑛𝑑 3

𝑈𝑛𝑒𝑤
(𝑛)

 New factor matrices. 𝑛 = 1,2, 𝑎𝑛𝑑 3

𝑈(n) Regular factor matrices. 𝑛 = 1,2, 𝑎𝑛𝑑 3

𝑈(n)̅̅ ̅̅ ̅̅ Enhanced factor matrices. 𝑛 = 1,2, 𝑎𝑛𝑑 3

∆𝑈(n) Feature factor matrices. 𝑛 = 1,2, 𝑎𝑛𝑑 3

⊙ Khatri-Rao product

* Hadamard product

𝑇 Matrix transpose

+ Pseudoinverse

◦ Vector outer product

𝐿(𝓧, 𝓧̅) Objective function

ℓ(𝓧, 𝓧̅) Loss function

𝛺(𝓧) Regular regularization term

1

Chapter 1

Introduction

This thesis presents a tensor decomposition method with QoS attribute prediction to

improve the recommendation accuracy. We provide an overview of the research motivation

and problems in Sections 1.1 and 1.2. We highlight the main contributions of this thesis in

Section 1.3. Section 1.4 outlines the thesis structure.

1.1 Motivation

As more and more developers, enterprises, and organizations worldwide are becoming

service providers, developing and delivering web services of varying functionality on

various web service platforms has led to a dramatic increase in the number of services on

each platform. As of June 26, 2021, more than 24,237 Web APIs are published on

Programmable Web, a well-known web services and API provisioning platform, including

over 1117 mapping services [Programmableweb, 2021]. The rapid development of web

services has brought greater convenience to application developers. Web services have

been increasingly used in e-commerce, multimedia services, and automation systems. Web

service recommendation refers to the ability to predict the QoS attribute value using data

analytics. The prediction results provide the most appropriate web service for users based

on the QoS attributes of the service. QoS attribute prediction has become a hot research

topic in service computing in recent years. Web services with the same or similar functional

attributes can be directly ranked and recommended based on the magnitude of QoS

attribute values. Web service recommendation systems usually use the collaborative

filtering method to improve the accuracy of recommendation results. At present, with the

dimensionality of the dataset increased, Web recommendation systems also apply the

tensor decomposition model as an essential data analysis tool for the QoS attribute

2

prediction. These methods or models are based on a large sample and have been

successfully applied to the web service recommendation system.

However, these web recommendation methods are not satisfactory when the user-service-

time web recommendation data is sparse. The reason is that the samples in the initial

recommendation dataset are only the corresponding values of the existing web services

used by the existing users. The QoS attribute prediction is performed based on available

historical data. When facing an increase of new users or new web services, no new

invocation records are recorded due to the limitations of some conditions. For example, as

a result, when the growing service dataset reaches four hundred thousand of service records

totally, the corresponding number of samples is only thousands. The prediction values of

the newly added services are unknown to the users. This issue will lead to a small sample

problem [Stork, Duda, Hart, & Stork, 2001].

Although the traditional tensor decomposition model is a powerful prediction tool for

extracting valuable information from sample data, it also does not avoid the shortcoming

of low accuracy prediction rate due to small sample data. It is challenged to construct a

suitable method to address the small sample problem based on the traditional tensor

decomposition model. To the best of our knowledge, there are few methods in the context

of the tensor decomposition for QoS attribute prediction. Thus, this thesis focuses on the

tensor decomposition and its application as the research object for web service

recommendations.

1.2 Problem statement

In general, we study the tensor decomposition to enhance web service recommendation

performance. In this area, our research following several open issues: constructing more

sample records from the currently limited dataset, applying the regularization term to

reduce the possibility of overfitting, and the initial data preprocessing.

We observed the following shortcomings through data analysis:

3

(1) The number of samples of user-service-time QoS attribute is insufficient. With

this limited sample data, the factor matrix iteration remains unchanged. If factor

matrices can be reconstructed to speed up the iterative process, the QoS attribute

prediction performance can be improved.

(2) Appropriate regularization techniques are needed to solve the overfitting problem

for a sparse web service dataset. The ridge regression is popular for tensor

decomposition, while the lasso regression has higher efficiency in a sparse dataset.

(3) The preprocessing of initial data affects the quality of web service

recommendations. Research has shown that clustering methods are used in the

initial unorganized preprocessing step.

In the context of this thesis, we focus on the following details,

Lack of sample data: Constructing the factor matrices from the limited response-time

value of existing services that the existing users in the time slice have invoked.

Decision issue of appropriate regularization techniques: Designing a suitable

regularization term that applies ridge regression, lasso regression, or both.

Initial unorganized data processing: Clustering the initial unorganized data at

preprocessing step to evaluate the efficiency of the recommendation system.

4

1.3 Thesis contributions

In this thesis, we propose an improved tensor decomposition method, and apply the

regularization term and clustering method to the QoS attribute prediction of the Web

service recommendation system. The proposed method improves the QoS attribute

prediction accuracy to obtain more reasonable and effective web service recommendation

results.

The significant contributions of this thesis and corresponding descriptions are listed below.

(1) The traversal-tensor method (TTM), a tensor decomposition algorithm for

enhancing sample schemes, is proposed. According to the dimension size of

tensor data, this algorithm traversals all features by merging them into tensor

decomposition steps. The algorithm aims to address the shortcomings of

traditional recommendation methods with low accuracy due to insufficient initial

recommendation data samples. The feature factor matrices are based on the

current feature sample data to compensate for the missing items in the factor

matrix of different time slices. Then the new matrices are applied to the tensor

decomposition as a way to improve the prediction rate. The experiments are

conducted on the web service WSDream and the traffic prediction datasets.

Experimental results validate the effectiveness of the proposed TTM

recommendation method.

(2) A modified regularization term incorporating two regular models is proposed to

support the TTM method further. The major updates of the modified

regularization term are the integration of both the Lasso and ridge expressions.

Experimental validation is conducted on the web service WSDream dataset to

discuss and evaluate the weights of the different regularization models.

Experimental results show that the modified regularization term can increase the

correct rate of predicting QoS attributes and better support the TTM web service

recommendation method.

5

(3) Regarding clustering and TTM a two-step strategy is proposed for the initial data

preprocessing. Since the K-means algorithm is currently the most widely used

clustering algorithm, it is suitable for classification applications with tensor data.

We chose a K-means algorithm as preprocessing of TTM. The first step involves

a preprocessing process based on a K-means algorithm designed to cluster the

initial data to discover the implicit relationships between the data. In the second

step, the clustered data objects are used as input and applied to the TTM method

to complete the QoS attribute prediction. Experimental results on the relevant

dataset show the evaluation between our methods and the clustering method.

In summary, tensor-based modeling for web service recommendations is given to improve

recommendation performance. By reconstructing the tensor decomposition model,

regularization terms, and updating the clustering method, the high-dimensional data can be

expressed more effectively, and the accuracy of QoS attribute prediction is improved.

6

1.4 Thesis organization

The remainder of this thesis is organized as follows.

Chapter 2 presents a background and an overview of web service recommendations. Basic

ideas and applications of tensor representation are discussed. The development process

from vector to tensor data processing is introduced. Tensor decomposition and its

application in the recommendation system are described.

Chapter 3 introduces the notations and operations of tensor algebra. Then, we describe the

tensor decomposition process in the web service recommendation. Moreover, an overview

of our research is given.

Chapter 4 formally introduces a new tensor decomposition method, TTM, for QoS attribute

prediction. Performance evaluation is given by validation of numerical examples and

mathematical explanations. The results of the experiments conducted on real-world

datasets and a thorough comparison with the benchmark methods are presented.

Chapter 5 proposes a modified regularization term for supporting TTM. We introduce the

lasso and ridge regression separately and formulate the modified regularization term. The

experimental results show that it effectively improves the QoS attribute prediction

performance.

Chapter 6 proposes a two-step strategy based on the K-means algorithm and TTM to deal

with the initial unorganized data. A series of experiments have been conducted to evaluate

the effectiveness of the recommendation system combining the clustering technique and

tensor decomposition algorithm. We discuss the impacts, such as selecting initial K values,

computational performance, and distance calculation.

In Chapter 7, the conclusion and the future research directions are presented.

7

Chapter 2

Background and Literature Survey

In this thesis, the main technologies involved in web service recommendation research

include web services, QoS attribute prediction, and tensor representation and

decomposition. This chapter first briefly introduces web services and the QoS attribute

prediction techniques of web services. Then, tensor representation and decomposition

concepts are introduced.

2.1 Web service

In the service computing and foundation service units, web services are the subject of

conceptual expression and operation [Rao & Su, 2005] [Thomas & Immanuel, 2017]. Web

service recommendation includes service recommendation based on user functional

preferences and service quality [Liu & Fulia, 2015] [Zheng, Ma, Lyu, & King, 2010]. The

current research on web service recommendation focuses on accurately predicting the QoS

attribute values of users accessing different web services. QoS attributes are used to

describe the non-functional attributes of web services, including response time and

throughput [O'sullivan, Edmond, & ter Hofstede, 2002]. These QoS attributes are the

critical index to measure the quality of web services which can be ranked based on the

attribute values.

2.2 QoS attribute prediction

QoS values represent the quantitative measure of the quality of a specific web service. Web

service recommendation predicts the QoS attribute value using data analytics. The

prediction results provide the most appropriate web service based on the non-functional

attributes of the service. These properties accurately reflect the actual performance of the

web service. In recent years, QoS attribute prediction has become a major research topic

in service computing. For web services with the same or similar functional attributes, the

services can be ranked and recommended based on the scale of QoS attribute values.

8

Predicting the missing QoS attribute is not an easy task. As a metric describing the non-

functional attributes of a web service, the QoS attribute is easily influenced by other related

information such as the relative user location and the access time. For example, if a user’s

location is relatively close to the service provider, the service's response time for this user

is likely to be shorter. Likewise, if a user accesses a web service during a smooth network

time, the network's throughput would be correspondingly higher.

QoS attribute prediction methods primarily utilize a user/service-based collaborative

filtering algorithm and a model-based QoS prediction algorithm.

(1) User/service-based collaborative filtering algorithm

Collaborative filtering technology analyzes the access behavior of currently active users

and users with similar interests to provide personalized recommendation solutions. The

user/service-based collaborative filtering algorithm is the most used recommendation

algorithm in personalized recommendation systems, such as Amazon’s e-commerce

recommendation and movie ranking systems.

User/service-based collaborative filtering algorithm uses the similarity calculation method

to calculate the contribution of different users accessing the services to predict the QoS

attribute values [Zheng, Ma, Lyu, & King, 2009]. The commonly used similarity

calculation methods are listed below,

• User-based collaborative filtering method using Pearson Correlation Coefficient

(UPCC): this method generates a prediction based on similar user behavior [Shao et

al., 2007].

• Item-based collaborative filtering method using Pearson Correlation Coefficient

(IPCC): this method generates a prediction based on similar item properties [Sarwar,

Karypis, Konstan, & Riedl, 2001].

• User-based and Item-based Pearson Correlation Coefficient (UIPCC): this is a hybrid

collaborative algorithm combining the UPCC and IPCC methods. The prediction is

applied to similar users and similar web services.

9

User/service-based collaborative filtering algorithms are unsuitable for web service

recommendation scenarios with large-scale datasets [Yu & Huang, 2017]. Large-scale web

service data are often sparse, with many non-zero elements. User/service-based

collaborative filtering algorithms depend on historical data to make predictions, and the

more historical data there is, the higher the correctness of prediction. Therefore, when

encountering large-scale web service data, the prediction performance of these algorithms

degrades and is not suitable for web service recommendations.

(2) Model-based QoS attribute prediction algorithm

The model-based QoS attribute prediction algorithm follows machine learning approaches

to train the learning model based on the user's historical preferences for items [Ghafouri,

Hashemi, & Hung, 2020]. After several iterations of learning to obtain the user's predicted

ratings for unrated items, the model-based collaborative filtering algorithm can generally

obtain better prediction results. Model-based QoS attribute prediction algorithms include

the cluster analysis, matrix factorization [Zheng, Ma, Lyu, & King, 2012][He, Zhu, Zheng,

Xu, & Lyu, 2014], and tensor decomposition [Fan, Hu, Zhang, Chen, & Brézillon,

2015][Zhang, Sun, Liu, & Guo, 2014a]. There are two main methods as follows.,

• Probabilistic Matrix Factorization (PMF): a probabilistic method that uses Gaussian

assumptions on the data matrices [Mnih & Salakhutdinov, 2007].

• Tensor decomposition: a user-service-time model based on regular tensor

decomposition. It predicts the web service QoS attributes by considering the

relationship between user, service, and time [Zhang, Sun, Liu, & Luo, 2014b].

Since the model-based QoS attribute prediction algorithms use the entire known evaluation

data as information input and then iteratively trains to obtain a prediction model, using this

method results in better accuracy [Koren, Bell, & Volinsky, 2009]. However, the direct use

of matrix factorization leads to information loss and can affect prediction accuracy. As an

extension of matrix factorization, tensor decomposition uses slices in different directions,

which preserves the information in each dimension. Thus, tensor decomposition ensures

10

information integrity. Moreover, the tensor modeling and decomposition techniques can

handle high-dimensional data [Karatzoglou, Amatriain, Baltrunas, & Oliver, 2010].

2.3 Tensor representation

Analyzing data requires a method of sorting the data according to a specific representation.

The large-scale data generated by various sensors and human activities can be naturally

expressed in a two-dimensional or high-dimensional array. For example, the grayscale

image (row-column) is a two-dimensional array, whereas the web service data forms in a

three-dimensional user-service-time array. The human face image sets consist of four-

dimensional array data under different lighting and posture conditions as human-

illumination-pose-pixel. The multi-channel Electroencephalograms (EEG) signals are in a

six-dimensional array with channel-frequency-time-sample-condition-person features.

This method of representing data with multidimensional arrays is very intuitive and

convenient.

As an extension of vectors and matrices, tensor refers to a multidimensional array

represented by multiple indicators. Mathematically, the strict definition of a tensor is

described by a linear map, which refers to a set of ordered numbers that satisfy a specific

coordinate conversion relationship when several coordinate systems are transformed

[Kolda & Bader, 2009]. Tensor data can be folded into a lower-dimensional vector format

in a certain way based on matrix analysis theory. The tensor data with a high-dimensional

data structure is not only a simple promotion of adding dimensions based on vectors and

matrices, but more importantly, it also has its unique properties and analysis methods.

Some researchers conclude that the vectorized format of high-dimensional data presents

the small sample problem [Shashua & Levin, 2001] [Wolf, Jhuang, & Hazan, 2007] [Tao,

Li, Hu, Maybank, & Wu, 2005]. Reaching a learning performance often requires enough

samples as a statistical point of view, but in practical applications, we obtain very few

observation samples compared with the high-dimensional data. For example, a 128 × 128

× 3 color image needs to be described by high-dimensional data with a length of 49152

11

dimensions, but under certain observation conditions, smaller amounts of samples that have

less than the data dimension are obtained.

• The high-dimensional data structure of the original data is destroyed.

For example, when a two-dimensional grayscale image is unfolded to a vector format,

vectorization destroys the two-dimensional structure information of the image, ignoring

the local spatial correlation information.

• The correlation between different modes of data is ignored.

For example, under different user/service locations and accessed times, the web service

sample forms a three-dimensional array according to the modes of the user-service-

timeline-response time. If we unfold one record into a large one-dimensional vector for

processing, we ignore the correlation between different users, different services, and a

different time.

When a vector format represents data, the collection of data and linear transformation can

be represented by a matrix. Matrix decomposition is a powerful tool for vector data analysis

and processing. The conventional methods include Singular Value Decomposition (SVD)

and Principal Component Analysis (PCA). The vectorization method is used for tensor data

to rearrange the original high-dimensional data in a vector because it can be analyzed and

processed by the matrix analysis theory. However, valuable structures and components are

often sparsely distributed in the high-dimensional space, and this vectorization method

destroys the high-dimensional structure of the original data. Thus, some studies extend the

classical theoretical basis for processing vector to tensor algebra for processing tensors

with a theoretical foundation for the tensor data analysis. Tensor and its representation can

represent and handle high-dimensional data more naturally and intuitively. Google

TensorFlow platform uses the tensor representation to store high-dimensional data, which

has been widely used [Hao, Liang, Ye, & Xu, 2018]. In general, compared with vector

representation methods, tensor representation methods are more benefits as follows

12

[Shashua & Levin, 2001] [Wolf, Jhuang, & Hazan, 2007] [Tao, Li, Hu, Maybank, & Wu,

2005],

• Tensor representation can maintain the high-dimensional structural characteristics of the

data and make full use of the local spatial correlation of the data.

• The dimensionality can be effectively reduced through tensor decomposition, and a more

effective data representation can be obtained.

2.4 Decomposition

High-dimensional data can be unfolded to have a low-dimensional structure in the

decomposition model. Chandrasekaran et al. prove that high-dimensional data can be

expressed as a linear combination of several low-dimensional components

[Chandrasekaran, Recht, Parrilo, & Willsky, 2012]. Thus, the decomposition model aims

to discover the low-dimensional components.

Matrix decomposition is a typical method for finding low-dimensional components of

high-dimensional data, such as Principal Component Analysis (PCA) and Singular Value

Decomposition (SVD). PCA finds a set of projection vectors that project high-dimensional

vectors into a low-dimensional space to maximize the squared errors. SVD generally

achieves data centralization by decomposing the matrix [Stork, Duda, Hart, & Stork, 2001].

Tensor decomposition is extended from matrix decomposition and processes high-

dimensional data based on tensor representation. In the tensor decomposition model, the

high-dimensional data represents directly in a tensor format, and the tensor is decomposed

into several lower-dimensional format data. Tensor decomposition has the main method:

CANDECOMP/PARAFAC (CP) methods [Kolda & Bader, 2009]. Carroll et al. and

Harshman studied the rank-one decomposition of tensors and almost independently

proposed Canonical Decomposition (CANDECOMP) and Parallel Factor Analysis

(PARAFAC) [Carroll, Pruzansky, & Kruskal, 1980] [Harshman, 1970]. These two

equivalent decomposition models are called CP decomposition [Kiers, 2000].

13

Chapter 3

Tensor Decomposition for Web Service Recommendation

In this chapter, we discuss and describe the three-dimensional tensor and its decomposition

in the Web service recommendation. An overview of our research will also be given.

3.1 Notations and operations

First, basic concepts and formulas of tensor algebra will be introduced as follows. We

follow the notations from the literature of Kolda [Kolda & Bader, 2009].

The tensors are denoted by calligraphic bold capital letters 𝓧, 𝓧̅,𝓨, the capital letters

𝐴, 𝐵, 𝑇, 𝑋, 𝑈 denotes the matrices, and the vectors are denoted by lower-case letters

𝑎, 𝑏, 𝑥, 𝑢.

3.1.1 Matrix products

A matrix can be defined as two-dimensional arrays of 𝑚 rows and 𝑛 columns. Matrices are

denoted by capital letters 𝐴. The 𝑖th row is denoted by 𝐴i∗ and the 𝑗th column is denoted

by 𝐴∗j. Thus, an 𝑚 by 𝑛 matrix is

𝐴𝑚×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

)

The first subscript on an individual entry in a matrix designates the row that the entry

occupies, and the second subscript denotes the column that the entry occupies.

(1) Adding

Each matrix can add other matrices by adding the corresponding entries.

(2) Product

(a) General Matrix Multiplication

Let

𝐴𝑚×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) and 𝐵𝑛×𝑘 = (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑛1 𝑏𝑛2 𝑏𝑛𝑘

)

14

be a 𝑚 × 𝑛 matrix and a 𝑛 × 𝑘 matrix, respectively. Each entry (𝐴𝐵)mk is given by the

result of the scalar product of the 𝑚th row of 𝐴 and the 𝑘th column of 𝐵, so that

(𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛) (𝑏𝑛1 𝑏𝑛2 𝑏𝑛𝑘) =< 𝐴𝑚∗ ,𝐵∗𝑘 >

𝐴𝑚×𝑛 𝐵𝑚×𝑛

= (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑛1 𝑏𝑛2 𝑏𝑛𝑘

)

= (

< 𝑎1∗, 𝑏∗1 > < 𝑎1∗, 𝑏∗2 > < 𝑎1∗, 𝑏∗𝑘 >
< 𝑎2∗, 𝑏∗1 > < 𝑎2∗, 𝑏∗2 > < 𝑎2∗, 𝑏∗𝑘 >
< 𝑎𝑚∗, 𝑏∗1 > < 𝑎𝑚∗, 𝑏∗2 > < 𝑎𝑚∗, 𝑏∗𝑘 >

).

(b) Hadamard Product: ∗

This matrix product is the elementwise matrix product defined by the French

mathematician Jacques Hadamard. Let

𝐴𝑚×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) and 𝐵𝑚×𝑛 = (

𝑏11 𝑏12 𝑏1𝑛
𝑏21 𝑏22 𝑏2𝑛
𝑏𝑚1 𝑏𝑚2 𝑏𝑚𝑛

)

be two 𝑚 × 𝑛 matrices. Hadamard product 𝐴 ∗ 𝐵 is defined as

𝐴𝑚×𝑛 ∗ 𝐵𝑚×𝑛

= (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) ∗ (

𝑏11 𝑏12 𝑏1𝑛
𝑏21 𝑏22 𝑏2𝑛
𝑏𝑚1 𝑏𝑚2 𝑏𝑚𝑛

)

=(

𝑎11𝑏11 𝑎12𝑏12 𝑎1𝑛𝑏1𝑛
𝑎21𝑏21 𝑎22𝑏22 𝑎2𝑛𝑏2𝑛
𝑎𝑚1𝑏𝑚1 𝑎𝑚2𝑏𝑚2 𝑎𝑚𝑛𝑏𝑚𝑛

).

Hadamard product multiplies matrices of the same size, and the resulting matrix has the

same size as the original matrices.

(c) Kronecker Product ⊗

The Kronecker product multiplies any two matrices of any given size. Let

𝐴𝑚×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) and 𝐵𝑗×𝑘 = (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

)

be an 𝑚 × 𝑛 matrix and a 𝑗 × 𝑛 matrix, respectively. Then the Kronecker product 𝐴⊗ 𝐵

is defined as follows,

15

𝐴𝑚×𝑛⊗𝐵𝑗×𝑘 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

)⊗ (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

)

=

(

 𝑎11(

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎12(

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎1𝑛 (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

)

𝑎21(

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎22(

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎2𝑛 (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

)

𝑎𝑚1 (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎𝑚2 (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

) 𝑎𝑚𝑛 (

𝑏11 𝑏12 𝑏1𝑘
𝑏21 𝑏22 𝑏2𝑘
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑘

)

)

.

The output product is a matrix of size (𝑚𝑗) × (𝑛𝑘).

(d) Khatri-Rao Product ⊙

The Khatri-Rao product multiplies matrices with the same number of columns. Let

𝐴𝑚×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

) and 𝐵𝑗×𝑛 = (

𝑏11 𝑏12 𝑏1𝑛
𝑏21 𝑏22 𝑏2𝑛
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑛

)

be an 𝑚 × 𝑛 matrix and a 𝑗 × 𝑛 matrix, respectively. Then the Khatri-Rao product 𝐴⊙ 𝐵

is defined as follows,

𝐴𝑚×𝑛⊙𝐵𝑗×𝑛 = (

𝑎11 𝑎12 𝑎1𝑛
𝑎21 𝑎22 𝑎2𝑛
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑛

)⊙ (

𝑏11 𝑏12 𝑏1𝑛
𝑏21 𝑏22 𝑏2𝑛
𝑏𝑗1 𝑏𝑗2 𝑏𝑗𝑛

)

=

(

 𝑎11 (

𝑏11
𝑏21
𝑏𝑗1

) 𝑎12 (

𝑏12
𝑏22
𝑏𝑗2

) 𝑎1𝑛 (

𝑏1𝑛
𝑏2𝑛
𝑏𝑗𝑛

)

𝑎21 (

𝑏11
𝑏21
𝑏𝑗1

) 𝑎22 (

𝑏12
𝑏22
𝑏𝑗2

) 𝑎2𝑛 (

𝑏1𝑛
𝑏2𝑛
𝑏𝑗𝑛

)

𝑎𝑚1 (

𝑏11
𝑏21
𝑏𝑗1

) 𝑎𝑚2 (

𝑏12
𝑏22
𝑏𝑗2

) 𝑎𝑚𝑛 (

𝑏1𝑛
𝑏2𝑛
𝑏𝑗𝑛

)

)

.

The output product is a matrix of size (𝑚𝑗) × 𝑛.

Khatri-Rao product and the Kronecker product are identical when considering vectors, i.e.,

𝑎 ⊙ 𝑏 = 𝑎 ⊗ 𝑏.

16

3.1.2 Definitions

The tensors are denoted by calligraphic bold capital letters 𝓧, 𝓧̅,𝓨, the capital letters

𝑇, 𝑋, 𝑈 denote the matrices, and the vectors are denoted by lower-case letters 𝑎, 𝑏, 𝑥, 𝑢.

Definition 1 (Tensor [Kolda & Bader, 2009])

A tensor is a multidimensional array. More formally, an 𝑁-way tensor is an element of the

tensor product of 𝑁 vector spaces, each of which has its own coordinate system. An 𝑁-way

tensor is denoted as 𝓧 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑛×…×𝐼𝑁 , (𝑛 = 1,2, . . , 𝑁), which has 𝑁 indices

(𝑖1𝑖2… 𝑖n… 𝑖𝑁) and its elements are denoted by 𝑥𝑖1𝑖2…𝑖n…𝑖𝑁.

For example, a 3-way tensor 𝓧 ∈ ℝ𝑚×𝑛×𝑓 has three features responded to the three

indexes: user, service, and time, as shown in Figure 3.1. The element (𝑖, 𝑗, 𝑘) − 𝑡ℎ entry is

denoted by 𝑥𝑖𝑗𝑘.

Figure 3.1 A 3-way tensor

Figure 3.2 shows a 4-way tensor 𝓧 ∈ ℝm×i×j×k which has two group elements (1, 𝑖, 𝑗, 𝑘) −

𝑡ℎ and (2, 𝑖, 𝑗, 𝑘) − 𝑡ℎ entries both are in four dimensions.

17

Figure 3.2 A 4-way tensor

A 3-way tensor can be identified by the vectors and matrices representations. A vector

obtained by fixing the two of the three indexes of the entries of a tensor is a fiber of a tensor.

A matrix obtained by fixing one of the three indexes of the entries of a tensor is a slice of

a tensor [Ragnarsson & Van Loan, 2012].

For example, there are three vectors of a 3-way tensor 𝑡:𝑗𝑘, 𝑡𝑖:𝑘, 𝑎𝑛𝑑 𝑡𝑖𝑗:, the indexes denote

𝑖, 𝑗, 𝑘 and colon ":" to represent all other elements of the unfixed index in Figure 3.3.

• The vector 𝑡:𝑗𝑘 denotes mode-1 fibers when fixing the 𝑗 𝑎𝑛𝑑 𝑘 indexes (green column).

• The vector 𝑡𝑖:𝑘 denotes mode-2 fibers when fixing the 𝑖 𝑎𝑛𝑑 𝑘 indexes (orange row).

• The vector 𝑡𝑖𝑗: denotes mode-3 fibers when fixing the 𝑖 𝑎𝑛𝑑 𝑗 indexes (blue tube).

Figure 3.3 Three fibers of a 3-way tensor

18

All fibers of the 3-way tensor are shown in Figure 3.4 [Cichocki, Zdunek, Phan, & Amari,

2009].

(a) Mode-1 fibers: 𝑡:𝑗𝑘 (b) Mode-2 fibers: 𝑡𝑖:𝑘 (c) Mode-3 fibers: 𝑡𝑖𝑗:

Figure 3.4 All fibers of a 3-way tensor

Furthermore, there are matrices examples of a 3-way tensor 𝑇i∷, 𝑇:j:, 𝑎𝑛𝑑 𝑇∷k, where the

indexes denote 𝑖, 𝑗, 𝑘 = 1,2 and full colon ":" to represent all other elements of the unfixed

index.

• The matrix 𝑇i∷ denotes mode-1 slices when fixing the 𝑖 index (green horizontal slices in

Figure 3.5).

• The matrix 𝑇:j: denotes mode-2 slices when fixing the 𝑗 index (orange lateral slices in

Figure 3.6).

• The matrix 𝑇∷k denotes mode-3 slices when fixing the 𝑘 index (blue frontal slices in

Figure 3.7).

Figure 3.5 Mode-1 slices

19

Figure 3.6 Mode-2 slices

Figure 3.7 Mode-3 slices

Finally, Figure 3.8 shows all horizontal, lateral, and frontal slides of a 3-way tensor 𝓧

[Cichocki, Zdunek, Phan, & Amari, 2009].

(a) Horizontal slices: 𝑇i∷ (b) Lateral slices: 𝑇:j: (c) Frontal slices: 𝑇∷𝑘

Figure 3.8 All slices of a 3-way tensor

Definition 2 (Tensor Rank [Kolda & Bader, 2009])

The tensor rank of a tensor 𝓧, denoted tensor rank (𝓧), is defined as the smallest number

20

of rank-one tensors that generate 𝓧 as their sum.

For understanding easily, tensor description in mathematic context is also given as that a

rank-k tensor in N-dimensional space is a mathematical object that has 𝑘 indices and 𝑁𝑘

components. Each component is presented by the vectors. Each index ranges over the number

of dimensions. From the view of element, rank is how many indexes are needed to refer to a

specific element within the tensor. The number of tensor components is shown in Table 3.1.

Table 3.1 Component numbers of the tensor

 Dimension N

N=1 N=2 N=3 ... N

Rank k

k=1 1 2 3 … 𝑁1

k=2 1 4 9 … 𝑁2

k=3 1 8 27 … 𝑁3

… … … … … …

k 1𝑘 2𝑘 3𝑘 … 𝑁𝑘

For example, a 3-way tensor with rank two has twenty-seven components, which means the

tensor has three dimensions, and each component of the tensor lies on two indexes.

Definition 3 (Rank-One Tensors [Kolda & Bader, 2009])

An N-way tensor 𝓧 ∈ ℝI1×I2×…×I𝑁 is rank-one when it can be written as the outer product

of 𝑁 vectors,

𝓧 = 𝑢(1)°𝑢(2)°… °𝑢(𝑁) (3.1)

where 𝑢(𝑛) ∈ ℝI𝑛 𝑛 = 1,2, … , 𝑁 is a vector. The symbol ◦ represents the vector outer

product. (Equation 3.1 is a formula of tensor decomposition)

This thesis considers only a 3-way tensor with rank-one and its responding methods. If not

specified, the default tensor is a rank-one tensor.

Definition 4 (Norm of a Tensor [Kolda & Bader, 2009])

The norm of a tensor 𝓧 ∈ ℝI1×I2×…×I𝑁 is the square root of the sum of the squares of all

its elements,

https://mathworld.wolfram.com/TensorIndex.html

21

‖𝓧‖ = √∑ ∑ …∑ 𝑥𝑖1𝑖2…𝑖𝑁
2I𝑁

𝑖𝑁=1
I2
𝑖2=1

I1
𝑖1=1

= √〈𝓧,𝓧〉 (3.2)

where 〈⋅〉 denotes the inner product of the tensor. 𝑥𝑖1𝑖2…𝑖𝑁 , 𝑎𝑙𝑙 𝑖1, 𝑖2… 𝑖𝑁 =

1,2, … I𝑁 , denotes the elements, respectively.

Furthermore, the difference between two tensors 𝓧 and 𝓨 is given by ‖𝓧 −𝓨‖.

Definition 5 (Matricization [Kolda & Bader, 2009])

Matricization is the process of rearranging the entries of a tensor as a matrix, called

unfolding or flattening. When unfolding or flattening the tensor, the mode-𝑛 matricization

operation maps a tensor into a matrix. For an N-way tensor 𝓧 ∈ ℝI1×I2×…×I𝑁, the mode-𝑛

fibers become columns of the unfolding matrix, and the elements of tensor 𝓧 is mapped

into the mode-𝑛 matrix X(n) ∈ ℝ
𝐼𝑛×(𝐼1𝐼2…𝐼𝑛−1𝐼𝑛+1…×𝐼𝑁), 𝑛 = 1,2, . . , 𝑁. The mode-𝑛 matrix

is the 𝐼𝑛-dimensional matrix obtained from tensor 𝓧 by varying the index 𝑖n and keeping

the other indices fixed.

For example, a 2 × 2 × 2 3-way tensor 𝓧 is shown as follows,

𝓧 =

𝑥112 𝑥122
𝑥212 𝑥222

𝑥111 𝑥121
𝑥211 𝑥221

where 𝓧 denotes the tensor, 𝑥𝑖1𝑖2𝑖3 denotes the tensor elements, and 𝑎𝑙𝑙 𝑖1, 𝑖2, 𝑖3 = 1,2

denote each entry respectively of the tensor’s elements.

The mode-𝑛 matricizaiton represented as the mode-𝑛 matrices 𝑋(𝑛), 𝑛 = 1,2,3 is given by

the following,

Mode-1 matricizaiton: X(1) = [
𝑥111 𝑥121
𝑥211 𝑥221

𝑥112 𝑥122
𝑥212 𝑥222

]

Mode-2 matricizaiton: X(2) = [
𝑥111 𝑥211
𝑥121 𝑥221

𝑥112 𝑥212
𝑥122 𝑥222

]

Mode-3 matricizaiton: X(3) = [
𝑥111 𝑥211
𝑥112 𝑥212

𝑥121 𝑥221
𝑥122 𝑥222

].

22

3.1.3 Tensor operations

(1) Tensor inner product

The inner product of two same-sized tensors 𝓧,𝓨 ∈ ℝI1×I2×…×I𝑁 is the sum of their

entries' products as follows,

〈𝓧,𝓨〉 = √∑ ∑ …∑ 𝑥𝑖1𝑖2…𝑖𝑁y𝑖1𝑖2…𝑖𝑁
I𝑁
𝑖𝑁=1

I2
𝑖2=1

I1
𝑖1=1

 (3.3)

where 𝓧,𝓨 denote the two tensors, symbol 〈⋅〉 denotes the inner product of the tensor,

𝑥𝑖1𝑖2…𝑖𝑁y𝑖1𝑖2…𝑖𝑁 denotes the elements of the 𝓧,𝓨 tensors respectively, and 𝑖1𝑖2…𝑖𝑁 denote

each entry respectively of the 𝓧,𝓨 tensor’s elements.

(2) Tensor outer product

An N-way tensor 𝓧 ∈ ℝI1×I2×…×I𝑁 is rank-one tensor if it can be written as the outer

product of N vectors, i.e.,

𝓧 = 𝑢(1)°𝑢(2)°… °𝑢(𝑁) (3.4)

where 𝓧 denote the tensor, 𝑢(𝑛) ∈ ℝI𝑛 𝑛 = 1,2, … ,𝑁 is a vector, and the symbol ◦

represents the vector outer product.

Each element of the tensor x𝑖1𝑖2…𝑖𝑁 is the product of the vector sets,

x𝑖1𝑖2…𝑖𝑁 = 𝑢𝑖1
(1)
𝑢𝑖2
(2)
…𝑢𝑖𝑁

(𝑁)
 (3.5)

where 𝑢𝑖𝑛
(𝑛)

 is the 𝑖𝑛-th element of the vector 𝑢(𝑛).

3.1.4 Tensor decomposition

(1) Regular decomposition

CANDECOMP/PARAFAC (CP) decomposition is the primary tensor decomposition

method [Kolda & Bader, 2009]. We reference CP decomposition as a regular tensor

decomposition (RTD). Its definition is described as following.

For the N-way tensor 𝓧 ∈ ℝI1×I2×…×I𝑁, a regular tensor decomposition is summarized as,

𝓧 = 𝑢1
(1)°𝑢1

(2)°… °𝑢1
(𝑁) + 𝑢2

(1)°𝑢2
(2)°… °𝑢2

(𝑁) +⋯+ 𝑢R
(1)°𝑢R

(2)°… °𝑢𝑅
(𝑁)

= ∑ 𝑢r
(1)°𝑢r

(2)°… °𝑢𝑟
(𝑁)𝑅

𝑟=1 (3.6)

23

where 𝓧 denote the tensor, 𝑢𝑟
(1), 𝑢r

(2), … , 𝑢𝑟
(𝑁)

 are vector set and 𝑢r
(1) ∈ ℝI1 , 𝑢r

(2) ∈ ℝI2 , … ,

𝑎𝑛𝑑 𝑢r
(𝑁) ∈ ℝI𝑁, r = 1,… , 𝑅. 𝑅 is a positive integer which means the number of vector sets

that compose tensor 𝓧 when added up. The symbol ° denotes the vector outer product.

We notice that 𝑅 is not exactly equal to rank value, but at least is the smallest number of

rank-1 tensors.

Figure 3.9 illustrates a 3-way tensor decomposition 𝓧 = 𝑎 ◦ 𝑏 ◦ 𝑐, where 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 are

three vectors, and the symbol ° denotes the vector outer product,

Figure 3.9 A 3-way tensor decomposition

(2) Factor matrices in decomposition

The factor matrix is the combination of the vectors that form the rank-one components. For

the N-way tensor 𝓧 ∈ ℝI1×I2×…×I𝑁 , the factor matrix is denoted by 𝑈(𝑛) ∈ ℝ𝐼N×R as

follows,

𝑈(𝑛) = [𝑢1
(𝑛), 𝑢2

(𝑛), … , 𝑢𝑅
(𝑛)], 𝑛 = 1,2, … , 𝑁. (3.7)

where 𝓧 denote the tensor, 𝑈(𝑛) denotes the factor matrix, and 𝑢𝑟
(𝑛)

 is the 𝑟-th element of

the vector 𝑢(𝑛), 𝑛 = 1,2, … ,𝑁 𝑎𝑛𝑑 𝑟 = 1,2, … , 𝑅.

Following [Kolda, 2006], the regular tensor decomposition model can be expressed as

follows,

𝓧 = ⟦𝑈(1), 𝑈(2), … , 𝑈(𝑁)⟧ (3.8)

where the symbol ⟦•⟧ denotes the collection of factor matrices.

Based on the above equations (3.6) and (3.7), we illustrate how the regular tensor

24

decomposition converts to the new equation (3.8) as illustrated in Figure 3.10,

𝑈(2) = [𝑢1
(2)
, 𝑢2
(2)
, … , 𝑢R

(2)
]

𝓧 = 𝑢1
(1)
°𝑢1
(2)
°… °𝑢1

(𝑁)
+ 𝑢2

(1)
°𝑢2
(2)
°… °𝑢2

(𝑁)
+⋯+ 𝑢𝑅

(1)
°𝑢𝑅
(2)
°… °𝑢𝑅

(𝑁)

𝑈(1) = [𝑢1
(1)
, 𝑢2
(1)
, … , 𝑢R

(1)
] 𝑈(N) = [𝑢1

(N)
, 𝑢2
(N)
, … , 𝑢R

(N)
]

𝓧 = ⟦𝑼(𝟏), 𝑼(𝟐), … , 𝑼(𝑵)⟧

Figure 3.10 Regular tensor decomposition with factor matrix

For example, if we assume 3-way tensor 𝓧 ∈ ℝI1×I2×I3 , 𝑁 = 3, 𝑅 is the rank of the tensor.

After decomposition, the tensor 𝓧 consists of one set of 3-way rank-one tensors shown in

Table 3.2.

Equation (3.7)

Equation (3.7)) Equation (3.7)

Equation (3.6)

25

Table 3.2 Examples of regular tensor decomposition with factor matrix

Rank Decomposition Factor matrix

1 𝒳 = 𝑢1
(1)
°𝑢1
(2)
°𝑢1
(3)

= ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧

𝑈(1) = [𝑢1
(1)
],

𝑈(2) = [𝑢1
(2)
],

𝑈(3) = [𝑢1
(3)
]

2 𝒳 = 𝑢1
(1)
°𝑢1
(2)
°𝑢1
(3)
+ 𝑢2

(1)
°𝑢2
(2)
°𝑢2
(3)

= ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧

𝑈(1) = [𝑢1
(1)
, 𝑢2
(1)
],

𝑈(2) = [𝑢1
(2)
, 𝑢2
(2)
],

𝑈(3) = [𝑢1
(3), 𝑢2

(3)].

3 𝒳 = 𝑢1
(1)
°𝑢1
(2)
°𝑢1
(3)
+ 𝑢2

(1)
°𝑢2
(2)
°𝑢2
(3)

+ 𝑢3
(1)
°𝑢3
(2)
°𝑢3
(3)

=⟦𝑈(1), 𝑈(2), 𝑈(3)⟧

𝑈(1) = [𝑢1
(1)
, 𝑢2
(1)
, 𝑢3
(1)
],

𝑈(2) = [𝑢1
(2), 𝑢2

(2), 𝑢3
(2)],

𝑈(3) = [𝑢1
(3), 𝑢2

(3), 𝑢3
(3)].

4 𝒳 = 𝑢1
(1)
°𝑢1
(2)
°𝑢1
(3)
+ 𝑢2

(1)
°𝑢2
(2)
°𝑢2
(3)

+ 𝑢3
(1)°𝑢3

(2)°𝑢3
(3) + 𝑢4

(1)°𝑢4
(2)°𝑢4

(3)

= ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧

𝑈(1) = [𝑢1
(1)
, 𝑢2
(1)
, 𝑢3
(1)
, 𝑢4
(1)
],

𝑈(2)

= [𝑢1
(2), 𝑢2

(2), 𝑢3
(1), 𝑢4

(2)
],

𝑈(3) = [𝑢1
(3), 𝑢2

(3), 𝑢3
(3), 𝑢4

(3)],

𝑈(4) = [𝑢1
(4)
, 𝑢2
(4)
, 𝑢3
(4)
, 𝑢4
(4)
].

(3) Optimization of regular tensor decomposition

The regular tensor decomposition aims to find a suitable approximation tensor 𝓧̅, which

can fit the original tensor 𝓧 as much as possible. Thus, the regular tensor decomposition

problem can be formulated as an alternating least-squares(ALS) optimization problem,

26

min
𝑈(1),𝑈(2),…,𝑈(𝑁)

(ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖ = ‖𝓧− ⟦𝑈(1), 𝑈(2), … , 𝑈(𝑁)⟧‖
2
) (3.9)

where ||𝓧 − 𝓧̅||2 is the tensor norm, ℓ(𝓧, 𝓧̅) denotes the loss function, and 𝑈(𝑛) 𝑛 =

1,2, . . 𝑁 denotes the factor matrix.

Following a regular tensor decomposition process [Kolda & Bader, 2009], the 𝑛-th frontal

slices of an N-way tensor are applied in the optimization. Along the mode-𝑛 matricization,

X(n), 𝑛 = 1,2, . . , 𝑁 denotes as the 𝑛-th frontal slices of an N-way tensor as follows,

X(1) = U
(1)[U(2)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
 (3.10)

X(2) = U
(2)[U(1)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
 (3.11)

……

X(n) = U
(n)[U(1)⊙U(2)⊙U(n−1)⊙U(n+1)⊙…⊙U(N)]

𝑇
 (3.12)

…

X(N) = U
(N)[U(1)⊙U(2)⊙…⊙U(n)⊙…⊙U(N−1)]

𝑇
 3.13)

where the symbol 𝑇 denotes the matrix transpose, 𝑈(𝑛) 𝑛 = 1,2, . . 𝑁 denotes the factor

matrix.

Substituting the equations (3.10), (3.11), (3.12), and (3.13), the equation (3.9) is written as

follows,

min
U(1)

‖X(1) − U
(1)[U(2)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
‖ (3.14)

min
U(2)

‖X(2) − U
(2)[U(1)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
‖ (3.15)

……

min
U(n)

‖X(n) − U
(n)[U(1)⊙U(2)⊙…⊙U(n−1)⊙U(n+1)⊙…⊙U(N)]

𝑇
‖ (3.16)

…

min
U(N)

‖X(N) − U
(N)[U(1)⊙U(2)⊙…⊙U(n)⊙…⊙U(N−1)]

𝑇
‖. (3.17)

Solving the above equations, the factor matrix 𝑈(𝑛) is obtained by iterative solution

27

formula,

U(1) ← X(1) [[U
(2)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
]
+

 (3.18)

U(2) ← X(2) [[U
(1)⊙U(3)⊙U(4)⊙…⊙U(N)]

𝑇
]
+

 (3.19)

……

U(n) ← X(n) [[U
(1)⊙U(2)⊙…⊙U(n−1)⊙U(n+1)⊙…⊙U(N)]

𝑇
]
+

 (3.20)

……

U(N) ← X(N) [[U
(1)⊙U(2)⊙…⊙U(n)⊙…⊙U(N−1)]

𝑇
]
+

 (3.21)

where the symbol ⊙ denotes the Khatri-Rao product, 𝑇 denotes the matrix transpose, and

the symbol " + " denotes the pseudoinverse. The property of pseudoinverse is as follows

[Kolda & Bader, 2009],

[[𝑀 ⊙ N]𝑇]+ = [𝑀⊙N][𝑀𝑇𝑀 ∗ 𝑁𝑇𝑁]+ (3.22)

where the symbol denotes the Hadamard product, 𝑀 and 𝑁 denote two matrices.

Thus, we rewrite the equations (3.18), (3.19), (3.20), and (3.21) as follows,

U(1) ← X(1)[U
(2)⊙U(3)⊙U(4)…⊙U(N)] [(U(2))

𝑇
U(2) ∗ (U(3))

𝑇
U(3) ∗ … ∗

(U(N))
𝑇
U(N)]

+

(3.23)

U(2) ← X(2)[U
(1)⊙U(3)⊙U(4)…⊙U(N)] [(U(1))

𝑇
U(1) ∗ (U(3))

𝑇
U(3) ∗ … ∗

(U(N))
𝑇
U(N)]

+

(3.24)

U(n) ← X(n)[U
(1)⊙U(2)⊙…⊙U(n−1)⊙U(n+1)⊙…⊙U(N)] [(U(2))

𝑇
U(2) ∗

 (U(3))
𝑇
U(3) ∗ … ∗ (U(n−1))

𝑇
U(n−1) ∗ (U(n+1))

𝑇
U(n+1) ∗ … ∗ (U(N))

𝑇
U(N)]

+

 (3.25)

U(N) ← X(N)[U
(1)⊙U(2)⊙…⊙U(n)⊙…⊙U(N−1)] [(U(1))

𝑇
U(1) ∗ (U(2))

𝑇
U(2) ∗ … ∗

28

(U(n))
𝑇
U(n) ∗ … ∗ (U(N−1))

𝑇
U(N−1)]

+

. (3.26)

In summary, given an N-way tensor 𝒳 ∈ ℝI1×I2×…×I𝑁, its factor matrix 𝑈(𝑛) ∈ ℝ𝐼N×R, and

frontal slice X(𝑛) obtained by unfolding along the nth-order, the resulting matrix U(n)

describes as follows:

U(n) ← X(n)[U
(1)⊙U(2)⊙…⊙U(n−1)⊙U(n+1)⊙…⊙U(N)] [(U(2))

𝑇
U(2) ∗

(U(3))
𝑇
U(3) ∗ … ∗ (U(n−1))

𝑇
U(n−1) ∗ (U(n+1))

𝑇
U(n+1) ∗ … ∗ (U(N))

𝑇
U(N)]

+

. (3.27)

3.1.5 Example of regular tensor decomposition

Given a 𝟐 × 𝟐 × 𝟐 3-way tensor 𝓧,

𝓧 =

2 4
6 12

1 2
3 6

.

The 𝑛-th frontal slice X(𝑛), 𝑛 = 1,2, 𝑎𝑛𝑑 3 is obtained by the mode-𝑛 matricization,

X(1) = [
1 2
3 6

2 4
6 12

]

X(2) = [
1 3
2 6

2 6
4 12

]

X(3) = [
1 3
2 6

2 6
4 12

].

The initial setup is fixing vectors 𝑏0 = (
1
−1
) 𝑎𝑛𝑑 𝑐0 = (

1
0
) in equation (3.21) to compute a

vector 𝑎1,

𝑎1 = 𝐗(1)[𝑐0⊙𝑏0][(𝑐0)
𝑇𝑐0 ∗ (𝑏0)

𝑇𝑏0]
+

= [
1 2
3 6

2 4
6 12

] [(
1
0
)⊙ (

1
−1
)] [(

1
0
)
𝑇

(
1
0
) ∗ (

1
−1
)
𝑇

(
1
−1
)]
+

= [
1 2
3 6

2 4
6 12

] [

1
−1
0
0

] [(1) ∗ (2)]+

29

= (
−1/2
−3/2

).

Then set vectors 𝑎1 = (
−1/2
−3/2

) 𝑎𝑛𝑑 𝑐0 = (
1
0
), compute vector 𝑏1,

𝑏1 = 𝐗(2)[𝑐0⊙𝑎1][(𝑐0)
𝑇𝑐0 ∗ (𝑎1)

𝑇𝑎1]
+

= [
1 2
3 6

2 4
6 12

] [(
1
0
)⊙ (

−1/2
−3/2

)] [(
1
0
)
𝑇

(
1
0
) ∗ (

−1/2
−3/2

)
𝑇

(
−1/2
−3/2

)]

+

= [
1 3
2 6

2 6
4 12

] [

−1/2
−3/2
0
0

] [(1) ∗ (5/2)]+ = (
−2
−4
).

Then set vectors 𝑏1 = (
−2
−4
) 𝑎𝑛𝑑 𝑎1 = (

−1/2
−3/2

), compute vector 𝑐1,

𝑐1 = 𝐗(3)[𝑏1⊙𝑎1][(𝑏1)
𝑇𝑏1 ∗ (𝑎1)

𝑇𝑎1]
+

= [
1 3
2 6

2 6
4 12

] [(
−2
−4
)

⊙ (
−1/2
−3/2

)] [(
−2
−4
)
𝑇

(
−2
−4
) ∗ (

−1/2
−3/2

)
𝑇

(
−1/2
−3/2

)]

+

= [
1 3
2 6

2 6
4 12

] [

1
3
2
6

] [(20) ∗ (5/2)]+ = (
1
2
).

Repeating the above steps to find vectors 𝑎2, 𝑏2, 𝑎𝑛𝑑 𝑐2, we obtain the vectors set 𝑎1 = 𝑎2 =

(
−1 2⁄

−3 2⁄
) , 𝑏1 = 𝑏2 = (

−2
−4
), and 𝑐1 = 𝑐2 = (

1
2
). An approximation tensor 𝓧̅ is constructed

from the vector set 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐. Thus, tensor 𝓧 can write as 𝓧̅,

𝓧 =

2 4
6 12

1 2
3 6

,

𝓧̅ = (
−1 2⁄

−3 2⁄
) ◦ (

−2
−4
) ◦ (

1
2
) ==

2.0000 4.0000
6.0000 12.0000

1.0000 2.0000
3.0000 6.0000

.

30

3.2 Tensor decomposition processing

The process of web service recommendation is that, given a web services dataset that

includes the service invocation history between users and services, the recommendation

system recommends an optimized list of services to users.

We consider a web service dataset WSDream describes real-world QoS attribute evaluation

results from 142 users on 4,500 web services over 64 different times [Zheng, Ma, Lyu, &

King, 2010]. There are four attributes of WSDream highlighted in Table 3.3.

Table 3.3 The attributes of web service dataset WSDream

Attributes Content Number

User all users whom the web services are recommended 142

Service all web services that can be recommended 4500

Time the access time when the user requests the service 64

Rating the QoS attribute value (the response time or throughput)

when the user accessing service in the time period

Each rating value is described by three users, service and time dimensionality as follows,

User × Service × Time → Rating.

Thus, a 3-way tensor 𝓧 ∈ ℝ142×4500×64 with elements 𝑥𝑖𝑗𝑘 can be constructed, where 𝑥𝑖𝑗𝑘

represents the rating value of user 𝑖 accessing service 𝑗 at time period 𝑘, i = 1, . . ,142, j =

1, … ,4500, and k = 1,… ,64. The rating value is always positive. If user 𝑖 has not accessed

service 𝑗 at time period 𝑘, then 𝑥𝑖𝑗𝑘 is null.

Since most users access only a very limited number of web services, the user-service-time

tensor 𝓧 is a large number of records but sparse tensor. To obtain the missing QoS attribute

in the tensor 𝓧 , the web service QoS attribute can be predicted by the observed service

invocation records from the current user.

The main purpose of the tensor decomposition is to iteratively decompose the user-service-

time tensor 𝓧, obtain the factor matrices 𝑈(1), 𝑈(2), … , 𝑈(𝑁), and construct an approximation

31

tensor 𝓧̅ based on 𝓧̅ = ⟦𝑈(1), 𝑈(2), … , 𝑈(𝑁)⟧. The approximation tensor 𝓧̅ fills the missing

elements to predict the QoS attribute for users accessing different web services at different

time periods. The prediction process based on tensor decomposition can be divided into

five main steps:

• First, the tensor decomposition rules are defined.

The regular tensor decomposition model of the user-service-time tensor 𝓧 ∈ ℝ142×4500×64

with factor matrix 𝑈(𝑛) 𝑛 = 1,2,3 is given in the following equation,

𝓧 = ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧ (3.28)

where 𝑈(1) is the factor matrix for user 𝑖, 𝑈(2) is the factor matrix for service 𝑗, and 𝑈(3) is

the factor matrix for time period 𝑘.

• Second, the loss function is defined.

Given the user-service-time tensor 𝓧 and its approximate tensor 𝓧̅ , the loss function

ℓ(𝓧, 𝓧̅) calculates the loss value between two tensors 𝓧 and 𝓧̅ as following,

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 = ‖𝓧 − ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧‖
2
 (3.29)

where 𝑈(1) is the factor matrix for user 𝑖, 𝑈(2) is the factor matrix for service 𝑗, and 𝑈(3) is

the factor matrix for time period 𝑘.

• Third, the regularization term is added to the loss function.

Tensor decomposition is a complex model. Generally, a more complex model usually leads

to overfitting. It might fail to predict future observations reliably [Hawkins, 2004]. A

regularization term needs to be added with the original loss function to handle more complex

learning tasks to solve this problem. The commonly used regularization terms are the L2

norm of each factor matrix of a tensor. The essential regularization term 𝛺(𝓧̅) is shown in

the following formula,

𝛺(𝓧̅) =
1

2
𝜆 (‖𝑈(1)‖

2
+ ‖𝑈(2)‖

2
+⋯+ ‖𝑈(𝑁)‖

2
) (3.30)

32

where 𝓧̅ denotes an approximate tensor. 𝑈(1) is the factor matrix for user 𝑖, 𝑈(2) is the

factor matrix for service 𝑗, and 𝑈(3) is the factor matrix for time period 𝑘. 𝜆 are parameters

of the factor matrix in the regularization term.

• Fourth, the loss function is optimized and iteratively solved.

The objective function is a function constructed as the sum of lost function and regularization

terms. Given an original tensor 𝓧 and an approximate tensor 𝓧̅ , the objective function

𝐿(𝓧,𝓧) is as follows:

Objective function = Loss function + Regularization term

⇒𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝛺(𝓧). (3.31)

We perform an optimization task for the objective function 𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝛺(𝓧) as

follows,

𝑚𝑖𝑛
𝑈(𝑛)|𝑛=1

𝑁
𝐿(𝓧, 𝓧̅) + 𝛺(𝓧)

⇒ 𝑚𝑖𝑛
𝑈(1),𝑈(2),𝑈(3)

(
1

2
‖𝓧 − 𝓧̅‖2) +

1

2
𝜆 (‖𝑈(1)‖

2
+ ‖𝑈(2)‖

2
+ ‖𝑈(3)‖

2
). (3.32)

The alternating least squares (ALS) method is applied to solve this optimization problem.

The method fixes 𝑈(1) 𝑎𝑛𝑑 𝑈(2) to solve for 𝑈(3), fixes 𝑈(1) 𝑎𝑛𝑑 𝑈(3) to solve for 𝑈(2), and

fixes 𝑈(2) 𝑎𝑛𝑑 𝑈(3) to solve for 𝑈(1). The iteration step is repeated until some convergence

criterion is satisfied [Zhang, Sun, Liu, & Guo, 2014b].

• Finally, reconstruct approximate tensor and predict the QoS attribute

According to the inverse operation of tensor decomposition, a user-service-time approximate

tensor 𝓧̅ is constructed. The prediction QoS attributes are filled by the approximate tensor.

33

3.3 Overview of the research

The tensor-based modeling for web service recommendation is given as the following, as

illustrated in Figure 3.11. By reconstructing decomposition modes, improved

regularization terms, and clustering method, the data is expressed as a tensor, and

recommendation accuracy can be improved.

Figure 3.11 Framework of Tensor-based modeling for web service recommendation

(1) Traversal tensor method (TTM)

Given a 3-way original tensor 𝓧 ∈ ℝ𝐼1×𝐼2×𝐼3 , an improved tensor decomposition can be

expressed with new factor matrices 𝑈𝑛𝑒𝑤
(1)

, 𝑈𝑛𝑒𝑤
(2)

, and 𝑈𝑛𝑒𝑤
(3)

 as the following equation,

𝓧 ≈ 𝓧̅ = ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧ (3.33)

where 𝓧 is an original tensor which consists of QoS attribute value, 𝓧̅ denotes an

approximation tensor.

(2) TTM with a modified regularization term

Objective function 𝐿 can be transformed with the regularization term as follows,

𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝛺(𝓧̅) (3.34)

Tensor-based modeling for web service recommendation

Methods

Ch.4: Traversal

Features Tensor

(TTM)

Ch.6: TTM with

K-means

Clustering

Ch.5: TTM with

Regularization

Term

Regularization

34

where 𝓧 is an original tensor which consists of QoS attribute value, 𝓧̅ denotes an

approximation tensor, ℓ(𝓧, 𝓧̅) denotes lost function as ℓ(𝓧, 𝓧̅) = ‖𝓧 − 𝓧̅‖2 , 𝛺(𝓧̅)

denotes a regularization term.

(3) TTM with K-means algorithm

Using clustering as a preprocessing stage, the K-means algorithm is applied to obtain the

clustered tensor, which is used as the input to the TTM as follows,

𝓧

𝑲−𝒎𝒆𝒂𝒏𝒔
𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒊𝒏𝒈
→ 𝓧̿

𝑻𝑻𝑴
→ 𝓧̅ (3.35)

where 𝓧 is an original tensor which consists of QoS attribute value, 𝓧̿ is a clustered tensor

after K-means algorithm, 𝓧̅ denotes an approximation tensor.

From the above equations, tensor-based modeling for web service recommendation is

summarized as the following:

{

 𝓧 ≈ 𝓧̅ = ⟦𝑈𝒏𝒆𝒘

(𝟏)
, 𝑈𝒏𝒆𝒘
(𝟐)
, 𝑈𝒏𝒆𝒘
(𝟑)
⟧

improved tensor decomposition

𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝛺(𝓧̅)
loss function with a regularization term

𝓧

𝑲−𝒎𝒆𝒂𝒏𝒔
𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒊𝒏𝒈
→ 𝓧̿

𝑻𝑻𝑴
→ 𝓧̅

clustered tensor

. (3.36)

3.3.1 Traversal tensor method

The motivation of the traversal-tensor method study is to a maximum possible acquisition

of features based on a limited number of samples and could be considered to improving QoS

attribute prediction. Moreover, the method is also motivated by how regular tensor

decomposition factorizes a tensor into a sum of component rank-one tensors [Kolda &

Bader, 2009].

35

The traversal-tensor method defines three feature factor matrices ∆𝑈(1), ∆𝑈(2), and ∆𝑈(3),

and refine the regular factor matrices 𝑈(1), 𝑈(2), 𝑈(3) as enhanced factor matrices follow,

𝑈𝒏𝒆𝒘
(𝟏) = 𝑈(1) + ∆𝑈(1), 𝑈𝒏𝒆𝒘

(𝟐) = 𝑈(2) + ∆𝑈(2), 𝑎𝑛𝑑 𝑈𝒏𝒆𝒘
(𝟑) = 𝑈(3) + ∆𝑈(3)

Thus, an approximation tensor 𝓧̅ satisfies 𝓧̅ = ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧ and the loss function

ℓ(𝓧, 𝓧̅) is modified as follows,

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 = ‖𝓧 − ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧‖

2

 (3.37)

where 𝓧 is an original tensor that consists of QoS attribute value, || • || denotes the norm

of tensor.

We find the optimal that minimizes the (3.37) equation in every iteration step,

min
𝑈𝒏𝒆𝒘
(𝒏)
‖𝓧 − ⟦(𝑈(1) + ∆𝑈(1)), (𝑈(2) + ∆𝑈(2)), (𝑈(3) + ∆𝑈(3))⟧‖. (3.38)

In Chapter 4, we discuss the methods in detail and gives the corresponding decomposition

algorithm. The traversal-tensor method algorithm is applied to QoS attribute prediction.

The experimental results show that the traversal-tensor method improves the prediction

performance.

3.3.2 TTM with a modified regularization term

The recommendation performance based on tensor decomposition is usually negatively

affected by the overfitting problem and, consequently, cannot achieve state-of-the-art

performance. This often requires regularization terms to enhance decomposition

performance. The regularization method is part of the loss function in TTM, and its

function is to help optimize the loss function and reduce overfitting.

Benefited the advantages of both lasso and ridge regressions, we improve the TTM with a

regularization term 𝛺(𝓧̅), which the function of proposed is denoted by,

𝛺(𝓧̅) = 𝜆(
1−𝑝

2
 ||𝓧̅||2

2 + 𝑝||𝓧̅||1) (3.39)

36

where 𝓧̅ denotes an approximation tensor, ‖•‖ denotes the tensor norm, λ > 0 is the

regularization parameter. The parameter 𝑝 = 0 corresponds to the ridge method ‖•‖2 and

𝑝 = 1 to the lasso method ‖•‖1.

To optimize the objective function 𝐿 as follows,

𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝛺(𝓧̅) (3.40)

where 𝓧 is an original tensor which consists of QoS attribute value, 𝓧̅ denotes an

approximation tensor, λ > 0 is the regularization parameter, ℓ(𝓧, 𝓧̅) denotes lost function

as ℓ(𝓧, 𝓧̅) = ‖𝓧 − 𝓧̅‖2, 𝛺(𝓧̅) denotes a regularization term.

We perform an optimization task for the above objective function in every iteration step as

follows,

min
𝑈𝒏𝒆𝒘
(𝒏)
,𝒏=𝟏,𝟐,𝟑

(‖𝓧− ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧‖) + 𝜆(

1 − 𝑝

2
 ‖⟦𝑈𝒏𝒆𝒘

(𝟏) , 𝑈𝒏𝒆𝒘
(𝟐) , 𝑈𝒏𝒆𝒘

(𝟑) ⟧‖
2

2

+

𝑝||⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧||1) (3.41)

where 𝓧̅ denotes an approximation tensor, || • || denotes the norm of tensor, λ > 0 is the

regularization parameter, 𝛺(𝓧̅) = 𝛺 (⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧) , 𝑈𝒏𝒆𝒘

(𝟏)
, 𝑈𝒏𝒆𝒘

(𝟐)
, and 𝑈𝒏𝒆𝒘

(𝟑)
 are

enhanced factor matrices, and 𝑝 denotes the parameter of the lasso or ridge method.

Chapter 5 applies this optimization algorithm in that one of the decomposition elements is

optimized at each iteration when other elements are kept fixed. The experiment result

shows that the proposed tensor learning method can effectively improve the estimation

performance.

37

3.3.3 TTM with K-means algorithm

The purpose of clustering preprocessing is to deal with the initial unorganized data in the

web service dataset. Since the K-means algorithm is currently the most widely used

clustering algorithm, and it is suitable for classification applications with tensor data, we

chose a K-means algorithm as a preprocessing method of TTM.

Our proposed two-step strategy method, TTM with K-means algorithm, is applied to fit the

QoS attribute prediction scenario as follows,

𝓧

𝑲−𝒎𝒆𝒂𝒏𝒔
𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒊𝒏𝒈
→ 𝓧̿

𝑻𝑻𝑴
→ 𝓧̅ (3.42)

where 𝓧 is an original tensor which consists of QoS attribute value, 𝓧̿ is a clustered tensor

after K-means algorithm, 𝓧̅ denotes an approximation tensor.

First, we compute the mean value in the same context cluster 𝑃𝑢𝑠𝑒𝑟 , 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝑎𝑛𝑑 𝑃𝑡𝑖𝑚𝑒 for

prediction 𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒 items separately with an original tensor 𝓧. And we apply

the 𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒 items to generate a clustered tensor 𝓧̿ =

⟦𝑈(user), 𝑈(service), 𝑈(𝑡𝑖𝑚𝑒)⟧, where 𝑈(user), 𝑈(service), 𝑎𝑛𝑑 𝑈(𝑡𝑖𝑚𝑒) are the factor matrices

after clustering.

Second, this clustered tensor 𝓧̿ is used as an input tensor of TTM. As same as

decomposition processing in Chapter 4, we find the optimal that minimizes the objective

function 𝐿 in every iteration step as follows,

𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝜆𝛺(𝓧̅) (3.43)

where 𝓧 is an original tensor which consists of QoS attribute value, 𝓧̅ denotes an

approximation tensor, λ > 0 is the regularization parameter, ℓ(𝓧, 𝓧̅) denotes as

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2, 𝛺(𝓧̅) denotes a regularization term.

In Chapter 6, we explain the relationship between tensor and K-means algorithm.

Furthermore, we introduce the tensor decomposition model based on the K-means

38

algorithm. The experiment result shows that the algorithm improves the clustering and

recognition performance.

3.3.4 Discussion

1) The importance of large samples

The sample size of the data volume is directly related to the prediction accuracy. The

reasons are as follows. First, a few categories of samples make it difficult to train a model.

Assuming that there are large categories of data, while there are few samples per category

or even no sample for some categories, then it is not easy to train a model. Therefore, it is

necessary to increase the sample size to cover all data categories.

Second, the model generated by insufficient training samples cannot accurately predict the

QoS values. In this case, tensor decomposition can produce serious overfitting problems.

Therefore, the training samples should be as complete as possible.

For example, there should be 2.7 billion records in the QoS dataset if all QoS values are

fully collected. However, the current dataset only has 30 million records, which is 1% of

what it should be. It is not possible to predict the other ninety data records based on just

one record. However, the 30 million records of the QoS dataset are already a large amount

of data. Therefore, the existing record can help TTM challenge this prediction task even

though it is small compared to the whole dataset.

2) Role of TTM in overcoming the cold start problem

In this thesis, poor recommendation performance due to insufficient sample data is also

referred to as the cold start problem. The typical approach to solve the cold start problem

is to explore new data and utilize existing data. TTM focuses on utilizing existing data,

enabling the system to make recommendations using limited QoS data to overcome the

cold start problem. We observe that in the three-dimensional web service dataset, service

is recommended to a user with a linear relationship between its QoS and the related features.

39

Moreover, the QoS correlates with the factor matrix composed of all features and the factor

matrix composed of the certain feature itself. Based on this observation, the TTM first

predicts the QoS value from the three-factor matrices of user-service, user-time, and

service-time, which are composed of (user, service, time) triples, as in traditional tensor

decomposition methods.

On the other hand, TTM constructs three feature factor matrices, user-user, service-service,

and time-time, composed of three features themselves, reusing a limited number of samples.

TTM substitutes all the factor matrices into the tensor decomposition iteration process until

satisfactory conditions are reached and finally produces new predicted QoS values. In this

process, the schema of the feature factor matrix remedy for shortcomings of the limited

sample data, allowing the system to collect recommendation data and pass the cold start

phase smoothly.

3) TTM and deep learning

With the development of deep learning techniques, neural network-based research has been

conducted in the field of QoS prediction in recent years. We also note the application of

neural networks in this area. Xiong et al. employed hidden features to calculate the

similarity between users and services by introducing a deep learning model [Xiong, Wu,

Li, & Gu, 2017]. Wu et al. proposed a generalized deep neural model for QoS prediction

using multiple contextual features [Wu, Zhang, Luo, Yue, & Hsu, 2018]. Zhou et al.

developed a neural network-based approach to predict the QoS values in a spatial-temporal

context [Zhou, Wu, Yue, & Hsu, 2019]. We are trying to implement this approach based

on the neural network as one of our future research directions.

40

Chapter 4

Algorithm for Tensor Decomposition and its Applications

This chapter formally introduces a new tensor decomposition method, TTM, for QoS

attribute prediction. Performance evaluation is given by validation of numerical examples,

mathematical explanations, and experiments result.

4.1 Introduction

The feature extraction is critical in processing high-dimensional data of the web service

recommendation system. As the prediction task, the purpose of feature extraction is to select

the appropriate features for the task description. In practical QoS attribute prediction

applications, we expect to get enough samples to extract the suitable features. However, when

meeting a small sample data, the current feature extraction techniques based on tensor

decomposition mainly decompose each dimension's data at once according to the spatial

characteristics of multiple dimensions. The regular tensor decomposition model (RTD) lacks

the capability cause of relying on limited sample data. To remedy the low prediction

accuracy rate caused by the lack of initial data samples, we focus on a tensor decomposition

algorithm for small sample data and proposes a feature-oriented decomposition algorithm to

solve the above issue. The significant contributions of this chapter are summarized as follows.

• Develop a feature factor matrix as a features-oriented collaboration scheme. The new

method integrates the feature factor matrices to construct more data samples for tensor

decomposition. The objective of a feature factor matrix is to the maximum possible

acquisition of features based on a limited number of samples.

• Perform a novel traversal-tensor method (TTM) by traversing all feature-oriented on

tensor decomposition. The key idea is that this method invokes the feature factor

matrices based on the regular factor matrices in the decomposition algorithm. Thus, the

TTM increases the computational factor in the iteration step for convergence to get a

41

reasonable result.

• Conduct comprehensive experiments in the real multiple datasets. The experimental

results demonstrate that the TTM achieves better prediction performance by deducting

the iteration number than the RTD.

The chapter is structured as follows. Section 4.2 introduces the motivation and reviews our

previous research work. Section 4.3 describes the new TTM algorithm. We first elaborate on

the problem formulation of a feature factor matrix, then present the derivations for modeling

the features-oriented collaboration scheme and highlight the differences to emphasize the

novelty of this work. Section 4.4 discusses the comparison of TTM and RTD, including its

properties, startup issues, computational complexity, and validation of its results. We

present experiment setup and performance evaluation results in different real-world datasets

in Section 4.5 and Section 4.6. Section 4.7 summarizes the chapter. We also give the

supplementary concepts about matrix factorization and regular tensor decomposition as

Appendix A and Appendix B.

42

4.2 Motivation

The web service recommendation needs to extract the user and service historical data and

predict the QoS attribute to recommend the relevant service for the user. Many methods

for historical data extraction have been developed in the past: collaborative filtering, matrix

factorization, and tensor decomposition [BAĞIRÖZ, Güzel, YAVANOĞLU, & Özdemir,

2019]. This thesis is concerned with the tensor decomposition to predict the QoS attribute.

Tensor decomposition is a powerful computational tool for extracting valuable information

from sample data [Shi, Cheung, Zhao, & Lu, 2018].

The historical data (u, s, t, R) predicts the QoS attribute for a future period. The quartet set

is represented using a tensor 𝓧. Each sample of quartet set represents the response-time R

of a user u to a service s invoked at a given time slice t. For example, (1,2,3,10) means that

the response-time of service #2 invoked by user #1 in time slice #3 is 10 seconds.

By decomposing the tensor 𝓧, the corresponding factor matrices are obtained for different

time slices. A factor matrix comprises multiple users, multiple services invoked, and

response-time. After the outer product operation of the factor matrices, a new tensor is

generated by the factor matrices in the iteration. The prediction of the response-time value

for the next time slice is achieved.

Zhang et al. proposed a tensor decomposition algorithm that is able to deal with the triadic

relations of the user-service-time model [Zhang, Sun, Liu, & Guo, 2014a]. Ma et al.

proposed an integrated QoS attribute prediction method that enables efficient service

recommendation for web service-based mobile clients via regular tensor decomposition

algorithm [Ma, Wang, Yang, & Chang, 2015]. Their prediction method is considered the

access time context, which is from different services by different users. Since these

methods focus on only the time attribute or context, Cheng et al. propose a QDSHTD

prediction method based on a combination of features and contextual information [Cheng

et al., 2019]. The experimental results show that the QDSHTD algorithm gives higher

estimation accuracy than other QoS attribute prediction algorithms. Although the

43

successful applications show themselves to be based on a large amount of sample data,

these methods above have the same assumption premise that the number of samples used

for prediction is sufficient.

However, the analysis reveals that new users will lack response-time value for the service

at the time slice. New users may never access the existing service, or new users do not

invoke the service at the time slice only. Thus, the number of samples of the quartet set is

insufficient. With this limited sample data, the factor matrix remains unchanged, and the

fixed factor matrix keeps the iteration processing stable. Factor matrices can be

reconstructed if we need to speed up the iterative process to improve prediction

performance [Rajih, Comon, & Harshman, 2008]. Rajih et al. proposed an enhanced line

search (ELS) method based on the current sample in iteration processing. The ELS leads

to an optimal solution that applies a summary of the factor matrix and direction indicator.

The idea of the ELS method inspired us to consider a sample reconstruction for modeling

a tensor-based pattern. We consider restructuring samples with limited historical data in

the iteration processing of the tensor decomposition. The problem to be solved is to

complete the reconstruction of factor matrices from the limited response-time value of

existing services that the users in the time slice have invoked.

In our previous research, a user collaboration model on tensor decomposition is proposed

[Chai, Feng, & Hassanein, 2016]. We analyze the user collaboration tensorial data in tensor

decomposition and design a user-oriented structure. The proposed method achieves better

prediction accuracy than the regular model. Effectively extracting features computational

algorithm from the limited samples deserves a more in-depth study. Our methods

significantly reduce the iteration number overhead of the decomposition process for sparse

tensors. To the best of our knowledge, this is one of the few methods in the context of the

tensor decomposition algorithm.

44

4.3 The new algorithm: TTM

We start with a brief description of our previous research work that we elaborate a features-

oriented collaboration scheme and propose a new algorithm of feature-oriented tensor

decomposition TTM. Furthermore, we highlight the differences to emphasize the novelty of

this work.

4.3.1 Preliminary result

The feature-oriented tensor data model has been studied in our previous work [Chai, Feng,

& Hassanein, 2016]. To overcome the limitation of the CF method, we extend the data

from the matrix representation into a three-dimensional tensor model. The model replaces

the user-service matrix with user-user-service relations by considering the different QoS

attributes for different users. We analyze how user collaboration of related services can

help improve tensor decomposition performance. We conduct the experiments to evaluate

the performance of the proposed method. The experimental results demonstrate that the

proposed method achieves better QoS attribute prediction accuracy than the other methods.

The above model reconstructs some sample data based on a single user feature only. If we

load more features information as the sample data, or even all the features, would we still

improve the prediction accuracy of the recommendation system? With this question in

mind, we have done further research in this direction.

4.3.2 Regular tensor decomposition

The details of regular tensor decomposition have been investigated in Kolda’s related

literature [Kolda, 2006]. More preliminary details are addressed in Appendix B.

Given a 3-way tensor with rank-one 𝓧 ∈ ℝI1×I2×I3 , and an approximation tensor 𝓧̅

corresponding to 𝓧 , where ℝ is for the set of real numbers, I𝑛 𝑛 = 1,2, 𝑎𝑛𝑑 3 is the

dimension of the tensor. An approximation tensor 𝓧̅ from decomposition satisfies the

following equation,

45

𝓧 ≈ 𝓧̅ = ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧ (4.1)

where the regular factor matrix 𝑈(n) 𝑛 = 1,2, 𝑎𝑛𝑑 3. 𝑈(1), 𝑈(2), 𝑈(3) represent the user,

service, and time features, respectively. The symbol ⟦•⟧ denotes the collection of factor

matrices.

The goal of the decomposition of 𝓧 is to find the regular factor matrix 𝑈(n) that produces

the best approximation tensor 𝓧̅. The equation (4.1) can be written in a compact form using

a Khatri–Rao product ⊙.

{

 X(1) ≈ 𝑈
(1)(𝑈(2)⊙𝑈(3))

𝑇

X(2) ≈ 𝑈
(2)(𝑈(1)⊙𝑈(3))

𝑇

X(3) ≈ 𝑈
(3)(𝑈(1)⊙𝑈(2))

𝑇

 (4.2)

where X(n) 𝑛 = 1,2, 𝑎𝑛𝑑 3 is the n-th frontal slice of the original tensor 𝓧, the symbol ⊙

denotes the Khatri-Rao product, and 𝑇 denotes the matrix transpose.

The alternating least squares algorithm (ALS) is the most used algorithm for regular tensor

decomposition. ALS estimates three factor matrices at each step by minimizing a loss

function ℓ(𝓧, 𝓧̅) in the least squares sense the error like the following equation,

ℓ(𝓧, 𝓧̅) = ||𝓧 − 𝓧̅||2 = ||𝓧 − ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧||2 (4.3)

where || • || denotes the norm of tensor. With regular factor matrices 𝑈(2) and 𝑈(3) fixed

to initial values, the estimate of 𝑈(1) is given by,

𝑈(1) = X(1)(𝑈
(2)⊙𝑈(3))

𝑇

⇒𝑈(1) = X(1)[𝑈
(2)⊙𝑈(3)] [(𝑈(2))

𝑇
𝑈(2) ∗ (𝑈(3))

𝑇
𝑈(3)]

+

 (4.4)

where the symbol + denotes the pseudoinverse, and * denotes the Hadamard product.

We estimate regular factor matrices 𝑈(2) and 𝑈(3) equivalently, with 𝑈(2) = 𝐗(2)(𝑈
(1)⊙

𝑈(3))
𝑇
 and 𝑈(3) = 𝐗(3)(𝑈

(2)⊙𝑈(1))
𝑇
, and repeat the same steps until the convergence

criterion is satisfied.

46

The regular tensor decomposition algorithm is given in Algorithm 4.1.

Algorithm 4.1: the regular tensor decomposition algorithm

Input: a tensor 𝓧 ∈ ℝI1×I2×I3, the regularization parameter λ.

Output: the approximate tensor 𝓧̅ , the factor matrices are the index of users,

services, and time, respectively.

Step 1. Initialize regular factor matrices 𝑈(2), 𝑈(3) and slices X(1), X(2), X(3).

Step 2a. Estimate the regular factor matrix 𝑈(1) = X(1)(𝑈
(2)⊙𝑈(3))

𝑇
.

Step 2b. Estimate the regular factor matrix 𝑈(2) = X(2)(𝑈
(1)⊙𝑈(2))

𝑇
.

Step 2c. Estimate the regular factor matrix 𝑈(3) = X(3)(𝑈
(1)⊙𝑈(2))

𝑇
.

Step 3. Calculate the approximate tensor 𝓧̅ = ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧.

Step 4. Repeat step 2 to step 3 to update the approximate tensor 𝓧̅.

Step 5. Calculate the squared error ɛ to reduce the loss function value until

convergence is exhausted.

Step 6. Return the final prediction tensor 𝓧̅.

The RTD fixes 𝑈(2) and 𝑈(3) to find the factor matrix 𝑈(1), then fixes 𝑈(1) and 𝑈(3) to find

the matrix 𝑈(2), then fixes 𝑈(1) and 𝑈(2) to find the matrix 𝑈(3), and continues to repeat

the procedure until the convergence criterion is satisfied.

4.3.3 Features-oriented collaboration scheme

The loops of convergence can take several iterations and needs a large number of iterations

[Paatero, 1997]. In each iteration step of the regular tensor decomposition algorithm, we

further define feature factor matrices ∆𝑈(n), and the enhanced factor matrices 𝑈(𝑛)̅̅ ̅̅ ̅̅ . The

feature factor matrix is a scheme that is formulated as a features-oriented collaboration in

the iteration step. Furthermore, all enhanced factor matrices would minimize in equation

(4.3). The objective is further specified via the following definitions.

47

Definition 4.1 ∆𝑈(n) 𝑛 = 1, 2, 𝑎𝑛𝑑 3 denotes feature factor matrices as a scheme of

features-oriented collaboration. Feature factor matrix ∆𝑈(n) is in connection with other

fixed regular factor matrices 𝑈(i) (i ≠ n and i = 1, 2, 𝑎𝑛𝑑 3) and 𝑛-th frontal slice X(n) in

the 𝑡-th (𝑡=1, 2, ….) iteration step.

The feature factor matrix ∆𝑈(1) can be represented by,

∆𝑈(1) = X(1)(𝑈
(2)⊙𝑈(2))

𝑇
+ X(1)(𝑈

(3)⊙𝑈(3))
𝑇
 (4.5)

where 𝑈(2) and 𝑈(3) denote regular factor matrices, and X(1) denotes 1st frontal slice.

∆𝑈(1), 𝑈(1), and X(1) are in the same iteration step. 𝑇 denotes the matrix transpose.

The feature factor matrix ∆𝑈(2) and feature factor matrix ∆𝑈(3) are obtained equivalently

as follows,

∆𝑈(2) = X(2)(𝑈
(1)⊙𝑈(1))

𝑇
+ X(2)(𝑈

(3)⊙𝑈(3))
𝑇
 (4.6)

∆𝑈(3) = X(3)(𝑈
(1)⊙𝑈(1))

𝑇
+ X(3)(𝑈

(2)⊙𝑈(2))
𝑇
 (4.7)

where X(2) denotes 2nd frontal slice, X(3) denotes 3rd frontal slice.

Definition 4.2 𝑈(𝑛)̅̅ ̅̅ ̅̅ 𝑛 = 1,2, 𝑎𝑛𝑑 3 denotes enhanced factor matrices as a summary of

regular factor matrices 𝑈(n) and feature factor matrices ∆𝑈(n),

𝑈(1)̅̅ ̅̅ ̅̅ = 𝑈(1) + ∆𝑈(1) (4.8)

where 𝑈(1) is regular factor matrices. ∆𝑈(1) is feature factor matrices. ∆𝑈(1) and 𝑈(1) are

obtained in the same 𝑡-th (𝑡=1, 2, ….) iteration step. 𝑈(1)̅̅ ̅̅ ̅̅ is an enhanced factor matrix that

will be applied in the (𝑡 + 1)-th (𝑡=1, 2, ….) iteration step instead of 𝑈(n).

With the enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅ , the enhanced factor matrices 𝑈(2)̅̅ ̅̅ ̅̅ and 𝑈(3)̅̅ ̅̅ ̅̅ are

obtained equivalently as follows,

𝑈(2)̅̅ ̅̅ ̅̅ = 𝑈(2) + ∆𝑈(2) (4.9)

𝑈(3)̅̅ ̅̅ ̅̅ = 𝑈(3) + ∆𝑈(3) (4.10)

48

where 𝑈(2) and 𝑈(3) denote regular factor matrices. ∆𝑈(2) and ∆𝑈(3) denote feature factor

matrices.

In the absence of more sample data, we expect to exhaust the association of each factor

matrix with all other features to make up for the loss of information due to the lack of

sample data. Therefore, the feature factor matrices load a mapping collaboration between

each regular factor matrix and other features separately, potentially describing the tensor

data object more accurately and increasing the iteration step's size.

4.3.4 Example of remedy insufficient samples

We illustrate two-dimensional and three-dimensional datasets to help clearly understand

the proposed feature-oriented collaborations by the user-oriented, service-oriented, and

time-oriented collaborations separately.

(1) Two-dimensional data

Let us focus on two-dimensional data first. Given a user-service matrix, we predict the

missing QoS attribute relevant to user and service based on the current value's observations.

For example, we set four records in an original web service dataset, such as Table 4.1. The

response-time value of 10 seconds reflects the performance when user 1 requesting service

1. The response-time value 20 and 30 seconds are generated by user 3 requesting service 2

and 3, respectively. The last response-time value of 40 seconds is generated by user 4

requesting service 4.

Table 4.1 Four records in web service dataset

From the records of Table 4.1, we obtain the (user, service, response-time) full records have

three users, four services, and four response-time values in Table 4.2.

Users Services Response-time

user1 service1 10 seconds

service 4 40 seconds

user3 service 2 20 seconds

service 3 30 seconds

49

Table 4.2 (user, service, response-time) full records

There are two dimensions in these full records: user and service, three per user dimension,

and four per service dimension. Based on the number of features and dimensions, there

should be 12 records, but only four are observed as the sample. It means that the 8 (=12-4)

latent records should be predicted in Table 4.3.

Table 4.3 Statistics of (user, service, response-time) records

Dimensions Features Sample records Latent records

User 3 4 8

Service 4

The prediction encounters a problem of how to predict the latent records based on the

limited sample records. If prediction uses more samples, the prediction performance will

be enhanced more. To solve this problem, we proposed a reconstruction method to obtain

more sample-based on historical sample records.

First, we extract the sample records from a full recordset as follows in Table 4.4.

User Service Response-time

(seconds)

Sample records

1 1 10 Sample

2 1

3 1

1 2

2 2

3 2 20 Sample

1 3

2 3

3 3 30 Sample

1 4 40 Sample

2 4

3 4

50

Table 4.4 (user, service, response-time) sample records

Users Service Response-time

(seconds)

1 1 10

3 2 20

3 3 30

1 4 40

Moreover, we construct two new records sets by using only sample records, based on the

above (user, service, response-time) record set in Table 4.4,

• (user, user, response-time) recordset

We replace (user, service) columns with (user, user) columns when fixing the response-

time value in sample records to construct a new record set in Table 4.5.

• (service, service, response-time) recordset

Following the same idea, we replace (user, service) columns with a (service, service)

column when fixing the response-time value in sample records to construct a new record

set in Table 4.6.

We construct two new matrixes: the user-based matrix (user, user) and service-based

matrix (service, service), respectively, based on the original matrix. Given a user-service

matrix, the response-time value can be predicted by (user-service) as an original matrix.

We proposed a new construction that combines two new matrixes and the original matrix

to enhance the prediction performance as follows,

((user, service), (user, user), (service, service)) --> response-time

where the user and service are two dimensions, (user, service) is an original matrix, (user,

user) is a user-based matrix, (service, service) is a service-based matrix.

51

Table 4.5 (user, user, response-time) sample records

Table 4.6 (service, service, response-time) sample records

To illustrate the above construct, the three-dimensional mapping is shown as follows in

Figure 4.1. The (user, service, response-time) recordset is mapped in two records: (user,

user, response-time) and (service, service, response-time).

In Figure 4.1, we can see that the response-time value mapping reflects different

distributions when a viewpoint is based on a different direction as the coordinate level. For

example, when the viewpoint is based on the user-user matrix, the mapping of four

response-time values will be distributed on two straight lines with user=1 and user=3, and

when the viewpoint is based on the service-service matrix, the mapping of four response-

time values will be distributed on four different straight lines with service=1,2,3, and 4.

Thus, the response-time value distribution in the three-dimensional data transfer to a two-

dimensional space, which is mapped from the user and service directions separately. We

use three sets to predict latent response-time value: a (user, service, response-time) set, a

(user, user, response-time) set, and a (service, service, response-time) set.

User User Response-time

(seconds)

Sample records

1 1 10 Sample

3 3 20 Sample

3 3 30 Sample

1 1 40 Sample

Service Service Response-time

(seconds)

Sample records

1 1 10 Sample

2 2 20 Sample

3 3 30 Sample

4 4 40 Sample

52

(user, service, response-time)

(user, user, response-time) (service, service, response-time)

Figure 4.1 A three-dimensional data mapping

53

(2) Three-dimensional data

Let us apply the reconstruction idea to three-dimensional data. Given a user-service-time

tensor, the missing QoS attribute is predicted with three dimensions: user, service, and time,

based on the current value observations. For example, the (user, service, time, response-time)

tensor has three users, four services, and two times for seven response-time values in Table

4.7.

Table 4.7 (user, service, time, response-time) tensor full records

Observing Table 4.7, the response-time value of 10 seconds reflects the performance when

user 1 requesting service 1 at time 1. The response-time values 20 and 30 seconds are

generated by user 3 requesting service 2 and 3 at time 1. The response-time value of 40

User Service Time Response-time

(seconds)

Sample records

1 1 1 10 Sample

1 1 2

1 2 1

1 2 2 50 Sample

1 3 1

1 3 2

1 4 1 40 Sample

1 4 2

2 1 1

2 1 2 60 Sample

2 2 1

2 2 2

2 3 1

2 3 2

2 4 1

2 4 2

3 1 1

3 1 2

3 2 1 20 Sample

3 2 2

3 3 1 30 Sample

3 3 2

3 4 1

3 4 2 70 Sample

54

seconds is generated by user 4 requesting service 4 at time 1. Moreover, the response-time

value is 50 seconds when user 1 requests service 2 at time 2. The response-time value of 60

seconds is generated by user 2 requesting service 1 at time 2. At the same time 2, the

response-time value of 70 seconds is generated by user 3 requesting service 4. The value of

latent records number 17 (=24-7) should be predicted in Table 4.8.

Table 4.8 Statistics of a (user, service, time, response-time) tensor

Dimension’s

name

Features

number

Sample records

number

Latent records

number

User 3 7 17

Service 4

Time 2

Following the same idea, we extract the sample records from a tensor as follows in Table

4.9.

Table 4.9 (user, service, time, response-time) tensor samples records

Moreover, we construct seven new tensors using only sample records, based on the above

(user, service, time, response-time) tensor samples in Table 4.9.

We replace (user, service, time) columns with (user, user, service) columns when fixing the

response-time value in sample records to construct a new record set as follows in Table

4.10.

The rest can be done with the same processing, and we obtain the six new tensor

constructions as follows in Tables 4.11 to 4.15.

User Service Time Response-time

(seconds)

Sample records

1 1 1 10 Sample

1 2 2 50 Sample

1 4 1 40 Sample

2 1 2 60 Sample

3 2 1 20 Sample

3 3 1 30 Sample

3 4 2 70 Sample

55

• (user, user, service, response-time) tensor

• (user, user, time, response-time) tensor

• (service, service, user, response-time) tensor

• (service, service, time, response-time) tensor

• (time, time, user, response-time) tensor

• (time, time, service, response-time) tensor

Table 4.10 (user, user, service, response-time) tensor samples records

Table 4.11 (user, user, time, response-time) tensor samples records

User User Service Response-time

(seconds)

Sample records

1 1 1 10 Sample

1 1 2 50 Sample

1 1 4 40 Sample

2 2 1 60 Sample

3 3 2 20 Sample

3 3 3 30 Sample

3 3 4 70 Sample

User User Time Response-time

(seconds)

Sample records

1 1 1 10 Sample

1 1 2 50 Sample

1 1 1 40 Sample

2 2 2 60 Sample

3 3 1 20 Sample

3 3 1 30 Sample

3 3 2 70 Sample

56

Table 4.12 (service, service, user, response-time) tensor samples records

Table 4.13 (service, service, time, response-time) tensor samples records

Table 4.14 (user, time, time, response-time) tensor samples records

Service Service User Response-time

(seconds)

Sample records

1 1 1 10 Sample

2 2 1 50 Sample

4 4 1 40 Sample

1 1 2 60 Sample

2 2 3 20 Sample

3 3 3 30 Sample

4 4 3 70 Sample

Service Service Time Response-time

(seconds)

Sample records

1 1 1 10 Sample

2 2 2 50 Sample

4 4 1 40 Sample

1 1 2 60 Sample

2 2 1 20 Sample

3 3 1 30 Sample

4 4 2 70 Sample

User Time Time Response-time

(seconds)

Sample records

1 1 1 10 Sample

1 2 2 50 Sample

1 1 1 40 Sample

2 2 2 60 Sample

3 1 1 20 Sample

3 1 1 30 Sample

3 2 2 70 Sample

57

Table 4.15 (service, time, time, response-time) tensor samples records

Finally, we divide the six tensors into three groups:

• User-based: (user, user, service, response-time) and (user, user, time, response-time)

• Service-based: (service, service, user, response-time) and (service, service, time,

response-time)

• Time-based: (time, time, user, response-time) and (time, time, service, response-time)

We proposed a new construction that combines six new tensors and the original tensor to

enhance the prediction performance as follows,

((user, service, time), (user, user, service), (user, user, time), (service, service, user),

(service, service, time), (time, time, user), (time, time, service))

→ response-time

where the user, service, and time are three dimensions, (user, service, time) is an original

tensor, (user, user, service/time) are User-based tensors, (service, service, user/time) are

Service-based tensors, (time, time, user/service) are Time-based tensors.

Since the four-dimensional construction cannot be directly depicted, we illustrate the above

construction by the flattening tables. For example, we construct the new tensor (user, user,

service, response-time) from the original tensor (user, service, time, response-time) as in

Figures 4.2 and 4.3.

Service Time Time Response-time

(seconds)

Sample records

1 1 1 10 Sample

2 2 2 50 Sample

4 1 1 40 Sample

1 2 2 60 Sample

2 1 1 20 Sample

3 1 1 30 Sample

4 2 2 70 Sample

58

Figure 4.2 (user, user, service, response-time) tensor data mapping

(user, user, service) in four services

(user, service, time, response-time) tensor

59

Figure 4.3 (user, user, time, response-time) tensor data mapping

Finally, the rest of the tensors can be done in the same processing to obtain the six new

tensor constructions, and we predict latent response-time value based on a (user, service,

time, response-time) tensor with the user-based, service-based, time-based tensors.

(user, user, time) at two time

(user, service, time, Response-time) tensor

60

4.3.5 Traversal-tensor method (TTM)

We proposed an improved tensor decomposition method, TTM. The TTM is based on the

above definition and determination of increments to all three factor matrices. It consists of

repeatedly solving for the feature factor matrices ∆𝑈(1), ∆𝑈(2), and ∆𝑈(3), and the enhanced

factor matrices 𝑈(1)̅̅ ̅̅ ̅̅ , 𝑈(2)̅̅ ̅̅ ̅̅ , and 𝑈(3)̅̅ ̅̅ ̅̅ .

Considering that the newly generated factor matrix may cause the approximation tensor to

be farther away from the original tensor, we need to set up the control mechanism.

Given three new factor matrices 𝑈𝑛𝑒𝑤
(1)

 , 𝑈𝑛𝑒𝑤
(2)

 , and 𝑈𝑛𝑒𝑤
(3)

 , and two errors ɛ and ɛ𝑛𝑒𝑤 are

denoted as follows,

ɛ = ‖X(n) − X(n)̅̅ ̅̅ ̅‖
2
, 𝑛 = 1,2, 𝑎𝑛𝑑 3 (4.11)

ɛ𝑛𝑒𝑤 = ‖X(n) − X(n)̅̅ ̅̅ ̅′‖
2
, 𝑛 = 1,2, 𝑎𝑛𝑑 3 (4.12)

where

X(n) 𝑛 = 1,2, 𝑎𝑛𝑑 3 denotes the n-th frontal slice of the original tensor 𝓧,

X(n)̅̅ ̅̅ ̅ 𝑛 = 1,2, 𝑎𝑛𝑑 3 denotes the n-th frontal slice of the approximation tensor 𝓧̅ (𝓧̅

is generated by the regular factor matrices 𝑈(n) 𝑛 = 1,2, 𝑎𝑛𝑑 3),

X(n)̅̅ ̅̅ ̅′ 𝑛 = 1,2, 𝑎𝑛𝑑 3 denotes the n-th frontal slice of the approximation tensor 𝓧̅′

(𝓧̅′ is generated by the enhanced factor matrices 𝑈(n)̅̅ ̅̅ ̅̅ 𝑛 = 1,2, 𝑎𝑛𝑑 3).

At every step of updating the factor matrix, we calculate two squared errors ɛ and ɛ𝑛𝑒𝑤

separately, then compare these two errors:

If ɛ𝑛𝑒𝑤 ≥ ɛ, this indicates that the approximation tensor 𝓧̅′ is further away from the

original tensor 𝓧 than another approximation tensor 𝓧̅. The current iterative step size

is slightly large, and the iteration seems to be going in the wrong direction. To keep

61

the optimization direction of the iteration, the regular factor matrices 𝑈(n) 𝑛 =

1,2, 𝑎𝑛𝑑 3 are set as new factor matrix 𝑈𝑛𝑒𝑤
(𝑛) 𝑛 = 1,2, 𝑎𝑛𝑑 3 at the next step.

If ɛ𝑛𝑒𝑤 < ɛ, the current computation will continue, and the enhanced factor matrices

𝑈(𝑛)̅̅ ̅̅ ̅̅ 𝑛 = 1,2, 𝑎𝑛𝑑 3 as new factor matrix 𝑈𝑛𝑒𝑤
(𝑛) 𝑛 = 1,2, 𝑎𝑛𝑑 3 at the next step.

This judgment is made whenever a new factor matrix is computed to ensure that the

iteration goes down correctly.

Finally, an approximation tensor 𝓧̅ satisfies 𝓧̅ = ⟦𝑈𝑛𝑒𝑤
(1) , 𝑈𝑛𝑒𝑤

(2) , 𝑈𝑛𝑒𝑤
(3) ⟧ and the loss

function ℓ(𝓧, 𝓧̅) of TTM is modified as follows,

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 = ‖𝓧− ⟦𝑈𝑛𝑒𝑤
(1) , 𝑈𝑛𝑒𝑤

(2) , 𝑈𝑛𝑒𝑤
(3) ⟧‖

2

= ‖𝓧 − ⟦(𝑈(1) + ∆𝑈(1)), (𝑈(2) + ∆𝑈(2)), (𝑈(3) + ∆𝑈(3))⟧‖
2
. (4.13)

We find the optimal that minimizes the (4.11) equation in every iteration step,

min
𝑈𝒏𝒆𝒘
(𝒏)
‖𝓧− ⟦(𝑈(1)+ ∆𝑈(1)), (𝑈(2)+ ∆𝑈(2)), (𝑈(3)+ ∆𝑈(3))⟧‖. (4.14)

We find that the loading feature factor matrix helps the computation evolve within a given

loop by analyzing this algorithm. The convergence within the same loop requires multiple

iterations. The following loops exhibit the same scenarios in the direction of the final

solution for the optimization.

Algorithm 4.2: Traversal-tensor Method

Input: an original tensor 𝓧 ∈ ℝI1×I2×I3, the regularization parameter λ.

Output: the approximate tensor 𝓧̅ , the factor matrices are the index of users,

services, and time, respectively.

Step 1. Initialize regular factor matrices 𝑈(2), 𝑈(3) and slices X(1), X(2), X(3)..

Step 2a. Fixing the 𝑈(2) and 𝑈(3) to estimate the factor matrices 𝑈(1), 𝑈(1)̅̅ ̅̅ ̅̅ .

Step 2b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ.

Step 2c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(1)

.

62

Step 3a. Fixing the 𝑈𝑛𝑒𝑤
(1)

 and 𝑈(3) to estimate the factor matrices 𝑈(2), 𝑈(2)̅̅ ̅̅ ̅̅ .

Step 3b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ.

Step 3c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(2)

.

Step 4a. Fixing the 𝑈𝑛𝑒𝑤
(1)

 and 𝑈𝑛𝑒𝑤
(2)

 to estimate the factor matrices 𝑈(3), 𝑈(3)̅̅ ̅̅ ̅̅ .

Step 4b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ.

Step 4c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(3)

.

Step 5. Repeat step 2a to step 4c, calculate the approximate tensor 𝓧̅ =

⟦𝑈𝑛𝑒𝑤
(1)
,𝑈𝑛𝑒𝑤
(2)
,𝑈𝑛𝑒𝑤
(3)
⟧.

Step 6. Reduce the loss function ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 until convergence is

exhausted.

Step 7. Return the final prediction tensor 𝓧̅.

Comparing with RTD, the TTM also fixes two factor matrices to find another factor matrix.

However, TTM has a parallel computational process in each factor matrix computation:

• In step 2a, one fixes 𝑈(2) and 𝑈(3) to find an enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅ as in

equation (4.5), and other is to obtain a regular factor matrix 𝑈(1) as in equation (4.4).

• In step 2b, the two processing generate two approximate tensors 𝓧̅ and 𝓧̅′ separately.

Based on the two tensors, TTM estimates the two slices X(1)̅̅ ̅̅ ̅ 𝑎𝑛𝑑 X(1)̅̅ ̅̅ ̅′, then computes

the errors between these two slices and the corresponding slice X(1) of the original

tensor 𝓧, respectively.

• By comparing the two errors in step 2c, TTM chooses the factor matrix corresponding

to the smaller error as a new factor matrix 𝑈𝑛𝑒𝑤
(1)

 for the next step.

• As same as steps 2a to 2c, TTM generates the new factor matrices 𝑈𝑛𝑒𝑤
(2)

 and 𝑈𝑛𝑒𝑤
(3)

separately in step 3 and step 4.

• Repeating the above steps, the approximate tensor 𝓧̅ = ⟦𝑈𝑛𝑒𝑤
(1) , 𝑈𝑛𝑒𝑤

(2) , 𝑈𝑛𝑒𝑤
(3) ⟧ is

obtained until convergence is exhausted.

63

4.4 Comparisons of TTM and RTD

In the 4.3 section, we focused on the solution for insufficient sample data, proposed a

feasible algorithm, and summarized the steps of the TTM. We plotted two different

algorithms for the feature-oriented and regular tensor decomposition in Figure 4.4 and

Figure 4.5. Through the two figures, we point out two main differences between TTM and

RTD.

• TTM uses more factor matrices to compute enhanced factor matrices during the

iterative process.

The enhanced factor matrices are associated with more factor matrices, traversing all the

features with the expectation that these features will affect the computation results. Later

experiments demonstrate that the computation of the feature factor matrices increases the

step size of the iterations.

• TTM adds a comparison error component over RTD, which determines the next step

inside the iteration.

If the enhanced factor matrices lead the approximate tensor to move far away from the

original tensor, TTM replaces the enhanced factor matrices instead of the regular factor

matrices after error comparison. The next iterative process is prevented from moving in the

wrong direction. Such a mechanism ensures that the TTM always has an optimal value.

64

Figure 4.4 RTD algorithm

According to the algorithm shown in Figure 4.4, each iteration step of RTD are performed

as the following:

Step 1. Set initial values 𝑈(1), 𝑈(2), and 𝑈(3)

Step 2a. Fixing the 𝑈(2) and 𝑈(3) , compute the regular factor matrix 𝑈(1) as in

equation (4.4).

Step 2b. Fixing the 𝑈(1) and 𝑈(3), compute the regular factor matrix 𝑈(2).

Step 2c. Fixing the 𝑈(1) and 𝑈(2), compute the regular factor matrix 𝑈(3).

Initial values

𝑼(𝟏) 𝑼(𝟐) 𝑼(𝟑)

Estimate 𝑈(1) using 𝑈(2) and 𝑈(3) from 𝑈(1) = X(1)(𝑈
(2)⊙𝑈(3))

𝑇

Compute the ɛ = ||X − X̅||2 = ||X − 𝑈(1)(𝑈(2)⊙𝑈(3))
𝑇
||2

⚫ If ||X − X̅||2 >threshold, return to step 1 with 𝑈(1), 𝑈(2), and 𝑈(3) as initial values

⚫ If ||X − X̅||2 <threshold, stop and output the 𝑈(1), 𝑈(2), and 𝑈(3)

Estimate 𝑈(2) using 𝑈(1) and 𝑈(3) from 𝑈(2) = X(2)(𝑈
(1)⊙𝑈(3))

𝑇

Estimate 𝑈(3) using 𝑈(1) and 𝑈(2) from 𝑈(3) = X(3)(𝑈
(1)⊙𝑈(2))

𝑇

Step 1:

Step 2a:

Step 2b:

Step 2c:

Step 3:

65

Step 3. Perform steps 2a to 2c. Use 𝑈(1), 𝑈(2) , and 𝑈(3) to estimate each slice of the

approximate tensor 𝓧̅ as in equation (4.2). Compare the norm of difference

slices corresponding to each of the two tensors 𝓧 and 𝓧̅.

66

67

Figure 4.5 TTM algorithm

According to the algorithm shown in Figure 4.5, each iteration step of TTM are performed

as the following:

Step 1. Set initial values 𝑈(2), and 𝑈(3)

Step 2a. Fixing the 𝑈(2) and 𝑈(3) , compute the regular factor matrix 𝑈(1) as in

equation (4.4), and compute the enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅ as in equation

(4.5).

Step 2b. Compute the corresponding error ɛ𝑛𝑒𝑤 given by equation (4.11) and error ɛ

given by equation (4.12) separately.

Step 2c. Compare the ɛ𝑛𝑒𝑤 and ɛ. If the value of ɛ𝑛𝑒𝑤 is greater than ɛ, then set the

new factor matrix 𝑈𝑛𝑒𝑤
(1)

 to 𝑈(1), otherwise set 𝑈𝑛𝑒𝑤
(1)

 to 𝑈(1)̅̅ ̅̅ ̅̅ .

Step 3a to 3c. Use 𝑈𝑛𝑒𝑤
(1)

 and 𝑈(3) to estimate the regular factor matrix 𝑈(2) and

enhanced factor matrix 𝑈(2)̅̅ ̅̅ ̅̅ . Then TTM compares the ɛ𝑛𝑒𝑤 and ɛ: If the

value of ɛ𝑛𝑒𝑤 is greater than ɛ, then set the new factor matrix 𝑈𝑛𝑒𝑤
(2)

 to 𝑈(2),

otherwise set 𝑈𝑛𝑒𝑤
(2)

 to 𝑈(2)̅̅ ̅̅ ̅̅ .

Step 4a to 4c. Use 𝑈𝑛𝑒𝑤
(1)

 and 𝑈𝑛𝑒𝑤
(2)

 to estimate the regular factor matrix 𝑈(3) and

enhanced factor matrix 𝑈(3)̅̅ ̅̅ ̅̅ . Then TTM compares the ɛ𝑛𝑒𝑤 and ɛ: If the

value of ɛ𝑛𝑒𝑤 is greater than ɛ, then set the new factor matrix 𝑈𝑛𝑒𝑤
(3)

 to 𝑈(3),

otherwise set 𝑈𝑛𝑒𝑤
(3)

 to 𝑈(3)̅̅ ̅̅ ̅̅ .

Step 5. Perform steps 2 to 4. Use new factor matrices 𝑈𝑛𝑒𝑤
(1)

, 𝑈𝑛𝑒𝑤
(2)

 , and 𝑈𝑛𝑒𝑤
(3)

 as

starting values for the iteration instead of 𝑈(1), 𝑈(2), and 𝑈(3). Estimate each

slice of the approximate tensor 𝓧̅ by using the 𝑈𝑛𝑒𝑤
(1)

, 𝑈𝑛𝑒𝑤
(2)

 , and 𝑈𝑛𝑒𝑤
(3)

 as in

68

equation (4.2). Compare the norm of difference slices corresponding to each

of the two tensors 𝓧 and 𝓧̅.

From these two figures, it can be compared that the iteration processing of TTM adds the

calculation of the feature factor matrix. The enhanced factor matrix is updated by the

feature factor matrix and regular factor matrix for the next step. TTM needs to compare the

approximate tensor and the original tensor when an enhanced factor matrix is obtained.

This comparison of differences is used to determine the nesting direction to ensure that the

algorithm can move in the direction of optimization.

The RTD has neither the computation of this feature factor matrix nor the comparison of

differences. Therefore RTD is simpler than the TTM.

69

Next, we discuss the TTM specifically in the following aspects: decomposition result,

properties, computational complexity, and validation of its results. All these issues are

further investigated as follows.

4.4.1 Comparison of decomposition result

To easily understand the decomposition of the two methods, we briefly describe the two

decomposition results in one iterative step, which can be found by comparison in Table

4.16:

• After one iteration step, the approximation tensor obtained by the TTM is different

from those obtained by the RTD.

The reason is that TTM needs to calculate more factor matrices to complete the

decomposition.

• The norm of tensor generated by TTM is larger than that of the RTD.

It is indicated that the iteration step of TTM is longer. The increase of iteration size

has a positive effect on the improvement of the tensor decomposition performance.

Table 4.16 Results comparison of TTM and RTD

 TTM RTD

𝓧

2 4
6 12

1 2
3 6

2 4
6 12

1 2
3 6

𝒂𝟏 ◦𝒃𝟏 ◦ 𝒄𝟏 (
0.75
2.25

) ◦ (
3.5778
7.1556

) ◦ (
1.7408
3.4818

) (
−1/2
−3/2

) ◦ (
−2
−4
) ◦ (

1
2
)

𝓧̅

9.3429 18.6858
14.0135 28.0271

4.6712 9.3424
14.0135 28.0271

2.0000 4.0000
6.0000 12.0000

1.0000 2.0000
3.0000 6.0000

𝑵𝒐𝒓𝒎 𝒐𝒇 𝓧̅ 73.8612 15.8114

𝑵𝒐𝒓𝒎 𝒐𝒇

（𝓧̅ − 𝓧）

58.0498 4.4409×10−15

70

In table 4.16, 𝓧 ∈ ℝ𝟐×𝟐×𝟐 denotes a 3-way tensor with rank-one. 𝓧̅ = 𝒂𝟏 ◦ 𝒃𝟏 ◦ 𝒄𝟏

denotes an approximation tensor. 𝒂𝟏, 𝒃𝟏, 𝒄𝟏 are vector after tensor decomposition

separately. The decomposition detail is illustrated in Section 4.4.4.

4.4.2 Convergence properties

Examining the TTM as an optimization algorithm from a mathematical perspective, the

following properties can be observed.

I. The derivative of a loss function ℓ(𝓧, 𝓧̅)at the minimum is vanished, thus the

minimum of the loss function is a fixed point.

The ALS algorithm does not reach a global minimum from any starting point [Shi, Li, &

Zhang, 2019]. Since our method is based on the ALS algorithm, TTM can only ensure that

a local minimum is reached.

II. The TTM result moves towards the minimum, no matter whether the negative or

positive gradient.

An example of gradient descent is shown as follows.

Given a 2 × 2 × 2 3-way tensor 𝒳 =

0 1
−1 0

1 0
0 1

, the vectors 𝑎 = (
1
−1
), 𝑏 = (

cos 𝛼
sin 𝛼

),

and 𝑐 = (
cos 𝛽
sin 𝛽

) denote the initial values, which are the trigonometric function value of

angle variables 𝛼, 𝛽 respectively [De Lathauwer, De Moor, & Vandewalle, 2000]. 𝛼 and 𝛽

are in a range from -π to π.

Suppose the desired output of a TTM is an original tensor 𝓧. The TTM predicts an output

of approximation tensor 𝓧̅ = 𝑎 ◦ 𝑏 ◦ 𝑐 . Difference between the real output and the

predicted output (𝓧 − 𝓧̅) is converted into the loss function f(a, b, c) = ‖𝓧 − 𝑎 ◦ 𝑏 ◦

71

𝑐‖2. Our goal is to optimize the loss function to make a loss as minimum as possible with

the TTM result.

The loss function above is shaped surface — the partial derivative of the loss function

f(a, b, c) with respect to the weight is the slope of the surface at the location. By moving in

the direction predicted by TTM, TTM moves towards the bottom of the surface -

minimizing the loss function.

It is observed from Figure 4.6 that the minimum of the function gives the best

approximations highlighted in deep blue.

Figure 4.6 An example of gradient descent

72

III. The TTM reduced the number of iterations for the convergence to get a

reasonable result.

The TTM uses more matrices to compute the same factor matrices in the iteration. This

fact is noticed, which the large size step would reduce the number of iteration steps. Thus,

the process of fitting the minimum value is easier than RTD.

The fact that the TTM has a small number of iteration steps leads to a question: which is

better for improving the fit or increasing the computational cost? Question is particularly

important in cases where the iteration becomes slow because of more factor matrices. For

example, one can imagine that a big-size steps method might trade off some slower steps

for the same finish line, when the computer performance has been very high and the cost

in time is not much. This question can be answered well by applying a method to simulated

or real data.

We give an example of a small number of iteration steps for comparing TTM and RTD.

We set a simulated movie rating experiment, in which the movie dataset has three

dimensions data: three users, four items, and four contexts. The movie rating is predicted

using three-dimensional data in (user, item, context) -> rating. After prediction, the

iteration number is recorded in Table 4.17.

Table 4.17 Iteration steps number comparison

Method

Prediction Error rate

1% 5% 10% 15% 20% 25% 30% 35% 40% 45%

RTD 8969 1683 1289 1756 2018 1877 1293 1497 1755 1355

TTM 1582 801 1094 605 1062 761 439 335 520 318

73

Figure 4.7 Iteration steps number comparison

The horizontal coordinate of Figure 4.6 represents the error rate of the prediction, and the

vertical coordinate represents the number of iteration steps. When the prediction error rate

becomes larger, the accuracy of the prediction will be lower.

We can find that the RTD curve decreases greatly as the error rate decreases, indicating

that the number of iteration steps required for the RTD is gradually decreasing. At the same

time, the TTM curve changes more slowly and requires fewer iteration steps than the RTD

for the same error rate. For example, for an error rate of 1%, the number of iteration steps

required for TTM is 1582, which is far less than 8969 for RTD. In the same way, comparing

the number of iteration steps with the same error rate, the corresponding number of

iterations for TTM is always smaller than that of RTD. Thus, we conclude that TTM can

reach the minimum point faster and is more efficient.

The algorithm's convergence requires many iterations, and the initial value of the missing

data will also affect the number of iterations. A good choice of starting values will help to

reach the minimum quickly in some cases. Therefore, we discuss the effect of different

74

missing initial values on convergence and find that choosing a good initial value improves

convergence efficiency in the experiment.

4.4.3 Validation of the results.

In this subsection, we analyze the different results between TTM and RTD through the

visualization representation.

Given a 2 × 2 × 2 3-way tensor 𝓧 ∈ ℝI1×I2×I3 and its approximation tensor 𝓧̅ . The

original tensor 𝓧 is defined as follows,

𝓧 =

𝑥112 𝑥122
𝑥212 𝑥222

𝑥111 𝑥121
𝑥211 𝑥221

 (4.15)

where 𝓧 denotes the tensor, 𝑥𝑖1𝑖2𝑖3 denotes the tensor elements, and 𝑎𝑙𝑙 𝑖1, 𝑖2, 𝑖3 = 1,2

denote each entry respectively of the tensor’s elements.

Setting three vectors 𝑎, 𝑏, 𝑐 ∈ ℝ2 , and 𝑎 = (
𝑎1
𝑎2
) , 𝑏 = (

𝑏1
𝑏2
) , 𝑐 = (

𝑐1
𝑐2
) where

𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 are the elements of the corresponding vectors, the definition of vector

outer product is as follows,

𝓧̅ = 𝑎 ◦ 𝑏 ◦ 𝑐 = (
𝑎1
𝑎2
) ◦ (

𝑏1
𝑏2
) ◦ (

𝑐1
𝑐2
)

=

𝑎1𝑏1𝑐2 𝑎1𝑏2𝑐2
𝑎2𝑏1𝑐2 𝑎2𝑏2𝑐2

𝑎1𝑏1𝑐1 𝑎1𝑏2𝑐1
𝑎2𝑏1𝑐1 𝑎2𝑏2𝑐1

. (4.16)

To make a visual representation, we set the initial value for the vectors as follows (the same

representation is used in De Lathauwer, etc. related literature [De Lathauwer, De Moor, &

Vandewalle, 2000]),

𝑏1 = cos 𝛼 , 𝑏2 = sin𝛼 , 𝑐1 = cos𝛽 , 𝑐2 = sin𝛽

where two angle variables 𝛼 and 𝛽 are in a range from -π to π.

75

Substituting the above initial value of vectors 𝒃 𝑎𝑛𝑑 𝒄 into the equation (4.16), the

approximation tensor 𝓧̅ is rewrite as follows,

𝓧̅ = 𝑎 ◦ 𝑏 ◦ 𝑐

= (
𝑎1
𝑎2
) ◦ (

cos 𝛼
sin 𝛼

) ◦ (
cos 𝛽
sin 𝛽

)

=

𝑎1 cos 𝛼 sin 𝛽 𝑎1 sin 𝛼 sin 𝛽
𝑎2 cos 𝛼 sin 𝛽 𝑎2 sin 𝛼 sin 𝛽

𝑎1cos 𝛼 cos 𝛽 𝑎1 sin 𝛼 cos 𝛽
𝑎2 cos 𝛼 cos 𝛽 𝑎2 sin 𝛼 cos 𝛽

. (4.17)

where two variables 𝛼 and 𝛽 are in a range from -π to π.

Thus, the loss function ℓ(𝓧, 𝓧̅) of the original tensor 𝓧 and its approximation tensor 𝓧̅

is obtained by substituting the equation (4.15) and (4.17),

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖

= ‖

𝑥112 𝑥122
𝑥212 𝑥222

𝑥111 𝑥121
𝑥211 𝑥221

−

𝑎1 cos 𝛼 sin𝛽 𝑎1 sin 𝛼 sin 𝛽
𝑎2 cos𝛼 sin𝛽 𝑎2 sin 𝛼 sin 𝛽

𝑎1cos𝛼 cos𝛽 𝑎1 sin𝛼 cos𝛽
𝑎2 cos𝛼 cos𝛽 𝑎2 sin𝛼 cos𝛽

‖

= (𝑥111 − 𝑎1 cos 𝛼 cos𝛽)
2 + (𝑥121 − 𝑎1 sin 𝛼 cos 𝛽)

2 + (𝑥211 − 𝑎2 cos 𝛼 cos 𝛽)
2

+(𝑥221 − 𝑎2 sin 𝛼 cos𝛽)
2 + (𝑥112 − 𝑎1 cos 𝛼 sin 𝛽)

2 + (𝑥122 − 𝑎1 sin 𝛼 sin 𝛽)
2

+(𝑥212 − 𝑎2 cos 𝛼 sin 𝛽)
2 + (𝑥222 − 𝑎2 sin 𝛼 sin 𝛽)

2. (4.18)

where the vectors 𝑏 and 𝑐 can be normalized by using the trigonometric function of 𝛼 and 𝛽.

The vector 𝑎 is a set of different initial values as 𝑎 = (
1
1
) , 𝑎 = (

1
−1
) , and 𝑎 = (

−1
1
). The

ℓ(𝓧, 𝓧̅) can be generated by two variables 𝛼 and 𝛽 when fixing the vector 𝑎.

By adjusting the equation (4.20) to satisfy the TTM and RTD, we obtain visualization

results for both TTM and RTD methods by the curves of ℓ(𝓧, 𝓧̅) in Table 4.18 to 4.21.

76

Table 4.18 First approximation tensor with rank 3

𝒳 =

0 1
−1 0

1 0
0 1

 𝒂 = (
𝟏
𝟏
) 𝒂 = (

𝟏
−𝟏
) 𝒂 = (

−𝟏
𝟏
)

RTD

TTM

77

Table 4.19 Second approximation tensor with rank 3

𝒳 =

5 6
7 8

1 2
3 4

 𝒂 = (
𝟏
𝟏
) 𝒂 = (

𝟏
−𝟏
) 𝒂 = (

−𝟏
𝟏
)

RTD

TTM

78

Table 4.20 Third approximation tensor with rank 2

𝓧 =

𝟎 𝟏
𝟏 𝟎

𝟏 𝟎
𝟎 𝟏

 𝒂 = (
𝟏
𝟏
) 𝒂 = (

𝟏
−𝟏
) 𝒂 = (

−𝟏
𝟏
)

RTD

TTM

79

Table 4.21 Fourth approximation tensor with rank 1

𝒳 =

2 4
6 12

1 2
3 6

 𝒂 = (
𝟏
𝟏
) 𝒂 = (

𝟏
−𝟏
) 𝒂 = (

−𝟏
𝟏
)

RTD

TTM

80

The coordinate system in which the curves are located is represented as that the horizontal

plane is composed of two axes, representing the two variables 𝛼 and 𝛽, and the vertical

coordinate represents the value of the ℓ(𝓧, 𝓧̅) lost function. The color of the curve

changes progressively from warm to cool color, with cooler colors indicating lower values

of the ℓ(𝓧, 𝓧̅) lost function. The deep blue color indicates the lowest value, and the deep

red color indicates the highest value.

Observing that these curves, we conclude that the proposed decomposition method is

convergent.

(1) The lowest value obtained of lost function by the TTM remains a fixed positive

value.

The concave point of the curve indicates the location of the lowest value of the function.

All the curve of TTM has a concave point. The vertical coordinates of the positions of these

points are all above the zero value.

(2) The process of finding the lowest value in TTM is easier than that of RTD.

If the curve has more concave points, indicating that it has a more minimal value, it may

require more complicated processing steps. Since the number of convergence points

obtained by the RTD is smaller than that of RTD, as shown in Table 4.22, the process of

finding the lowest in RTD is more complex and less easy than that in TTM.

Table 4.22 Number of convergence points

Tensor Rank RTD TTM Input vector

Rank = 1 3 1

𝒂 = (
𝟏
−𝟏
)

Rank = 2 >2 2

Rank = 3

(First approximation tensor)

3 1

Rank = 3

(Second approximation tensor)

>2 2

81

Meanwhile, the curve obtained by TTM is smoother than that of RTD. Especially after

decomposing, it is evident that the curve of RTD is steeper than the curve of TTM in Table

4.21. This means that the iteration size in the TTM is larger than the RTD iteration size,

which is consistent with the conclusion we discussed in section 4.4.1.

(3) The lowest value obtained of lost function by the TTM is lower than or equal to

that of RTD.

The lowest value indicates the difference between the approximate tensor and the original

tensor.

The lower this value is, the lower the difference is. The result shown in Table 4.23 shows

that the approximate tensor obtained by TTM is closer to the original tensor.

Table 4.23 Lowest value of lost function

Tensor Rank RTD TTM Input vector

Rank = 1 220 100

𝒂 = (
𝟏
−𝟏
) Rank = 2 4 0

Rank = 3

(First approximation tensor)

190 100

Rank = 3

(Second approximation tensor)

0 0

4.4.4 Computational complexity

TTM has a higher computational complexity. In the following, we further compare the

computational complexity of the two methods.

(1) Complexity computation

Let a 3-way tensor 𝓧 ∈ ℝ𝐼1×𝐼2×𝐼3, where 𝐼1, 𝐼2, and 𝐼3 is the dimensionality of first, second,

and third-dimensional data, respectively. 𝑅 is the tensor’s rank. 𝑈(1), 𝑈(2), and 𝑈(3) are the

factor matrices.

82

According to the analysis of computational complexity in [Zhang et al., 2014b], for each

iteration of RTD, the primary cost of the computation complexity is step 2a -2c of the RTD

algorithm, each of which is 𝑂(𝐼1𝐼2𝐼3𝑅 + (2𝐼1 + 𝐼2 + 𝐼3)𝑅
2 + 𝐼1𝐼2𝐼3𝑅), and step3 of the

RTD algorithm is 𝑂(𝐼1𝐼2𝐼3𝑅). The computation complexity can be considered in one

iteration as follows,

𝑂(𝐼1𝐼2𝐼3𝑅 + (2𝐼1 + 𝐼2 + 𝐼3)𝑅
2 + 𝐼1𝐼2𝐼3𝑅) + 𝑂(𝐼1𝐼2𝐼3𝑅). (4.19)

In contrast, the prediction step of TTM includes extra operations, which means the TTM

may take more time than expected. Such extra computation time depends on the

implementation, the CPU performance, the system platform, and other factors. Therefore,

its impact can not be computed exactly. The summarization of the TTM computational

complexity is shown as follows,

The steps of the ELS and their computational complexities are listed as follows:

• Calculate the increments 𝑈𝑛𝑒𝑤
(𝑛) = 𝑈(𝑛) + ∆𝑈(𝑛) 𝑛 = 1,2, 𝑎𝑛𝑑 3 , which needs no

multiplications.

• Calculate the feature factor matrices of the following (given ∆𝑈(1) as an example),

∆𝑈(1) = 𝑋(1)(𝑈
(2)⊙𝑈(2))

𝑇
+ 𝑋(1)(𝑈

(3)⊙𝑈(3))
𝑇
, 𝑛 = 1,2, 𝑎𝑛𝑑 3.

The cost of the computation complexity is,

𝑂 ((10𝐼1 + 9𝐼2 + 9𝐼3)𝑅
2 + (𝐼1𝐼2𝐼3 + 𝐼1

2(𝐼2 + 𝐼3) + 𝐼2
2(𝐼1 + 𝐼3) + 𝐼3

2(𝐼1 + 𝐼2))𝑅)

+𝑂(2(𝐼2𝐼3 + 𝐼1𝐼2 + 𝐼1𝐼3 + 𝐼2𝐼3)𝑅). (4.20)

• Calculate the approximate tensor 𝓧̅ = ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧ , and the cost of the

computation complexity is,

𝑂(𝐼1𝐼2𝐼3𝑅). (4.21)

Therefore, the computation complexity of the TTM prediction step is as follows, which is

higher than that of RTD,

83

𝑂(𝐼1𝐼2𝐼3𝑅 + (10𝐼1 + 9𝐼2 + 9𝐼3)𝑅
2

+ (𝐼1𝐼2𝐼3 + 𝐼1
2(𝐼2 + 𝐼3) + 𝐼2

2(𝐼1 + 𝐼3) + 𝐼3
2(𝐼1 + 𝐼2))𝑅)

+𝑂(2(𝐼2𝐼3 + 𝐼1𝐼2 + 𝐼1𝐼3 + 𝐼2𝐼3)𝑅). (4.22)

84

(2) Numerical examples

Considering that the tensor decomposition process uses rather cumbersome mathematical

notation, the numerical examples are visualizations to facilitate understanding. Thus, we

give numerical examples to compare the regular tensor decomposition model RTD and the

proposed decomposition method TTM. The original tensor example is selected from the

classical example in Kolda’s literature [Kolda, 2006]. It is noted that we only consider the

tensor with rank one. Because computing the rank of a three-dimensional tensor over any

finite field is NP-complete, it cannot be determined randomly[Hillar & Lim, 2013].

The complexity can also be verified through the following examples that TTM has higher

complexity since it requires more steps to calculate the enhanced factor matrices.

Given a 3-way tensor with rank-one 𝓧 ∈ ℝ𝟐×𝟐×𝟐,

𝓧 =

2 4
6 12

1 2
3 6

by when unfolding tensor, the frontal slices X(𝑛), 𝑛 = 1,2, 𝑎𝑛𝑑 3 are obtained as follows,

X(1) = [
1 2
3 6

2 4
6 12

]

X(2) = [
1 3
2 6

2 6
4 12

]

X(3) = [
1 3
2 6

2 6
4 12

].

The initial setup is fixing the vectors 𝑏0 = (
1
−1
) 𝑎𝑛𝑑 𝑐0 = (

1
0
). Next, we calculate the new

vectors 𝑎1, 𝑏1, 𝑎𝑛𝑑 𝑐1.

According to the properties of the tensor decomposition with rank-one, the factor matrices

𝑈(1), 𝑈(2), 𝑎𝑛𝑑 𝑈(3) are updated sequentially by these vectors 𝑎𝑛, 𝑏𝑛, 𝑎𝑛𝑑 𝑐𝑛 𝑛 = 0,1 in

iteration steps. Finally, the approximation tensor with rank-one 𝓧̅ is calculated by the

following equation,

𝓧̅ = ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧ = 𝑎1◦ 𝑏1 ◦ 𝑐1.

85

Based on the initial factor matrices: 𝑈(2) = 𝑏0 = (
1
−1
)𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (

1
0
) , we are

computing other factor matrices 𝑈(1) = 𝑎1, and updating the factor matrices 𝑈(2), 𝑈(3) by

𝑈(2) = 𝑏1 and 𝑈(3) = 𝑐1 separately.

A. RTD

The initial setup is fixing the initial factor matrices 𝑈(2) = 𝑏0 = (
1
−1
)𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (

1
0
)

to compute the factor matrix 𝑈(1) = 𝑎1,

𝑈(1) = X(1)[𝑈
(3)⊙ 𝑈(2)] [(𝑈(3))

𝑇
𝑈(3) ∗ (𝑈(2))

𝑇
𝑈(2)]

+

⟹ 𝑎1 = X(1)[𝑐0⊙𝑏0][(𝑐0)
𝑇𝑐0 ∗ (𝑏0)

𝑇𝑏0]
+

= [
1 2
3 6

2 4
6 12

] [(
1
0
)⊙ (

1
−1
)] [(

1
0
)
𝑇

(
1
0
) ∗ (

1
−1
)
𝑇

(
1
−1
)]
+

= [
1 2
3 6

2 4
6 12

] [

1
−1
0
0

] [(1) ∗ (2)]+ = (
−1/2
−3/2

).

Then fixing the factor matrices 𝑈(1) = 𝑎1 = (
−1/2
−3/2

)𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (
1
0
) to update the

factor matrix 𝑈(2) = 𝑏1,

𝑈(2) = X(2)[𝑈
(3)⊙ 𝑈(1)] [(𝑈(3))

𝑇
𝑈(3) ∗ (𝑈(1))

𝑇
𝑈(1)]

+

⟹ 𝑏1 = 𝐗(2)[𝑐0⊙𝑎1][(𝑐0)
𝑇𝑐0 ∗ (𝑎1)

𝑇𝑎1]
+

= [
1 3
2 6

2 6
4 12

] [(
1
0
) ⊙ (

−1/2
−3/2

)] [(
1
0
)
𝑇

(
1
0
) ∗ (

−1/2
−3/2

)
𝑇

(
−1/2
−3/2

)]

+

= [
1 3
2 6

2 6
4 12

] [

−1/2
−3/2
0
0

] [(1) ∗ (5/2)]+ = (
−2
−4
).

Then fixing the factor matrices 𝑈(2) = 𝑏1 = (
−2
−4
) 𝑎𝑛𝑑 𝑈(1) = 𝑎1 = (

−1/2
−3/2

) to update the

factor matrix 𝑈(3) = 𝑐1,

𝑈(3) = X(3)[𝑈
(2)⊙ 𝑈(1)] [(𝑈(2))

𝑇
𝑈(2) ∗ (𝑈(1))

𝑇
𝑈(1)]

+

86

⟹ 𝑐1 = X(3)[𝑏1⊙𝑎1][(𝑏1)
𝑇𝑏1 ∗ (𝑎1)

𝑇𝑎1]
+

= [
1 3
2 6

2 6
4 12

] [(
−2
−4
)

⊙ (
−1/2
−3/2

)] [(
−2
−4
)
𝑇

(
−2
−4
) ∗ (

−1/2
−3/2

)
𝑇

(
−1/2
−3/2

)]

+

= [
1 3
2 6

2 6
4 12

] [

1
3
2
6

] [(20) ∗ (5/2)]+ = (
1
2
).

Finally, the factor matrices 𝑈(1) = 𝑎1 = (
−1/2
−3/2

) , 𝑈(2) = 𝑏1 = (
−2
−4
) , and 𝑈(3) = 𝑐1 = (

1
2
)

are obtained. According to the rule of tensor decomposition, these vectors are used as factor

matrices to calculate the approximation tensor 𝓧̅ as follows,

𝓧̅ = 𝑎1 ◦ 𝑏1 ◦ 𝑐1 = (
−1/2
−3/2

) ◦ (
−2
−4
) ◦ (

1
2
) =

2.0000 4.0000
6.0000 12.0000

1.0000 2.0000
3.0000 6.0000

.

B. TTM

TTM compute the regular factor matrix 𝑈(𝑛) and feature factor matrix ∆𝑈(n) . And the

enhanced factor matrix 𝑈(𝑛)̅̅ ̅̅ ̅̅ 𝑛 = 0,1 is obtained by the 𝑈(𝑛)̅̅ ̅̅ ̅̅ = 𝑈(𝑛) + ∆𝑈(n). Finally, the

approximation tensor with rank-one 𝓧̅ is calculated by the following equation,

𝓧̅ = ⟦𝑈(1)̅̅ ̅̅ ̅̅ , 𝑈(2)̅̅ ̅̅ ̅̅ , 𝑈(3)̅̅ ̅̅ ̅̅ ⟧ = 𝑎1 ◦ 𝑏1 ◦ 𝑐1.

Based on the initial factor matrices: 𝑈(2) = 𝑏0 = (
1
−1
)𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (

1
0
) , we are

computing another enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅ , and generating the enhanced factor

matrices 𝑈(2)̅̅ ̅̅ ̅̅ = 𝑏1 and 𝑈(3)̅̅ ̅̅ ̅̅ = 𝑐1 separately.

(a) Enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅ = 𝑈(1) + ∆𝑈(1)

87

First, as same as the factor matrix computation of regular tensor decomposition, when

fixing the initial factor matrices 𝑈(2) = 𝑏0 = (
1
−1
) 𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (

1
0
), we compute the

regular factor matrix 𝑈(1) as follows,

𝑈(1) = 𝑋(1)[𝑈
(3)⊙𝑈(2)] [(𝑈(3))

𝑇
𝑈(3) ∗ (𝑈(2))

𝑇
𝑈(2)]

+

= X(1)[𝑐0⊙𝑏0][(𝑐0)
𝑇𝑐0 ∗ (𝑏0)

𝑇𝑏0]
+

= [
1 2
3 6

2 4
6 12

] [(
1
0
)⊙ (

1
−1
)] [(

1
0
)
𝑇

(
1
0
) ∗ (

1
−1
)
𝑇

(
1
−1
)]
+

= [
1 2
3 6

2 4
6 12

] [

1
−1
0
0

] [(1) ∗ (2)]+

= (
−1/2
−3/2

).

Second, we compute the feature factor matrix ∆𝑈(1) as follows,

∆𝑈(1) = X(1)(𝑈
(2)⊙𝑈(2))

𝑇
 + X(1)(𝑈

(3)⊙𝑈(3))
𝑇

= 𝐗(1)[𝑏0⊙𝑏0][(𝑏0)
𝑇𝑏0 ∗ (𝑏0)

𝑇𝑏0]
+ + X(1)[𝑐0⊙ 𝑐0][(𝑐0)

𝑇𝑐0 ∗ (𝑐0)
𝑇𝑐0]

+

= [
1 2
3 6

2 4
6 12

] [(
1
−1
)⊙ (

1
−1
)] [(

1
−1
)
𝑇

(
1
−1
) ∗ (

1
−1
)
𝑇

(
1
−1
)]
+

 + [
1 2
3 6

2 4
6 12

] [(
1
0
)⊙ (

1
0
)] [(

1
0
)
𝑇

(
1
0
) ∗ (

1
0
)
𝑇

(
1
0
)]
+

=
[
1 2
3 6

2 4
6 12

] [

1
−1
−1
1

] [(2) ∗ (2)]+

+
[
1 2
3 6

2 4
6 12

] [

1
0
0
0

] [(1) ∗ (1)]+

=
(
1/4
3/4

)
+ (

1
3
).

Third, the enhanced factor matrix 𝑈(1)̅̅ ̅̅ ̅̅ = 𝑈(1) + ∆𝑈(1) is computed based on the above

results as follows:

𝑈(1)̅̅ ̅̅ ̅̅ = 𝑈(1) + ∆𝑈(1)

= 𝐗(1)[𝑐0⊙𝑏0][(𝑐0)
𝑇𝑐0 ∗ (𝑏0)

𝑇𝑏0]
+ + 𝐗(1)[𝑏0⊙𝑏0][(𝑏0)

𝑇𝑏0 ∗ (𝑏0)
𝑇𝑏0]

+

+ 𝐗(1)[𝑐0⊙ 𝑐0][(𝑐0)
𝑇𝑐0 ∗ (𝑐0)

𝑇𝑐0]
+

= (
−1/2
−3/2

) + (
1/4
3/4

) + (
1
3
) = (

3/4
9/4

) = (
0.75
2.25

).

88

Finally, we obtain the enhanced factor 𝑈(1)̅̅ ̅̅ ̅̅ = (
3/4
9/4

). This enhanced factor is used as the

initial factor matrix to generate a second enhanced factor matrix 𝑈(2)̅̅ ̅̅ ̅̅ in the next step.

(b) Enhanced factor matrix 𝑈(2)̅̅ ̅̅ ̅̅ = 𝑈(2) + ∆𝑈(2)

When fixing the factor matrices 𝑈(1)̅̅ ̅̅ ̅̅ = 𝑎1 = (
3/4
9/4

) 𝑎𝑛𝑑 𝑈(3) = 𝑐0 = (
1
0
) , we are

computing the enhanced factor matrix 𝑈(2)̅̅ ̅̅ ̅̅ .

First, we compute the regular factor 𝑈(2) as follows,

𝑈(2) = 𝑋(2) [𝑈
(3)⊙𝑈(1)

̅̅ ̅̅ ̅̅
] [(𝑈(3))

𝑇
𝑈(3) ∗ (𝑈(1)

̅̅ ̅̅ ̅̅
)
𝑇

𝑈(1)
̅̅ ̅̅ ̅̅

]
+

= X(2)[𝑐0⊙𝑎1][(𝑐0)
𝑇𝑐0 ∗ (𝑎1)

𝑇𝑎1]
+

= [
1 3
2 6

2 6
4 12

] [(
1
0
)⊙ (

3

4
9

4

)]

[

(
1
0
)
𝑇

(
1
0
) ∗ (

3

4
9

4

)

𝑇

(

3

4
9

4

)

]

+

= [
1 3
2 6

2 6
4 12

] [

3/4
9/4
0
0

] [(1) ∗ (45/8)]+ = [
15/2
15

] [(1) ∗ (45/8)]+ = (
4/3
8/3

).

Second, we compute the feature factor matrix ∆𝑈(2) as follows,

∆𝑈(2) = X(2)(𝑈
(1)̅̅ ̅̅ ̅̅ ⊙ 𝑈(1)̅̅ ̅̅ ̅̅)

𝑇
 + X(2)(𝑈

(3)⊙𝑈(3))
𝑇

= X(2)[𝑎1⊙𝑎1][(𝑎1)
𝑇𝑎1 ∗ (𝑎1)

𝑇𝑎1]
+ + X(2)[𝑐0⊙ 𝑐0][(𝑐0)

𝑇𝑐0 ∗ (𝑐0)
𝑇𝑐0]

+

= [
1 3
2 6

2 6
4 12

] [(
3/4
9/4

)⊙ (
3/4
9/4

)] [(
3/4
9/4

)
𝑇

(
3/4
9/4

) ∗ (
3/4
9/4

)
𝑇

(
3/4
9/4

)]

+

+ [

1 3
2 6

2 6
4 12

] [(
1
0
)⊙ (

1
0
)] [(

1
0
)
𝑇

(
1
0
) ∗ (

1
0
)
𝑇

(
1
0
)]
+

= [
1 3
2 6

2 6
4 12

] [

9/16
27/16
27/16
81/16

] [(45/8) ∗ (45/8)]+

+ [
1 3
2 6

2 6
4 12

] [

1
0
0
0

] [(1) ∗ (1)]+

=
(
56/45
112/45

)
+ (

1
2
).

Third, the enhanced factor matrix 𝑈(2)̅̅ ̅̅ ̅̅ = 𝑈(2) + ∆𝑈(2) is computed based on the above

results as follows:

89

𝑈(2)̅̅ ̅̅ ̅̅ = 𝑈(2) + ∆𝑈(2)

= 𝐗(2)[𝑐0⊙𝑎1][(𝑐0)
𝑇𝑐0 ∗ (𝑎1)

𝑇𝑎1]
+ + 𝐗(2)[𝑐0⊙ 𝑐0][(𝑐0)

𝑇𝑐0 ∗ (𝑐0)
𝑇𝑐0]

+

+ 𝐗(2)[𝑎1⊙𝑎1][(𝑎1)
𝑇𝑎1 ∗ (𝑎1)

𝑇𝑎1]
+

= (

4

3
8

3

) + (
1
2
) + (

56

45
112

45

)

= (
161/45
322/45

) = (
3.5778
7.1556

).

Finally, we obtain the enhanced factor 𝑈(2)̅̅ ̅̅ ̅̅ = (
161/45
322/45

). This enhanced factor is used as

the initial factor matrix to generate the enhanced factor matrix 𝑈(3)̅̅ ̅̅ ̅̅ in the next step.

(c) Enhanced factor matrix 𝑈(3)̅̅ ̅̅ ̅̅ = 𝑈(3) + ∆𝑈(3)

When fixing the factor matrices 𝑈(1)̅̅ ̅̅ ̅̅ = 𝑎1 = (
3/4
9/4

) 𝑎𝑛𝑑 𝑈(2)̅̅ ̅̅ ̅̅ = 𝑏1 = (
161/45
322/45

), we are

computing the factor matrix 𝑈(3)̅̅ ̅̅ ̅̅ .

First, we compute the regular factor 𝑈(3) as follows,

𝑈(3) = 𝑋(3) [𝑈
(1)̅̅ ̅̅ ̅̅
⊙𝑈(2)
̅̅ ̅̅ ̅̅

] [(𝑈(1)
̅̅ ̅̅ ̅̅

)
𝑇

𝑈(1)
̅̅ ̅̅ ̅̅

∗ (𝑈(2)
̅̅ ̅̅ ̅̅

)
𝑇

𝑈(2)
̅̅ ̅̅ ̅̅

]
+

= X(3)[𝑏1⊙𝑎1][(𝑏1)
𝑇𝑏1 ∗ (𝑎1)

𝑇𝑎1]
+

= [
1 3
2 6

2 6
4 12

] [(

161

45
322

45

)⊙(

3

4
9

4

)]

[

(

161

45
322

45

)

𝑇

(

161

45
322

45

) ∗ (

3

4
9

4

)

𝑇

(

3

4
9

4

)

]

+

= [
1 3
2 6

2 6
4 12

] [

161/60
483/60
322/60
966/60

] [(
1612 + 3222

452
) ∗ (

45

8
)]

+

= [

161

60
+
1449

60
+
966

60
+
5796

60
322

60
+
2898

60
+
1932

60
+
11592

60

] [(
1612

72
)]

+

90

= [

8372

60
16744

60

] (
72

25921
) = (

0.3876
0.7752

).

Second, we compute the feature factor matrix ∆𝑈(3) as follows,

Third, the enhanced factor matrix 𝑈(3)̅̅ ̅̅ ̅̅ = 𝑈(3) + ∆𝑈(3) is computed based on the above

results as follows:

𝑈(3)̅̅ ̅̅ ̅̅ = 𝑈(3) + ∆𝑈(3)

= X(3)[𝑏1⊙𝑎1][(𝑏1)
𝑇𝑏1 ∗ (𝑎1)

𝑇𝑎1]
+ + 𝐗(3)[𝑎1⊙𝑎1][(𝑎1)

𝑇𝑎1 ∗ (𝑎1)
𝑇𝑎1]

+

+ 𝐗(3)[𝑏1⊙𝑏1][(𝑏1)
𝑇𝑏1 ∗ (𝑏1)

𝑇𝑏1]
+

= (
0.3876
0.7752

) + (
1.2444
2.4889

) + (
0.1088
0.2177

) = (
1.7408
3.4818

).

Finally, we obtain the enhanced factor 𝑈(3)̅̅ ̅̅ ̅̅ = (
1.7408
3.4818

).

∆𝑈(3) = X(3)(𝑈
(1)̅̅ ̅̅ ̅̅ ⊙ 𝑈(1)̅̅ ̅̅ ̅̅)

𝑇
 + X(3)(𝑈

(2)̅̅ ̅̅ ̅̅ ⊙ 𝑈(2)̅̅ ̅̅ ̅̅)
𝑇

= X(3)[𝑎1⊙𝑎1][(𝑎1)
𝑇𝑎1 ∗ (𝑎1)

𝑇𝑎1]
+ + X(3)[𝑏1⊙𝑏1][(𝑏1)

𝑇𝑏1 ∗ (𝑏1)
𝑇𝑏1]

+

= [
1 3
2 6

2 6
4 12

] [(
3/4
9/4

)

⊙ (
3/4
9/4

)] [(
3/4
9/4

)
𝑇

(
3/4
9/4

)

∗ (
3/4
9/4

)
𝑇

(
3/4
9/4

)]

+

+ [
1 3
2 6

2 6
4 12

] [(
161/45
322/45

)

⊙ (
161/45
322/45

)] [(
161/45
322/45

)
𝑇

(
161/45
322/45

)

∗ (
161/45
322/45

)
𝑇

(
161/45
322/45

)]

+

= [
1 3
2 6

2 6
4 12

] [

9/16
27/16
27/16
81/16

] [(45/8)

∗ (45/8)]+

+ [
1 3
2 6

2 6
4 12

] [

25921/2015
51842/2015
51842/2015
103684/2015

] [(129605

/2015) ∗ (129605/2015)]+

= (
1.2444
2.4889

) + (
0.1088
0.2177

).

91

Based on the above results, the enhanced factor matrices 𝑈(1)̅̅ ̅̅ ̅̅ = 𝑎1 = (
0.75
2.25

) , 𝑈(2)̅̅ ̅̅ ̅̅ =

𝑏1 = (
3.5778
7.1556

), and 𝑈(3)̅̅ ̅̅ ̅̅ = 𝑐1 = (
161/45
322/45

) are obtained. According to the rule of tensor

decomposition, these vectors are used as factor matrices to calculate the approximation tensor

𝓧̅ as follows,

𝓧̅ = 𝑈(1)̅̅ ̅̅ ̅̅ ◦ 𝑈(2)̅̅ ̅̅ ̅̅ ◦ 𝑈(3)̅̅ ̅̅ ̅̅ = 𝑎1 ◦ 𝑏1 ◦ 𝑐1

= (
0.75
2.25

) ◦ (
3.5778
7.1556

) ◦ (
1.7408
3.4818

)

=

9.3429 18.6858
14.0135 28.0271

4.6712 9.3424
14.0135 28.0271

.

4.5 Experiment in QoS attribute prediction

This subsection implements the prediction experiments on the web service datasets to

evaluate the proposed method TTM.

4.5.1 Web service dataset

We use the web service dataset WSDream offered by Zheng et al. [Zheng, Ma, Lyu, & King,

2010]. This dataset describes real-world QoS attribute evaluation results from 142 users on

4,500 web services over 64 different time slices. This dataset is the main benchmark dataset

in web service recommendation and is still under research application [Hasnain et al., 2020]

[Pandharbale, Mohanty, & Jagadev, 2021]. In addition, this dataset is still under research

application.

The experiment is conducted on a Lenovo THINKCENTRE M58 desktop with a 3.0 GHz

Intel Core™ 2 Duo CPU and an 8 GB RAM, running Ubuntu operation system. The

program is implemented with Python 3.4 and Microsoft C++.

We use the standard mean absolute error (MAE), and root mean square error (RMSE) to

92

compare the quality of our prediction [Zheng et al., 2010]. The calculation formula or MAE

and RMSE are

MAE is defined as follows:

𝑀𝐴𝐸 =
∑ |𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗|𝑖,𝑗

𝑁

RMSE is defined as follows:

𝑅𝑀𝑆𝐸 = √
∑ (𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗)2𝑖,𝑗

𝑁

where 𝑟𝑖,𝑗 denotes the expected QoS attribute of Web service 𝑗 observed by user 𝑖, 𝑟̂𝑖,𝑗 is

the predicted QoS attribute, and 𝑁 is the number of the predicted value.

In this thesis, we focus on the mean value of the error between the QoS value predicted and

the actual QoS value accessed service. MRSE and MAE are the most popular metrics, and

they mainly describe the difference in QoS predicted by the algorithm, which is between the

service that the user expects to access and the service that is accessed. Since the errors are

squared before averaging, the RMSE gives relatively high weight to large errors. In addition

to QoS service prediction, recommendation systems also use Normalized Discounted

Cumulative Gain (NDCG), precision, and recall metrics. These metrics are mainly used to

measure the quality of a set of recommendation lists. However, the recommendation lists are

not in the context of the discussion in this thesis. Therefore, we used the MRSE and MAE as

our evaluation criteria.

We verify the proposed algorithm's effectiveness, and the comparison is based on service

collaboration with the following other methods.

• Probabilistic Matrix Factorization (PMF) This method is a probabilistic method using

Gaussian assumptions on the data matrices. [Mnih & Salakhutdinov, 2007].

• User-based collaborative filtering method using Pearson Correlation Coefficient

(UPCC): this generates a prediction based on similar user behavior [Shao et al., 2007].

93

• Item-based collaborative filtering method using Pearson Correlation Coefficient

(IPCC): this generates a prediction based on similar item properties [Sarwar, Karypis,

Konstan, & Riedl, 2001].

• User-based and Item-based Pearson Correlation Coefficient (UIPCC): this is a hybrid

collaborative algorithm combining the UPCC and IPCC methods. The prediction is

applied to similar users and similar web services.

• Tensor factorization (TF): This method is a user-service-time model based on RTD. It

predicts the QoS attribute by considering the relations among user, service, and time

[Zhang, Sun, Liu, & Guo, 2014b].

In this thesis, the above baseline methods are based on a three-dimensional QoS dataset. We

need to address the issue of low prediction performance due to few sample features. However,

along with the explosive growth of information, the dimensionality and feature types of data

are increasing, and our method needs to be extended further to solve the issue. To deal with

higher dimensional data, deep learning technology becomes a powerful recommendation tool.

Besides, a recent study [Zhou, Wu, Yue, & Hsu, 2019] established a neural network-based

approach to predict QoS values in a spatial-temporal context. As part of our future work, this

approach can be further integrated into our tensor-based modeling framework for QoS

prediction studies of higher-dimensional data.

The baseline methods predict the response time and throughput value with the MAE and

RMSE values. Response time is defined as the persistent time between the user call the

service and obtain the response. Throughput value is defined as the average rate of the

message numbers per second. The smaller value means the method has high performance.

The details of response time and throughput are shown in Table 4.24.

94

Table 4.24 Response Time Performance comparison in MAE

 Response Time (second) Throughput (kbps)

Scale 0-200 0-1000

Mean 0.6840 7.2445

Since a user does not revoke all web services, the dataset is usually sparse in the real world.

The implement will randomly remove QoS attribute with different density from 5%, 10%,

15%, 20%, 25%, and 30%. The 5% density means that 5% of the data is used for training,

and 95% of the data is used for testing.

4.5.2 Recommendation performance evaluation

The comparison result of this experiment is presented in Table 4.25 to 4.28, and the

discussion is introduced in the following subsections.

In table 4.25 and Table 4.26, the TTM has smaller MAE and RMSE values for most densities.

Table 4.25 Response Time Performance comparison in MAE

Methods MAE

Density

5%

Density

10%

Density

15%

Density

20%

Density

25%

Density

30%

PMF 0.9252 0.8305 0.7932 0.7704 0.7538 0.7412

UPCC 0.9373 0.8496 0.7980 0.7688 0.7477 0.7309

IPCC 1.0290 0.9458 0.9243 0.8972 0.8740 0.8581

UIPCC 0.9329 0.8478 0.8002 0.7711 0.7496 0.7329

TF(RTD) 0.8227 0.7792 0.7451 0.7484 0.7332 0.7343

TTM 0.6858 0.6730 0.6678 0.6698 0.6622 0.6662

95

Table 4.26 Response Time Performance comparison in RMSE

Methods RMSE

Density

5%

Density

10%

Density

15%

Density

20%

Density

25%

Density

30%

PMF 2.2624 2.0070 1.8774 1.7991 1.7472 1.7105

UPCC 1.8935 1.7854 1.7363 1.7012 1.6724 1.6478

IPCC 2.0181 1.8766 1.8464 1.8189 1.7922 1.7679

UIPCC 1.8860 1.7832 1.7361 1.7003 1.6695 1.6429

TF(RTD) 1.8562 1.7852 1.7459 1.7359 1.7224 1.7233

TTM 1.5922 1.5745 1.5638 1.5660 1.5613 1.5592

In Table 4.27 and Table 4.28, the TTM obtains smaller MAE and RMSE values for

throughput with different matrix densities. Thus, TTM achieves better performance than

others.

Table 4.27 Throughput Performance comparison in MAE

Methods MAE

Density

5%

Density

10%

Density

15%

Density

20%

Density

25%

Density

30%

PMF 6.5653 5.9829 5.8317 5.7069 5.5513 5.3889

UPCC 10.3860 9.5014 8.9477 8.4906 8.1474 7.8938

IPCC 10.0405 9.6518 9.5135 8.9333 8.3484 7.9666

UIPCC 9.8959 9.3041 8.9638 8.3983 7.8756 7.5158

TF(RTD) 4.2583 4.2046 4.1276 4.0935 4.1902 4.2415

TTM 4.1921 4.0458 4.0906 4.0514 4.0290 3.9897

96

Table 4.28 Throughput Performance comparison in RMSE

Methods RMSE

Density

5%

Density

10%

Density

15%

Density

20%

Density

25%

Density

30%

PMF 40.3278 35.9576 33.8194 32.4923 31.1695 30.2369

UPCC 43.2909 40.7598 38.8087 37.1719 35.6727 34.6294

IPCC 45.3464 43.1114 42.4567 41.0629 39.2411 37.8419

UIPCC 43.9639 41.5855 40.1955 38.5635 36.7211 35.2921

TF(RTD) 24.0221 23.423 21.9477 21.6142 21.8390 21.8049

TTM 22.8952 22.5691 22.6834 22.0979 21.6888 21.6414

The web service dataset is commonly very sparse since a service user just invokes a very

small number of web services usually. We dismiss QoS attribute value to sparse the dataset

and access the sparser dataset with different density from 5% to 30%, ascending by 5%

each time. For instance, a dataset density 5% means that we leave 5% of the dataset for

training at random, and the other 95% value is the testing set.

With the increase of the training matrix density from 5% to 30%, the prediction accuracy

in the methods can also be improved. It indicates that the prediction has high accuracy if

data with more significant density provides more QoS attribute values. The TTM can

significantly improve the accuracy result of a sparse tensor if more information is provided.

Better result's reason is that more contextual information that influences the client-side QoS

attribute prediction’s performance (e.g., the service servers' workload, network conditions

of the users) should be considered to improve the prediction accuracy.

97

4.5.3 Impact of tensor density

 Tensor density impact relates to a finite number of latent factors. Figure 4.7 and Figure 4.8

are the RMSE and MAE of response-time. We noticed that all methods possessed high

MAE/RMSE values in lower tensor density. The result shows that the sparse tensor needs to

provide more information if improving the prediction. With the training density rise,

prediction performance is enhanced by the TTM.

Figure 4.8 MAE in QoS attribute prediction

98

 Figure 4.9 RMSE in QoS attribute prediction

4.5.4 Execution time comparison

We record the execution time as computation performance. In Table 4.29, the execution time

of the methods is evaluated for different performances.

Table 4.29 Execution time comparison

Response time computation

HH: MM: SS

Throughput computation

HH: MM: SS

PMF 2:35:51 2:36:38

UPCC 0:17:7 0:25:0

IPCC 0:17:7 0:25:0

UIPCC 0:17:7 0:25:0

TF(RTD) 7:51:26 5:0:0

TTM 8:13:43 5:16:36

99

It is evident from Table 4.29 that the UPCC, IPCC, and UIPCC methods have better

execution performance than other methods. These methods require less dimensional data to

computation the performance. The total execution time has around 60 minutes against PMF

running time of 155 minutes, TF running time of 471 minutes, and TTM running time of 493

minutes for the response time computation.

UPCC, IPCC, and UIPCC methods execution performance are better (75 minutes). Moreover,

the TTM execution performance is expected to be better than the TF one because the TTM

has more factors to calculate.

4.5.5 Summary of experiment

The experimental result shows that the QoS attribute can be predicted using the TTM, which

adds all user-service-time feature factor matrices. When the enhanced factor matrices in each

iteration are obtained, the prediction results enhance the accuracy rate. Moreover, TTM

makes predictions by constructing more sample data. With the increase of missing data, the

accuracy of the other methods has a relatively large decrease, while TTM reaches higher

prediction performance than other methods.

On the other hand, although TTM spends much time generating the feature factor matrices,

the overall algorithm does not significantly increase running time than the RTD.

100

4.6 Experiment on recovering the missing traffic flow data

To evaluate the TTM, we applied the TTM on a traffic flow prediction and obtained positive

results. Tensor decomposition is a part of the recovery missing data method with high

accuracy and high applicability. We adopt TTM and RTD to the decomposition part of the

recovery method with different missing rates. The comparative analysis is completed

between two methods' effects in missing data cases.

4.6.1 Traffic flow prediction

Accurate traffic flow prediction information can help city managers make a traffic control

decision and help drivers choose smoother routes to avoid traffic jams. A traffic flow dataset

is mainly used for traffic flow prediction. Since missing data situations always occur, it is

difficult to predict traffic flow accurately. Research of traffic flow prediction with missing

data has been popular. The prediction methods are often adopted to recover the missing data.

Tensor decomposition has been applied in recovery methods. The factor matrices are

extracted by tensor decomposition, and the approximation tensor is generated as the outer

product of these factor matrices. By setting the projection function 𝑃𝛺(𝓧) of the revealed

dataset, the missing data can be recovered with the error between the approximation tensor

and the original tensor as the optimization objective. The question of recovering is a tensor

decomposition when only a small number of entries are revealed in a traffic dataset as follows

[Song, Ge, Caverlee, & Hu, 2019] [Jain & Oh, 2014].

Given a tensor 𝒳 ∈ ℝI1×I2×I3，𝒳 is recovered by using the given entries 𝑃𝛺(𝒳),

𝑃𝛺(𝓧)𝑖𝑗𝑘 {
𝓧𝑖𝑗𝑘 if (i, j, k) ∈ 𝛺

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑃𝛺(⋅) denotes the projection of a tensor 𝓧 onto the revealed set. 𝛺 ⊆ I1 × I2 × I3

denotes a subset revealed out of I1 × I2 × I3 entries of 𝓧. Each (i, j, k) i ≦ I1, j ≦ I2, k ≦ I3

is included in a subset revealed 𝛺.

In the context of this section, we are concerned with the problem of how to apply TTM in

the decomposition part of the recovery method. We assume three values as the initial missing

101

data: 0, 6, and 55 (0 means no traffic count, 6 means the lowest average traffic count in the

current dataset, and 55 means the average of all traffic data in the current dataset).

4.6.2 Traffic dataset

The data are collected in real-time from One-ITS Toronto Traffic Dataset for each

intersection of a section of highway in Toronto city [Middleware Systems Research Group,

2020]. It is assumed that the number of vehicles in the inlet lane of the intersection of the

section is the traffic volume of the corresponding section. The traffic flow data is collected

daily by 162 loop detectors. We construct traffic tensor data, including thirteen relevant road

sections, seventeen days, and twenty-four hours per day of relevant traffic information.

Data recovery experiments are implemented for both RTD and TTM. For the simulation of

missing data, the experiments randomly select 5%, 15%, ..., 95% of the historical data in 10

sections of 17 days at 5% intervals, and Figure 4.9 shows the example of random missing

data.

 1 2 3 4 5 6 7 8 9 10

1

2 Missing data

3

4 Full data

5

6

7

8

9

10

Figure 4.10 Example of random missing data

Two types of errors are used to measure the recovery effect of missing data: relative error

MAE (mean absolute error) and root-mean-square error RMSE (root-mean-square deviation).

The two types of errors are calculated as follows.

MAE is defined as follows:

102

𝑀𝐴𝐸 =
∑ |𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗|𝑖,𝑗

𝑁

RMSE is defined as follows:

𝑅𝑀𝑆𝐸 = √
∑ (𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗)2𝑖,𝑗

𝑁

where 𝑟𝑖,𝑗 denotes the expected QoS attribute of web service 𝑗 observed by user 𝑖, 𝑟̂𝑖,𝑗 is the

predicted QoS attribute, and 𝑁 is the number of predicted values.

4.6.3 Data recovery performance

Table 4.30 and Table 4.31 show the recovery errors of the two methods in the case of ten

times simulation of random missing data, and the results are the average of 10 round

experiments for each missing rate according to the literature. The larger the value of the

missing rate, the fewer data are available in the dataset. The smaller the error value, the better

the recovery performance.

103

Table 4.30 MAE errors in the random missing rates

Initial value Number of flows=0 Number of flows= 6 Number of flows= 55

Missing rate TTM RTD TTM RTD TTM RTD

5% 0.5284 0.1876 0.543 0.1897 0.6273 0.1999

10% 0.4601 0.2013 0.4768 0.1949 0.6543 0.2151

15% 0.3942 0.2164 0.4108 0.2141 0.6731 0.2425

20% 0.3238 0.2399 0.3577 0.2304 0.6999 0.271

25% 0.2687 0.2733 0.3056 0.2574 0.7303 0.3024

30% 0.2319 0.3086 0.2641 0.2864 0.7512 0.3333

35% 0.2151 0.3484 0.2364 0.3192 0.7892 0.3728

40% 0.2143 0.3909 0.2257 0.353 0.8211 0.4048

45% 0.2391 0.4368 0.229 0.3901 0.8553 0.446

50% 0.2774 0.4835 0.2495 0.4284 0.8971 0.4826

55% 0.3314 0.5333 0.2826 0.4688 0.9318 0.5224

60% 0.3929 0.5832 0.3223 0.5096 0.9808 0.5655

65% 0.4628 0.6345 0.3707 0.5508 1.0316 0.6121

70% 0.5347 0.6855 0.4235 0.593 1.0821 0.6523

75% 0.6095 0.7371 0.4799 0.6355 1.1379 0.6983

80% 0.6869 0.7901 0.5388 0.6786 1.1884 0.7442

85% 0.7659 0.8439 0.5999 0.7208 1.2472 0.7904

90% 0.8467 0.8973 0.6628 0.7641 1.309 0.8407

95% 0.9264 0.9498 0.7261 0.8062 1.3748 0.8879

104

Table 4.31 RMSE errors in the random missing rates

Initial value Number of flows=0 Number of flows= 6 Number of flows= 55

Missing rate TTM RTD TTM RTD TTM RTD

5% 35.2342 13.7778 35.803 13.5521 38.8253 13.2141

10% 30.0366 15.7724 30.8491 15.2414 37.134 13.641

15% 25.2614 18.1651 26.1761 17.6964 35.3394 14.548

20% 20.7516 20.9704 21.9691 20.1599 33.7469 15.5895

25% 17.0253 24.2158 18.2339 22.9864 32.4756 16.8063

30% 14.8968 27.5279 15.5684 26.1248 31.3799 18.3777

35% 14.8014 30.7798 14.449 29.3071 30.5568 19.8605

40% 16.7132 34.3626 15.4077 32.4305 30.014 21.3546

45% 20.3172 37.9138 17.9337 35.8464 29.7642 22.9892

50% 24.5642 41.6046 21.7558 38.9337 29.842 24.6458

55% 29.6531 45.2418 25.8747 42.5423 30.1475 26.5184

60% 34.6874 49.0597 30.3599 46.0807 30.8274 28.2337

65% 39.6862 53.0356 35.3599 49.3968 31.7732 30.0507

70% 45.2889 56.4309 40.1336 52.8259 32.9926 31.8841

75% 51.1029 60.1379 45.3329 56.3854 34.4334 33.5332

80% 56.5173 63.877 50.3796 59.8021 35.959 35.4371

85% 62.0534 67.6802 55.7179 63.3642 37.7278 37.3047

90% 67.7637 71.5787 60.9097 66.9731 39.6247 39.1858

95% 73.5912 75.2673 66.1629 70.3741 41.5641 40.9428

105

Figure 4.11 MAE error curve of TTM vs. RTD

Figure 4.12 RMSE error curve of TTM vs. RTD

106

Figure 4.10 and Figure 4.11 show that the effectiveness of RTD recovered data does not

differ much for different missing rates, and all errors increase with the increasing missing

rate. However, the recovery performance of TTM needs to be viewed in segments. When the

missing rate is lower than 30-35%, the MAE generated by the TTM decreases with the

increase of the missing rate. When the missing rate is higher than 30-35%, his MAE decreases

with the increase of the missing rate. Moreover, the error generated by the TTM is lower than

those generated by the RTD, which means that the TTM is more effective when the missing

data rate is higher than 30-35%.

It can also be found that the difference in MAE between TTM and RTD is the largest when

the missing rate reaches 50%. The difference of RMSE between TTM and RTD is the largest

when the missing rate reaches 60%.

4.6.4 Impact of initial missing values

In the traffic dataset, the missing data is represented by a null value. However, before the

tensor decomposition, it is usually necessary to set an initial value for the null element of the

original tensor. We call this setting the initial missing value.

In order to further investigate the recovery effect of TTM and RTD, a comparison of the

recovery error rates is conducted by selecting different initial missing values. Table 4.32

shows the MAE/RMSE average with initial missing values under different initial missing

values. We use three initial values, such as lowest flow value 0, lowest average flow value 6,

and average flow value 55. The results show how the initial missing value influences the

TTM and RTD as follows.

• The initial missing value is settled as 0: the MAE average reaches the lower values for

both TTM and RTD.

• The initial missing value is settled as 6: the MAE average reaches the lowest values for

both TTM and RTD.

• The initial missing value is 55: the MAE average reaches the top values for TTM, and

the RMSE average reaches the lowest values for RTD.

In tensor decomposition, the initial values are usually estimated based on experience, such

as zero values, the average of the observed data, etc. This estimation is often adjusted until a

better prediction performance is obtained.

107

In this experiment, three initial values were selected by experience. In general, the recovery

performance of TTM is better than RTD when the initial value is lower than the average

traffic flow value. When the initial value is higher than the average traffic flow value, the

recovery performance of TTM becomes worse than RTD. The initial missing value should

be as close as possible to the lowest average value.

Table 4.32 MAE/RMSE average with initial missing values

Initial value Content MAE average RMSE average

TTM RTD TTM RTD

0 No flow 0.46 0.51 35.78 42.49

6 Lowest Average flow 0.41 0.45 33.07 40.00

55 Average flow 0.94 0.50 33.90 25.48

4.6.5 Summary of experiment

We implement the missing data recovery experiments based on TTM and RTD. The

experimental results show that the recovery error of the RTD increases gradually with the

increase of the missing rate. For different random missing rates, the recovery error of the

TTM all varies as the missing rate increases.

By further analyzing the recovery errors under different initial missing rates, it is found that

how the initial missing values more influence the TTM. When the missing rate is lower than

30-35%, the recovery error of the TTM is larger than that of the RTD. In the case of the same

large initial missing rate, for example, the missing rate is higher than 35%, the recovery error

of the TTM is smaller than that of the RTD, which means that the TTM is better at this time.

108

4.7 Summary

We addressed the problem of the lack of samples for the high-dimensional limited sample

dataset, and the goal is set on how to construct more sample records from the current limited

information, expecting to improve the prediction performance. The feature factor matrix as

a features-oriented collaboration scheme is established, and an improvement method TTM

is implemented according to the definition of this scheme. The iteration step size of the TTM

is increased making the convergence efficient, and the TTM converges with better accuracy

than other methods for the same number of iterations.

At the core of the work presented in this chapter, we argue for the importance of

(1) designing a feature-oriented collaboration scheme, which mapping the limited

sample into feature factor matrices as the base of the method.

(2) proposing TTM, the feature-oriented tensor decomposition algorithm based on the

regular tensor decomposition for fitting the feature-oriented collaboration scheme.

(3) establishing a comparative analysis to validate the TTM, including discussing the

convergence properties, verifying the convergence results, and presenting the

computational complexity.

(4) conducting experiments on the real datasets to reach data prediction and recovery

application requirements. The experiments demonstrate that TTM enhances the

level of prediction accuracy.

Overall, TTM outperforms RTD in predicting and recovering information with a consistent

rate of missing data.

109

Chapter 5

A Modified Regularization Term

This chapter focuses on a modified regularization term for supporting TTM. The lasso and

ridge regression are introduced separately. The modified regularization term is formulated.

The experimental results effectively improve the QoS attribute prediction performance in the

traversal tensor method (TTM).

5.1 Introduction

We propose a novel regularization term for tensor decomposition based on TTM. The major

novelty is a combination method for estimating prediction results for the web service

recommendation, which simultaneously exploits lasso and ridge regression. Using this

modified regularization term, we can prevent them from the overfitting problem.

The main contributions of this chapter are:

(1) Identify the lasso and ridge regression and find an effective way to help to predict

the QoS attribute.

(2) By combining the lasso and ridge regression regularization, the modified

regularization term based on TTM could enhance the prediction performance and

reduce overfitting.

The chapter’s structure follows: Section 5.2 introduces a motivation and reviews our previous

research work. Section 5.3 introduces the regularization techniques: ridge regression, lasso

regression, and Elastic Net regression, respectively. Section 5.4 shows the modified

regularization term based on TTM to obtain the solution of the factor matrix. Section 5.5

applies the proposed algorithm to the web service prediction problem in the experimental

and analyzes the results. Finally, Section 5.6 summarizes the work of this chapter.

5.2 Motivation

Overfitting is a phenomenon in which the method is overfitted to the observed data due to

few sample data in the analysis method so that the prediction by the method will be very

different from the expected value. The recommendation performance based on tensor

decomposition is usually negatively affected by the overfitting problem and, consequently,

cannot achieve state-of-the-art performance. This often requires regularization techniques to

enhance decomposition performance.

110

Commonly used regularization techniques are lasso, ridge, and Elastic Net regressions

[Ogutu, Schulz-Streeck, & Piepho, 2012] [Ji, Wang, Li, & Liu, 2019]. Lasso regression

uses the L1 norm, and the model that uses the L2 norm is called ridge regression. Elastic Net

regression, also called elastic network regression, combines ridge regression and lasso

regression. Signoretto et al. extends the matrix norm to tensor data and uses it for supervised

tensor learning to find low-rank projection matrices [Signoretto, De Lathauwer, & Suykens,

2010]. The success of the matrix trace norm inspires Lacroix et al. and they propose a tensor

p-norm regularization term [Lacroix, Usunier, & Obozinski, 2018] [Candès & Recht, 2009].

The ridge regression is a popular regularization technique applied to the tensor

decomposition modes [Nickel, Tresp, & Kriegel, 2011].

The ridge regression is mainly used to prevent overfitting when all features are extracted

from the sample dataset [Zhang, Han, & Jiang, 2016]. However, experiments show that ridge

regression might reduce performance for sparse data while the lasso regression has higher

efficiency in the sparse dataset [Ruffinelli, Broscheit, & Gemulla, 2019]. Since the web

service dataset is sparse, it is desirable to consider a suitable regularization term to avoid

overfitting and support the TTM method.

In recent studies, we also note that there are researchers who use the 𝑁3 method to calculate

the norm [(Lacroix, Usunier, & Obozinski, 2018]. It is not suitable for a more general model.

We have also conducted corresponding experiments, and the experimental results show no

significant difference between those who use the 𝑁3 method to compute paradigms and our

method.

5.3 Regularization techniques

This section introduces the loss function based on ridge regression, lasso regression, and

Elastic Net regression method.

The commonly used regularization terms are L1 norm and L2 norm.

• Least absolute shrinkage and selection operator regression (Lasso)

Lasso regression is a regression model that uses the L1 norm ||𝑊||1. It is defined to be the

sum of the absolute values of each element of the 𝑊. In feature selection, the L1 norm helps

us minimize the objective function by making 𝑊 equal to zero to remove these useless

features and reduce the interference with the prediction of the sample.

111

The object function for the lasso regression uses the L1 norm as follows.

‖𝒳‖1 = ∑ ∑ ∑ |𝑥𝑖1𝑖2𝑖3
I3
𝑖3=1

I2
𝑖2=1

I1
𝑖1=1

|. (5.1)

• Ridge regression

Ridge regression is a regression model that uses the L2 norm ||𝑊||2. The L2 norm is a square

root of the sum of the squares of the values 𝑊. The L2 norm makes each element of 𝑊 small

and close to zero. The smaller the parameter, the simpler the model, and the simpler the

model is, the less likely it is to produce overfitting. The ridge regression solves the objective

function, which is altered by adding a penalty equivalent to the square of the coefficients as

follows,

‖𝒳‖2 = √∑ ∑ ∑ 𝑥𝑖1𝑖2𝑖3
2I3

𝑖3=1
I2
𝑖2=1

I1
𝑖1=1

= √〈𝒳,𝒳〉. (5.2)

• Elastic Net regression

Elastic Net regression is a model that combines ridge regression and lasso regression.

5.4 A modified regularization term

In this section, the solution for optimizing the objective function is introduced. An alternating

optimization algorithm is applied in that one of the decomposition elements is optimized at

each iteration when other elements are kept fixed.

Regular tensor decomposition commonly uses ridge regression as the regularization term.

The essential regularization term 𝛺(𝓧̅) is shown in the following formula,

𝛺(𝓧̅) =
1

2
𝜆 (‖𝑈(1)‖

2
+ ‖𝑈(2)‖

2
+⋯+ ‖𝑈(𝑁)‖

2
) (5.3)

where 𝓧̅ denotes an approximate tensor. 𝑈(1) is the factor matrix for user 𝑖, 𝑈(2) is the

factor matrix for service 𝑗, and 𝑈(3) is the factor matrix for time period 𝑘. 𝜆 are parameters

of the factor matrix in the regularization term.

Motivated by the Elastic Net regression, we propose a modified regularization term that

benefited the advantages of both lasso and ridge regressions:

𝛺(𝓧̅) = 𝜆 (
1 − 𝑝

2
 ‖𝓧̅‖2

2 + 𝑝‖𝓧̅‖1)

= 𝜆 (
1−𝑝

2
 ‖⟦𝑈𝒏𝒆𝒘

(𝟏) , 𝑈𝒏𝒆𝒘
(𝟐) , 𝑈𝒏𝒆𝒘

(𝟑) ⟧‖
2

2

 + 𝑝‖⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧‖

1
) (5.4)

112

where 𝝀 denotes the regularization parameter, and its default value is 35. The parameter

𝑝 = 0 corresponds to the ridge method ||𝑊||2 and 𝑝 = 1 to the lasso method ||𝑊||1 . 𝓧̅

denotes an approximation tensor. 𝑈𝒏𝒆𝒘
(𝒏)

= 𝑈
(n)+∆𝑈(n) n = 1,2,3 denotes the new factor

matrices.

We perform an optimization task for the objective function 𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝛺(𝓧) as

follows,

min (ℓ(𝓧, 𝓧̅)) + 𝛺(𝓧̅)

⇒min (ℓ(𝓧, 𝓧̅)) + 𝜆 (
1 − 𝑝

2
 ||𝓧̅||2

2 + 𝑝||𝓧̅||1)

⇒ min
𝑈𝒏𝒆𝒘
(𝒏)
,𝒏=𝟏,𝟐,𝟑

(‖𝓧− ⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧‖)

+ 𝜆 (
1 − 𝑝

2
 ‖⟦𝑈𝒏𝒆𝒘

(𝟏) , 𝑈𝒏𝒆𝒘
(𝟐) , 𝑈𝒏𝒆𝒘

(𝟑) ⟧‖
2

2

 + 𝑝‖⟦𝑈𝒏𝒆𝒘
(𝟏) , 𝑈𝒏𝒆𝒘

(𝟐) , 𝑈𝒏𝒆𝒘
(𝟑) ⟧‖

1
)

⇒ min
𝑈𝒏𝒆𝒘
(𝒏)
,𝒏=𝟏,𝟐,𝟑

(‖𝓧− ⟦𝑈(n) + ∆𝑈(n)⟧‖) + 𝜆 (
1−𝑝

2
 ∑ |𝑈(n) + ∆𝑈(n)|

23
𝑛=1 +

𝑝∑ |𝑈(n) + ∆𝑈(n)|3
𝑛=1) (5.5)

where the feature factor matrices ∆𝑈(n) n = 1,2,3 are required to solve in the least squares

sense the overdetermined the above equation. The new factor matrices denote as 𝑈𝒏𝒆𝒘
(𝒏)

=

𝑈
(n)+∆𝑈(n) n = 1,2,3. λ > 0 is the regularization parameter.

The regularization can be treated as a compromise between finding a small penalty and

minimizing the loss function ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 . The regularization parameter λ

controls the compromise: the smaller the λ., the more it minimizes the loss function, and

conversely, the smaller the penalty.

The setting of the regularization parameters is related to the size of the dataset. Usually,

the regularization parameters are set larger for large datasets and smaller for small

datasets. To facilitate comparison with other methods, we use the default value λ = 35 in

the experiment.

The following is the updated algorithm of TTM with the regularization term method

(TTMwR), which is the iteration process optimization of ⟦𝑈𝒏𝒆𝒘
(𝟏)
,𝑈𝒏𝒆𝒘
(𝟐)
,𝑈𝒏𝒆𝒘
(𝟑) ⟧ until

113

convergence. Each iteration computing is performed in two steps: computing the feature

factor matrices and updating the iteration.

Algorithm 5.1 TTM with a regularization term

Input: an original tensor 𝓧 ∈ ℝI1×I2×I3 , the regularization term parameter 𝜆 , the weight

parameter 𝑝

Output: the approximate tensor 𝓧̅, the factor matrices are the index of users, services, and

time, respectively.

Step 1. Initialize regular factor matrices 𝑈(2), 𝑈(3) and slices X(1), X(2), X(3).

Step 2a. Fixing the 𝑈(2) and 𝑈(3) to estimate the factor matrices 𝑈(1), 𝑈(1)̅̅ ̅̅ ̅̅ .

Step 2b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ.

Step 2c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(1)

.

Step 2d. Compute the corresponding regularization 𝜆𝛺(𝓧̅), update the approximate tensor 𝓧̅

Step 3a. Fixing the 𝑈𝑛𝑒𝑤
(1)

 and 𝑈(3) to estimate the factor matrices 𝑈(2), 𝑈(2)̅̅ ̅̅ ̅̅ .

Step 3b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ.

Step 3c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(2)

.

Step 3d. Compute the corresponding regularization 𝜆𝛺(𝓧̅), update the approximate tensor 𝓧̅

Step 4a. Fixing the 𝑈𝑛𝑒𝑤
(1)

 and 𝑈𝑛𝑒𝑤
(2)

 to estimate the factor matrices 𝑈(3), 𝑈(3)̅̅ ̅̅ ̅̅ .

Step 4b. Compute the corresponding error ɛ𝑛𝑒𝑤 and ɛ.

Step 4c. Compare the ɛ𝑛𝑒𝑤 and ɛ, and set new factor matrix 𝑈𝑛𝑒𝑤
(3)

.

Step 4d. Compute the corresponding regularization 𝜆𝛺(𝓧̅), update the approximate tensor 𝓧̅

Step 5. Repeat step 2a to step 4d, update the approximate tensor 𝓧̅ = ⟦𝑈𝑛𝑒𝑤
(1)
,𝑈𝑛𝑒𝑤
(2)
,𝑈𝑛𝑒𝑤
(3) ⟧.

Step 6. Reduce the objective function 𝐿(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2 + 𝜆𝛺(𝓧̅) until convergence is

exhausted.

Step 7. Return the final prediction tensor 𝓧̅.

5.5 Experiment

In this subsection, we implement the prediction experiments on the web service dataset to

evaluate the novel regularization term for tensor decomposition based on TTM.

114

5.5.1 Experimental setup

To evaluate the proposed QoS attribute prediction method, we use the web service dataset

offered by Zheng et al. [Zheng, Ma, Lyu, & King, 2010]. This dataset describes real-world

QoS attribute prediction results from 142 users on 4,500 web services over 64 different time

slices. This experiment focused on the response time and proposed a method to predict

missing QoS attribute values.

The experiment is conducted on a Lenovo ThinkCentre M58 desktop with a 3.0 GHz Intel

Core™ 2 Duo CPU and an 8 GB RAM, running Ubuntu operation system. The program is

implemented with Python 3.4 and Microsoft C++.

We use the standard mean absolute error (MAE), and root mean square error (RMSE) to

compare the quality of our prediction. The calculation formula or MAE and RMSE are

MAE is defined as follows:

𝑀𝐴𝐸 =
∑ |𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗|𝑖,𝑗

𝑁

RMSE is defined as follows:

𝑅𝑀𝑆𝐸 = √
∑ (𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗)2𝑖,𝑗

𝑁

where 𝑟𝑖,𝑗 denotes the expected QoS attribute of web service 𝑗 observed by user 𝑖, 𝑟̂𝑖,𝑗 is the

predicted QoS attribute, and 𝑁 is the number of the predicted value.

We verify the effectiveness of the proposed TTMwR method, and the comparison is based

on service collaboration with the following other methods.

• Web service QoS attribute prediction framework (WSPred): As a benchmark method,

this is a tensor factorization-based recommendation with a time-aware personalized QoS

attribute prediction service for different service users [Zhang, Zheng, & Lyu, 2011]. 𝝀 =

35 denotes the default value.

• TTM with regularization term method (TTMwR): This tensor-based method combines

lasso and ridge regressions based on TTM. 𝝀 = 35 denotes the default value.

• TTM when 𝝀 = 0: This is a traversal-tensor method without the regularization term.

The above methods predict the response time and compute the MAE and RMSE values. The

smaller value means the method has high performance.

115

Since a user does not revoke all web services, the dataset is usually sparse in the real world.

The implement will randomly remove QoS attribute with different density from 5%,

10%,15%, 20%, 25%, and 30%. The 5% density means that 5% of the data is used for training,

and 95% of the data is used for testing. We randomly set the parameter 𝑝 in TTMwR

corresponding to the lasso and ridge. For example, the parameter 𝑝 = 0 is to the ridge, 𝑝 =

1 to the lasso, and 𝑝 = 0.25 means that result is generated by combing 25% by ridge and

75% by lasso regression.

5.5.2 Experimental results and discussion

We examine the prediction performance of three methods.

We set the different parameter 𝝀 value: when setting 𝝀 default value is 35, the TTM has

the regularization term. When 𝝀 = 0 , it means that TTM has no regularization term.

TTMwR shows better predictive performance than TTM without regularization and

WSPred methods in Table 5.1 and Table 5.2.

Table 5.1 Performance comparison in MAE

Methods 𝝀 P Density

5%

Density

10%

Density

15%

Density

20%

Density

25%

Density

30%

WSPred 35 0.7913 0.7603 0.7535 0.7629 0.7520 0.7687

TTM 0 0.8183 0.7745 0.7417 0.7415 0.7345 0.7382

TTMwR

35

0 0.6850 0.6806 0.6723 0.6683 0.6604 0.6693

0.25 0.6892 0.6721 0.6663 0.6672 0.6594 0.6763

0.5 0.6859 0.6695 0.6721 0.6665 0.6635 0.6629

0.75 0.6872 0.6711 0.6680 0.6682 0.6667 0.6619

1 0.6884 0.6679 0.6675 0.6676 0.6647 0.6670

116

Table 5.2 Performance comparison in RMSE

Methods 𝝀 P Density

5%

Density

10%

Density

15%

Density

20%

Density

25%

Density

30%

WSPred 35 1.8006 1.7741 1.7695 1.7764 1.7780 1.7823

TTM 0 1.8569 1.7852 1.7408 1.7366 1.7226 1.7214

TTMwR

35

0 1.5891 1.5788 1.5687 1.5680 1.5609 1.5645

0.25 1.5989 1.5710 1.5669 1.5637 1.5617 1.5637

0.5 1.5959 1.5721 1.5681 1.5635 1.5614 1.5590

0.75 1.5950 1.5738 1.5673 1.5643 1.5633 1.5595

1 1.6010 1.5725 1.5666 1.5631 1.5601 1.5621

(1) Accuracy with different methods

The TTMwR method has smaller MAE and RMSE values for all densities than the other

methods in Figures 5.1 and 5.2. The prediction accuracy can also be improved with the

training matrix density increase from 5% to 30%. The total average MAE of the TTMwR

method (0.67) has 14% more than the WSPred method (0.7648). Thus, the TTMwR method

can significantly improve the accuracy result.

We also illustrate the evaluation results in the different values of the parameter 𝑝 separately

in Figures 5.3 and 5.4 for the TTMwR method. The result shows that the method has the

worst prediction accuracy for 5% density. With density increasing, the accuracy

performance curve drop-down during 5% to 25% density. The best accuracy result appears

when the density is 25% for both MAE and RMSE, and the MAE result generates a sharp

decline curve at the point. Then the curve rises slightly after 25% density, and the accuracy

decrease for 30% density.

117

 Figure 5.1 Impact of density on prediction accuracy MAE

Figure 5.2 Impact of density on prediction accuracy RMSE

118

(2) Impact of the weight parameter 𝒑

We focus on the impact of the regression parameter 𝑝 for the TTMwR method in Figures

5.3 and 5.4. In Figure 5.3, the high MAE result is shown for density 10% when 𝑝 = 1, which

means the lasso regularization help to achieve a better MAE result. As well as the best RMSE

result appears when 𝑝 = 0.25. Conversely, the minimum MAE result is shown when 𝑝 =

0.25, and the minimum RMSE result is shown when 𝑝 = 1 from density 15% to 25%. For

density 30%, the best MAE result is shown when 𝑝 = 0.75, and the best RMSE result is

shown when 𝑝 = 0.5 𝑜𝑟 0.75.

For the lower data densities (less than 25%), with the parameter 𝑝 increases, the accuracy

value rises. The ridge regularization contributes more to improve the performance of the

method. However, when data density is higher, the performance depends on both lasso and

ridge regularization contributes. The best regularization ratio is 25% by the lasso and 75%

by the ridge, or an equal split.

Thus, from the experimental results, it can be observed that the impact of the parameter 𝑝 is

not significant. Nevertheless, some subtle differences are observed.

 Figure 5.3 Impact of the parameter 𝑝 on MAE

119

 Figure 5.4 Impact of the parameter 𝑝 on RMSE

5.6 Summary

A modified regularization term for tensor decomposition based on TTM is proposed. This

method aims to reduce the possibility of overfitting and increase the method's robustness.

Based on TTM, a combination method for estimating prediction results for the web service

recommendation is established, exploiting lasso and ridge regression simultaneously. The

experimental results show that the proposed tensor method can effectively improve the

estimation performance.

120

Chapter 6

TTM with K-means Method for Recommendation

This chapter focuses on a two-step strategy based on the K-means algorithm and TTM to

deal with the initial unorganized data.

6.1 Introduction

We implement a two-step strategy combining clustering and tensor analysis, which

computes the K-means algorithm and TTM tensor decomposition for the initial data

preprocessing.

(1) Propose a two-step strategy method.

A two-step strategy method is given as following Figure 6.1.

Figure 6.1 Two-step strategy method

• In the first step, the dataset is clustered using the K-means algorithm technique.

The goal is to find a pre-processing way to deal with the initial unorganized data. We

selected two different distance computations, Euclidean and cosine similarity,

respectively. The cosine similarity was chosen because it is suitable for calculating

angles between two vectors and is insensitive to the absolute length of the label vectors.

• In the second step, after clustering the dataset, the tensor decomposition is performed

by applying the TTM.

The tensor decomposition is used to remove the empty parts of the model, and the

approximate tensor is obtained by reconstruction to generate the corresponding

recommended values. This method can remove the vacant parts in the dataset to reduce

data sparsity.

(2) Analyze the issues such as selecting initial K values, computational performance, and

distance calculation are discussed by experimenting on the web service dataset.

𝓧

𝐾−𝑚𝑒𝑎𝑛𝑠
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔
→ 𝓧̿

𝑻𝑻𝑴
→ 𝓧̅

1st step 2nd step

121

The recommendation system's effectiveness based on the clustering technique and tensor

decomposition algorithm proposed in this paper is compared with the recommendation

effect of similar algorithms.

The chapter is structured as follows. Section 6.2 introduces the motivation and reviews our

previous research work. Section 6.3 introduces the K-means algorithm and data clustering

process for web service recommendation. In Section 6.4, the TTM with the K-means

algorithm for recommendation is proposed. Section 6.5 introduces that the algorithm's

performance was evaluated by experimentally discussing two impacts. Finally, Section 6.6

summarizes the entire chapter.

6.2 Motivation

Integrating tensor and clustering algorithms is one of the research topics to use high

dimensional data to provide an accurate web service recommendation.

The clustering methods look for hidden valuable information in datasets [Dubey &

Choubey, 2017]. The generally used clustering analysis algorithm is the K-means

algorithm. The K-means algorithm is currently the most widely used clustering algorithm,

which MacQueen first proposed in 1967 [MacQueen, 1967], and Hartigan optimized and

implemented an efficient K-means algorithm based on Fortran [Hartigan, 1975]. The K-

means algorithm is particularly suitable for classification applications with high-

dimensional data [Liu, Hu, Ge, & Xiong, 2012].

The first one to introduce the K-means algorithm into the tensor model is Symeonidis, who

applied over the user-tag cluster-item tensor instead of the user-tag-item tensor to represent

the ternary relationship in social tagging systems [Symeonidis, 2015]. Silic etc. proposes a

K-means algorithm method, CLUStering (CLUS), based on a similar tensor structure using

two-dimensional feature vectors for users and services, respectively [Silic, Delac, & Srbljic,

2014]. Shang et al. propose K-means and the time-context-based tensor decomposition

method. The initial clustering of datasets is carried out through K-means to improve the

data aggregation and algorithm efficiency [Shang, Wang, & Huang, 2018].

When TTM starts running and predicts the QoS attribute, the initial dataset is unprocessed,

and the records are sparse and unclassified. If pre-processing of the dataset is implemented,

it might improve the prediction performance of TTM. The reason for used the K-means

122

algorithm is that it is currently the most widely used clustering algorithm, and it is suitable

for applications with tensor data. Motivated by the above research, we chose a K-means

algorithm to find a pre-processing way to deal with the initial unorganized data. Due to

time limitations, we will continue to complete the evaluation based on this study for the

other clustering methods in the future.

6.3 K-means algorithm

This section focuses on the K-means algorithm and how K-means is handled in a web

service recommendation.

(1) K-means algorithm

K-means algorithm classifies a group of objects into a 𝐾 number clusters based on the

object’s attributes or features. First, it requires data points (objects), 𝐾 number of clusters,

and the earliest randomly selected centroid in the dataset. Clustering is determined by two

factors: calculating the distance between members and the degree of association with the

nearest centroid. The algorithm keeps calculating the distance and the centroid of the

partition until the stop condition is met. Euclidean distance is the most used distance

measurement method. The stopping condition is that the recalculated centroid no longer

changes with iterations, and no members in the result are reassigned.

The K-means algorithm is as follows, for 𝑁 data objects located in a continuous

dimensional space and 𝐾 number of clusters 𝑃, all clusters are independent and have a

compact interior.

Algorithm 6.1 K-means algorithm

Input: N dataset, 𝐾 number of clusters

Output: 𝐾 clusters 𝑃

Step l. Randomly select one object as the centroid 𝑞 of a cluster.

Step 2. For all m objects, calculate the distance 𝐷 from the centroid and divide it into

the nearest centroid cluster.

Step 3. Recalculate the centroids of 𝐾 clusters, whose centroid is the average of all

object values in the cluster.

Step 4. Repeat steps 2 and 3 until the distance between the objects in the cluster and

each centroid is the smallest.

123

(2) Clustering process

Given a service invocation dataset X which contain 𝑁 samples,

X(u, s, t) = [𝑥1, 𝑥2, … , 𝑥𝑁]
𝑇𝜖𝑅𝑁×𝐷 , 𝑥𝑖𝜖𝑅

𝐷 (6.1)

where 𝑢 is the user executing the invocation, 𝑠 is the service invoked, and 𝑡 is the actual

time of the service invocation. 𝑋(𝑢, 𝑠, 𝑡) is the service response time as QoS attribute value.

𝑥𝑖 is a sample data containing 𝑁 samples.

The goal of clustering is to divide these 𝑁 samples with the sample similarity degree into

𝐾 clusters 𝑃 = [𝑃1, 𝑃2, … , 𝑃𝐾]. The K-means algorithm objective function is following [Li

& Ding, 2013],

𝑚𝑖𝑛
𝑞𝑘|𝑘=1

𝐾
∑ ∑ ‖𝑥𝑖 − 𝑞𝑘‖

2
𝑥𝑖𝜖P𝐾

𝐾
𝑘=1 (6.2)

where 𝑞𝑘 is the center of a cluster P𝐾 , let 𝑄 = [𝑞1, 𝑞2, … , 𝑞𝐾]𝜖𝑅
𝐷×𝐾, 𝑉 =

[𝑣1, 𝑣2, … , 𝑣𝑁]
𝑇𝜖𝑅𝑁×𝐾, where 𝑣𝑖 is the category of indicator vector. If 𝑥𝑖𝜖P𝐾, then 𝑣𝑖𝑘 = 1,

otherwise 𝑣𝑖𝑘 = 0. The K-means algorithm in equation (6.2) can be expressed in the form

of matrix decomposition:

{
𝑚𝑖𝑛
𝑈,𝑉
‖𝑋 − 𝑄𝑉𝑇‖2

𝑠. 𝑡. 𝑄𝑇𝑄 = 𝐼
. (6.3)

K-means algorithm is based on the 𝑋(𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒) is as follows.

Algorithm 6.2 K-means algorithm

Input: N user-service-time dataset 𝑋(𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒), 𝐾 number of clusters

Output: 𝐾 clusters 𝑃

Step l. Retrieve all 𝑢𝑠𝑒𝑟 items, which is denoted as user cluster 𝑃𝑢𝑠𝑒𝑟 =

{𝑢1, 𝑢2, … , 𝑢𝑚, },𝑚 𝑖𝑠 𝑛𝑢𝑏𝑚𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠.

Step 2. Retrieve all 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 items, which is denoted as service cluster 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒 =

{𝑠1, 𝑠2, … , 𝑠𝑛, }, 𝑛 𝑖𝑠 𝑛𝑢𝑏𝑚𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠.

Step 3. Retrieve all 𝑡𝑖𝑚𝑒 items, which is denoted as time cluster 𝑃𝑡𝑖𝑚𝑒 =

{𝑡1, 𝑡2, … , 𝑡𝑙 , }, 𝑙 𝑖𝑠 𝑛𝑢𝑏𝑚𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒.

Step 4. Select the 𝐾 number of the cluster as the initial cluster centers 𝑄 =

{𝑞𝑢𝑠𝑒𝑟 , 𝑞𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝑞𝑡𝑖𝑚𝑒} for each cluster 𝑃𝑢𝑠𝑒𝑟 , 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝑎𝑛𝑑 𝑃𝑡𝑖𝑚𝑒 respectively.

Step 5. Calculate the distances 𝐷 between items of responding cluster and each

cluster center 𝑞𝑢𝑠𝑒𝑟 , 𝑞𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝑞𝑡𝑖𝑚𝑒 as follows,

124

𝐷𝑢𝑠𝑒𝑟(𝑢𝑚, 𝑞𝑢𝑠𝑒𝑟), 𝐷𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝑠𝑛, 𝑞𝑠𝑒𝑟𝑣𝑖𝑐𝑒), 𝑎𝑛𝑑 𝐷𝑡𝑖𝑚𝑒(𝑡𝑙, 𝑞𝑡𝑖𝑚𝑒)

Step 6. Set the item belongs to cluster 𝑃 if the distance 𝐷 is minimum.

Step 7. Calculate the cluster's average in the same cluster to generate a new cluster

center.

Step 8. if the clustering center no longer changes, exit; otherwise, go to step 5 and

recalculate.

This clustering algorithm aims to make the generated clusters denser and more independent

by dividing items into 𝐾 clusters. This algorithm is suitable for the scenario that the clusters

are relatively dense, and the distinction between clusters is obvious. The K-means

algorithm can be used as the basic algorithm in the system analysis as a pavement.

Although it is inefficient in handling systems with large datasets due to the increased

complexity of the system, the data preprocessing with K-means clustering can make the

main algorithm of the system more efficient. This chapter uses TTM as the main algorithm

to further process the data after the clustering process.

6.4 TTM with K-means method

This section describes the TTM with the K-means method and algorithm.

Considering a K-means algorithm as preprocessing of TTM for prediction QoS attribute

provides an idea to further refine the web service recommendation. Thus, our proposed

two-step strategy method, TTM with K-means method, is applied to fit the QoS attribute

prediction scenario as follows,

𝓧

𝑲−𝒎𝒆𝒂𝒏𝒔
𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒊𝒏𝒈
→ 𝓧̿

𝑻𝑻𝑴
→ 𝓧̅ (6.4)

where 𝓧 is an original tensor which consists of QoS attribute value, 𝓧̿ is a clustered tensor

after K-means clustering, 𝓧̅ denotes an approximation tensor.

First, we compute the mean value in the same context cluster 𝑃𝑢𝑠𝑒𝑟 , 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝑎𝑛𝑑 𝑃𝑡𝑖𝑚𝑒 for

prediction 𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒 items separately with an original tensor 𝓧.

125

Then we apply the 𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒 items to generate a clustered tensor 𝓧̿ =

⟦𝑈(user), 𝑈(service), 𝑈(𝑡𝑖𝑚𝑒)⟧, where 𝑈(user), 𝑈(service), 𝑎𝑛𝑑 𝑈(𝑡𝑖𝑚𝑒) are the factor matrices

after clustering.

Second, this clustered tensor 𝓧̿ is used as an input tensor of TTM. As same as

decomposition processing in Chapter 4, we find the optimal that minimizes the objective

function 𝐿(𝓧, 𝓧̅) in every iteration step as follows,

𝐿(𝓧, 𝓧̅) = ℓ(𝓧, 𝓧̅) + 𝜆𝛺(𝓧̅) (6.5)

where 𝓧 is an original tensor which consists of QoS attribute value, 𝓧̅ denotes an

approximation tensor, λ > 0 is the regularization parameter, ℓ(𝓧, 𝓧̅) denotes as

ℓ(𝓧, 𝓧̅) = ‖𝓧− 𝓧̅‖2, 𝛺(𝓧̅) denotes a regularization term.

To verify the tensor clustering decomposition method under unsupervised learning, the

updated algorithm proposed in this chapter is applied to the QoS attribute prediction and

compared with CLUS. The algorithm is a tensor decomposition based on K-means

clustering, updating the distance measure with cosine similarity. The algorithm is as

follows:

Algorithm 6.3 TTM with K-means Clustering

Input: N user-service-time dataset 𝓧(𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒) , Response time value,

the regularization parameter 𝜆, 𝐾 Numbers of clusters.

Output: the approximate tensor 𝓧̅, the factor matrices are the index of users, services,

and time, respectively.

Step l. K-means clustering process in dataset 𝓧(𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒) based on 𝐾

Numbers of clusters.

Step 2. Compute mean value in the same context cluster 𝑃𝑢𝑠𝑒𝑟 for predicting 𝑢𝑠𝑒𝑟

items.

Step 3. Compute mean value in the same context cluster 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒 for predicting

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 items.

Step 4. Compute mean value in the same context cluster 𝑃𝑡𝑖𝑚𝑒 for predicting 𝑡𝑖𝑚𝑒

items.

Step 5. Generate a clustered tensor 𝓧̿ based on 𝑢𝑠𝑒𝑟, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑡𝑖𝑚𝑒 items clustered.

126

Step 6. Inputting the clustered tensor 𝒳̿, apply the TTM.

Step 7. Reduce the loss function until convergence is exhausted.

Step 8. Return the final prediction tensor 𝓧̅.

6.5 Experiment

In this subsection, we implement the QoS attribute prediction experiments to evaluate the

two-step strategy. This section describes the experiment setup, including methods

compared, dataset, hardware system, and evaluation standard. Section 6.3.3 analyses and

discusses the number of cluster impactions with accuracy and prediction time. Section 6.3.4

analyses and discusses the distance metrics impaction with accuracy and prediction time.

6.5.1 Experiment setup

We use the web service dataset WSDream, which describes real-world QoS attribute

prediction 30,287,611 results from 142 users on 4,500 web services over 64 different time

slices. This section focused on the response time and proposed a method to predict the

missing QoS attribute.

The experiment hardware is conducted on a Lenovo THINKCENTRE M58 desktop with

a 3.0 GHz Intel Core™ 2 Duo CPU and an 8 GB RAM, running Ubuntu operation system.

The program is implemented with Python 3.4 and Microsoft C++.

We use the standard mean absolute error (MAE), and root mean square error (RMSE) to

compare our prediction quality. The calculation formulas are

MAE is defined as follows:

𝑀𝐴𝐸 =
∑ |𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗|𝑖,𝑗

𝑁

RMSE is defined as follows:

𝑅𝑀𝑆𝐸 = √
∑ (𝑟𝑖,𝑗 − 𝑟̂𝑖,𝑗)

2
𝑖,𝑗

𝑁

where 𝑟𝑖,𝑗 denotes the expected QoS attribute of web service 𝑗 observed by user 𝑖, 𝑟̂𝑖,𝑗 is the

predicted QoS attribute, and 𝑁 is the number of the predicted value.

The above methods predict the response time and compute the RMSE values. The smaller

the RMSE value, the better the prediction performance. The implement will randomly

127

remove the QoS attribute with different densities from 5% to 55%. The 5% density means

that 5% of the data is used for training, and 95% of the data is used for testing.

6.5.2 Prediction performance

This section analyzes the impacts of the number of clusters on the prediction performance.

The number of clusters K of the K-means algorithm is difficult to determine. If the k value

is too small, it will lead to significant differences between data objects within the same

cluster, and if the K value is too large, it will lead to a close distance between different

clusters. Simultaneously, the improper value of K can also lead the final clustering results

into local optimum, which is often the most criticized aspect of using the traditional K-

means algorithm. As early as 1998, Rezaee et al. [Rezaee, Lelieveldt, & Reiber, 1998]

proposed that the optimal K-value is in the range of (1, √𝑛), with 𝑛 being the size of the

dataset, which also provided the direction for the later improvement of the traditional K-

means algorithm.

We compare our method with the CLUStering (CLUS), a method for predicting web

services based on the K-means algorithm. TTM is also compared in the experiment.

• CLUStering (CLUS): This method incorporates user-service parameters and

aggregates past data using the K-means algorithm [Silic, Delac, & Srbljic, 2014].

• TTM with K-means method (K+TTM): This is proposed in this chapter. This

method is a tensor decomposition TTM based on K-means clustering.

• TTM: This is a traversal-tensor method proposed in Chapter 4.

The above methods predict the response time and compute the MAE and RMSE values. The

smaller value indicates the method has high performance.

To compare the effects of the initial K values, we use different initial K value selection

criteria separately. According to the maximum value of optimal K is √𝑛 [Rezaee,

Lelieveldt, & Reiber, 1998], we have chosen different initial values.

For the dataset which have 142 users on 4,500 web services over 64 different time slices,

we set 𝑛=142 users, 𝑛=4,500 web services, and 𝑛=64 time slices separately, and the

maximum value of optimal K is obtained as follows,

𝐾𝑢𝑠𝑒𝑟 = 12, 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 67, and 𝐾𝑡𝑖𝑚𝑒 = 8

128

We have also chosen the same initial values for 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑡𝑖𝑚𝑒 = 10 based on

the default value [Silic, Delac, & Srbljic, 2014] in Table 6.2.

Table 6.1 Prediction performance comparison in RMSE

for 𝐾𝑢𝑠𝑒𝑟 = 12,𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 67, and 𝐾𝑡𝑖𝑚𝑒 = 8

Methods RMSE

Density

5%

Density

15%

Density

25%

Density

35%

Density

45%

Density

55%

CLUS 2.2015 2.2188 2.1208 2.0068 1.9939 1.9513

K+TTM 2.0150 2.0222 1.9995 1.9488 1.9127 1.8897

TTM 1.5908 1.5675 1.5150 1.5569 1.5589 1.5584

Figure 6.2 Prediction performance comparison in RMSE

for 𝐾𝑢𝑠𝑒𝑟 = 12,𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 67, and 𝐾𝑡𝑖𝑚𝑒 = 8

129

Table 6.2 Prediction performance comparison in RMSE

for 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑡𝑖𝑚𝑒 = 10

Methods RMSE

Density

5%

Density

15%

Density

25%

Density

35%

Density

45%

Density

55%

CLUS 2.2320 2.2560 2.1890 2.1118 2.0498 1.9924

K+TTM 2.0192 1.9150 1.8969 1.8597 1.8472 1.8225

TTM 1.5908 1.5675 1.5150 1.5569 1.5589 1.5584

Figure 6.3 Prediction performance comparison in RMSE

for 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑡𝑖𝑚𝑒 = 10

130

The K+TTM method has a higher prediction accuracy than the CLUS method. The

prediction accuracy results show that accuracy depends on the different data densities in

Figure 6.2 and Figure 6.3. For example, for the CLUS method, the RMSE value is 2.0068

at 35% density, while the K+TTM’s RMSE value is 1.9488 at the same density in Table

6.1. It is evident from the presented figures at higher density K+TTM improves more

performance RMSE value from 2.0150 to 1.8897 while CLUS is in (2.2015, 1.9513) for

𝐾𝑢𝑠𝑒𝑟 = 12, 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 67, and 𝐾𝑢𝑠𝑒𝑟 = 8 in Table 6.1. The same result is obtained when

the number of clusters in 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑢𝑠𝑒𝑟 = 10 in Table 6.2.

We find that obtaining the same initial value yields better results for different initial values

of the number of clusters than giving different initial values in both methods. RMSE value

is 1.8897 at 55% density for 𝐾𝑢𝑠𝑒𝑟 = 12,𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 67, and 𝐾𝑡𝑖𝑚𝑒 = 8 , while the

K+TTM’s RMSE value is 1.8225 at the same density for 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑡𝑖𝑚𝑒 = 10

in Table 6.2.

The silhouette result also is evident that showed in Figure 6.4.

Figure 6.4 Silhouette value comparison

for 𝐾𝑢𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾𝑡𝑖𝑚𝑒 = 10

131

6.5.3 Computational performance

The execution time of the methods is evaluated for computational performances is

presented in Table 6.3.

Table 6.3 Execution time comparison

Methods 𝑲𝒖𝒔𝒆𝒓 = 𝟏𝟐,𝑲𝒔𝒆𝒓𝒗𝒊𝒄𝒆 = 𝟔𝟕,

𝑲𝒖𝒔𝒆𝒓 = 𝟖

𝑲𝒖𝒔𝒆𝒓 = 𝟏𝟎,𝑲𝒔𝒆𝒓𝒗𝒊𝒄𝒆 = 𝟏𝟎,

𝑲𝒖𝒔𝒆𝒓 = 𝟏𝟎

CLUS 32 min 27min

K+TTM 11 hours 7 min 11 hours 54 min

The CLUS method has the shortest execution time than the K+TTM method. The CLUS

method is not influenced by altering the number of clusters. The reason is that the tensor

decomposition needs more complex calculations against CLUS.

The outstanding advantage of clustering is that it is fast, but the accuracy is very low. It is

worth the cost of using tensor decomposition in order to get higher prediction values,

especially when the hardware computational performance is already high.

6.5.4 Impact of number of clusters

The number of clusters is a parameter that can be adjusted to a specific environment. To

evaluate the impact of the number of clusters, we consider the missing rate conditions with

various cluster numbers. In the evaluation process, we vary the number of users, service,

and time clusters. The initial value of 2 for the number of users, service, and time clusters

is chosen. Moreover, we increase the number of clusters from 2 to 67 to calculate the RMSE

values. Finally, we evaluate the impact of the number of clusters for the data densities of

5% to 55% separately, as shown in Figure 6.5 and Figure 6.6.

132

Figure 6.5 Impact of different number of clusters in TTM with K-means clustering

Figure 6.5 depicts the RMSE values concerning the number of clusters for the data density

range (5%, 55%) in TTM with the K-means method.

For the TTM with the K-means method, with the same number of clusters, the value of

RMSE decreases as the data density increases, which means that the prediction accuracy

increases. On the other hand, when having the same data density, the RMSE value decreases

with the increase of the number of clusters, but there is a difference: starting from about

12% to 55% of the data density, the RMSE value for 8 clusters is the lowest, while the

RMSE value for 2 clusters is the lowest value when the data density is less than 12%.

133

Figure 6.6 Impact of different number of clusters in CLUS

For the CLUS method, Figure 6.6 depicts the relationship between the different RMSE

values and the number of clusters. Compared to the TTM with the K-means method, the

distribution of the RMSE value curves is scattered. From the start at 5% data density, with

the number of clusters increases, the value of the RMSE increases for 8 clusters and 10

clusters until reaching the highest value at the data density of 15%. After 15% data density,

the value of the RMSE increases for 8 clusters and 10 clusters. In contrast, the other three

curves for 10, 12, and 67 clusters keep downward.

Overall, the values of the RMSE for 2 clusters and 67 clusters are lower than the other

curves. The RMSE value for 67 clusters is the lowest when the data density is less than

27%. When the data density is greater than 27%, the RMSE value for 2 clusters is the lowest.

As shown, we summarize the following,

• Compared with the TTM using the K-means method, the distribution of the RMSE

value curve of CLUS is a little scattered.

134

• With the value of K increases, the prediction accuracy increases.

• When having the same missing rate, the higher the K value, the higher the prediction

accuracy.

A higher number of clusters means less clustering, which improves the prediction accuracy.

The reason is that clustering reduces redundancy, and the tensor decomposition method

enhances the prediction performance.

6.5.5 Impact of distance metrics

Most clustering algorithms calculate data objects' similarity using distance metrics to group

related data objects [Silic, Delac, & Srbljic, 2014]. Since each algorithm uses a different

distance metric, the similarity between two data objects can be calculated differently using

different algorithms, so choosing the appropriate distance metric plays a crucial role in any

clustering algorithm. In the traditional K-means algorithm, the Euclidean distance is used

to measure the similarity between data objects, and the Euclidean distance assumes that all

attribute values of data objects are equally crucial by default in real life. This indiscriminate

treatment of attribute importance will likely lead to distance distortion of data objects in

Euclidean space: although two points in the space are close on essential attributes. However,

due to distance amplification by other irrelevant attributes, these two points are likely to be

measured as farthest in Euclidean space [Li & Man, 2013].

In particular, for high-dimensional data, the cosine similarity between two data points

𝑥(𝑥1, 𝑥2, … , 𝑥𝑛) 𝑎𝑛𝑑 𝑦(𝑦1, 𝑦2, … , 𝑦𝑛) sometimes is better in clustering than the Euclidean

distance in such a spherical space [Liu, Hu, Ge, & Xiong, 2012]. The angle between two

vectors indicates the cosine similarity,

cos(x, y) =
∑𝑥𝑖𝑦𝑖

√∑𝑥𝑖
2∑𝑦𝑖

2
 (6.6)

where 𝑥𝑖 , 𝑦𝑖 (𝑖 = 1,2, … , 𝑛) are matrix variants in the cluster assignment.

We compare the cosine and the Euclidean distance formula. Figures 6.7 to 6.10 illustrate

the evaluation results in the different data densities separately while applying the two

distance formulas.

In Figure 6.7, it is evident that the cosine-based method provides improved prediction

accuracy than the Euclidean-based method at all numbers of clusters in 5% density. With

135

the increase of clusters from 70 to 140, the MAE value increases, and the prediction

accuracy worsens. The worst MAE value of the Euclidean-based method appears at 140

clusters in Figure 6.7. As shown in Figure 6.8, for 5% density, the curve still rises slightly

after 70 clusters. For 20% and 30% density, the MAE values show that the accuracy

performance curve drop-down when crossing 70 clusters in Figure 6.9 and Figure 6.10

separately.

As shown, we summarize the following,

The MAE values obtained by the two methods are not significantly different in 10%, 20%,

and 30% density separately.

We summarize as follows.

• Compared with the Euclidean method, the cosine method improves the correct

prediction accuracy rate when having the same K value.

The reason is that the vector data are more sensitive to angle calculation and less

sensitive to absolute length calculation. The distance between members can be

measured more accurately by angle calculation.

• The prediction accuracy rate obtained by both methods is higher when the K value is

smaller.

If the category size of users or services sample data may not be high, the lower cluster

number fits exactly the sample categories. We will evaluate different datasets to

analyze this issue in future studies.

• The prediction accuracy rate obtained by the two methods is almost the same in

K=5,10, and 70 separately.

We note that these three values are almost the same as the initial set of K values. This

problem shows that the choice of the initial cluster number is important in the

clustering method, and it determines the performance of the clustering.

136

Figure 6.7 Impact of the distance metrics on MAE in 5% density

137

Figure 6.8 Impact of the distance metrics on MAE in 10% density

138

Figure 6.9 Impact of the distance metrics on MAE in 20% density

139

Figure 6.10 Impact of the distance metrics on MAE in 30% density

6.6 Summary

We propose a two-step strategy based on the K-means algorithm and TTM to deal with the

initial unorganized data. The TTM with the K-means method removes the empty parts of

the model, and the approximate tensor is obtained by reconstruction to generate the

corresponding recommended values.

A series of experiments have been conducted to evaluate the effectiveness of the

recommendation system combining the clustering technique and tensor decomposition

algorithm. We discuss the issues such as selecting initial K values, computational

performance, and distance calculation. The TTM with the K-means method improves the

140

prediction accuracy in a recommendation with a lower RMSE value than the K-mean

clustering algorithm.

141

Chapter 7

Conclusions and Future Directions

QoS attribute prediction has become a popular research topic in service recommendation.

Most of the existing prediction methods are based on a large sample and have been

successfully applied to the web service recommendation system. These web

recommendation methods are not satisfactory when the user-service-time web

recommendation data is sparse. The reason is that the samples in the initial

recommendation dataset are only the corresponding values of the existing web services

used by the existing users. The QoS attribute prediction is performed based on available

historical data. When facing an increase of new users or new web services, no new

invocation records are recorded due to the limitations of some conditions. Although the

traditional tensor decomposition model is a powerful prediction tool in the web service

recommendation system, it also does not avoid the shortcoming of low accuracy prediction

rate due to small sample data. It is challenged to construct a suitable method to address the

small sample problem based on the traditional tensor decomposition model. Thus, we

addressed these issues and proposed a modified tensor decomposition method for QoS

attribute prediction to improve the recommendation accuracy.

7.1 Summary

This thesis conducts a new tensor decomposition method to enhance QoS attribute

prediction performance.

(1) A tensor-based modeling for web service recommendation is proposed to meet

the added sample data and preprocess demand. Data analysis reveals the

observation that the number of samples of user-service-time data is insufficient,

and the preprocessing of initial data affects the QoS recommendations. Based on

these two observations, the methods add an enhanced sample scheme and a K-

means clustering preprocessing compared to the regular tensor decomposition

method to solve low prediction accuracy due to sample data lack. In the tensor

decomposition stage, a new two regularization term is implemented to avoid

overfitting. Analysis of experimental results on real datasets shows that the

proposed method improves the quality of prediction.

142

(2) An improved tensor decomposition method, TTM, is proposed to address the

shortcomings of traditional recommendation methods with low accuracy due to

insufficient initial samples. The data analysis reveals the observation that

constructing new samples from existing samples can compensate for the

insufficient samples in the user-service-time data. Based on this observation, the

feature factor matrices are designed based on the current feature sample data to

compensate for the missing items in the factor matrix of different time slices.

Then, it is applied to the tensor decomposition as a way to improve the prediction

rate. Finally, the experiments are conducted on the web service WSDream and

the traffic prediction datasets. Experimental results validate the effectiveness of

the proposed TTM recommendation method.

(3) A regularization term incorporating two regular models is proposed to support a

web service recommendation TTM method. The different roles of these two

different regularization models are analyzed to solve the overfitting problem of

web service recommendation systems. A modified regularization term is

designed and applied to the TTM method by integrating the lasso and ridge

models. Experimental validation is conducted on the web service WSDream

dataset to discuss and evaluate the weights of the different regularization models.

Experimental results show that the modified regularization term can help increase

the correct rate of predicting QoS attributes and better support the web service

recommendation TTM method.

(4) A two-step strategy approach is proposed, which includes clustering and TTM

methods. Data analysis revealed the observation that the preprocessing of the

initial unorganized data may impact the service recommendation performance.

Based on this observation, first, a preprocessing process based on K-means

clustering was designed to cluster the initial data. In the second step, the clustered

data objects are used as input and applied to the TTM method to complete the

QoS attribute prediction. Experimental results on the relevant dataset show the

evaluation between our methods and the clustering method.

143

7.2 Future Directions

Research on the theory and technology of QoS attribute prediction-based is constantly

evolving, and new requirements are emerging as web services are widely used and

application scenarios continue to be extended. Therefore, the following issues in web

service recommendations need to continue to be studied in depth.

(1) Real-time update technology for web service recommendation methods.

Whether it is an easy-to-understand collaborative filtering recommendation method or a

tensor decomposition model with better recommendation results, the computational

complexity of these methods is high. In the application scenario of real-time update of QoS

attribute, to capture the user's interest and web service performance changes in the latest

context, repeated training of prediction methods should be avoided, and incremental

updates based on the current training models should be performed. Therefore, the design

of prediction models supporting update mechanisms has significant theoretical research

and application value.

(2) Research on web service recommendation algorithms in different network

environments.

In the actual application scenarios of web services, the network environment in which the

services are located may differ, such as the difference between fixed and mobile data

network environments. This difference will lead to a significant difference in QoS attribute

prediction performance among users. Therefore, studying the service recommendation

methods under various network environment scenarios is essential, especially in mobile

internet environments.

(3) Investigate efficient and parallelized tensor decomposition algorithms.

Tensor decomposition helps estimate and recover missing data from a sample dataset;

however, the decomposition is the most time-costing in the whole process, especially for

higher-dimensional data, even four-dimensional and five-dimensional data, the algorithm

complexity can be a very high degree. The TTM method proposed in this thesis has a high

accuracy prediction rate, but this follows at the high complexity cost. Thus, it is practical

to consider algorithmic parallelization to investigate decomposition algorithms to reduce

processing time effectively.

144

(4) Higher dimensions data

For large-scale recommender systems, millions of users send tens of thousands of service

requests to the system at each moment. The huge QoS data brings us complete service

information and the challenge of higher dimensions data analysis. In the past decades, deep

learning techniques have been widely studied and applied in recommender systems.

However, less research has been done on QoS prediction, which deserves future research.

The unique challenges need to be addressed: processing large amounts of QoS data brings

a significant challenge to the efficiency of traditional QoS prediction techniques. It is

expected that additional research efforts will address this unique challenge and further

advance current QoS prediction techniques.

145

Bibliography

BAĞIRÖZ, B., Güzel, M., YAVANOĞLU, U., & Özdemir, S. (2019). QoS Prediction

Methods in IoT A Survey. Paper presented at the 2019 IEEE International

Conference on Big Data (Big Data).

Candès, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization.

Foundations of Computational Mathematics, 9(6), 717-772.

Carroll, J. D., Pruzansky, S., & Kruskal, J. B. (1980). CANDELINC: A general approach

to multidimensional analysis of many-way arrays with linear constraints on

parameters. Psychometrika, 45(1), 3-24.

Chai, S., Feng, W., & Hassanein, H. S. (2016). Tensor decomposition-based web service

QoS prediction. Journal of Coupled Systems and Multiscale Dynamics, 4(2),

113-118.

Chandrasekaran, V., Recht, B., Parrilo, P. A., & Willsky, A. S. (2012). The convex

geometry of linear inverse problems. Foundations of Computational

Mathematics, 12(6), 805-849.

Cheng, T., Wen, J., Xiong, Q., Zeng, J., Zhou, W., & Cai, X. (2019). Personalized Web

service recommendation based on QoS prediction and hierarchical tensor

decomposition. IEEE Access, 7, 62221-62230.

Cichocki, A., Zdunek, R., Phan, A. H., & Amari, S.-i. (2009). Nonnegative matrix and

tensor factorizations: applications to exploratory multi-way data analysis and

blind source separation. John Wiley & Sons.

De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). On the best rank-1 and rank-(r

1, r 2,..., rn) approximation of higher-order tensors. SIAM Journal on Matrix

Analysis and Applications, 21(4), 1324-1342.

Dubey, A., & Choubey, A. (2017). A systematic review on k-means clustering

techniques. International Journal of Scientific Research Engineering &

Technology (IJSRET, ISSN 2278–0882), 6(6).

Fan, X., Hu, Y., Zhang, R., Chen, W., & Brézillon, P. (2015). Modeling temporal

effectiveness for context-aware web services recommendation. Paper presented

at the 2015 IEEE International Conference on Web Services.

Ghafouri, S. H., Hashemi, S. M., & Hung, P. C. (2020). A survey on Web service QoS

prediction methods. IEEE Transactions on Services Computing.

146

Middleware Systems Research Group. (2020). One-ITS Toronto Traffic Dataset.

Retrieved from http://msrg.org/datasets/traffic.

Hao, L., Liang, S., Ye, J., & Xu, Z. (2018). TensorD: A tensor decomposition library in

TensorFlow. Neurocomputing, 318, 196-200.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and

conditions for an" explanatory" multimodal factor analysis. UCLA Working

Papers in Phonetics, 16, 1- 84. (University Microfilms, Ann Arbor, Michigan,

No. 10,085).

Hartigan, J. A. (1975). Clustering algorithms: John Wiley & Sons, Inc.

Hasnain, Muhammad; Pasha, Muhammad Fermi; Ghani, Imran; Mehboob, Bilal; Imran,

Muhammad; Ali, Aitizaz. (2020). Benchmark Dataset Selection of Web

Services Technologies: A Factor Analysis. IEEE Access, vol. 8, pp. 53649-

53665.

Hawkins, D. M. (2004). The problem of overfitting. Journal of Chemical Information

and Computer Sciences, 44(1), 1-12.

He, P., Zhu, J., Zheng, Z., Xu, J., & Lyu, M. R. (2014). Location-based hierarchical

matrix factorization for web service recommendation. Paper presented at the

2014 IEEE International Conference on Web Services.

Hillar, C. J., & Lim, L.-H. (2013). Most tensor problems are NP-hard. Journal of the

ACM, 60(6), 1-39.

Jain, Prateek, Oh, Sewoong. (2014). Provable tensor factorization with missing data.

Advances in Neural Information Processing Systems, pp. 1431-1439.

Ji, Y., Wang, Q., Li, X., & Liu, J. (2019). A survey on tensor techniques and applications

in machine learning. IEEE Access, 7, 162950-162990.

Karatzoglou, A., Amatriain, X., Baltrunas, L., & Oliver, N. (2010). Multiverse

recommendation: n-dimensional tensor factorization for context-aware

collaborative filtering. Paper presented at the Proceedings of the 4th ACM

Conference on Recommender Systems.

Kiers, H. A. (2000). Towards a standardized notation and terminology in multiway

analysis. Journal of Chemometrics, 14(3), 105-122.

Kolda, T. G. (2006). Multilinear operators for higher-order decompositions. (No.

SAND2006-2081). Sandia National Laboratories.

147

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. Journal of

SIAM Review, 51(3), 455-500.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for

recommender systems. Computer, 42(8), 30-37.

Lacroix, T., Usunier, N., & Obozinski, G. (2018). Canonical tensor decomposition for

knowledge base completion. Paper presented at the International Conference

on Machine Learning.

Li, S., & Man, Z. (2013). K-means clustering algorithm based on adaptive feature

weighted. Computer Technology and Development, 23(6), 98-105.

Liu, C., Hu, T., Ge, Y., & Xiong, H. (2012). Which distance metric is right: An

evolutionary k-means view. Paper presented at the Proceedings of the 2012

SIAM International Conference on Data Mining.

Liu, X., & Fulia, I. (2015). Incorporating user, topic, and service-related latent factors

into web service recommendation. Paper presented at the 2015 IEEE

International Conference on Web Services.

Ma, Y., Wang, S., Yang, F., & Chang, R. N. (2015). Predicting QoS values via multi-

dimensional QoS data for Web service recommendations. Paper presented at

the 2015 IEEE International Conference on Web Services.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate

observations. Paper presented at the Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability. 1967 (Vol. 1, pp. 281-

297). University of California Press.

Mnih, A., & Salakhutdinov, R. R. (2007). Probabilistic matrix factorization. Advances in

Neural Information Processing Systems, 20, 1257-1264.

Nickel, M., Tresp, V., & Kriegel, H.-P. (2011). A three-way model for collective learning

on multi-relational data. Paper presented at the International Conference on

Machine Learning.

O'Sullivan, J., Edmond, D., & ter Hofstede, A. (2002). What is in a Service? Distributed

and Parallel Databases, 12(2), 117-133.

Ogutu, J. O., Schulz-Streeck, T., & Piepho, H.-P. (2012). Genomic selection using

regularized linear regression models: ridge regression, lasso, elastic net and

their extensions. In BMC Proceedings (Vol. 6, pp. 1-6). BioMed Central.

148

Paatero, P. (1997). A weighted non-negative least squares algorithm for three-way

‘PARAFAC’factor analysis. Chemometrics and Intelligent Laboratory

Systems, 38(2), 223-242.

Pandharbale, P. B., Mohanty, Sachi Nandan, & Jagadev, Alok Kumar. (2021). Recent

web service recommendation methods: A review. Materials Today:

Proceedings.

Programmableweb. (2021). API Directory. Retrieved from

https://www.programmableweb.com/category/all/apis

Ragnarsson, Stefan, & Van Loan, Charles F. (2012). Block tensor unfoldings. SIAM

Journal on Matrix Analysis and Applications, 33(1), 149-169.

Rajih, M., Comon, P., & Harshman, R. A. (2008). Enhanced line search: A novel method

to accelerate PARAFAC. SIAM Journal on Matrix Analysis and Applications,

30(3), 1128-1147.

Rao, J., & Su, X. (2005). A Survey of Automated Web Service Composition Methods, In

International Workshop on Semantic Web Services and Web Process

Composition (pp. 43-54). Springer, Berlin, Heidelberg.

Rezaee, M. R., Lelieveldt, B. P., & Reiber, J. H. (1998). A new cluster validity index for

the fuzzy c-mean. Pattern Recognition Letters, 19(3-4), 237-246.

Ruffinelli, D., Broscheit, S., & Gemulla, R. (2019). You can teach an old dog new trick!

on training knowledge graph embeddings. Paper presented at the International

Conference on Learning Representations.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering

recommendation algorithms. Paper presented at the Proceedings of the 10th

International Conference on World Wide Web.

Shang, W., Wang, K., & Huang, J. (2018). An Improved Tensor Decomposition Model

for Recommendation System. International Journal of Performability

Engineering, 14(9), 2116.

Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., & Mei, H. (2007). Personalized QoS

prediction for web services via collaborative filtering. Paper presented at the

IEEE International Conference on Web Services.

Shashua, A., & Levin, A. (2001). Linear image coding for regression and classification

using the tensor-rank principle. Paper presented at the Proceedings of the 2001

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition.

https://www.programmableweb.com/category/all/apis

149

Shi, M., Li, D., & Zhang, J. Q. (2019). Matrix Polynomial Predictive Model: A New

Approach to Accelerating the PARAFAC Decomposition. IEEE Access, 7,

91872-91884.

Shi, Q., Cheung, Y.-M., Zhao, Q., & Lu, H. (2018). Feature extraction for incomplete

data via low-rank tensor decomposition with feature regularization. IEEE

Transactions on Neural Networks and Learning Systems, 30(6), 1803-1817.

Signoretto, M., De Lathauwer, L., & Suykens, J. A. (2010). Nuclear norms for tensors

and their use for convex multilinear estimation. Journal of Linear Algebra and

Its Applications.

Silic, M., Delac, G., & Srbljic, S. (2014). Prediction of atomic web services reliability for

QoS-aware recommendation. IEEE Transactions on Services Computing, 8(3),

425-438.

Song, Qingquan, Ge, Hancheng, Caverlee, James, & Hu, Xia. (2019). Tensor completion

algorithms in big data analytics. ACM Transactions on Knowledge Discovery

from Data (TKDD), 13(1), 1-48.

Stork, D. G., Duda, R. O., Hart, P. E., & Stork, D. (2001). Pattern classification. A

Wiley-Interscience Publication.

Symeonidis, P. (2015). ClustHOSVD: Item recommendation by combining semantically

enhanced tag clustering with tensor HOSVD. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 46(9), 1240-1251.

Tao, D., Li, X., Hu, W., Maybank, S., & Wu, X. (2005). Supervised tensor learning.

Paper presented at the Fifth IEEE International Conference on Data Mining.

Thomas, L., & Immanuel, A. (2017). Web Service Composition: A Survey on the

Various Methods used for Web Service Composition. International Journal of

Advanced Research in Computer Science, 8(3).

Wolf, L., Jhuang, H., & Hazan, T. (2007). Modeling appearances with low-rank SVM.

Paper presented at the 2007 IEEE Conference on Computer Vision and Pattern

Recognition.

Wu, H., Zhang, Z., Luo, J., Yue, K., & Hsu, C. H. (2018). Multiple attributes QoS

prediction via deep neural model with contexts. IEEE Transactions on Services

Computing.

Xiong, W., Wu, Z., Li, B., & Gu, Q. (2017, June). A learning approach to QoS prediction

via multi-dimensional context. In 2017 IEEE International Conference on Web

Services (ICWS), IEEE, 164-171.

150

Yu, C., & Huang, L. (2017). CluCF: a clustering CF algorithm to address data sparsity

problem. Service-Oriented Computing and Applications, 11(1), 33-45.

Zhang, J., Han, Y., & Jiang, J. (2016). Tucker decomposition-based tensor learning for

human action recognition. Multimedia Systems, 22(3), 343-353.

Zhang, W., Sun, H., Liu, X., & Guo, X. (2014a). Incorporating invocation time in

predicting web service QoS via triadic factorization. Paper presented at the

2014 IEEE International Conference on Web Services.

Zhang, W., Sun, H., Liu, X., & Guo, X. (2014b). Temporal QoS-aware web service

recommendation via non-negative tensor factorization. Paper presented at the

International Conference on World Wide Web.

Zhang, Y., Zheng, Z., & Lyu, M. R. (2011). WSPred: A time-aware personalized QoS

prediction framework for Web services. Paper presented at the 2011 IEEE

22nd International Symposium on Software Reliability Engineering.

Zheng, Z., Ma, H., Lyu, M. R., & King, I. (2009). Wsrec: A collaborative filtering-based

web service recommender system. Paper presented at the 2009 IEEE

International Conference on Web Services.

Zheng, Z., Ma, H., Lyu, M. R., & King, I. (2010). QoS-aware web service

recommendation by collaborative filtering. IEEE Transactions on Services

Computing, 4(2), 140-152.

Zheng, Z., Ma, H., Lyu, M. R., & King, I. (2012). Collaborative web service QoS

prediction via neighborhood integrated matrix factorization. IEEE

Transactions on Services Computing, 6(3), 289-299.

Zhou, Q., Wu, H., Yue, K., & Hsu, C. H. (2019). Spatio-temporal context-aware

collaborative QoS prediction. Future Generation Computer Systems,100, 46-

57.

151

Appendix A

Matrix factorization

Given a dataset of 𝑚-dimensional data vectors, the vectors are placed in the columns of a

𝑚 × 𝑛 matrix 𝑽 ∈ ℝ𝑚×𝑛, 𝑛 is the number of examples of the dataset.

The matrix 𝑽 is approximately equal to an approximation data matrix 𝑽̅ ∈ ℝ𝑚×𝑛 . The

approximation data matrix 𝑽̅ is factorized into a matrix 𝑊 ∈ ℝ𝑚×𝑟 and a matrix 𝐻 ∈ ℝ𝑟×𝑛

as shown as follows,

𝑽 ≈ 𝑽̅ = 𝑊𝐻

Set the data vector 𝑣𝑟 is the corresponding columns of 𝑽̅ = [𝑣1, 𝑣2,… , 𝑣𝑟,] ∈ ℝ
𝑚×𝑛, each

data vector 𝑣𝑟 ≈ 𝑊ℎ, where ℎ is the corresponding columns of 𝐻, and the 𝑟 usually is

smaller than 𝑚 or 𝑛.

To find an approximate factorization 𝑽̅ = 𝑊𝐻, the matrix factorization (MF) method seeks

a decomposition of the data matrix 𝑽̅ with matrices 𝑊 and 𝐻. We consider the objective

function 𝐸(𝑊,𝐻) which is given by

𝐸(𝑊,𝐻) = ||𝑽 − 𝑽̅||2 = ||𝑽 −𝑊𝐻||2 =∑(𝑽𝑖𝑗 − [𝑊𝐻]𝑖𝑗)
2

𝑖,𝑗

MF involves the following optimization problem:

arg min
𝑊,𝐻

𝐸(𝑊,𝐻)

= arg min
𝑊,𝐻

||𝑽 −𝑊𝐻||
2

= arg min
𝑊,𝐻

∑(𝑽𝑖𝑗 − [𝑊𝐻]𝑖𝑗)
2

𝑖,𝑗

152

Appendix B

Regular tensor decomposition

The tensor decomposition method applies in the high dimensional dataset from the matrix

factorization in Kolda’s literature. We focus on a 3-way tensor with rank-one 𝓧, and an

approximation tensor with rank-one 𝓧̅ = ⟦𝑈(1), 𝑈(2), 𝑈(3)⟧ where the factor matrix

𝑈(1), 𝑈(2), 𝑎𝑛𝑑 𝑈(3), X(1) is the 1st frontal slice of the tensor 𝒳, X(2) is the 2nd frontal slice

of the tensor 𝒳 , and X(3) is the 3rd frontal slice of the tensor 𝒳 . The frontal slices are

generated as the following equations,

X(1) = 𝑈
(1)(𝑈(2)⊙𝑈(3))

𝑇

X(2) = 𝑈
(2)(𝑈(1)⊙𝑈(3))

𝑇

X(3) = 𝑈
(3)(𝑈(2)⊙𝑈(1))

𝑇

where the symbol ⊙ denotes the Khatri-Rao product, 𝑇 denotes the matrix transpose.

Given a loss function ℓ(𝓧, 𝓧̅), the loss value is calculated between two tensors 𝓧 and 𝓧̅.

where ||𝓧 − 𝓧̅||2 is the L2 norm. When minimizing the function ℓ(𝓧, 𝓧̅) and it becomes

zero, a decomposition of the tensor 𝓧 is completed, and the components are generated.

ℓ(𝓧, 𝓧̅) = ||𝓧 − 𝓧̅||2 = ||𝓧 − ⟦𝑼(𝟏), 𝑼(𝟐), 𝑼(𝟑)⟧||2.

Following the Alternating Least Squares (ALS) algorithm, we obtain the regular factor

matrix U(n) 𝑛 = 1,2, 𝑎𝑛𝑑 3 as follows equations,

𝑈(1) = 𝐗(1)(𝑈
(2)⊙𝑈(3))

𝑇
⇒𝑈(1) = 𝐗(1)[𝑈

(2)⊙𝑈(3)] [(𝑈(2))
𝑇
𝑈(2) ∗ (𝑈(3))

𝑇
𝑈(3)]

+

𝑈(2) = 𝐗(2)(𝑈
(1)⊙𝑈(3))

𝑇
⇒𝑈(2) = 𝐗(2)[𝑈

(1)⊙𝑈(3)] [(𝑈(1))
𝑇
𝑈(1) ∗ (𝑈(3))

𝑇
𝑈(3)]

+

𝑈(3) = 𝐗(3)(𝑈
(2)⊙𝑈(1))

𝑇
⇒𝑈(3) = 𝐗(3)[𝑈

(2)⊙𝑈(1)] [(𝑈(2))
𝑇
𝑈(2) ∗ (𝑈(1))

𝑇
𝑈(1)]

+

where the symbol ⊙ denotes the Khatri-Rao product, 𝑇 denotes the matrix transpose, and

the symbol + denotes the pseudoinverse, and * denotes the Hadamard product.

Substituting the above equations, the function 𝑓(𝓧, 𝓧̅) is written as follows,

𝑓(𝓧, 𝓧̅) = ||𝓧 − 𝓧̅||
2
= ||𝓧 − ⟦𝑼(𝟏), 𝑼(𝟐), 𝑼(𝟑)⟧||

2

153

= ||𝓧 − (𝐗(1)[𝑈
(2)⊙𝑈(3)] [(𝑈(2))

𝑇
𝑈(2) ∗ (𝑈(3))

𝑇
𝑈(3)]

+

)°(𝐗(2)[𝑈
(1)

⊙𝑈(3)] [(𝑈(1))
𝑇
𝑈(1) ∗ (𝑈(3))

𝑇
𝑈(3)]

+

)°(𝐗(3)[𝑈
(2)

⊙𝑈(1)] [(𝑈(2))
𝑇
𝑈(2) ∗ (𝑈(1))

𝑇
𝑈(1)]

+

)||2

where the symbol ⊙ denotes the Khatri-Rao product, 𝑇 denotes the matrix transpose, and

the symbol + denotes the pseudoinverse, and * denotes the Hadamard product.

There is another representation of this algorithm. Set the 𝑢(1) is the corresponding vector

of the factor matrix 𝑈(1) = [𝑢(1)] , 𝑢(2) is the corresponding vector of the factor matrix

𝑈(2) = [𝑢(2)], and 𝑢(3) is the corresponding vector of the factor matrix 𝑈(3) = [𝑢(3)]. The

3-way original tensor 𝓧 ∈ ℝI1×I2×I3 is a result of the outer product of three vectors set as

follows,

𝒳 ≈ 𝒳̅ = [𝑢(1)] ◦ [𝑢(2)] ◦ [𝑢(3)]

where the symbol “◦” represents the vector outer product, [•] denotes the vector set.

We rewrite the loss function ℓ(𝓧, 𝓧̅) as the outer product of three vectors,

ℓ(𝓧, 𝓧̅) = ‖𝒳 − [𝑢(1)] ◦ [𝑢(2)] ◦ [𝑢(3)]‖
2
 .

The regular tensor decomposition method involves the following optimization problem:

arg min
𝑢(1),𝑢(2),𝑢(3)

‖𝒳 − [𝑢(1)] ◦ [𝑢(2)] ◦ [𝑢(3)]‖
2
.

