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Abstract—The next-generation mobile networks will be
equipped with sophisticated communication security, ensuring
the safety and authenticity of the transmitted information.
However, many of today’s prominent security measures are
cryptography-based and present several operational challenges
in mobile computing systems. Thus, enforcing security measures
can greatly affect communication performance, particularly,
when it comes to time-based guarantees such as delay and
jitter. Moreover, mobile computing systems have limited energy
sources, which can be depleted quickly by improperly enforcing
such resource-intensive operations. Therefore, it becomes vital
to understand the computational characteristics of security
measures from a communication perspective. By observing
these characteristics, it may be possible for existing and future
mobile systems to be suited with security functions that provide
the sufficient communication security while maintaining both
the power-efficiency and the delay/jitter requirements. In this
paper, we propose a benchmarking environment for evaluating
cryptography-based security functions from a communication
perspective. The paper investigates how mobile systems’ design
and operation characteristics have a significant impact on the
computational characteristics of security functions. The paper
explores the evaluation metrics that can be used in benchmarking
security functions within various communication settings and
proposes the use of a simple and effective delay-based metric for
the benchmarking process. The computational characteristics of
some selected security functions are evaluated under the proposed
benchmarking environment and presented in this paper. While
the main focus of the work is the widely utilized mobile communi-
cation settings, the proposed evaluation scheme can be applied for
other communication settings and for noncryptographic security
functions.

Index Terms—Benchmark testing, communication system
security, message authentication, mobile security, next-generation
Internet, resource management.

I. INTRODUCTION

I NFORMATION security represents an integral element for
both future computing applications and next generation

networks. Without applying proper security measures, future
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computing services and networks will not sustain the grow-
ing number and variety of security attacks, risking potentially
catastrophic consequences for governments, businesses, and
the people depending on these services. This threat motivated
decades of designing and proposing various functions, proto-
cols, and frameworks, targeting a wide range of security aspects
at different levels within the computing industry. It also yielded
security architectures and systems such as IPSec, SSL/TLS,
Kerberos, TCP-AO, SCTP-AUTH, to name a few [1].

Given their strength advantage, several cryptographic func-
tions have found their way as software-based and hardware-
based solutions to provide information encryption and
verification services. The use of cryptography, however, is
computationally demanding in terms of both resources and pro-
cessing time, which is why early Internet developers avoided
adopting such measures in various existing real-time and/or
high-speed services, depending only on noncryptographic and
less-secure approaches such as tough passwords and ques-
tions. These approaches, however, are unfit for changing
landscape of the Internet, including the rapid development
of wireless communications and the increasing popularity of
smart mobile systems, and the introduction of new networking
paradigms such as peer-to-peer (P2P), Internet-of-Things (IoT),
and information-centric-networks (ICNs).

Recently, several performance and cryptanalysis studies for
existing and new cryptography-based security functions have
focused on evaluating the strength of cryptography-based func-
tions and their absolute physical resource demands. However,
the evaluation of the absolute resource demands may not be
beneficial for effectively handling communication quality-of-
experience (QoE), since a resource demand does not always
translate into a required information processing latency in a
communication session. Moreover, today’s mobile computing
architectures make it more challenging to find a determinis-
tic relation between the resource demand and the processing
time. Only slight considerations were made for how the func-
tions behave under the constantly varying resource capabili-
ties of a mobile computing system. Without considering the
dynamic nature of mobile systems for the evaluation, an accu-
rate estimation cannot be properly obtained for both latency
and jitter in the established communication sessions. Such
voids in understanding can lead to undesirable communication
and system performance issues, especially in next-generation
networks such as IoT and ICN, where many of the commu-
nicating systems are mobile with controlled/limited resource
capabilities.
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This work introduces a comprehensive benchmarking envi-
ronment to evaluate cryptography-based security functions
from a communication perspective. In this paper, we propose
a benchmarking procedure for evaluating cryptography-based
security functions in communication environments. In doing so,
we suggest the use of a delay-based metric called apparent pro-
cessing to facilitate a meaningful evaluation for communication
purposes as seen by the initiating mobile systems. The metric
borrows from the notion of apparent parallelism utilized in the
context of parallel computing. The evaluation presented in this
paper is focused on the important types of cryptography-based
security functions that generate message authentication code
(MAC); a security measure that provides information integrity
protection service for communication sessions.

This paper is organized as follows. Section II surveys
related work and evaluation/benchmarking architecture and
illustrates the need for benchmarking security functions in
mobile computing systems from a communication perspec-
tive. Section III describes how a cryptography-based security
function is evaluated in terms of the resource demands and
offers guidelines on how to properly evaluate it for commu-
nications. Section IV details the benchmarking environment
used to evaluate selected MAC security functions. A bench-
marking analysis for the evaluated security functions results
is presented in Section V. Section VI lists observed con-
siderations and challenges faced by the fellow researchers
who may be interested in replicating the benchmarking anal-
ysis. Finally, conclusion and future directions are noted in
Section VII.

II. RELATED WORK AND MOTIVATION

Cryptography-based security functions include stream/block
ciphers, public key cryptography, cryptographic hashing func-
tions, and MAC functions. Security measures offered by these
functions mainly include information encryption/decryption,
validation, and signing. Conducting performance studies for
cryptography-based security functions has been the focus of
several works in the literature, such as evaluating different
implementations directly and indirectly for various applications
[2], [3], architectures [4]–[7], and network structures [8], [9].
Those studies usually aim to illustrate the performance superi-
ority of certain security functions or the shortcomings of some
other security functions. If we exclude cryptanalysis-related
studies, an evaluation of security function can mainly analyze
one or more of the following metrics.

1) Processing power: Concerns the absolute processor
cycles or number of execution steps required by the eval-
uated security functions [4], [6], [10]. Evaluation of the
processing power is essential to ensure that the evalu-
ated functions operate in a timely manner under several
computing systems and to observe the resistance of the
evaluated functions against certain availability attacks,
such as denial-of-service.

2) Demanded memory space: Concerns the memory size,
measured in bits or bytes, required statically and/or at run
time by the evaluated security functions [8], [10], [11].
The evaluation of memory space demands is mainly used

for investigating the suitability of implementing security
functions in space-constrained computing systems, such
as sensors and smart cards, where the memory space is
limited to few kilobytes.

3) Throughput: Concerns the output rate, in terms of bits
or bytes, of the evaluated security functions [5], [10],
[12], [13]. This study usually is linked to the process-
ing power and represents the suitability of integrating
security functions in high-speed networks and services.
Usually, these types of networks and services, such as ter-
restrial networks, do not require certain communication
latency/jitter guarantees.

In addition to the aforementioned efforts, several benchmark-
ing suites for evaluating cryptographic performance have been
introduced. The main aim of these suites is to evaluate how fast
a cryptography-based function computes under diverse con-
ditions. Examples include NPCryptBench [14], eBACS [15],
and Crypto++ [8]. These suites also feature benchmarking
for different message sizes (as with eBACS), for operating
under network processors (as with NPCryptBench), and for
multiprocessing performance (as with Crypto++).

Most of the performance studies and benchmarking suites
presented above are centered on evaluating the security func-
tions under different computing architectures. Such evaluations
do not capture the dynamic nature of mobile computing,
which is extremely dependent on the active computing con-
text, not on the computing environment context where they
are evaluated at or on the application/service where they are
evaluated for. While it is essential to analyze a security func-
tion to understand its nominal demands and characteristics,
such an analysis may not be beneficial in practice as the
characteristics and operation behaviors of today’s computing
systems and applications are complex and diverse. For exam-
ple, today’s mobile systems are powered by various single-core
and multiple-core processors whose operations vary on the
run [16]. Meanwhile, many mobile systems are equipped with
additional hardware-assisted components to offload computing-
intensive operations such as graphics and cryptography from
their main processors, while the base applications and services
are still maintained by the main processors [17]. The existing
benchmarking approaches are thus limited in understanding the
operational impact of security functions on a communication
session, especially since the benchmarking is handled out-
side the core or processor where the communication session is
handled.

To further elaborate, different considerations including
the following must be taken into account when evaluating
any cryptographic security function from a communication
perspective.

1) Context: The resource capability of a computing sys-
tem can be a reflection to the surrounding context. For
example, factors such as the operating temperature, power
source, local time, demands of the calling applications,
and activities of other communicating entities on the local
network can greatly affect the processing timeline of
the operating security functions, regardless of the actual
resources required. Thus, in communications, it is more
informative to be aware of how much time is needed to
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apply communication security measures instead of the
amount of resources required. Such awareness can be
helpful for a more effective quality-of-service (QoS) man-
agement in communications guarantees, which is mainly
correlated to the transmission latency, not to the absolute
resource utilization.

2) Resources involved: Next-generation Internet protocols
and their related operating systems will have several secu-
rity measures as a standard feature. The execution of the
supported security functions can be locked on certain
processor cores and/or memory space, so those func-
tions do not render the system unusable in case of high
load. Previously conducted performance studies com-
monly focus on the processor power consumed by an
evaluated function without taking into consideration how
many cores are involved by executing that function.

3) Extra-processor computation: There are implementations
of security functions that execute outside the main pro-
cessor, e.g., an external cryptographic processor. Yet, in
such instances, the main processor is still responsible for
handling the communication session utilizing the security
function. Evaluating the processing power on either the
main processor or the external processor alone may not
sufficiently indicate the effective performance analysis of
that communication session.

4) Implementation heterogeneity: The resource capabil-
ity of a system can refer to the implementation of
the security functions on the communicating systems.
Some systems may have hardware circuitry or hardware-
assisted instructions for the cryptographic encryption
or hashing engines. Some systems use security func-
tions that are designed to run on multiple simultane-
ous processors, while other systems use functions that
are designed to run on single processors. Even sys-
tems that have the same physical capabilities can have
different software implementations for the same secu-
rity function. Such implementation dependency leads
to diverse performance trends between communicat-
ing systems. This diversity can cause performance or
availability issues for limited-resource systems such as
sensors.

5) Resource management: Most mobile systems today are
equipped with some sort of resource management tech-
nique, aimed mainly at providing an energy-efficient
operation. In such systems, the useful resource capabil-
ities are subject to the mobile system’s resource man-
agement, which normally operates dynamically based
on the processing demands. As with the implementation
heterogeneity, communications between mobile systems
with dynamic resource management techniques can have
diverse performance trends, including the nondeterminis-
tic performance expectations of security functions oper-
ating on those communications. In addition, expectations
on how mobile system resources are controlled do not
necessarily reflect on how security functions will behave.
For example, doubling the processor clock speed on a
mobile system does not mean that the operating MAC
functions will take exactly half the processing time, as

they are subject to other architecture factors such as the
design of the processor execution pipeline and the I/O
bus’ speed.

6) Workload concurrency: Previous studies did not consider
the use of concurrent workloads (e.g., to simulate multiple
connections) for their evaluations. With concurrent work-
loads, effects of scheduling, memory and I/O demands
can be reflected on the processing time, giving more real-
istic performance determination from a communication
perspective, such as computing the system’s capacity with
respect to the number of concurrent connections.

Therefore, it becomes obvious that there are substantial con-
siderations to be made beyond processing power, memory
demands, throughput, or even the strength of the evaluated
security functions themselves. It is clear that a security function
may not be implemented or executed across different mobile
computing architectures, so that many existing security proto-
cols with predetermined underlying security functions cannot
suit every existing and future mobile system. Moreover, exist-
ing protocols usually rely on having a predetermined security
function that operates statically during a connection lifetime,
which makes them vulnerable for easier attacks as opposed
to if they have a methodology to frequently change the oper-
ated security function during that connection lifetime. Future
security protocols may thus need to implement some sort of
adaptive functionality that securely serve current and future
communicating applications regardless of their requirements or
the capabilities of their computing environments.

The objective of the work presented here is to realize an
environment that accurately and effectively characterizes the
effect of aforementioned considerations on the computational
behavior of the security functions operating in communication
environments. This work extends efforts made in [18] and [19]
and emphasizes the significance of evaluating security func-
tions from the communication perspective and beyond their
actual demands and requirements.

III. UNDERSTANDING THE PERFORMANCE EVALUATION

OF A SECURITY FUNCTION

Basic functionalities for the cryptography-based security
functions existing today can be categorized into one of the
following categories.

1) Keying, where security functions assign a “secret” phrase
to be used in cryptographic operations.

2) Encryption, where security functions use a cryptographic
methodology, in conjunction with the “secret” phrase, to
alter information such that it cannot be restored without
having the “secret” phrase.

3) Decryption, where security functions use a cryptographic
methodology, in conjunction with the “secret” phrase, to
restore previously encrypted information.

4) Hashing, where security functions use a cryptographic
computation to generate a fixed and unique checksum tag
(or hash) for given information.

Other well-known functions and frameworks, such as pub-
lic key infrastructure, digital information signing, and message
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TABLE I
METRICS FOR EVALUATING BASIC SECURITY FUNCTIONS

authentication, utilize one or more of the aforementioned basic
security functions.

As with other computing elements, security functions are
evaluated in terms of their time and space complexities.
However, security functions differ in that their key objective
is to resist breakage attacks and process information in a timely
manner and are thus further evaluated in terms of cryptanalysis
and information throughput.

The following elaborates on how the performance of security
functions is commonly evaluated in the literature.

A. Current Performance Evaluation Approaches

Performance studies in the literature evaluate security func-
tions in one of the two major approaches: 1) analytical and
2) empirical. The analytical approach involves the use of theory
and mathematical proofs to determine the time and space com-
plexities of the analyzed function. Such approach also focuses
solely on the performance of the analyzed function and does not
consider the effects of the computing mobile architecture and
the operating context, e.g., impact of scheduling preemption or
the processing power optimization.

The empirical approach involves the use of measurement
probes to understand the performance of a function at runtime
and yields a more realistic performance view. The empirical
approach is, therefore, more appealing to application devel-
opers as it helps in the proper design of security-critical
applications. However, conducting a performance study under
this approach is usually subject to the implementation of the
analyzed function and the hosting system. The scope of an
empirical performance study is, therefore, typically subjected
to a limited range of computing systems that share similar
architectural characteristics.

Regardless of which approach is used, security functions are
analyzed in the literature in terms of the processing power, the
demanded memory space, or the throughput. Table I summa-
rizes the aforementioned metrics with their most commonly
used units.

Fig. 1. Placement of the evaluation probes (a) within the evaluated security
function and (b) within the calling application.

B. Evaluation From a Communication Perspective

When it comes to production–computing environments,
security functions do not operate in isolation and are always
executed as parts of other computing applications or ser-
vices. This is the case with communication protocols and
services. Taking into account the aforementioned considera-
tions, the following guidelines should be followed when imple-
menting an evaluation setup for testing security functions in
communications.

1) Empirical evaluation: When we consider real-time and
delay-critical applications calling auxiliary functions,
such applications are highly dependent on how long a
called function takes rather than how much resources
that function requires [20]. In addition, the existing diver-
sity of computing architectures and software implemen-
tations poses complex challenges for researchers who
use analytical approaches for evaluating an application’s
performance.

2) Understanding communication session: Modern comput-
ing entities establish multiple communication sessions
between each other. Within the established sessions,
information is transmitted across various network inter-
faces in the form of packets. Thus, if a security function is
employed into a communication session, it will typically
operate on the transmitted packets. Thus, the evaluation
of a security function should be conducted in a way that
reflects aforementioned communication characteristics.
For instance, an involved security function should be eval-
uated under the existence of concurrent communicating
sessions that operate on various packet sizes.

3) Placement of the evaluation probes: Measurement probes
are usually placed into the implementation of the evalu-
ated functions, as illustrated in Fig. 1(a). Such placement
does not take into consideration the overhead caused by
the switching from and to the calling application. This
in turn distorts the performance and availability mea-
surements sought. From a communication perspective,
a better placement is within the communication session
process, as shown in Fig. 1(b).

4) Evaluation metrics: With today’s sophisticated mobile
computing hardware and software, it is extremely chal-
lenging to observe the absolute demands of an evalu-
ated function, especially if such function and its calling
application are handled by independent software and/or
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hardware components. For instance, a communication
session calling a security function handled by an external
cryptoprocessor will not be dependent on the function’s
absolute with respect to the main processor. In such a
scenario, it is more practical to evaluate the security func-
tion’s demands as they appear to the calling application.

IV. BENCHMARKING ENVIRONMENT FOR EVALUATING

MAC FUNCTIONS IN MOBILE SYSTEMS

In this section, we introduce our benchmarking environment
for evaluating MAC functions in mobile systems from a com-
munications perspective based on the guidelines detailed above.
It should be noted, however, that the guidelines can be applied
in benchmarking any cryptography-based security function and
in any computing system.

A MAC function has three key operations. The first operation
is known as keying, where a secret key is assigned to the MAC
function to be used in generating secure MACs. The second
operation is known as tagging, where MACs are generated and
attached to the corresponding messages. The third operation is
known as validating, where a message is validated against a
MAC attached to it.

MAC functions are powered by two types of cryptographic
functions: 1) hash or 2) block cipher [21]. Hash functions, such
as MD5, SHA1, and SHA2, are one-way compression algo-
rithms that map variable-length large messages into short fixed-
sized strings that are unique to their corresponding messages.
Block cipher functions, such as AES, TWOFISH, SERPENT,
and RC6, are encryption/decryption algorithms designed to
work on fixed-sized portions of given messages called blocks.
MACs are generated either by directly hashing combined mes-
sages with provided secrets using hash functions or by hashing
message blocks encrypted with provided secrets when using
block cipher functions.

In order to successfully evaluate the MAC functions for com-
munication purposes within mobile systems, it is important to
have a benchmarking setup that effectively describes the true
nature of both mobile environments and communications. To
achieve this, the benchmarking setup should incorporate the use
of mobile production systems and production operating systems
configured for everyday usage. For communications, the setup
should emulate concurrent processing of message authentica-
tion and utilize realistic message lengths used in major mobile
protocols.

In the benchmarking setup presented in this work, real archi-
tectures from three major well-known brands in mobile com-
puting were evaluated. A customizable distribution of Linux
operating system is used, in which kernel is powering many of
today’s mobile systems. The workload is made to apply mes-
sage authentication processing in a simulated communication
mode while controlling some operational factors such as cores
involved, number of concurrent sessions, and session duration.
The evaluation workflow is also designed to ensure that the both
workloads and their parameters are appropriate for the studied
systems. Finally, the evaluation metrics are selected to observe
computational characteristics of the studied systems.

The following elaborates on the details of the benchmarking
setup.

A. Environment

The environment is designed to ensure the minimum influ-
ence from the operating system on benchmarking. All experi-
ments in this study were conducted under the Linux operating
system environment (Ubuntu 12.04 LTS). The chosen operating
system running in Gnome desktop mode uses the “Completely
Fair” scheduler for scheduling its processes.

A well-known cryptographic library Crypto++ (v. 5.6.2) is
used for this study as the provider for the evaluated MAC func-
tions. This selection is motivated by the library’s popularity
among academia for studying cryptographic performance and
cryptanalysis [8]. It is also open-source and has cross-platform
compatibility, making it suitable to run under various operat-
ing systems and computer architectures. The library further has
both hardware-assisted and software-only implementations for
some functions such as AES (using x86 AES-NI extension)
and SHA-256/512 (using x86 SSE-2 extension), making it a
good option to test the effect of different implementations using
the same hardware. More significantly, the library has its own
benchmarking tool that can be used as a validation tool for our
benchmarking results.

Evaluation results were obtained for MAC functions run-
ning under the following architectures that represent most of
the existing mobile systems in the market.

1) x86-Based (32-bit) Laptops and Tablets: Intel Core I3
M350 (32-bit mode; Dual-core with SMT), Intel Core I5
650 (32-bit mode; Dual-core with SMT), Intel Pentium
4 M 3.0 GHz (Single-core with SMT), Intel Atom D525
(Dual-core with SMT), and AMD Opteron 2354 (32-bit
mode; Quad-core).

2) x86-Based (64-bit) Laptops and Tablets: Intel Core I5 650
(64-bit mode; Dual-core with SMT).

3) ARM-Based (32-bit) Smart Phones and Tablets: Texas
Instruments’ DM3730 ARM Cortex A8 (Single-core) and
Texas Instruments’ OMAP 4460 ARM Dual-core Cortex
A9 (Dual-core).

B. Workload and Workflow

An in-house multithreaded benchmarking application is writ-
ten to evaluate selected MAC functions via controlled dynamic
mobile communication environments. The application uses
multithreading to create workload instances in order to min-
imize the effect of memory switching on the measurement
accuracy. The application was also equipped with a method
for binding the execution of the workload instances into cer-
tain predefined cores in order to prevent process migration.
Moreover, a resource–control module was integrated into the
benchmarking application in order to control the following
resource management features found in mobile systems.

1) Frequency scaling: Reduces or increases processor clock
speed based on the applications’ demands.

2) Simultaneous hardware multithreading (SMT): Improves
processor utilization (and reduces wasted energy from
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Fig. 2. Benchmarking workload procedure for tagging operation.

Fig. 3. Benchmarking workload procedure for keying operation.

underutilization) through executing multiple hardware
threads per core. With SMT enabled, it is expected that
processor temperature will be higher as the processor will
do more work in this case.

3) Processor/core parking: Parks (aka shutdowns or idles)
some of the active processor/cores in case of low
demands. Modern mobile systems also utilize this feature
in order to reduce operating temperature.

The benchmarking workload procedures for tagging and
keying are, respectively, illustrated in Figs. 2 and 3. Since
typical communication sessions usually run concurrently
with different durations and message lengths, the workload

Fig. 4. Benchmarking workflow procedure.

is implemented to simulate such conditions while assuming a
fixed selection of evaluated function and fixed session duration
per run to simplify the evaluation. In addition, the workload
executes the evaluated function as if it is in a typical production
session. Under each of studied architectures, the workload is
applied with no other foreground applications running except
for the Gnome desktop environment in order to reduce the
effect on the measurement accuracy.

The workload creates n session threads to emulate the
existence of n communication sessions transmitting messages
ranging from l bytes to h bytes. For each thread, there are n− 1
background threads representing n− 1 concurrent communi-
cation sessions. Within each session, measurements are taken
using both the processor clock and the system’s wall clock. The
period of taking measurements is defined by interval from t1 to
t2, where t1 and t2 are predefined time values between 0 and
the workload session duration t, with t2 > t1.

Fig. 4 describes the benchmarking workflow procedure. This
procedure is essential to ensure workloads being applied to suit
benchmarked systems, and measurements obtained are accu-
rate and informative. First, a benchmarking scenario is defined
to include the number of connections, the function to evalu-
ate, and the available/allocated resources. Through the process,
obtained measurements are analyzed and validated. For exam-
ple, the accuracy can be affected by resources overutilization,
insufficient session duration for reaching the steady state, inap-
propriate measurement period, or insufficient collected result
samples. In this case, their corresponding parameters, which are
the number of connections n, the session duration t, the mea-
surement period [t1, t2], and the number of iterations k, will be
adjusted accordingly for the next workload.

C. Metrics

Cryptography-based security functions are known to be
computationally demanding, but many of them do not pose
extensive memory and I/O demands. This makes the process-
ing power the most reasonable evaluation metric for these
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Fig. 5. Processing power of tagging operations under Intel Core I3 M350 (32-bit), using hardware-optimized Crypto++ Library.

functions. In this paper, two types of the processing power
metrics are considered.

1) Absolute processing power: Defined as the actual number
of cycles that a CPU uses to execute a function.

2) Apparent processing power: Defined as the estimated
number of cycles that a CPU appears to use for executing
a function, from the calling application perspective.

The above metrics are evaluated in two modes.
1) Task mode, where the metrics are evaluated for individual

function calls.
2) Average effective mode, where the metrics are evaluated

for all involved function calls during an evaluation session
and averaged over the number of those function calls.

In this study, only “keying” and “tagging” operations are con-
sidered for the processing power evaluation, as the “validating”
operates similarly to the “tagging” operation.

D. Evaluated MAC Functions

1) Hash-Based MAC (HMAC) [22]: A hash-based algo-
rithm used for message authentication in various popular
Internet protocols (e.g., IPSec and TLS [1], [23]). Evaluated
hash functions under this group are MD5, SHA1, SHA2-256
(simply SHA256), and SHA2-512 (simply SHA512).

2) One-Key MAC One (OMAC1 or Simply OMAC): Also
known as CMAC; a block cipher-based algorithm that was
introduced to resolve security flaw of its predecessor, CBC-
MAC when generating MACs for variable-length messages
[24]. In 2005, NIST recommended using OMAC for operat-
ing block cipher-based authentication [25]. Evaluated block
cipher functions under this group are RIJNDAEL, TWOFISH,
SERPENT, and RC6, all of which were the finalist candidates
in advanced encryption standard (AES) selection process with
Rijndael becoming the official AES [4].

3) VMAC: A block cipher-based algorithm designed to
offer high-performance message authentication service [26].
Optimized for 64-bit computing architectures, VMAC utilizes
block cipher functions via a “universal hashing” algorithm and
secret key to generate MACs for a given message. Evaluated
block cipher function under this group is AES, which is the
only implementation available for VMAC at the time of study.

E. Measuring Assumptions

The measuring overhead is taken into consideration when
setting up the workload in order to minimize its effect on the

measurement accuracy, especially for evaluating the processing
power in average effective mode. Meanwhile, the process-
ing memory utilization is assumed to be reflected on the
processing power to some degree due to the increased I/O activ-
ity resulted from the process/thread transfer into memory for
sleeping. Finally, voltage scaling, which saves power through
reducing the operating core voltage and which is not manually
adjustable, is assumed not to affect the processing power.

V. BENCHMARK ANALYSIS

Three scenarios are investigated in this benchmark study. The
first observes the generic computational characteristics of the
evaluated functions across various mobile computing architec-
tures. The effect of the mobile resource management on the
computational characteristics is the focus of the second sce-
nario. The third scenario is concerned with observing the role
of the process scheduling on the computational characteristics
of the evaluated functions.

A. Observing the Generic Computational Characteristics

In this benchmark scenario, the workloads run for k = 10
iterations with sessions running for t = 20 s. The measuring
start (t1 = 5 s) is set to give enough time for the sessions to
reach steady-state stage. The measuring end (t1 = 15 s) is set
lower than t to prevent the premature ending of sessions from
affecting the measurement quality. The resource management
control module is disabled since as the focus is on the generic
computational trends of the evaluated functions. However, the
execution-binding control module is used to bind the sessions
to their allocated resources, so session migrations do not affect
the measuring accuracy.

Figs. 5–8 show the processing power for the evaluated func-
tions under different architectures and implementations, with
100 simultaneous sessions per workload and message lengths
ranging from 16 bytes to 64 kbytes.

1) General Computational Trend for Architectures Using
the Same Function Implementation: The computational trend,
using the same implementation for Crypto++ library is mostly
similar across evaluated architectures. However, there are non-
deterministic differences in the performance despite having
the same software implementation running across the evalu-
ated architectures. This appears more clearly with the absolute
demanded resources in each of the evaluated architectures.
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Fig. 6. Processing power of tagging operations under Intel Core I3 M350 (32-bit), using software-only Crypto++ Library.

Fig. 7. Processing power of tagging operations under AMD Opteron 2354 (Dual Quad-core Processors—32-bit), using hardware-optimized Crypto++ Library.

Fig. 8. Processing power of tagging operations under Texas Instruments’ DM3730 ARM Cortex A8 (32-bit), using software-only Crypto++ Library.

Such nondeterministic behaviors are due to how different
architectures are designed to handle execution of programs.

We remark from Figs. 5–8 that the apparent processing
power, which reflects the processing latency as seen by the
communication sessions, differs from the absolute one under
the same evaluated architectures. In multicore computing envi-
ronments, such as in Figs. 5–7, the processing latency, from
the session perspective, appears to be better than the absolute
demanded resources, and it is somehow related to the number
of available processing cores. We note, however, that the appar-
ent processing power is also subject to the contention effect
with the background processes and I/O demands, as with Fig. 7,
where there are two quad-core processors, but the apparent pro-
cessing power appears to be up to six times better than the
absolute one.

2) Computational Trend Versus Message Size: The com-
putational trend changes with message sizes under different
architectures. Systems and services can, therefore, optimize the
selection of the best performing function based on the size
of the transmitted messages, provided that other factors such
as security strength and key setup time are also taken into
consideration.

3) Effect of a Function’s Implementation on Computational
Trend: In the hardware-assisted implementation of
Crypto++, as shown in Figs. 5 and 7, functions such as
AES and SHA take advantage of speed boosting, while in
Figs. 6 and 8, both AES and SHA lose their advantage. The
computational trend has changed with HMAC-MD5 being the
fastest processing 64-kbyte messages, and HMAC-SHA512
being the slowest (as opposed to VMAC-AES128 for fastest
and OMAC-SERPENT for slowest in the hardware-assisted
implementation). Such change in the trend is due to the fact
that software-only implementations usually require higher
I/O and memory operations than the hardware-optimized one.
This is reflected mostly with the HMAC-SHA512, which
operates on larger 1024-bit message blocks as opposed to the
512-bit message blocks in the other evaluated functions, and so
requires higher I/O operations.

Similarly, we note that the implementations built for 64-bit
architectures have different trends from the ones built for 32-bit
architectures. In the 64-bit mode, HMAC-SHA512 benefits
from the larger 64-bit register space, which reflected posi-
tively on its I/O operations and so its performance. Same
thing is observed with AES-based MAC functions, such as
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Fig. 9. Processing power of keying operations verses CPU frequency under Texas Instruments’ DM3730 ARM Cortex A8 (32-bit).

Fig. 10. Processing power of tagging operations (2048-byte messages) versus CPU frequency under Texas Instruments’ OMAP 4460 ARM Dual-core Cortex A9
(32-bit).

VMAC-AES128 and OMAC-AES128, since AES in 32-bit
mode requires higher memory access [27].

B. Observing the Effect of the Mobiles’ Dynamic Resource
Management on the Computational Characteristics

This benchmark scenario is constructed to provide a proper
understanding of how the dynamic environment of mobile
systems can affect the computational characteristics of the eval-
uated functions. In this scenario, we utilize the resource man-
agement control module to observe the environment dynamicity
in a controlled matter. Other evaluation parameters are same as
with the benchmark scenario in Section V-A, except that the
message size is selected to be 2048 bytes, which represents
the lowest value with order magnitude of 2 that is bigger than
the Ethernet packet size of 1500 bytes. Moreover, we do not
use the execution-binding module in order to observe the effect
of session migrations on the measurements.

1) Observing the Effect of Frequency Scaling: The results
for frequency scaling are shown in Figs. 9 and 10. Since fre-
quencies are usually available in several steps, we only focus
on three frequency levels for each processor: 1) the highest;
2) the middle; and 3) the lowest. It is intuitive to expect that the
absolute processing power should remain the same regardless of
the changes made in frequency scaling (The actual processing
time, however, is naturally expected to change.). This is because
absolute processing power is measured in cycles and not in
seconds. Practically, this is not the case for all/most processors
evaluated.

The only evaluated system that follows the aforementioned
intuition is the Intel Core I5 650, which exhibits only slight

irregularities in the performance of keying operations. These
irregularities are mainly due to the resource contention with
the OS and background processes, especially with the keying
operations being of the light-processing type.

In architectures with considerably slow memory and I/O
access compared to processor clock speed (especially with
entry-level systems such as ARM architectures with high-
speed CPU clocks), the increasing processor clock fre-
quency leads to an increased number of wasted cycles. This
appears noticeably with light-processing (Fig. 9) and/or I/O-
intensive (Fig. 10) operations, such as with HMAC-SHA512 in
32-bit mode.

Generally speaking, applying the frequency scaling has
resulted into nondeterministic behavior of the processing power
for the benchmarked tagging/keying operations. Some tagging
operation, such as in OMAC-SERPENT, had mostly showed
some performance improvement with the increased clock speed
across most of the benchmarked architectures, with no determi-
nation found between the operating frequency and processing
power. HMAC-MD5 tagging operations, on the other hand, had
shown slight performance degradation with the increase clock
speed across the evaluated architectures.

2) Observing the Effect of Core Parking and Enabling/
Disabling SMT: Fig. 11 shows the effect of core parking on
the apparent processing power of selected architectures, with
the percentage axis reflecting the additional cycles that the
evaluated functions require after enforcing the parking.

We observe that enabling SMT generally improves the per-
formance of tagging/keying operations; up to approximately
33% as shown in Fig. 11, since the resources of the SMT-
enabled processors, by design, are utilized more effectively.
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Fig. 11. Effect of parking and SMT availability on the performance degradation of the apparent tagging processing power (2048-byte messages) of selected
architectures. Intel Core I5 650: (a) 32-bit, (b) 64-bit. (c) Intel Atom D525 (32-bit). (d) Texas Instruments’ OMAP 4460 ARM Dual-core Cortex A9 (32-bit).

However, some evaluated functions under certain systems, such
VMAC-AES-128 under Intel Core I5 650 (64-bit mode), show
performance degradation among all evaluated MAC functions.
This can be due to the lack of sufficient instruction caching
space, causing excessive cache misses that reflects on the SMT
poor performance [28].

It is also noted that the trend of performance degradation
caused by core parking is subject to the architecture of the eval-
uated system. For example, OMAC-AES128 had shown 1.5x
performance degradation on an ARM-based architecture hav-
ing only one active core, while the same function had shown 2x
performance degradation on x86 architectures having only one
active core.

C. Observing the Effect of the Process Scheduling on the
Computational Characteristics

In this scenario, we focus on how the process schedul-
ing and the contention of background process can affect the
computational characteristics of the evaluated functions. We
conduct the evaluation in aforementioned modes: task, and
average effective, where previous scenarios are conducted in
task mode only. Since the focus is on the effect caused by
resource contentions, the resource management module is taken
out of the setup. All other parameters are the same as in the
Section V-B setup. However, as the results have been nor-
malized, measurement overhead was observed to rise by up
to 25%.

1) Observing the Effect of the Switching Overhead:
Figs. 12 and 13 show the processing power for some selected
mobile architectures, evaluated in both “task” and “aver-
age effective” modes. It is observed that “Completely fair

scheduler” is designed to watch solely for CPU demands. The
scheduler works on allocating CPU resources for processes
as a whole without considering the switching overhead due
to the memory and I/O demands of the involved processes.
Therefore, it is generally expected that the overall process-
ing power for a communication session to be greater than the
processing power of an individual tagging/keying operation.
This appears clearly in the evaluation of light-weight operations
such as keying (Fig. 12), where the allocated process mem-
ory plays a more significant role in affecting the processing
power. Moreover, the process switching has high impact on the
absolute CPU demands, indicating significant wasted processor
cycles due to the process switching. Such impact is less visible
with the apparent performance as it reflects memory and I/O
demands for individual operations, which is the same reason
why the apparent processing power usually appears higher than
the absolute one under single-core computing architectures.

2) Observing the Effect of Contention with Background
Processes: In order to observe how the processing power is
affected due to the contention with the background processes,
we focus on evaluating multicore architectures. We use the
execution-binding module to bind the evaluated functions to a
single processing core, leaving the background processes and
the OS to execute freely on all cores. We observe that with
the lightweight operations, such as keying and small message
tagging [Fig. 14(a) and (b)], the processing power increases if
all cores are used. This is because the demands for the slower
memory and I/O accesses dominate the demand for the faster
processing power in these operations. Therefore, the contention
on all cores will drive the processes to use additional process-
ing power to handle memory and I/O access bottlenecks. On the
other hand, we note that there are cases where evaluation on all

Authorized licensed use limited to: Queen's University. Downloaded on November 23,2022 at 12:17:33 UTC from IEEE Xplore.  Restrictions apply. 



RASHWAN et al.: CHARACTERIZING PERFORMANCE OF SECURITY FUNCTIONS IN MOBILE COMPUTING SYSTEMS 409

Fig. 12. Keying processing power of selected architectures in the two evaluation modes. (a) Texas Instruments’ DM3730 ARM Cortex A8 (32-bit). (b) Texas
Instruments’ OMAP 4460 ARM Dual-core Cortex A9 (32-bit). (c) Intel Atom D525 Dual-core (32-bit). (d) Intel Core I5 650 Dual-core (32-bit).

Fig. 13. Tagging processing power (2048-byte messages) of selected architectures in the two evaluation modes. (a) Texas Instruments’ DM3730 ARM Cortex
A8 (32-bit). (b) Texas Instruments’ OMAP 4460 ARM Dual-core Cortex A9 (32-bit). (c) Intel Atom D525 Dual-core (32-bit). (d) Intel Core I5 650 Dual-core
(32-bit).
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Fig. 14. Processing power for VMAC-AES128 under selected architectures in the two evaluation modes. (a) Texas Instruments’ OMAP 4460 ARM Dual-core
Cortex A9 (32-bit). (b) Intel Atom D525 Dual-core (32-bit). (c) Intel Core I5 650 Dual-core (32-bit).

cores improves the processing performance. Such cases include
the domination of the processing power over memory demands
[Fig. 14(c)], and the existence of a less significant contention
from the background processes. In either case, the impact on
the apparent performance is less visible than with the absolute
one, which is expected.

3) Observing the Effect of Processor Design: We observe
that processor design characteristics, especially with regards
to cache memory, have a significant effect on which resource
demands are dominating. For example, in Fig. 14, the keying
operation in VMAC-AES128 appears to be affected more by
the all-cores resource contention under Intel Atom D525 than
under the Intel Core I5 650. We can relate such finding to the
fact that the Intel Core I5 650 has a larger cache space and
higher memory access throughput. Therefore, we conclude that
whatever the effect of resource contention on the processing
power is subject on the design characteristics of the evaluated
architecture.

D. Observing Overhead of Applying MAC to Communication
Sessions

In this section, we discuss the impact of cryptography-based
security measures on the performance of communication ses-
sions. We focus on observing the significant impact of applying
MAC on the UDP communication performance, especially
when it comes to latency and jitter. We consider that the strength
of a MAC function is typically correlated to the rate between the

message size and its MAC size, where a lower rate translates to
a stronger security.

It is observed in Fig. 15 that the overhead in processing
latency generally increases with: 1) the increased UDP message
size; 2) the increased resulting MAC size; or 3) the increased
rate of key changes. It is also noted that the overhead is more
significant when it comes to ARM-based systems, since they
usually lack the computational power or hardware assistance
available to their X86 counterparts. This is also noticeable
in the throughput performance illustrated in Fig. 16. Such
variance in overhead makes ARM-based systems more vulner-
able to denial-of-service attacks. This is a critical observation,
especially given the current widespread of ARM-based systems
in mobile IoT networks [29].

In Fig. 17, we observe the throughput performance of a
UDP simplex communication, where all MAC functions gen-
erate 512-bit MACs for given message sizes. In MAC functions
with MAC size less than 512-bit, we assume only two substitute
techniques of generating a 512-bit MAC.

1) Packetization, where the message is divided into a number
of parts equal to the rate between the desired MAC size
and the function’s MAC size. Each part is tagged individ-
ually, and the resulting MACs are combined to form the
512-bit MAC.

2) Salting, where the message is tagged N times, where
N equals to the rate between the desired MAC size and
the function’s MAC size. For each process, the message
is padded with a 1-byte random padding (aka salt). The
resulting MACs are combined to form the 512-bit MAC.
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Fig. 15. UDP apparent processing latency under two selected architectures. (a) Texas Instruments’ DM3730 ARM Cortex A8 (32-bit). (b) Intel Core I5 650
Dual-core (64-bit).

Fig. 16. Apparent throughput for a simplex UDP session under selected architectures. (a) Texas Instruments’ DM3730 ARM Cortex A8 (32-bit). (b) Intel Core I5
650 Dual-core (64-bit).

We understand that MACs generated with aforementioned
substitute techniques may not represent the true strength equiv-
alence to native 512-bit MACs. However, generating a MAC
of an equivalent strength will require substantially higher pro-
cessing powers. We therefore, assume that the aforementioned
substitutes generate strength-equivalent MAC for the purpose
of this study in order to simplify the analysis.

It appears that using the packetization substitute to gen-
erate MACs of same size has less overhead compared with
the salting. This is expected since salting involves computa-
tion on larger message sizes, which in turn requires higher
processing power. The overhead variance between the pack-
etization and the salting is less with smaller message sizes,
where the processing power for preparing the MAC function
has significant share of the total processing power required for
the tagging operation.

It also appears that weaker MAC functions are not always
faster when generating stronger MACs, especially when the
message size is small. For example, HMAC-SHA2-512 has an
advantage over all other functions (except for VMAC-AES128)
generating MACs for 1024-byte messages under Intel Core I5
650, while HMAC-SHA1 has a comparable performance to
VMAC-AES128 operating on 1024-byte messages under TI
DM3730.

Given the previous findings, it is clear that the addition
of security measures will lead to a significant degradation of

UDP communication performance (which is also applicable
to other communication protocols). In high-bandwidth and/or
real-time services, such degradation can result in overutiliza-
tion of local resources for communicating entities, especially
the low-end systems, while having the network largely under-
utilized. The application of security measures will further lead
to an increased gap in the communication performance between
high-end and low-end computing systems. With the diversity
implementation and performance trends of the available secu-
rity measures under various computing architectures, it is not
feasible to adopt a specific function (e.g., HMAC-SHA512) to
offer data integrity measure for communications in all entities.
In such scenarios, a security measure is needed that adapts to
the context of the communication environments.

VI. FURTHER CONSIDERATIONS FOR REPEATABILITY

Fellow researchers interested in replicating this work for
validation and further expansion should keep in mind the
descriptions offered in Sections III–V, in addition to the follow-
ing considerations. Ignoring these considerations can affect the
accuracy of measuring both absolute and apparent processing
powers or render them useless as evaluation metrics.

In application development, interfacing with a function or
procedure can be accomplished in several ways. Examples
include calling a function in a separate library and calling a

Authorized licensed use limited to: Queen's University. Downloaded on November 23,2022 at 12:17:33 UTC from IEEE Xplore.  Restrictions apply. 



412 IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 5, OCTOBER 2014

Fig. 17. Apparent throughput for a simplex UDP session under selected architectures, where messages are tagged with 512-bit MAC. (a) Texas Instruments’
DM3730 ARM Cortex A8 (32-bit). (b) Intel Core I5 650 Dual-core (64-bit).

procedure from a separate process through pipes and sockets.
As with any computing operation, the interfacing demands pro-
cessor and I/O resources that can affect the performance of
the evaluated security function in front of its calling applica-
tion. Therefore, it is important to consider how the interfacing
with a security function contributes to the evaluation. It is also
important not to exclude the interfacing demands.

Meanwhile, some modern mobile and high-speed systems
may offload security functions outside their main processor.
Examples of places where security functions are offloaded into
include general purpose graphic processing unit (GPGPU) and
cryptographic processing units. While the performance can be
evaluated from the offload unit, it is important not to ignore
the main processor in the evaluation, since it is still handling
communication sessions that call the offloaded security func-
tion. In such cases, it will be more logical to benchmark for
the apparent processing performance, as if the main proces-
sor is executing that function, although it will not point to the
absolute performance of the evaluated security function at the
offload unit.

In a multiple processors/cores system, a thread can also
migrate from one processor/core to another. If such a sys-
tem does not maintain a synchronized clock across all the
processors/cores, it is not possible to get the absolute perfor-
mance for the evaluated security function. It will still be possi-
ble, however, to benchmark for the apparent performance. An
estimate for absolute performance can then be made knowing
the system’s parallelism factor [30].

The physical context of a modern mobile system may limit
the ability to conduct a controlled performance evaluation.
Modern mobile system can have built-in hardware profiles that
are internally applied based on the operating characteristics. For

example, a system can adapt the available processing resources
for different energy/battery levels. In such a scenario where the
evaluator cannot control the profile dynamicity, the benchmark-
ing should be conducted with the awareness of the system’s
ongoing operating context. Therefore, obtained performance
measures should be mapped to the continuously probed oper-
ating characteristics at the time of measurement, resulting in
additional overhead that increase challenges for obtaining a
realistic evaluation in resource-limited mobile systems.

Finally, it is important to be aware of the scheduling algo-
rithm used by the evaluated operating system. Some operating
systems might schedule evaluation sessions unevenly, which
will be mainly reflected in the measured apparent performance.

VII. CONCLUSION

Current mobile computing architectures widely vary in terms
of processing power, memory capabilities, I/O interfacing,
and other hardware-specific optimizations and adaptabilities.
Evaluating the impact of security functions on mobile systems
analytically or based on nominal time and space requirements is
not reflective of their performance in active systems, especially
from a communication perspective. Existing benchmarking
works also rely on absolute resource metrics, which are not
delay-based and do not reflect actual communication demands
nor many of today’s mobile computing sophisticated opera-
tion and features. Addressing this dynamic nature, we proposed
a carefully tailored benchmarking procedure for evaluating
security functions in mobile systems. We also introduced the
apparent performance metric, which is purposefully based on
showing processing delays over actual processing performance.
We observed various nonintuitive performance behaviors that
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necessitate revising how security functions are evaluated and
selected in mobile communications, especially when it comes
to time-based guarantees. Meanwhile, the suggested metric was
shown to be more informative in the communications context,
and a reasonable candidate metric in future protocol design.
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