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Abstract—The widespread use and increasing capabilities of mobiles devices are making them a viable platform for offering mobile

services. However, the increasing resource demands of mobile services and the inherent constraints of mobile devices limit the quality

and type of functionality that can be offered, preventing mobile devices from exploiting their full potential as reliable service providers.

Computation offloading offers mobile devices the opportunity to transfer resource-intensive computations to more resourceful

computing infrastructures. We present a framework for cloud-assisted mobile service provisioning to assist mobile devices in delivering

reliable services. The framework supports dynamic offloading based on the resource status of mobile systems and current network

conditions, while satisfying the user-defined energy constraints. It also enables the mobile provider to delegate the cloud infrastructure

to forward the service response directly to the user when no further processing is required by the provider. Performance evaluation

shows up to 6x latency improvement for computation-intensive services that do not require large data transfer. Experiments show that

the operation of the cloud-assisted service provisioning framework does not pose significant overhead on mobile resources, yet it offers

robust and efficient computation offloading.

Index Terms—Computation offloading, service provisioning, mobile services, mobile computing
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1 INTRODUCTION

THE role of mobile devices as service providers is
strongly supported by the continuous increase in their

capabilities and recent availability of high speed wireless
network technologies. The range of services that involve
mobile devices providing data are on the rise, ranging from
entertainment services, such as online social gaming and
networking, to crowdsourcing, such as collaborative partici-
patory sensing as well as services that can be offered on the
fly, such as video streaming of a current event. However,
the rich functionalities that such applications offer increas-
ingly demand resources beyond the capabilities of inher-
ently resource-constrained devices. The lack of resources
places limitations on the types of functionality and services
that can be offered.

The elastic resource provisioning of cloud computing
promises to bridge the gap between the limited resources of
mobile devices and the growing resource demands of mobile
services through offloading resource-intensive tasks. How-
ever, offloading such tasks does not always guarantee per-
formance improvements. For example, offloadingmay entail
large data transfer between the cloud and the mobile device,
which compromises the potential performance benefits and
incurs higher latency. In some other cases the mobile device
may be unable to afford the energy requirements for such
data transfers. In fact, the user might prefer to lower the bar
of latency constraints to favor energy savings for some

specific applications. Thus, the decision on when to offload
the execution of web resources to the cloud becomes a critical
issue to the overall performance of mobile services.

In mobile environments, cloud-based resource provision-
ing extends beyond the public cloud. A mobile system may
also offload computations to cloudlets [1] and mobile cloud
[2], [3]. Additionally, the static resource allocation to com-
putation offloading is inefficient and does not exploit the
opportunities that mobility may offer. For instance, a mobile
system may need to re-offload computations due to a net-
work failure. Dynamic binding to resource providers allows
mobile systems to offload computations to a resource pro-
vider and receive results through a better provider in the
close vicinity (e.g. a smart vehicle).

This research presents a distributed mobile service pro-
visioning framework that reduces the burden on mobile
resources through the offloading of resource-intensive
processes to the cloud. An offloading decision model is
proposed to determine whether or not remote execution
of a resource request brings performance improvements.
The decision making involves selecting the best available
resource provider according to the resource availability
and network conditions using our proposed Follow-Me-
Provider scheme. This scheme dynamically allocates
resource providers to offload tasks to best suit the task
requirements and environment context. The decision
maker determines the best execution plan that achieves
the highest performance gain.

Our main contributions are as follows:

� We present an enabling mechanism for context-
aware computation offloading to support resource-
constrained mobile service providers.

� We introduce the Follow-Me-Provider, a robust
scheme that enables dynamic binding between com-
puting tasks and cloud resource providers.
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The remainder of this paper is organized as follows.
Section 2 gives a brief background on computation offload-
ing and outlines related work. Section 3 presents the
proposed cloud-assisted mobile service architecture. Imple-
mentation details and experimental validations are given in
Sections 4 and 5, respectively. Section 6 presents the perfor-
mance evaluation and offers a comprehensive discussion.
Section 7 provides overhead analysis. Section 8 concludes
the paper and highlights future directions.

2 BACKGROUND AND RELATED WORK

Over the past few years, significant study has been done on
the resource constraints of mobile devices as computing
platforms. In this section, we provide a brief background
and review the related work from two perspectives: mobile
devices as service providers and computation offloading to
augment the capability of mobile devices.

2.1 Mobile Devices as Service Providers

Using mobile devices as service providers is a new trend [4],
[5]. Little of the previous research have been dedicated to
investigate computation offloading in service provisioning.
Weerasinghe et al. [6] studied reliable mobile service provi-
sioning with respect to availability and scalability. The
authors propose a proxy-based middleware to bootstrap the
performance of mobile services. The proxy acts as a fixed
representative to mobile services. This middleware sup-
ports service migration where mobile providers may choose
to switch to an alternate server due to close proximity or
better connectivity. Hassan et al. [7] present a distributed
mobile service provisioning framework that partitions the
execution of resource-intensive services between the mobile
provider and a backend server. The framework offers a dis-
tributed execution engine where tasks that require real time
access to local resources are executed on the mobile devices,
while the remaining processing is offloaded to a remote
server. Their partitioning technique relies solely on the
available resources of the mobile device. The execution is
entirely performed on the mobile device if available resour-
ces satisfy the service execution requirements. In contrast,
our framework selects the best execution plan with the min-
imum response time, while satisfying the resource con-
straints with respect to both execution requirements and
user preferences.

2.2 Computation Offloading

Computation offloading transfers processing outside of the
mobile device. The objective is to improve the performance,
enable advanced functionality, and preserve scarce resour-
ces. Offloading may be performed at different granularities
ranging from methods and individual tasks [8], [9], [10] to
applications [11] and virtual machines [12]. Offloading tech-
niques are categorized into three main categories:

1) Remote invocation. This technique requires services to
be deployed on the remote host. The offloading
device invokes the target service on the remote
server using well-known mechanisms such as
remote procedure call (RPC) or remote method invo-
cation (RMI). Although this approach is well-sup-
ported by APIs, service pre-deployment on remote

hosts poses a critical restriction to the ad-hoc nature
of mobile cloud systems. For example, mobile termi-
nals may discover resource providers in close prox-
imity that offer IaaS. Such providers could be
transient (e.g. a passing smart vehicle), or stationary,
such as cloudlets [1]. In such cases, the pre-deploy-
ment requirement limits the choices of mobile sys-
tems on where to offload computations.

2) VM migration. VM migration refers to transferring
the entire memory image of a running VM from the
mobile system to a cloud infrastructure. VM migra-
tion has advantages over other methods as VMs are
created through virtualization techniques, which
offer isolation and protection for data and processing
against malicious entities on the remote host.

3) Code migration. Mobile code migration transfers code
and data required to carry out a certain task on a
remote host. In most cases, the code is small in con-
trast to the data. However, compatibility issues may
arise when migrated code is ported to run on a host-
ing platform. This method enables computation off-
loading on a fine granularity level, such as
individual functions and methods. VM and code
migration are favored in recent works [13].

Several aspects of computation offloading have been
studied including the feasibility of offloading, making off-
loading decisions, and developing offloading infrastruc-
tures [14], [15]. For example, Hyrax [2] is a platform that
supports distributed Android applications based on a ver-
sion of Hadoop ported to the Android platform. It enables
Android applications to access data and offload computing
tasks to a mobile cloud formed by heterogenous mobile
devices. Huerta-Canepa and Lee [16] propose a virtual
mobile cloud computing platform using mobile devices.
The framework capitalizes on the availability of mobile
devices that are willing to share their computational resour-
ces in the close vicinity. Giurgiu et al. [17] present a middle-
ware that can distribute mobile applications between the
mobile device and a remote server, aiming at improving the
overall latency and reducing the amount of data transfer.
The middleware generates a resource consumption graph
and splits the application’s modules to optimize a variety of
objective functions. Cuckoo [18] is a framework that pro-
vides a runtime environment for mobile applications to sup-
ports dynamic offloading decisions. However, mobile
applications need to be re-written according to the
Android’s ‘activity/service’model.

Clonecloud [10] and MAUI [9] are two recent studies on
computation offloading that focus on performance gain and
energy saving, respectively. CloneCloud offers a runtime
partitioning approach for mobile applications based on a
combination of static analysis and dynamic profiling techni-
ques. CloneCloud works at the application-level VM and
supports up to the thread granularity. The objective is to
speed up the application execution and to reduce energy
consumption at the mobile side. In CloneCloud, a device
clone operates continuously on the cloud and communi-
cates with the mobile device. MAUI enables energy-aware
offloading of mobile code to a resource-rich computing
infrastructure. It aims to alleviate the burden on the limited
energy resources of mobile devices while fulfilling the
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increasing energy demands of mobile applications and serv-
ices. MAUI provides a disconnectivity mechanism that ena-
bles interrupted processes to resume execution on the
mobile device. However, MAUI requires source code anno-
tation by developers to mark which code can be executed
remotely and which cannot. It uses these annotations to
decide at runtime on the proper partitioning scheme.

In general, the offloading decision is made based on an
objective to either reduce the response time, save energy, or
strike a balance between both. Offloading techniques make
decisions statically based on prespecified rules, or dynami-
cally based on context changes [19]. Dynamic decisions can
be made using machine learning techniques [20] or based
on analytical models [18], [19], [21], [22]. Spectra employs
computation offloading to balance between performance
and energy consumption. The decision is made based on
the resource usage profile of mobile applications and
resource availability in the surrounding environment. Spec-
tra requires continuous monitoring of local and remote
resources and network conditions. Spectra also modifies the
application’s source code to determine possible partitioning
options. Scavenger [22] uses various attributes to decide
whether offloading of a computing task brings performance
gains. These attributes are: powerfulness and utilization of
available surrogates, network bandwidth, task complexity,
and required data transfer. Kumar and Lu [23] provide an
analytical model to determine whether computation off-
loading can save energy, taking into consideration the
resource requirement of the computing task and current
network conditions.

To the best of our knowledge, all previous research
efforts on mobile computation offloading focus only on the
interactions between the mobile system and the support
computing infrastructure, within the context of environ-
ment conditions, while overlooking the possibility that a
third-party data provider may exist. Many current data pro-
viders offer their services either through the public cloud
itself (e.g. Amazon S3) or connect to the cloud via a high
speed interconnect (e.g. Dropbox). Therefore, the data trans-
fer is much faster between the data provider and the cloud,

than between the data provider and a mobile device. Hence,
adding a data provider to the equation significantly impacts
the offloading decision. The framework proposed in this
paper addresses this issue when making offloading deci-
sions. Furthermore, it also proposes an agile cloud provider
selection algorithm that leverages the mobility of both users
and mobile resource providers.

3 CLOUD-ASSISTED MOBILE SERVICE

ARCHITECTURE

This paper presents a framework for cloud-assisted service
provisioning from resource-constrained devices. The pro-
posed cloud-assisted mobile service architecture involves
four key entities: a user, a mobile device, a cloud, and a data
provider, as shown in Fig. 1. The user represents the service
consumer. The mobile device represents a mobile service
provider and acts as the integration point where service exe-
cution plans are generated and decisions regarding offload-
ing are made. The cloud is the supporting computing
infrastructure that the mobile provider uses to offload
resource-intensive tasks. Service operations may involve
third-party data processing during the execution of the ser-
vice functionality, such as weather information or naviga-
tion databases. In such cases, data could be fetched from a
data provider.

The user sends the service request to the mobile provider.
The mobile provider decides on the best execution plan and
whether offloading is beneficial. The cloud offers elastic
resource provisioning on-demand to mobile providers. The
mobile provider may collect the execution results from the
cloud and generate a proper response for the use or delegate
the cloud to forward the response directly to the user, given
that no further processing is required at themobile side.

The proposed framework encompasses the following
major components: Request/Response Handler, Context Man-
ager, Profiler, Execution Planner, Service Execution Engine, and
Offloading Decision Maker. Fig. 2 depicts an abstract view of
the framework architecture. The functionality of each com-
ponent is discussed in the following sections.

3.1 Request/Response Handler

Internet users can request access to web services or web
contents. A service request could be SOAP/XML for

Fig. 1. An abstract view of cloud-assisted mobile service architecture,
showing possible interacting entities and context information, where B is
the link bandwidth and din and dout represent the amount of data
exchange over a link in both directions.

Fig. 2. The architecture of the cloud-assisted mobile service
provisioning.
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SOAP-based web services [24] or an HTTP request for
REST-based web services [24]. RESTful requests point
directly to specific operations that carry out the required
functionality whereas SOAP requests associate parame-
ters by which the service execution engine internally
maps the request to the appropriate method. The Request/
Response Handler plays the role of a multiplexer, distin-
guishing between SOAP requests and RESTful requests
as well as differentiating between service and content
access requests. The handler forwards the latter directly
to the web server whereas the former is sent to the service
Execution Engine for processing. SOAP/XML service
requests are handled by SOAP Manager before they are
sent to the web server, while HTTP requests for services
are analyzed directly by a servlet.

3.2 Profiler

This component is responsible for analyzing the characteris-
tics of various service operations, deployed on the mobile
device, in the form of a resource consumption profile that
includes the required CPU cycles, memory size, data
exchange, potential data transfer, and interactions with local
resources. A service may include multiple operations. Each
operation can be invoked separately, possibly many times,
and perform its functionality independently. The profiler
treats each operation as a standalone function. The profiler
runs service operations offline to measure the required
resources in terms of CPU cycles, memory, data transfer,
and access to local physical resources. We instrument these
operations to identify the dependencies and interrelation-
ships between them. The profiler then generates a resource
consumption profile for each service with a separate section
for each operation [19]. The planner module uses the infor-
mation in the consumption profile to generate possible exe-
cution plans.

Listing 1. A snippet of a resource consumption profile.

3.3 Context Manager

Mobile devices capitalize on their sensing capabilities to col-
lect real-time context information to make better decisions.
The context manager gathers a variety of context informa-
tion to be used for personalization purposes and adaptive
actions [25]. The context manager gathers two categories of
context attributes:

� User context. This category contains context informa-
tion related to the user and current runtime environ-
ments. This context presents a comprehensive view
of the user’s current status. User context includes the
following attributes:

Location. The user location determines which
remote hosts can be used for offloading. The auto-
matic collection of location information can be
obtained in a variety of ways outdoors (e.g. GPS
and mobile networks) [26], [27], or indoors (e.g.
Received Signal Strength techniques) [28], [29].
Mobility of both devices and resource providers
plays a significant role in deciding the offloading
strategy. Mobile platforms provide APIs to access
the location information. Location-based mobile
applications and services use these APIs to obtain
the location information on-demand and utilize it
internally as required.

Device profile. This contains the hardware and
software specifications of the user’s device. The
device profile includes the display size and specifi-
cations, sensing capabilities, network interfaces,
OS platform, etc. These context attributes assist in
determining the compatibility of offloading tasks
with the remote server specifications. Some of the
hardware features also may impact the offloading
decision, such as available network interfaces.

Local resources. Upon receiving a request, the con-
text manager captures on-demand the status of local
resources such as: CPUutilization, availablememory,
battery level, and storage capacity. These attributes
are used to evaluate different execution plans to
determine the potential performance gain. The con-
text manager also maintains a record of running
applications and activities as a load indicator.

User preferences. Each user has different preferen-
ces that might influence the offloading decision.
These preferences may change according to the situa-
tion. For instance, a user running a navigation appli-
cation may favor execution plans with more energy
saving if battery power is under certain threshold.
The same user may be more concerned about latency
if they need to find a gas station before the next exit
on a highway. The framework maintains user prefer-
ences in an XML file with pre-defined tags. The user
can update these preferences in an ongoingmanner.

� Environment context. Environment context encom-
passes information that characterizes the surround-
ings of the user. The framework utilizes this context
to better make offloading decisions. Context attrib-
utes of this category are:

Remote hosting environments. The mobile system
discovers and keeps track of all potential resource
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providers that can process offloading requests includ-
ing public cloud, cloudlets [30], mobile cloud farm
[2], [16]. Information about available public cloud
and cloudlets is provided and updated by the service
provider. Upon receiving a service request, the frame-
work sends standard resource discovery requests on-
demand over short range communications to dis-
covermobile resource providers in the close vicinity.

Network status.Mobile environments are character-
ized by intermittent connectivity and varying connec-
tion quality. The context manager proactively
monitors available network connections, such as
wired, WiFi, 4G, Bluetooth, ZigBee [31], and their sta-
tus. The quality of the connection determines how
fast data can be transferred. The network bandwidth
and required data play a major role in determining
whether offloading is favored over local execution.

Fig. 3 shows the architecture of our context manager. It
contains four main components: context engine, context
templates, context database, and context agent.

Context engine. The context engine coordinates between
different components. It creates and maintains context
agents based on registered context templates, gathers con-
text information from agents and stores it in the context
database, processes context information if required, and dis-
seminates context data to requesting entities.

Context templates. Templates are configuration files that
describe context attributes and any associated constraints
and rules. The context engine utilizes these configuration
templates to deploy software agents that collect context
attributes.

Context database. The context database is a lightweight
relational database that maintains various context informa-
tion. Most mobile-based platforms contain embedded light-
weight database engines that support standard relational
database functionality. For example, the Android platform
uses the SQLite [32] database management system. SQLite
requires limited memory at runtime, which makes it a good
candidate for mobile systems.

Context agent. The context agent is a software entity that
is deployed to gather a specific context attribute. Agents are
APIs or web services that could be deployed locally on the
mobile system to gather local context information or
remotely to report remote context attributes.

Context information and service consumption profiles are
used by the offloading decision model to select the optimal
execution plan that, in addition to achieving performance
gain, satisfies the device constraints and user preferences.

3.4 Execution Planner

The execution planner determines the various possible exe-
cution plans for each service operation based on available
information about each operation from the service descrip-
tion file and the behavior profile generated by the profiler.
Each operation can be executed in a variety of different
ways. Possible execution plans are generated based on the
sources of involved data objects, interactions between such
data and other local resources, and the execution environ-
ment. Options include local execution, remote execution or
combinations of both. Service developers may annotate par-
ticular operations to be strictly executed on mobile systems
due to security reasons or privacy concerns such as the case
when a provider wishes to ensure full privacy of its users’
information. Although current service description stand-
ards do not support such annotation, a recent initiative has
been proposed by Hassan et al. [7] on how to specify the
execution environment in the service description.

Since the functionalities of mobile services are known in
advance, execution plans could be generated during the ser-
vice deployment outside of the mobile service provider (i.e.
services are deployed along with their possible execution
plans). These execution plans could be generated by using
the cloud resources supporting the mobile service. How-
ever, our platform supports offloading to mobile cloud and
cloudlets on-demand, which means that the service does
not know which cloud resources are going to be used dur-
ing execution. Additionally, service requests might be asso-
ciated with user security/privacy constraints that govern
how the requested functionality is executed. For example,
the user requires that his/her credentials are not to be
shared with third-parties (e.g., cloud providers). This
requires revisiting the execution plans at runtime to exclude
plans that violate the request constraints. Therefore, to
maintain the generality of our framework, we implement
the execution planner component on the mobile device to
facilitate the interactions with other components, such as
the context manager, when required.

The planner starts with the possibility of performing the
execution locally on the mobile system, where the device
acquires all the required data for processing and sends back
a response to the user. If there is local resource access, the
planner generates a plan consisting entirely of remote proc-
essing. When offloading is applicable, the planner considers
response forwarding, where the mobile service provider may
delegate the cloud/remote execution environment to for-
ward the response directly to the user. If the requested opera-
tion encompasses independent functions that can be carried
out separately, further plans of partitioning are considered.
Several partitioning strategies are discussed in [9], [10], [17].

The framework enables and disables response forward-
ing through setting the forward_response attribute to ‘ON’
and ‘OFF’, respectively. Response forwarding is a two-
fold benefit: 1) mobile providers do not have to retrieve
the response back from the cloud and send it to the user.
This decreases the communication overhead and battery
consumption on the mobile system and reduces the over-
all response time to the user, 2) the response will reach
the user even if the mobile service provider is down/dis-
connected for any reason. Response forwarding is per-
formed at the application layer through asynchronous

Fig. 3. The schematic architecture of context manager.
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communication protocols. Applications with strict secu-
rity constraints may disable the ‘response forwarding’ ser-
vice, or offload only to trusted providers.

A plan evaluation is performed at runtime once an invo-
cation request is received at the mobile provider’s side.
Since the churn of services is low, these evaluations are
stored for a short time tp in case the mobile provider
receives multiple requests for the same operations within
the time interval tp. It’s uncommon that network conditions
(bandwidth B in particular) fluctuate too much between
high and low values within a short period of time to make
such evaluations invalid. The framework allows service
providers to specify the tp based on preferences and practi-
cal experience.

3.5 Service Execution Engine

Our architecture adopts the concept of distributed service
execution, where services could be executed on either the
mobile device, the cloud or both. The service execution
engine resides on the mobile device with a supporting
remote execution module at the cloud side. The control of
the service execution remains at the mobile device. The exe-
cution engine at the mobile provider may delegate the exe-
cution of a service partially or entirely on the cloud based
on the recommendation of the offloading decision maker.
Based on such a recommendation, the execution of a service
might involve data transfer between the two parts of the
execution engine.

3.6 Offloading Decision Maker

The offloading decision involves two aspects: 1) selecting
the best available resource provider, and 2) determining the
best execution plan for a service requests. Both aspects
require full knowledge about the target operation and run-
time context information.

3.6.1 Provider Selection

There are several parameters that make selecting where to
offload computations a challenging decision. These parame-
ters include the possibility of network failure, diversity of
potential resource providers and mobility of both users and
providers. Our observation is that dynamic mobile environ-
ments offer opportunities that could be considered when
making offloading decisions. For example, a mobile device
may use direct short-range communications to offload
required computations to a nearby provider. This would
avoid the long latency of the public cloud. In this section,
we explore various possibilities of remote hosting and pro-
pose the Follow-Me-Provider, a dynamic resource provider
selection scheme.

A mobile system can choose between multiple options
for computation offloading:

� Public cloud. Mobile systems may use a public cloud
to fulfil their offloading demands through creating
a clone image or an on-demand remote execution envi-
ronment. A clone image is a dedicated VM repre-
senting the mobile device on the cloud [10]. The
device sends offloading requests to the clone device
on a separate thread and results are integrated with

the main execution thread on the mobile device.
While this option incurs a fixed monetary cost for
the continuously running clone VM, it avoids the
overhead of creating and destroying VMs on-
demand [33]. Data required for processing could be
transferred to the clone device offline (i.e. before
placing the offloading request) or online during exe-
cution. The decision whether to download required
data online or offline depends on how frequently
this data is used and how much does it cost to store
the data on the cloud. The service provider must
choose between storage cost and potential perfor-
mance gain. In case of online data transfer, the clone
device may download required data through a high
speed interconnect with the data provider. This
would significantly improve the overall perfor-
mance and reduce the response time. Using a clone
image, data could be cached for subsequent offload-
ing requests, which results in more energy saving.
The clone image is a better choice for mobile sys-
tems with heavy and frequent offloading demands.
The second option is to create a remote execution
environment (i.e. VMs, proxies, stubs) on-demand
upon making offloading decisions [9]. Although
this seems to be more realistic for users with low
offloading demands, data transfer and management
overhead of remote execution environments impact
the overall latency and imply higher energy
consumption.

� Cloudlets. A cloudlet is a hub that brings public cloud
within close proximity of mobile users [30]. It can be
viewed as the middle tier of a three tier architecture,
mobile devices, cloudlets, and cloud infrastructures.
Cloudlets can substitute the public cloud during net-
work failures through offering essential services
[34]. With the recent developments of smart vehicu-
lar technologies, capable mobile resource providers
could also offer cloudlet services on the move.

� Mobile cloud. Mobile devices can collaborate to form a
mobile cloud platform using virtualization techni-
ques to offer resources on demand [2], [3]. This para-
digm enables mobile devices to share their extra
resources, mostly to offer location-based cloud-like
services. While such an infrastructure might not be
as powerful as public cloud, the close proximity to
offloading entities improves communication latency.
For example, a mobile user driving on a highway
can take advantage of a platoon of smart vehicles
moving along to execute resource-intensive tasks
through a direct WiFi channel. Mobile cloud could
be the only viable option for infrastructure-less envi-
ronments, such as during disaster recovery or emer-
gency situations.

To exploit the dynamicity of mobile environments, we
propose the Follow-Me-Provider selection scheme as illus-
trated in Fig. 4. The Follow-Me-Provider employs the context
of both the mobile system and runtime conditions to estab-
lish dynamic bindings between resource providers and
computation offloading requests. The scheme utilizes the
mobility of the offloading system and the amount of time
required for computation to determine the best resource
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provider to carry out the computations and the resource
provider that may forward the results. For example, in
Fig. 4 the offloading Req_1 is best to be offloaded to cloudlet_1.
When computations are complete, the results are better to
be sent via cloudlet_3. However, for offloading Req_2 the
mobile cloud in the nearby vicinity is the best choice, taking
advantage of the direct connection and being in the commu-
nication range during required computation time. The Fol-
low-Me-Provider also takes into account the data transfer
requirements and the quality of the communication link
with the data provider.

3.6.2 Plan Selection

The framework handles mobile services at the granularity of
individual service operations, which are considered as the
basic unit of computation that a service request may target.
Assume that an operation (computing task) " ¼ mþ d,
where m is the amount of computation that must be per-
formed on the local system (i.e. requires access to local
resources) and d is the amount of computation that can be
carried out remotely. Any of the two components may con-
stitute the whole computing task when the other component
is not applicable (e.g., d ¼ 0when the whole computing task
requires access to a sensor in the mobile device). The remote
component of the task d requires m memory space and e
amount of energy to execute. The computational speed of
the mobile device is Sm (instructions/second), and Sc;ri is

the computational speed of a remote host server ri. The exe-
cution may involve communications between various enti-
ties as shown in Fig. 1, where B is the link bandwidth and
din and dout are the sizes of data exchange between two enti-
ties. The mobile system consumes power (in watts), pc for
computing, pi while idle, and pt for transmitting data

(sending or receiving). Although, in practice, sending data
entails more energy consumption than receiving, for the
purpose of this analysis, our model considers them
identical.

The time tm to process d on the mobile system is:

tm ¼ r� d

Sm
þ
Xn

j¼1

dinj þ doutj
Bj

; (1)

where r is the number of invocations and n � 2 indicating
that the mobile system interacts with the user (service
requester) over the link B1 and may download required
data from the data provider over the link B2. If the task
requires no data from the data provider, then din2 ¼ 0 and

dout2 ¼ 0. The first term in Eq. (1) represents the execution

time on the mobile device and the second term indicates the
data transmission time. We assume that the data required
for multiple invocations is transferred only once.

If the task is offloaded, the time tc;ri to execute the task on
a remote server ri is:

tc;ri ¼ r� d

Sc;ri

þ
Xn

j¼1

dinj þ doutj
Bj;ri

þ ta; (2)

where n � 5. The execution plan determines the value of n,
indicating the possible interactions between various entities,
as shown in Table 2. The time ta represents any extra time
required to build stubs or proxies in order to handle remote
execution. Task offloading brings performance gain when
tm � tc;ri .

Similarly, the generic formula that calculates the energy
consumption on mobile system is given by Eq. (3). This is a
rough estimate of the energy consumption, but the model
needs only to project relative values among various plans in
order to determine the most energy-efficient plan

Fig. 4. Illustration of the Follow-Me-Provider selection scheme.
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em ¼ r� d

Sm
� pc þ

Xn

j¼1

dinj þ doutj
Bj

� pt; (3)

where n ¼ 1 when the mobile system interacts only with
user with no data requirements from the data provider,
n ¼ 2 otherwise. The first term in Eq. (3) represents the
energy consumption by local computations, while the sec-
ond term is the energy required for data transfer. When off-
loading takes place, the energy consumption on the mobile
system is totally dependant on the offloading plan and can
be generally calculated by:

ec;ri ¼ k� tc;ri � pi þ
Xn

j¼1

dinj þ doutj
Bj;ri

� pt; (4)

where n � 5, k ¼ 0 when forward_response is ‘ON’ and k ¼ 1
if it is ‘OFF’. It’s worth mentioning that k ¼ 0 also when
asynchronous communication is used, however, there will
be an overhead for re-establishing the connection. Offload-
ing incurs energy saving when em � ec;ri .

Algorithm 1. Plan Selection Procedure.

Input: d:profile, R, P , list lcxt,
list ecxt, fmcr; ecrg
Output: fp; rg, //selected execution plan

and provider

1 Function selectPlan(input list)
2 //initialize holders of best plan and provider

3 best p null
4 best r null
5 min t tm
6 if e em < ðeavail � ecrÞ and m < ðmavail �mcrÞ then
7 best p p1 // local execution plan

8 end
9 foreach r in R do
10 foreach p in P do
11 ifm < ðmavail �mcrÞ then
12 t tc
13 e ec
14 if t � min t and e < ðeavail � ecrÞ then
15 min t t
16 best p p
17 best r r
18 end
19 end
20 end
21 end
22 return best p; best r

The decision on whether to execute the service opera-
tions locally must ensure that the available resources on the
mobile system satisfy the following constraints:

1.m < mavail �mcr

2. e < eavail � ecr
where mavail indicates the available memory on the mobile
device, eavail indicates the remaining battery level, and both
mcr and ecr are user-defined parameters based on preferen-
ces and context. These user-defined preferences are set to
accommodate any special requirements, such as securing
sufficient resources to maintain proper functionality of

critical applications. The framework enables users to
dynamically change these parameters according to their
context.

Algorithm 1 illustrates the plan selection procedure for a
particular computing task. The procedure excludes plans
that do not satisfy local resource constraints and returns the
plan that yields the smallest response time. Inputs of this
procedure are:

- d:profile, the resource consumption profile of the
computing task (profiler).

- list lcxt ¼ f½B1; B2�; Sm; pc; pi; pt;mavail; eavailg, local
context attributes of the mobile system (context
manager).

- R, list of potential resource providers (context
manager).

- P , possible offloading plans (execution planner).
- list ecxt ¼ fSc; ½B3; B4; B5�;mavail; eavailg, the environ-

ment context for each potential resource provider
r 2 R (context manager).

- fmcr; ecrg, user-defined constraints (context manager).

4 IMPLEMENTATION DETAILS

We implement our validation prototype in Python. Python
comes with a lightweight embedded HTTP server that is
suitable for resource-constrained hosts, as well as many
libraries that facilitate web service developments and
deployments. We developed a RESTful web service that
exposes multiple functionality as web service methods,
each operation is represented with a unique URI in the form
of http://base-address[host]/service-root/method-name.
This service provides some image processing functionality
ranging from low to high computational-intensity with vari-
ous data transfer requirements, specifically Blur, Blend, Steg-
anography, and Tag. The Blur operation blurs all identifiable
objects in a certain image. The Blend operation blends two
images gradually from left to right so that the left edge is
purely from the first image and the right edge is purely
from the second image. The Steganography operation imple-
ments a steganographic method to hide a text message
inside an image. The Tag operation applies augmented real-
ity techniques on an image taken by the device embedded
camera. The image is labeled with the current location and
the Tag operation annotate objects appear in the image,
such as governmental buildings, tourist attractions, public
services, business facilities, etc. Augmented reality is known
as a computation-intensive process. This experimental setup
represents a real case scenario of a photo sharing mobile ser-
vice and is sufficient to illustrate the main aspects of our
framework.

The web service is deployed on a Samsung I9100 Galaxy
II (Dual-core 1.2 GHz Cortex-A9, 1 GB RAM) with a rooted
Android 4.0.4 platform, connected to a WiFi network and is
3G-enabled. According to these specifications, M ¼ 2400
MHz, pc ¼ 0:9, pi ¼ 0:3, and pt ¼ 1:3 all in Watts per second.
The cloud provider is represented by an Amazon EC2 vir-
tual machine of the type ‘m1.large’ with an EC2 pre-config-
ured image (AMI) of ‘Ubuntu Server 12.04 LTS, 64 bit’. We
placed one image and the message-to-hide on the mobile
device. Another image is placed on the cloud. The tagging
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information database is hosted on a third-party data pro-
vider. This data placement allows us to test a variety of exe-
cution plans of various service requests. Table 1 illustrates
the experimental setup, indicating where resources are
located. We perform the experiments over a variety of wire-
less links with various levels of link quality between the
mobile device, the client, data provider and the cloud.

According to this setup and based on data placements,
possible execution plans for the service operations are
shown in Table 2, where U represents the user, M repre-
sents the mobile device, C denotes the cloud, and D indi-
cates the data provider. For example, P1 executes the
required operation locally on the mobile resources, while P2
and P3 offload the execution to the cloud. However, in P3
the mobile system delegates the cloud to dispatch the
response to the user directly. Not all plans are applicable for
all operations, for example, P4 and P5 are applicable only
for the Tag operation, where a third party data provider is
involved in the processing. The arrows show the data trans-
fer direction. In these experiments, we assume that commu-
nications between different parties is carried out in an
asynchronous mode [35] to overcome the possibility of
wireless link failures.

In our prototype, the profiler component uses several
Python libraries to analyze the behaviour of service opera-
tions and to generate a behaviour and resource consump-
tion profile for each operation. Guppy-PE [36] is a Python
library and programming environment that provides mem-
ory sizing, profiling and analysis. It also includes a heap
analysis toolset for memory related debugging. Guppy-PE
provides the inter-function relations and shows the count of
function calls. We also found that the Memory Profiler [37]
Python library is efficient in the line-by-line analysis of
memory consumption. The Memory Profiler tool exposes a
number of APIs, such as memory_usage, that can be used by
a third-party code to monitor the memory consumption.
The cProfile [38] module is a built-in function that provides
deterministic profiling for the CPU consumption of Python
programs, from which our profiler determines the number
of CPU cycles required for the execution of service

operations. Table 3 shows the resource consumption of the
various exposed operations by our web service.

The Context Manager uses Iperf [39] to monitor the link
quality between different communicating entities. Iperf is a
tool that measures the bandwidth performance of network
links. Unfortunately, there is no accurate tool or commercial
instrument that can measure the power consumption per
instruction or individual processes. To date, the Android
platform does not offer much with regard to energy con-
sumption, but internal battery monitoring on a time-based
level [40]. There are some recent research efforts towards
this direction [41], [42], [43], but none of these efforts has
offered a library accessible in the public domain yet. For
rough estimates of power consumption per Android pro-
cess, we use the Android open source project, PowerProfile
[44]. This computation estimate is sufficient for comparison
purposes between different execution plans. The context
manager monitors the remaining battery power and keeps
track of the consumption profile of other running applica-
tions. At the time a service request is received, the frame-
work ensures that the energy constraint would not be
violated by executing the service request whether locally or
remotely on the cloud. However, preferences are given
to energy efficient execution plans. Otherwise, the request
is rejected.

5 EXPERIMENTAL VALIDATION

In our experiments, processing is performed on the mobile,
in the cloud, or both. Required data for processing may be
located at any of the three locations, mobile device, cloud,
and data provider. According to the required process and
where the data is located, our mathematical model deter-
mines the best option to process the operation request based
on the current context information and device resource con-
straints. Options include moving required data to the device
or offloading the processing to the cloud with any required
data from the device, the data provider, or both. To validate
the model recommendation, we experimentally try all pos-
sible execution plans for a specific operation request and
measure the end-to-end response time and energy con-
sumption. The end-to-end response time includes commu-
nication, processing, and any overhead time to establish a
network connection or generate remote execution proxies.
Our expectation is that the experimental results should pro-
vide a strong backup of the model recommended option. In
the normal practice, the mobile service execution environ-
ment uses the model to decide on the appropriate execution
plan of a particular service request.

Table 4 shows an example of the actual average response
time in contrast with the estimated response time and
energy consumption of the various service operations.

TABLE 1
Summary of the Experimental Data Placement

Data Size Location

Message to hide 150 KB Mobile Device
Image 1 1.79 MB Mobile Device
Image 2 1.84 MB Cloud
Tagging Database 17 MB Data Provider

TABLE 2
Possible Execution Plans for the Offered Service Operations

Plan Exec. Location Exec. Sequence

P1 M U !M ! U
P2 C U !M ! C !M ! U
P3 C U !M ! C ! U
P4 M U !M ! D!M ! U
P5 M&C U !M ! C ! D! C !M ! U
P6 M&C U !M ! C ! D! C ! U

TABLE 3
Resource Consumptions of the Various Exposed Operations

Operation CPU Time(m/c) Mem. Usage (MB)

Blur 85/16 16.262
Blend 106/24 19.141
Steganography 146/40 12.363
Tag 4867/1236 54.253

ELGAZZAR ETAL.: CLOUD-ASSISTED COMPUTATION OFFLOADING TO SUPPORT MOBILE SERVICES 287

Authorized licensed use limited to: Queen's University. Downloaded on December 15,2021 at 18:57:56 UTC from IEEE Xplore.  Restrictions apply. 



Experimental results validate the suggested plan by our off-
loading model for each operation, which is underlined.
Although there is a marginal difference between the actual
response time and the estimated values, the offloading deci-
sion maker is able to select the plan that the yields a better
response time while satisfying the resource constraints. We
attribute this difference to the overhead time of generating
proxies and stubs for remote execution as well as the delay
incurred by the internal process of web servers. In addition,
the advanced CPU technologies such as SpeedStep, Hyper-

Threading, Pipelining, and Overclocking might also contrib-
ute to the deviation of the imperial values from calculated
values with a certain offset. A system-specific calibration
can capture such an offset and add it to the equation to
make calculations accurate. However, estimates don’t have
to be strictly accurate since our model only needs to project
relative differences among plans to select the proper one.

6 EXPERIMENTAL RESULTS AND DISCUSSIONS

The performance of the framework varies significantly
according to the several parameters including the data loca-
tion, the link quality between different communicating enti-
ties and the selected execution plan. The context manager
plays an important role through real time monitoring of
resource consumption and network conditions on which
the framework dynamically bases the choice of the the opti-
mal execution plan. The experiments are performed under
three different network conditions and settings: 1) the
mobile device provider is connected through a fast WiFi
link with an average Round Trip Time (RTT ) = 17 ms while
the client is wire connected, 2) both the mobile provider and
the client are connected through a slow WiFi connectivity
with an average RTT = 35 ms, and 3) both the provider and
the client are connected over 3G with an average RTT=280
ms. In all settings the data service provider is linked to the
cloud through a high speed interconnect with available
bandwidth = 250.7 MB/s.

Fig. 5 shows the mean response time of the Blur opera-
tion with the possible execution plans in the three different
settings. In this operation, the required data is located on

TABLE 4
Actual Response Time in Contrast with Estimated Response

Time and Energy Consumption of the Various Service
Operations

Operation Exec.
Plan

Actual
Res. Time

Estimated

Res. time Energy

Blur P1 2205.39 2067.64 1.92
P2 2074.27 2000.78 2.46
P3 1131.78 1102.33 1.29

Blend P1 2775.38 2556.58 2.63
P2 1954.23 1737.74 2.16
P3 1011.74 946.29 1.13

Steganography P1 2276.73 2138.98 1.98
P2 2177.38 1983.50 2.42
P3 1234.87 1122.04 1.30

Tag P4 12778.92 11142.56 10.68
P5 2743.08 1964.33 2.06
P6 2076.07 1510.62 1.47

Fig. 5. Mean response time of the Blur operation. Fig. 6. Mean response time of the Blend operation.

Fig. 8. Mean response time of the Tag operation.Fig. 7. Mean response time of the Steganography operation.
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the mobile device, which in our case has a little lower proc-
essing capability in contrast with the selected cloud server.
This relatively small difference in processing capability
between the mobile provider and the cloud does not give
the cloud an edge for non-computational intensive pro-
cesses, especially when communications take place over a
low speed link. For the Blur operation request, only plan
P3 with the case of high speed WiFi link (first setup)
brings performance improvements. The difference
between P3 and both P2 and P1 captures the speedup
opportunity that the cloud may offer due to computa-
tional offloading. The experimental results reveal that P3
always yields better results than P2, while P1 might be a
better choice when large data transfer is required, espe-
cially over slow interconnects. The Steganography opera-
tion demonstrates a similar behavior to the Blur request
and is shown in Fig. 7. Since all the required data is
available at the mobile provider and the operation is not
computationally intensive, local execution proves to be
more efficient except when data transfer is very fast,
where offloading with P3 results in a faster response
time and a lower energy consumption.

Fig. 6 illustrates the results of executing a blend opera-
tion request under the different settings. The execution of
this service operation entails the transfer of one image to
the other side, where processing occurs. In this case, off-
loading the computation to the cloud and allowing the
cloud to dispatch the response to the user is always bet-
ter. However, offloading achieves more than 3x overall
speedup with high WiFi connectivity. We also observe
that the P3 is the most energy efficient execution plan for
the mobile provider.

The image tagging operation entails a large amount of
data transfer from the data provider as well as the operation
itself is computational-intensive. Resolving such a service
request on a resource-constrained mobile provider signifi-
cantly strains the limited resources and results in a high
latency as shown in Fig. 8. Offloading such a request to the
cloud improves the overall response time with orders of
magnitude. For example, P6 achieves 6.1x, 5.5x and 4.6x
speedup with settings 1, 2 and 3, respectively. The signifi-
cant improvement can be attributed to the high speed inter-
connect between the cloud and the third-party data
provider. In practice, the third-party data is most likely
hosted on the cloud, which makes offloading a more viable
option. The tagging operation also is an example of distrib-
uted execution, where part of the operation is performed on
the mobile side, which is relating the image to a current
user location, while the object recognition and labeling are
performed on the cloud side.

The results highlight two main observations. First, off-
loading does not always guarantee better performance,
especially when the process requires high data transfer over
a low speed link. Second, offloading yields better perfor-
mance when the cloud forwards the response to the user
directly and is responsible for collecting the necessary data
from the data cloud provider. The results also show that the
option with the smallest response time is not always the
choice of our model. For example, when the energy con-
straint that is set by the user could be compromised, the
response time becomes of less concern. In fact, the user
might resort to raising the critical energy threshold to secure
sufficient energy for essential functionality or temporally
critical applications, such as health care monitoring when
the user is experiencing critical health conditions, or if the
user is running a mobile-based navigation application while
traveling. It is also worth noticing that P2 results in signifi-
cant energy consumption due to high data transfer require-
ments back and forth to the cloud.

To study the impact of provider selection, we run the
Blur (low data transfer requirement) and Tag (high data
transfer requirements) operations on a number of resource
providers with different settings. Table 5 shows the configu-
ration and context information of these providers. In the
experiments, we set the forward_response always ‘ON’, so
that the remote execution environment can send the
response to the user when offloading occurs.

TABLE 5
Potential Resource Providers for Computation Offloading

Attribute r1 r2 r3

Description Laptop Lab Machine Amazon EC2
’m1.large’

Architecture 64-bit 64-bit 64-bit
Support Type Mobile Cloud Cloudlet Public Cloud
ScðGHzÞ 2x2.4 2x2.8 2x2.8
B2ðMB=SÞ 32.0 10.5 6.3
B4ðMB=SÞ 14.5 45.5 250.8
B5ðMB=SÞ 3.2 20.3 20.3

Fig. 9. The performance of different resource providers in the Blur
operation.

Fig. 10. The performance of different resource providers in the Tag
operation.
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Fig. 9 shows the performance of the various potential
resource providers for the Blur operation. The lab machine
(r2) outperforms the other resource providers due to the
low latency connection with the user and low data transfer
requirement from the mobile system. Although the laptop
(r1) has a higher speed connection with the mobile system
in contrast to other providers, the low quality connection
with and user compromises the performance gain. If
‘forward_response’ is turned ‘OFF’, the laptop option would
be the most energy efficient and offer the best response
time. Fig. 10 shows the performance of the same resource
providers for the Tag operation. In this case, the public
cloud (r3) brings the highest performance gain due to the
high speed interconnect with the data provider. The other
two options still perform significantly better than the mobile
device but less efficient than the public cloud. The public
cloud also continue to perform better even if the
‘forward_response’ is turned ‘OFF’. From these results, we
conclude that data transfer requirements and network con-
ditions are significant attributes in making the offloading
decision and selecting the most efficient resource provider.

7 OVERHEAD ANALYSIS

There are a number of elements of our framework that intro-
duce overhead that may or may not directly impact the
overall performance of computation offloading. In this sec-
tion, we provide a subjective analysis of the various sources
of overhead in our framework. We also show the frame-
work’s footprint and how much overhead does the opera-
tion of the framework incurs on mobile resources.

7.1 Context Management Overhead

Gathering and processing context information involve addi-
tional overhead on mobile systems. However, we argue that
context information is a core component in current and
future mobile applications (e.g. Siri, Viber, Google Now,
etc.). Therefore, context management exists in mobile sys-
tems for adaptive and personalization purposes [45]. The
overhead related to context management, both in energy
consumption and processing time, is not specific to our
framework. Furthermore, most of the context attributes are
collected offline on a regular basis, incurring no extra delay
on offloading decisions.

7.2 Decision Making Overhead

The time taken to make a decision results in a direct over-
head on computation offloading. When a task can be off-
loaded to a remote server, the mobile system initiates the
decision making procedure to decide whether offloading
is beneficial. Making such a decision involves selecting
the best available provider and the best execution plan
(according to our offloading model). The time to select a
resource provider is OðkÞ, where k is the number of avail-
able resource providers. Whereas the time to decide on
the appropriate execution plan is OðnÞ, where n is the
number of possible plans (in our framework, n � 5). The
complexity of our decision making algorithm is OðnkÞ.
Both k and n are relatively small and the delay overhead
of decision making can be neglected in most cases. Based

on our implementation experience, the decision making
overhead is within a fraction of a millisecond.

7.3 Creating Remote Execution Environment

Creating a remote execution environment is another indi-
rect overhead on computation offloading. The overhead
varies according to the chosen offloading mechanism.
Although the creation of this execution environment is car-
ried out at the server side, a fraction of delay is added to the
overall response time. The only exception is where mobile
systems are represented on the cloud with a clone device
[10]. Shiraz and Gani [33] study the diverse performance
metrics associated with the deployment of VMs in cloud
computing infrastructures. Based on our experience, we
observe that instantiating a new VM instance on public
cloud (specifically Amazon EC2) takes 30�60 seconds.
These numbers may be different for other cloud providers.
In the case of RPC and RMI, such overhead is the same as if
the computing task is invoked locally.

7.4 Framework Footprint

The framework operation adds extra overhead on mobile
devices but in return offers robust computation offloading.
The amount of such an overhead depends on the mode the
framework is running on. The framework is in active mode
while evaluating the offloading decision of a service request,
whether offloading occurs or not. Otherwise, it runs in idle
mode, where only the context manager is active in the back-
ground, gathering context information, and the request/
response handler is listening for incoming service requests.
To estimate the overhead that the framework poses on
mobile resources, we measure its footprint in terms of CPU
utilization, memory usage, storage space, and battery con-
sumption in both active and idle modes. We remark that the
measurement is carried out on the mobile device concerning
the framework’s footprint at the mobile service provider’s
side. This is to evaluate its feasibility on resource-constrained
environments. Table 6 shows the framework’s footprint on
the mobile device. We observe that the battery consumption
of the framework varies during the active mode according to
the running activities and the cost of acquiring required con-
text. The lower the cost of context acquisition, the lower the
battery consumption of the framework while in active mode.
In this experiment, we report the average battery consump-
tion measured by the PowerProfile toolkit while the frame-
work is running in active mode. The high CPU and memory
footprint of the framework in the active mode is due to the
evaluation of execution plans and the decision making

TABLE 6
The Framework’s Footprint in Terms of CPU Utilization, Memory
Usage, Storage Space, and Average Battery Consumption of

the Mobile Side Portion of the Framework in Both Idle and Active
Modes

Running
mode

CPU
(%)

Memory
(MB)

Storage
(MB)

Battery
Consumption
(j/minute)

Idle mode 2.3 24.2 3.2 0.45
Active mode 11.6 65.6 3.2 1.2
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process. Additionally, the context manager in the active
mode acquires context information related to available
mobile resource providers, which as well contribute to CPU
utilization and battery consumption. In general, the over-
head of our framework is much lower than regular context-
aware mobile apps such as Google Now and Viber. For com-
parison purposes, the battery consumption of our frame-
work in the idle mode is 20 percent lower than the WiFi
scanner activity of the Android platform.

8 CONCLUSION

This paper presents a cloud-assisted mobile service frame-
work. The objective is to augment the capabilities of mobile
devices to become reliable service providers. The frame-
work relies on a distributed service execution engine and a
dynamic offloading scheme. Tasks that need to access local
resources are executed on the mobile provider, other tasks
could be offloaded to the cloud execution engine, if no con-
straints on remote execution exist. The framework includes
a profiler, context manager, execution planner, offloading
decision maker, and distributed service execution engine.
The profiler characterizes the offered service operations and
generates resource consumption profiles. The context man-
ager gathers local and environment context information to
make better decisions. The execution planner investigates
possible execution plans based on locations of required data
and current context information. The offloading decision
maker selects the best execution plan and the most efficient
resource provider based on our proposed Follow-Me-Pro-
vider scheme. The framework supports forwarding the
response to the user from the remote execution environment
(when applicable) to maximize the performance gain and
reduce the energy consumption on the mobile system. We
developed a prototype to validate the essential functionality
of the framework and study the performance aspects.
Experimental results demonstrate that the proposed cloud-
assisted service framework offers significant latency
improvements and incurs less energy consumption on the
mobile system. Experiments also show that the framework
operation has a lightweight footprint on mobile systems in
contrast with regular mobile apps. We plan to extend the
framework’s functionality to support interrupted service
execution due to connection failure. We also plan to
enhance the Follow-Me-Provider selection scheme to deter-
mine cloud resource providers that offer trusted execution
environments.
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