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Abstract—The promising energy saving and QoS gains of
Predictive Resource Allocation (PRA) techniques have recently
been recognized in the wireless network research community.
These gains were primarily introduced in light of perfect pre-
diction of both mobility traces and anticipated channel rates.
However, under real world considerations of prediction errors,
the reported gains cannot be guaranteed and further investigation
is needed. In this paper, we demonstrate the practical potential
of PRA by developing a robust, probabilistic framework that
guarantees QoS satisfaction for video streaming under imperfect
predictions, without compromising the energy saving gains. The
proposed PRA framework uses chance-constrained programming
to model video streaming QoS for all users during the foreseen
time horizon. Closed form solutions are developed using the
Gaussian and Bernstein approximations based on the channel
statistical measures. Extensive numerical simulations using a
standard compliant Long Term Evolution (LTE) system are
presented to examine the developed solutions, for different user
mobility scenarios and target QoS levels. The results demonstrate
the various design trade-offs involved toward the practical
deployment of predictive video streaming in future generation
networks.

I. INTRODUCTION

Energy saving in wireless networks is receiving growing
interest from operators to increase revenues while minimizing
environmental impact. In particular, novel energy-efficient Ra-
dio Access Network (RAN) frameworks are urgently needed
since RANs account for more than half the network energy
consumption [1]. This is further accentuated with the pre-
dictions that mobile data traffic will experience a compound
annual growth rate (CAGR) of 57% from 2014 to 2019,
reaching 24.3 exabytes per month by 2019. Approximately
70% of this traffic, or 17.4 exabytes of monthly data will be
mobile video streaming. To cope with these challenges, novel
wireless resource allocation schemes targeting video delivery
are of paramount importance.
Recent positioning techniques enable the high predictability

of users’ trajectories in different environments [2], [3]. In
addition, studies on human mobility indicate that people tend
to follow the same movement patterns [4], [5], and thus, the
signal strength levels of mobile users can be highly predictable
[6], [7]. Consequently, Predictive Resource Allocation (PRA)
that leverages user signal strength patterns over a time hori-
zon, has recently been proposed to improve video streaming
quality [8], [9], and reduce transmission energy [10], [11].
The essence of PRA is to apply long-term allocation plans
over several seconds, by exploiting knowledge of the future

user link capacities. This enables Base Stations (BSs) to
prioritize users moving towards poor radio conditions, or delay
transmission until a user reaches better channel conditions.
Stored video content such as YouTube and Netflix is well
suited for such approaches as it can be strategically prebuffered
and stored on the local cache of the User Equipment (UE).
The potential gains of PRA recently reported in literature

[8]–[13] are very encouraging, and demonstrate the need for
further investigation. In particular, ideal predictions of future
data rate with deterministic Quality of Service (QoS) con-
straints were primarily used. With such approaches, evaluating
system performance under real world uncertainty is challeng-
ing, and probabilistic QoS guarantees are not possible. Fur-
thermore, measurement studies reveal that the predictability of
signal strength varies significantly with geographical location
and time of day [7]. Stochastic PRA approaches are therefore
needed to 1) model the rate uncertainty adaptively, and 2)
incorporate probabilistic models that can strike a balance
between providing high gains when predictions are accurate,
and minimize the risks associated with erroneous predictions
during periods of uncertainty.
For the first time in literature, this paper introduces a

stochastic, predictive RAN framework that minimizes BS
energy consumption for video delivery to mobile users. This
is achieved while providing robust QoS guarantees that can be
tuned based on user priority and operator objectives. Herein,
we model the desired QoS satisfaction level as a probabilistic
chance constraint in which predicted rates are random vari-
ables, rather than the expected values used in previous works.
Two tractable deterministic forms, namely the Gaussian and
Bernstein, are then adopted to attain a closed form solution
for the probabilistic formulation. The first method requires an
invertible Cumulative Density Function (CDF) of the predicted
rate, while the latter is an alternative that requires only rate
bounds, and thus can consider more general prediction errors.
The resulting energy savings and QoS satisfaction levels are
then assessed and compared to evaluate their effective usage
within the proposed framework. We believe this work provides
a direction toward the development of practically deployable
predictive RANs in future generation networks.
In the following section, we provide a background to

Chance Constrained Programming (CCP), and review the
related literature. Section III presents the PRA problem def-
inition and highlights the limitations of the non-robust PRA.
The proposed CCP based PRA framework for energy-efficient
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video streaming is then presented in Section IV. Simulation
results are discussed in Section V and finally, we conclude the
paper in Section VI.

II. BACKGROUND AND RELATED WORK

Variations in received signal strengths over wireless chan-
nels are typically modeled as random variables. Conventional
Resource Allocation (RA) typically represent this randomness
by the expected value in the optimization problem. However,
the resulting deterministic formulation does not guarantee QoS
satisfaction as users may experience lower data rates than the
utilized expected values.
Robust stochastic optimization techniques represent the ran-

dom variable by its statistical properties (probability density
function, variance and mean) rather than the mean value only
[14]. The formulated problem comprises probabilistic chance
constraints that can guarantee QoS satisfaction by a certain
predetermined level 1− ε ∈ [0, 1]. Stochastic optimization can
also consider randomness in the objective function coefficient
as well [15]. In this paper, we focus on randomness in
constraint coefficients which are handled by CCP, initially
introduced in [16]. Essentially, the general formulation of CCP
for QoS satisfaction in RA is shown in Eq. 1 as follows:

Pr {f(xt, ηt) ≥ Dt} ≥ 1− ε, ∀t ∈ T , (1)

where f(xt, ηt) is the RA function at time slot t which
incorporates the decision variable xt, and the random rate ηt.
Dt is the user demand at time slot t and T is the allocation
decision time horizon. The above CCP formulation ensures the
satisfaction of demand Dt at each allocation time slot t with a
minimum probability of 1− ε. In other words, the probability
of violating the demand and therefore the QoS is bounded
by ε. CPP has been widely applied in several non-predictive
based optimizations for wireless resource allocation such as
OFDM scheduling [17] and channel assignment [18].
The main challenge of CCP is that the resulting problem

is no longer solvable by traditional mathematical optimization
techniques. Simulation based and analytical approaches have
therefore been introduced as solution mechanisms. Examples
of simulation based methods include realtime Monte-Carlo
simulations [14] where a large number of samples for the
random variable are drawn according to its probability density
function (PDF). Thus, the CCP is converted to a number of
non-probabilistic formulations each solved individually. Then,
the optimal solution is determined to be the one that satisfies
(1−η)×100% of the generated scenarios. However, the main
disadvantage of such methods is that optimality depends on
the number of samples [19] especially in high QoS levels to
accurately approximate the original PDF. Thus, this approach
is not easily applicable for realtime allocations. Alternatively,
analytical approaches such as Gaussian and Bernstein ap-
proximations [19] provide a deterministic closed form for
the CCP that can be solved with mathematical optimization
techniques. In particular, the Gaussian approximation (GA)
exploits the CDF and its inverse in deriving the deterministic
form. For cases of non-invertible or costly CDF computation,

the Bernstein approximation (BA) can be utilized. Herein, the
BA uses the moment generating function and its cumulant
to develop the deterministic equivalent of the CCP. Further
approximations [20] can be also applied to represent the final
deterministic form using only the maximum bounds of the
random rate.
In our energy-efficient robust PRA framework, both GA

and BA are applied. The former fits the recent measurement
for modelling rate prediction errors as a family of Gaussian
processes [21]. On the other hand, the BA approach is con-
sidered to extend the GA for general types of uncertainties.
This work differs from previous predictive resource allocation
studies that did not incorporate uncertainty and probabilistic
QoS guarantees [8]–[11], [13], and our work in [22] that only
considered fuzzy-based uncertainty in predicted user rates.

III. SYSTEM OVERVIEW

A. Preliminaries

We use the following notational conventions throughout the
paper: X denotes a set and its cardinality is denoted by X .
Matrices are denoted with subscripts, e.g. x = (xa,b : a ∈
Z+, b ∈ Z+). r̃ represents a normal random variable (r.v.), and
its cumulative density function is denoted as Q. The inverse
Q function of a zero mean and unit variance normal r.v. is
denoted by Q−1. E[·] denotes the expectation of a r.v. and
log(·) denotes the natural logarithmic function.

B. Problem Definition and Limitations of Non-Robust PRA

The system considers a BS with an active user setM where
the user index is denoted by i ∈ M. Each mobile user requests
video with a fixed streaming rate. The video is then transmitted
from the server to the Evolved Packet Core (EPC) and then
to the BS. We assume that user’s mobility trace is known for
the next T seconds, called the prediction window, and at a
per second granularity1. This results in a total of T time slots
within the prediction window, which we denote by the set
T = {1, 2, · · · , T }. The active users share the BS resources
(airtime fractions) at each time slot t. The resource allocation
matrix x = (xi,t ∈ [0, 1] : i ∈ M, t ∈ T ) gives the fraction of
time slot t during which BS’s bandwidth is assigned to user i.
The average available rate for user i at time slot t is denoted as
r̄i,t, which is calculated by mapping the predicted user traces
to the Radio Environment Map (REM) at the service provider.
The PRA problem addressed in this paper aims to satisfy the

users QoS level while minimizing the total BS airtime User’s
QoS is said to be satisfied when the video is played back
smoothly without stops. Quantitatively, this is achieved when
total amount of data delivered to the user at a certain time
slot is not less than the cumulative demanded data. The above
predictive green video transmission strategy was introduced in
[11], [12] and can be formulated as follows

1Note that in this paper our focus is on modeling the uncertainty in the rate
prediction, and designing a robust PRA, but not on user mobility prediction
itself.
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Fig. 1. Examples of resource allocation strategies.

minimize
x

T∑
t=1

M∑
i=1

xi,t (2)

subject to:

C1:
t′∑

t=0

r̄i,txi,t ≥ Di,t′ , ∀ i ∈ M, t′ ∈ T ,

C2:
M∑
i=1

xi,t ≤ 1, ∀t ∈ T ,

C3: xi,t ≥ 0 ∀ i ∈ M, t ∈ T .

The QoS constraint C1 ensures the smooth playback of the
video as the cumulative sent video content must be greater than
the cumulative demanded streaming data Di,t′ . The second
constraint models the limited resources at each base station by
ensuring that the sum of the airtime of all users is less than
1 at every time slot. Finally, C3 ensures the non-negativity
of the assigned airtime fractions. The above allocation was
shown to provide both energy savings and QoS satisfaction
under perfect future channel knowledge [10], [11].
Unlike traditional RA, the idea of energy-efficient PRA is

to wait until the user reaches peak radio conditions, and then
push large portions of the video to avoid future allocation in
the lower data rates. Before the user reaches the peak channel
conditions, QoS is met by allocating the minimum amount of
data to the user, i.e., the total allocated data is maintained to be
exactly equal to the demand before the peak is encountered.
An example of such an energy saving allocation strategy is
illustrated in Fig. 1. However, and as discussed previously,
the above formulation depends on the average value of future
data rates and thus it is not robust to any channel variations.
QoS satisfaction is therefore not guaranteed when lower rates
are experienced by the user due to imperfect predictions. This
limitation is illustrated in Fig. 1 where the QoS is not met in
the interval between 20 s and 30 s as the actual rate dropped
below its average predicted value as illustrated in Fig. 2.

Time Slot [s.]
0 20 40 60 80 100

D
at

a 
R

at
e 

[B
yt

es
]

×106

0

2

4

6

8

10

12 Predicted Average
Measured

Fig. 2. Examples of predicted rate variations.

IV. CHANCE CONSTRAINED PROBLEM FORMULATION

The robust PRA framework for video streaming uses prob-
abilistic chance constraints to model the QoS guarantees. This
is achieved by replacing the deterministic QoS constraint C1 in
Eq. 2 with the probabilistic chance form, where the expected
values of the predicted rates are replaced by random variables
as follows:

minimize
x

T∑
t=1

M∑
i=1

xi,t (3)

subject to:

C1: Pr

⎧⎨
⎩

t′∑
t=0

r̃i,txi,t ≥ Di,t′

⎫⎬
⎭ ≥ 1− ε,

∀ i ∈ M, t′ ∈ T ,

C2:
M∑
i=1

xi,t ≤ 1, ∀t ∈ T ,

C3: xi,t ≥ 0 ∀ i ∈ M, t ∈ T .

where ε ∈ [0, 1] is the maximum probability that video stops
occur, and takes values less than 0.5 for reliable performance.
In order to obtain a closed form solution of Eq. 3, the

probabilistic constraint should be replaced with a tractable
deterministic equivalent form. Generally in this form, the
random rate is replaced by its expected value r̄i,t in addition
to a subtracted safety term S. This safety term is a function
of: the statistical parameters (e.g. variance σ2) of the predicted
random rate, the QoS level (1 − ε) and the decision variable
xi,t. The resulting L.H.S should remain to exceed the demand
under variations in the predicted rate as depicted below:

t′∑
t=0

r̄i,txi,t − S ≥ Di,t′ , (4)

where S = f(σ2
i,t, ε, xi,t). The value of the safety function

is directly proportional to both the degree of constraint sat-
isfaction (1 − ε) and the variance σ2

i,t of the predicted rate.

255Authorized licensed use limited to: Queen's University. Downloaded on December 13,2021 at 16:04:03 UTC from IEEE Xplore.  Restrictions apply. 



For instance, for high values of (1− ε), the safety term should
increase in order to decrease the total equivalent predicted rate.
Thus, more airtime (higher xi,t) is allocated to compensate
the reduced rate and ensure that the demand Di,t is met
as illustrated in Fig. 1. Similarly, the safety term should be
increased to account for the scenarios where the predicted rate
drops dramatically below its expected value (i.e., high σ2

i,t).
Deriving the safety term should consider both the optimality

and feasibility of the obtained allocation. Highly conservative
safety terms guarantee QoS satisfaction at a degree much more
than (1− ε) even at higher variations. However, this occurs at
the expense of increased airtime, which decreases the energy
saving gain of the PRA. On the other hand, optimistic less
conservative safety terms allocate less airtime, and thus have a
high risk of violating the QoS level. In this paper, we discuss
two commonly used approaches to develop the safety term
in Eq. 4, namely the Gaussian and Bernstein approximations.
Generally, to derive the deterministic equivalent and the safety
term, the Gaussian approach requires an invertible CDF for
the predicted random rate. On the other hand, the Bernstein
approximation requires only the bounds of the predicted rate.
A background on the methodology and assumptions of both
methods is also provided, and the degrees of conservatism of
both techniques are then discussed and compared.

A. Gaussian Approximation

In GA, the predicted channel rate uncertainty is a normally
distributed random variable denoted as: r̃i,t′∼N(r̄i,t, σ2

i,t). The
summation of r̃i,t′ in C1 of Eq. 3 results in a multivariate
normally distributed variable with mean μ and variance-
covariance matrix Σ as depicted below:

μi =

t′∑
t=0

r̄i,t, ∀i ∈ I, ∀t′ ∈ T (5)

Σ =

⎡
⎢⎢⎣

σr
i,0

2 ... σr
i,0,t′

... σr
i,1

2 ...

σr
i,t′,0 ... σr

i,t′
2

⎤
⎥⎥⎦ , ∀i ∈ I, ∀t′ ∈ T (6)

Where: r̄i,t = E[r̃i,t], σr
i,t,k = E[(r̃i,t − r̄i,t)(r̃i,k − r̄i,k)]

is the covariance of both rates r̃i,t and r̃i,k . σr
i,t

2 = E[(r̃i,t −
r̄i,t)

2] is the variance of rate r̃i,t.
The deterministic closed form of Eq. 3 can be expressed

using the multivariate random variables and normal CDF as
follows:

Q(
Di,t′ −

∑t′

t=0
r̄i,txi,t√∑t′

t=0

∑t′

k=0
x2
i,tσ

r
i,t,k

) ≥ 1− ε,

∀ i ∈ M, t′ ∈ T ,

t′∑
t=0

r̄i,txi,t −Q−1
ε

√√√√ t′∑
t=0

t′∑
k=0

(xi,tσ
r
i,t,k)

2 ≥ Di,t′ ,

∀ i ∈ M, t′ ∈ T .

(7)

Assuming that the random rates experienced by each user over
the time slots are independent, σr

i,t,k = 0, ∀t �= k, and Eq. 7
reduces to Eq. 8 below:

t′∑
t=0

r̄i,txi,t −Q−1
ε

√√√√ t′∑
t=0

(xi,tσ
r
i,t)

2 ≥ Di,t, (8)

∀ i ∈ M, t′ ∈ T .

The above constraint representation is a second order cone
programming (SoCP) model whose convexity is guaranteed
for ε < 0.5 and xi,t ∈ [0, 1].

B. Bernstein Approximation

Unlike GA, Bernstein’s approximation utilizes the marginal
distribution and the moment generating function instead of the
inverse CDF. BA represents the chance constraint as a linear
summation of random variables as follows

Pr

(
f0(x) +

t′∑
t=1

ηtft(x) ≤ 0

)
≥ 1− ε, (9)

∀ t′ ∈ T .

Here ηt is the random variable with marginal distribution Pt,
and ft(x) is a convex function containing the decision vector
x. Assuming that all the random variables ηt are independent,
Pt has a bounded support on the interval [−1, 1] ∀t and the
function ft(x) is affine in the decision vector x. Therefore,
with the aforementioned assumptions, a convex deterministic
equivalent for Eq. 9 can be obtained as follows

inf
λ>0

[
f0(x) +

t′∑
t=1

λΛt(λ
−1ft(x)) + λ log

1

ε

]
≤ 0, (10)

∀t ∈ T .

Herein, Λt(z) is the logarithm of the moment generating
function Mt(z) for r.v. z as depicted in Eq. 11

Λt(z) =logMt(z) (11)

Mt(z) =E
[
ekz

]
=

∫
ekzdPt(k)

Instead of computing the exact value of the logarithm moment
generating function in Eq. 11, in addition to solving for the
auxiliary variable λ, a conservative approximation using the
upper bound can be adopted as in Eq. 12 [20].

Λt(z) ≤ max
{
μ+
t z, μ

−

t z
}
+

σ2
t

2
z2, ∀t ∈ T (12)

−1 ≤ μ−

t ≤ μ+
t ≤ 1

The variables μ+
t , μ

−

t and σt are used to approximate the
bounded support and their corresponding numeric values
are available in [20]. Therefore, a conservative deterministic
equivalent for Eq. 10 is attained using Eq. 12 and the arith-
metic inequality as follows
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f0(x) +

t′∑
t=1

max
{
μ+
t ft(x), μ

−

t ft(x)
}

(13)

+

√√√√2log(
1

ε
)

( t′∑
t=1

σ2
t ft(x)

2

)
≤ 0, ∀t′ ∈ T .

Finally, the robust PRA chance constraint C1 in Eq. 3 is
replaced by Eq. 13 as depicted in Eq. 14:

t′∑
t=1

r̄i,txi,t +

t′∑
t=1

μ−

i,tr̂i,txi,t (14)

−

√√√√2log(
1

ε
)

( t′∑
t=1

(σi,tr̂i,txi,t)2
)

≥ Di,t′ , ∀t′ ∈ T ,

where the random predicted rate r̃i,t is assumed bounded in
[rli,t, r

u
i,t]. To satisfy the assumptions for Eq. 10, this rate is

normalized in [−1, 1] by using the maximum deviation and
the average values denoted by r̂i,t and r̄i,t respectively:

r̂i,t =
rui,t − rli,t

2
, rui,t > rli,t

r̄i,t =
rui,t + rli,t

2
(15)

Similar to the GA, the above constraint is also an SoCP model
which is convex for ε < 0.5 and xi,t ∈ [0, 1].

C. Monte Carlo Statistical Parameters Estimation
In order to obtain optimal values of safety terms, the

statistical measures of the rate (i.e., σr
i,t

2 and r̂i,t) need
to be determined. Lower values of σr

i,t
2 or r̂i,t than the

actual measurements will result in a small value of the safety
term which increases the risk violating the QoS level, and
the converse is true. To address this, off-line Monte Carlo
simulations are adopted prior to solving the RA problem. The
simulation generates all the possible channel rates and adds
random errors to them to build the rate distribution function.
Different values of the signal to interference plus noise

ratio (SINR) are generated. For each value, the corresponding
rate is calculated and denoted as R. Concurrently, N random
samples are generated and added to the current SINR to

Fig. 3. Block diagram for generating statistical parameters of the predicted
rates using offline Monte-Carlo simulations

TABLE I
SUMMARY OF MODEL PARAMETERS

Parameter Value
BS transmit power 43 dBm
BW 5MHz
T 60 s
Streaming Rate 1 [Mbps]
BER 5× 10−5

Shadow correlation distance (m) 37 (LoS) and 50 (NLoS)
Shadow standard deviation (dB) 3 (LoS) and 6 (NLoS)
Velocity (km/h) 30 (Urban)

65 (Rural)
μ− −0.5
σ′
t

1√
12

Packet size 103 [bytes]
Packet rate (EPC to BS) 103s−1

Total number of packets 7.5× 103

generate erroneous SINR denoted as SINRe. Then, N rates
are constructed from SINRe and denoted as Re. These rates
are used to construct the probability distribution P of rate R.
The simulation continues to generates a new value of SINR
and repeats the above procedure until the maximum rate is
generated. Finally, the bounds of each distribution and the
variance are calculated while considering R to be the mean
value. It is worth noting that the SINR is mapped to the
corresponding CQI level using formulas in [23]. The latter is
then converted to the channel rate using the bandwidth (BW)
and bit error rate (BER) values according to [24], and the
generated error follows the 3GPP correlated fading model in
[25]. All the above steps are summarized in Fig. 3. The main
advantage of performing the above estimation off-line is to
generate large samples of both the SINR and the added random
variables. This results in highly accurate statistical estimation
of the parameters used in the robust PRA.

V. PERFORMANCE EVALUATION
A. Simulation Set-up
We simulate the proposed robust PRA using our modified

ns-3 LTE module [26] that is integrated with Gurobi solver
[27] to solve the SoCP optimization problem using Barrier
method.
Simulation results are averaged over 50 runs with different

shadowing values. Two mobility scenarios were considered;
urban and rural. Users move at a low speed with small inter-
vehicle distances in the urban scenario, and thus experience
similar average rate values at the same time interval. The rural
scenario models high speed moving vehicles with large inter-
vehicle distances. Consequently, users experience different
data rates from each other at the same time interval. Video
content is then requested by all users at a fixed streaming rate
over the considered time horizon. The numerical values of all
the parameters are summarized in Table I, while the variance
and bounds of each rate are calculated using the previously
discussed Monte-Carlo simulation.

B. Evaluation Metrics
The introduced robust PRA framework is evaluated based

on two metrics. The first is the percentage of videos stops
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Fig. 4. Performance of the robust framework for varying QoS levels (1 − ε) for 2 users experiencing NLoS variance in urban area.
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Fig. 5. Allocation at different feedback intervals for 2 users experiencing slow fading with LoS variance. in rural area

which is the percentage of time slots in which C1 in Eq. 2
is violated [22]. The maximum allowed percentage of stops
is equal to ε × 100%. The second metric is the average BS
airtime which reflects the energy consumption in the network
[28].

C. Simulation Results

1) Robustness in the Urban Scenario: In urban areas, users
start moving from the cell edge towards the centre. In order to
decrease computational complexity of the solver, the feedback
time τ was set firstly to a relatively long interval equal to
10 s. This is the interval over which the solver recalculates
the allocation of all users for the remaining future time slots. In
case of GA, the maximum degradation was surpassed for high
QoS (i.e., 1−ε ≥ 0.9) as shown in Fig. 4(a). This performance
is attributed to the overlooked dependency between the QoS
constraints over time. Consequently, demand violation at a
certain slot will propagate and affects the satisfaction in the
next slots within the feedback interval. Such violations last

until reallocation is done for the next slots. The value of τ
was set to lower values τ = 1 and 5s. where less degradation
occurs Fig. 4(a), but at the expense of both: increased airtime
Fig. 4(b) and the computational complexity.
The BA approach is very conservative, and thus the percent-

age of stops was kept below the maximum threshold for all
the QoS levels and feedback values of τ as shown in Fig. 4(a).
However, the airtime performance with τ is inverted compared
GA. This is due to the fact that users are moving from a
region of low rate towards the cell peak, and BA requires fast
feedback to decrease the conservative allocation at the cell
edge which consumes large airtime. Large feedback durations
continue to allocate large amounts of data at the cell edge.
BA requires small feedback durations to correct its conser-

vative allocation. Similarly, GA also requires the same small
feedback time but to recover the degradation in any timeslot
and prevent it from affecting the coming ones. The allocation
for user 1 in Fig. 5(a) demonstrates the aforementioned
properties. In GA Fig. 5(a) where degradation occurs at the
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Fig. 6. Performance of the robust framework for varying QoS levels (1− ε) for 2 users experiencing LoS variance in rural area.

first time slot, the small feedback (τ = 1 s) was able to
recover this by recalculating the allocation at the next time
slot (t = 2 s.). On the other hand, Bernstein’s conservatism
avoided the degradation in any of the time slots. However,
airtime allocation at early slots (where the rate is minimal)
was avoided by frequent feedback, while allocation continues
conservatively (large gap above the demand) for the case of
τ = 10 s as depicted in Fig. 5(b).
2) Robustness in Rural Scenario: The above conclusions

were drawn for the case of users experiencing similar radio
conditions at the same time. Thus, very conservative solutions
only affects the optimality of each user individually. We now
consider the rural scenario where some users are located as the
cell edge while others are at the cell peak and moving towards
the edge. Minimal allocation, to satisfy the QoS, is performed
for the users at the cell edge while prebuffering is done for the
cell peak users to avoid allocation at future low rate locations.
In this scenario, the conservatism of cell edge users is more
severe and affects the optimality of cell peak users as well due
to the provided small airtime for prebufffering. An example
of such a case is shown for user 2 (located at cell peak) in
Fig. 5(b). Due to the conservative allocation of user 1 located
at cell edge for τ = 10s., user 2 was unable to prebuffer in
the first 10 seconds while located at the cell peak. Thus, the
peak user had to wait until reallocation of the cell edge user
at t = 10s. so more airtime is provided for the former to
prebuffer at relatively lower rates.
Accordingly, the cost of conservatism in the rural scenario

has increased and thus the energy gap expanded between
Bernstein at (τ = 5 and 10 s.) and the less conservative
cases: i.e., Bernstein (τ = 1 s.) and Gaussian as shown in
Fig. 6(a). The frequent feedback of Bernstein (i.e. τ = 1 s.)
was able to overcome its expected conservatism and thus
results in nearly equal energy consumption compared to the
Gaussian case at the same feedback interval. Moreover, the
QoS satisfaction of large feedback intervals (τ = 5 and 10 s.)
is slightly enhanced for the Gaussian case where violation of

TABLE II
PERFORMANCE OF ALL SCHEDULING FOR 4 USERS EXPERIENCING SLOW

FADING WITH NLOS VARIANCE. IN URBAN AREA WITH ε = 0.01

PF PRA
(PK)

PRA
(NR)

GA
(1 s.)

GA
(10 s.)

BA
(1 s.)

BA
(10 s.)

Stops % 0 0 25.5 0.05 2.7 0 0
Airtime 7350 5550 5600 5670 5650 5750 5900

TABLE III
PERFORMANCE OF ALL SCHEDULING FOR 4 USERS EXPERIENCING SLOW

FADING WITH LOS VARIANCE. IN RURAL AREA WITH ε = 0.01

PF PRA
(PK)

PRA
(NR)

GA
(1 s.)

GA
(10 s.)

BA
(1 s.)

BA
(10 s.)

Stops % 0.12 0 7.5 0.5 5.8 0 0
Airtime 3660 2750 2950 2970 2950 3020 3120

the maximum degradation occurs only at the highest QoS level
for τ = 5 s, and at the highest two QoS values for τ = 10 s.

as depicted in Fig. 6(b). This is attributed to the prebuffering
strategy for the cell peak users and thus their QoS satisfaction
never fails resulting in lower average violation.
3) Comparison with Other Resource Allocators: The in-

troduced GA and BA approximations for the robust PRA
framework are now compared against: 1) Proportional fair (PF)
as a form of the opportunistic non-PRA, 2) non-robust PRA
[11] denoted as PRA (NR) and, 3) the theoretical benchmark
PRA that is aware of the exact rate variations denoted as PRA
(FK). Results for both urban and rural scenarios are shown
in Table II and Table III respectively. Whilst the non-robust
PRA resulted in the largest percentage of video stops, both the
robust approximations were able to satisfy the QoS at different
feedback intervals. This was done without compromising the
airtime significantly. Moreover, the robust techniques pre-
served the energy saving gain in PRA and thus result in less
airtime compared to the non-predictive PF. Finally, compared
to the benchmark which has full knowledge of the varying
rates, small intervals (τ = 1 s.) provided a comparable
airtime saving gain and nearly the same QoS. On the other
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hand, higher intervals either compromises the QoS or the
energy saving in case of Gaussian and Bernstein respectively
due to the reasons previously discussed. We remark that the
prediction gain decreases in the second scenario since half
the number of users are allocated at the cell peak. Thus, the
strategy of both predictive and non-predictive allocators is the
same and appears to prebuffer the video of the cell peak users.

VI. CONCLUSION

We introduced a robust PRA framework for energy-efficient
video delivery using the Gaussian approximation (GA) and
Bernstein approximation (BA) approaches. The scheme was
evaluated for different user mobility scenarios and target QoS
levels. Simulation results show the resilience of the proposed
PRA framework in meeting QoS constraints, while main-
taining low energy consumption levels. The BA formulation
successfully satisfied the QoS in all movement scenarios and
levels (1 − ε), regardless the feedback interval τ . However,
airtime minimization was suboptimal, particularly for a large
τ . Therefore, to minimize energy with BA, a small feedback
interval is recommended at the expense of increased computa-
tional complexity. On the other hand, the GA formulation pro-
vides more energy savings, which are inversely proportional
to the feedback intervals. Thus, energy minimization with low
complexity can be simultaneously achieved. This comes at
the cost of QoS violations especially during higher network
loads. In summary, since small feedback intervals should be
practically avoided, the BA approach can be applied for high
QoS guarantees, while GA is recommended when the energy
minimization is the primary objective.
Our future work considers the following enhancements to

the robust PRA framework:
1. Decreasing the complexity of low feedback intervals by

applying directed heuristic optimization techniques that
exploit the problem’s features [11].

2. Considering the joint probability between the consecutive
QoS constraints over the time horizon. This may facilitate
both energy minimization and QoS guarantees using the
GA with large feedback intervals.

3. Providing less conservative upper bounds for the cumu-
lative generating function to enhance BA’s conservatism.
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