GLOBECOM 2022 - 2022 IEEE Global Communications Conference | 978-1-6654-3540-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/GLOBECOMA48099.2022.10001198

Hybrid Event - 2022 IEEE Global Communications Conference: Communications Software and Multimedia

Community-Oriented Resource Allocation at the
Extreme Edge

Abdalla A. Moustafa*, Sara A. ElsayedT, Hossam S. Hassanein®
* Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON, Canada
t School of Computing, Queen’s University, Kingston, ON, Canada
abdalla.moustafa@queensu.ca, selsayed @cs.queensu.ca, hossam@cs.queensu.ca

Abstract—The surging demand for Edge Computing (EC) to
cope with the proliferation of latency-critical and data-intensive
applications has inspired the notion of recycling ample yet un-
derutilized computational resources of end devices, also referred
to as Extreme Edge Devices (EEDs). Maintaining data privacy
and cost efficiency remain core challenges for the viability of
EED-enabled computing paradigms. In this context, we propose
the Community-Oriented Resource Allocation (CORA) scheme.
CORA exploits business, institutional, and social relationships
to build clusters and communities of requesters and EEDs that
can eliminate recruitment costs and preserve privacy. How-
ever, community-imposed constraints on resource allocation can
lead to unbalanced work distribution. To address this issue,
CORA considers community restrictions, minimizes flowtime and
makespan for the allocated services, and retains a reasonable
scheduler runtime for real-time resource allocation. Towards
that end, CORA formulates the resource allocation problem
as a Bipartite Graph Matching problem. Furthermore, CORA
exposes tuneable parameters that allow prioritizing flowtime or
makespan, making it suitable for different scenarios. Exten-
sive simulations show that CORA outperforms six prominent
heuristic-based resource allocation schemes by up to 24% in
terms of average makespan while sustaining the same level of
flowtime and runtime.

Index Terms—Edge Computing, Extreme Edge, EEDs, Re-
source Allocation, Container Placement, Graph Processing.

I. INTRODUCTION

With the progressively adopted vision of the Internet of
Things (IoT), it is foreseen that 125 billion IoT devices will
be connected to the Internet by 2030 [1]. This proliferation is
expected to increase the momentum of IoT applications and
services that require heavy processing and stringent Quality of
Service (QoS), including machine learning, augmented reality,
tactile internet, and healthcare applications [2]. Cloud Comput-
ing (CC) fails to accommodate the severe QoS requirements
of such applications, since it requires full transmission of
excessive amount of data to far-away data centers, which can
significantly increase latency and inflict huge traffic influx at
backhaul links [3].

Edge Computing (EC) is a promising paradigm that can
resolve the aforementioned issues by granting the comput-
ing service closer to end-users [4]. However, the dominant
majority of existing EC platforms and models fall solely
under the control of cloud service providers and/or network
operators [5]. Challenging this monopoly by recycling ample
yet underutilized computational resources of Extreme Edge

978-1-6654-3540-6/22/$31.00 © 2022 IEEE

Devices (EEDs) can democratize the edge and open a new
market for more players to manufacture and administer their
own edge cloud. This market can enable individuals, busi-
nesses, enterprises, and even municipalities to act as edge
service providers themselves and/or monetize their computing
resources. In addition, EED-enabled computing paradigms
can bring the computing service much closer to end-users,
drastically diminishing the delay [6].

Despite its advantageous impact, EED-enabled computing is
considered less secure than infrastructure-based EC paradigms.
This is due to relying on dubious machines. In addition, the
need to recruit many EEDs for parallel execution of a single
partitioned task can result in significant recruitment costs.
HomeEdge [7] is an EED-enabled computing platform that
addresses these problems by offloading tasks to other devices
in the local network owned by the same user. This can ensure
a higher level of privacy since all devices and applications that
run on those devices are trusted by the user. Moreover, latency
can be drastically reduced because of the proximity factor.
Finally, users do not pay to use their own devices. However,
restricting the scope to the local network severely limits the
resource pool, which in turn reduces the utilization gains and
the chance of finding a suitable device for task offloading. This
paper avoids such restriction by proposing the Community-
Oriented Resource Allocation (CORA) scheme.

CORA leverages the underutilized computational resources
of EEDs and exploits the broad sense of community. Such
a community can be a neighborhood, a group of friends, a
hospital, or devices owned by an organization in different
geographic locations worldwide with different time zones or
load peak times. In other words, CORA fosters the concept
of service for service exchange. The goal is to create a global
network where users are allowed to form separate commu-
nities of trusted users, each owning one or more devices.
This significantly expands the scope of the available pool
of resources while preserving privacy and eliminating any
recruitment cost. In addition to communities, CORA enables
the creation of clusters of devices in close proximity to each
other. This enables each device to prioritize offloading its
tasks to other devices in its cluster for lower latency and even
higher security while having the fallback option of offloading
to devices anywhere else in the world as long as they are
included in one of the user’s communities.

Despite its benefits, the notion of community adds another

5583

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:38:45 UTC from IEEE Xplore. Restrictions apply.

Hybrid Event - 2022 IEEE Global Communications Conference: Communications Software and Multimedia

dimension to resource allocation that can cause problems for
schemes that ignore the restrictions imposed by communities
in terms of the order of assignment. In this context, CORA pro-
poses a new resource allocation scheme using a graph-directed
approach to allocate container-based services in community-
oriented EED-enabled edge computing environments. To the
best of our knowledge, CORA is the first community-based
resource allocation scheme that overcomes the constraints
introduced by communities. We evaluate the performance of
CORA compared to six other prominent resource allocation
approaches in container-based schedulers. Extensive simula-
tions have shown that CORA yields significant improvements,
reaching up to 24% in terms of the average makespan while
sustaining the same level of flowtime and runtime.

The remainder of this paper is organized as follows. Section
IT overviews some of the related work. Section III introduces
our scheme (CORA). Section IV reports the performance
evaluation and simulation results. Section V concludes the
findings and discusses future work.

II. RELATED WORK

The desire to give users the freedom of executing a wide
range of services has led to the choice of container-based ser-
vices. Recently, container allocation research has seen a surge
in popularity due to its viability as an offloading mechanism
[8]. Since container allocation is an NP-hard problem. The
resource allocation techniques for containers can be divided
into four major categories; mathematical modeling, heuristics,
meta-heuristics, and machine learning [8].

Mathematical approaches model the resource allocation
problem as a set of constrained equations and then try to
solve them. Approaches under this category suffer from being
NP-complete in complexity [8]. Thus, large-scale problems
cannot be solved in polynomial time. Zhou et al. [9] formulate
the resource allocation problem as an optimization program
that minimizes certain function values while considering tasks
deadline and resource constraints. Other schemes are opti-
mized for work cost in terms of energy consumption [10].

Multiple heuristics have been proposed to allocate con-
tainers [11], [12]. These approaches are generally faster and
more scalable than the approaches mentioned above. However,
the solutions are not guaranteed to be optimal. One of the
simplest yet most prominent heuristics is the work queue,
which is used in Google Kubernetes [13]. The work queue
selects a task randomly and assigns it to the device with
the minimum workload and/or maximum available resources.
Several other common resource allocation techniques that can
be forced to follow community constraints. Min-min [11] uses
the minimum completion time as a metric, meaning that the
task that can be completed the earliest is given a higher
priority. Max-min [11] starts like the Min-min by calculating
the minimum completion time for every service. However, then
it proceeds to select the one rendering the maximum-minimum
completion time. LJFR SJFR [12] is a combination of both
the Min-min and Max-min heuristics, as it alternates between
them by assigning the longest service to the fastest available

device, then the shortest service to the fastest available device.
This sequence repeats until all jobs has been assigned. In the
Sufferage heuristic [12], priority is given to the service that
suffers the most from not assigning it at the current step. This
is done by calculating the difference between the minimum
and second minimum completion times for every service and
choosing the one with the maximum sufferage.

To the best of our knowledge, none of the existing re-
source allocation schemes is optimized for communities. Some
schemes address the concept of matching constraints for
allocation. For example, in [14], the authors recommend an
online resource allocation scheme with matching constraints
that optimize for time-changing cost. However, the scheme
assumes that the cost function is known at any point in time.
In addition, it is based on two linear programming algorithms
that suffer from poor scalability. Such approaches still fail
to address the restrictions associated with communities. In
contrast to existing schemes, we propose a resource allocation
scheme optimized for communities.

III. COMMUNITY-ORIENTED RESOURCE ALLOCATION
(CORA)

A. System Model and Overview

In CORA, a device can be any machine, stationary or
portable. Any device running the software can act as a re-
quester and/or a worker. Note that we interchangeably use the
terms EEDs and workers throughout the paper. Each cluster is
composed of the collection of devices that are within the local
network owned by the same user, with a single device acting
as the local scheduler for this network. A communication gate
exists between the cluster and the edge server that connects it
to other clusters. A community is composed of one or more
clusters. A community refers to a group of users that are open
to exchanging services and executing offloaded tasks among
each other. Note that a user can be a member of multiple
communities.

To further illustrate the concept of clusters and communities
in CORA, Fig. 1 depicts a system of 4 clusters owned by a total
of three users (user A, user B, and user C), which form two
communities (community X and community Y). Any device
that is a member of a cluster owned by user B can offload
services to any device owned by users A or B. This is since
user A and user B are both members of community X. In
contrast, the devices of user A can exchange services with
users B and C alike. These constraints explain the need for
a community-oriented scheduler. For example, consider the
case where a generic scheduler allocates service 2 to worker
A because of a slight time advantage. Now, the same scheduler
is forced to allocate service 1 to worker A as well because it
cannot be allocated to worker B. This can lead to stacking
multiple services on one device while leaving other available
devices unutilized.

CORA enables users to offload their custom tasks, with as
few limitations as possible, to trusted devices that are members
of their own community. This is done regardless of whether the
devices are within the same cluster or in a remote location, or

5584

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:38:45 UTC from IEEE Xplore. Restrictions apply.

Hybrid Event - 2022 IEEE Global Communications Conference: Communications Software and Multimedia

Cluster Server l«—— Service 1 Cluster
User B

User C @

. . Commun tyY

Community X and Y

Community X

Fig. 1. Clusters, Users, and Communities Relation.

whether all clusters in this community are owned by a single
user, a single organization, or a collection of entities, as long
as all cluster owners trust their community members. In this
system, all connected devices can act as requesters, workers, or
cluster heads depending on the configuration and the running
scenario. We start on a cluster level, where every collection of
devices on a LAN can be handled by a single device known
as the cluster head. These cluster head, in turn, have access
to the server scheduler that can receive and schedule services
between different clusters within the same community.

Fostering user custom applications in CEP requires over-
coming some new challenges, especially when dealing with
a wide range of devices and operating systems. Therefore,
we opt to use the containers ecosystem. This ecosystem
allows the requester to provide almost any source code as
a task that can be offloaded in a containerized form that
can run on a large, diverse group of smart devices, with no
regard to the programming language, required libraries, or
application domain. In addition to flexibility on the software
side, this enables the services to run on any Docker Container-
enabled devices. Docker containers are selected due to their
quick deployment, easy management, safety, and hardware
independence [8].

In CORA, each device is a member of a cluster that belongs
to a specific user, who in turn is a member of one or more
communities. Let S = {s1, s9,...,s,} denote the set of con-
tainerized services in the server queue to be offloaded to edge
devices within communities. We assume independent services
(with no inter-service data dependencies), and preemption is
not allowed since the container state cannot be relocated to a
new device without wasting additional resources. Each service
originates from a requester within a cluster that belongs to
a user with a set of valid communities, each of which has
candidate workers to which the service can be offloaded safely.
Moreover, the set of workers available for service assignment
is denoted D = {di,ds,...,dy}. Each worker d; has its
updated benchmarks, which indicate the available resources,
as well as a cluster identifier. The latter can be traced back
to the corresponding user and thus to the associated set of
communities. On the machine level, the assigned services are
executed in a First-Come, First-Served (FCFS) order.

B. CORA at the Scheduler

By checking for union values between the data from a
service community set and a worker set of communities, we
can infer the set of workers that are eligible to execute each
service. This problem can be better represented by a graph
of vertices as given by equation (1), which is the union of
the workers and services sets. This graph can be divided into
two groups, one for services and one for workers. The vertices
from the first group (i.e., services) can only have an edge with
vertices from the second group (i.e., workers). Thus, the graph
can be defined as a bipartite graph.

V=SuD (D

= {UI7U27 e 7Un7vn+1avn+2a .. 7’U’n+m}

In the previously mentioned bipartite graph, an edge be-
tween two vertices exists only if they share at least one
community, as reflected by equation (2), where the Expected
Time to Compute (ETC) is an n X m matrix in which n is
the number of services and m is the number of workers. Each
entry in the ETC matrix represents the estimated execution
time for a given service on each worker. Thus, for each service
s; and each worker d;, ETC(s;, d;) is the estimated execution
time of s; on d;. We define C; as the set of communities for
service s; and C; as the community set for d;. Each edge
in the graph connects one service to one worker, where the
intersection between C; and C; is not empty, and the edge
weight is the corresponding value from the ETC matrix.

Eax={e11,€12,---,€1,m,€21,---,€nm}
E={ei; € Ea|C; N C; # @}

The approximate time it takes worker d; to complete all
assigned services is denoted ¢;, and is given by equation (3),
where W; represents the prior workload on the worker, and
A; indicates the set of services assigned to this worker by the
scheduler.

tj = Z ei; +W; 3)
i€A;

CORA strives to minimize the average makespan and
flowtime. Flowtime is the sum of the execution time of all
services on their selected workers, as given by equation (4).
Minimizing the flowtime should be the scheduler’s goal since
we aim to reduce the load on the workers to optimize resource
utilization and maintain the maximum possible number of
available workers. The makespan is the time needed for the
system to finish executing the last service [12], which can be
calculated as the longest time that any worker from the system
takes to finish its assigned services, as given by equation
(5). Thus, it is important to minimize this number to ensure
completing the average user service in a timely manner. It

5585

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:38:45 UTC from IEEE Xplore. Restrictions apply.

Hybrid Event - 2022 IEEE Global Communications Conference: Communications Software and Multimedia

is noteworthy that these criteria can be heavily impacted by
communities if a generic allocation scheme is used since it
can pile workload on a few workers due to their available
resources before realizing that those workers are the only
available option for unscheduled services.

flowtime = Z i 677] “4)

icA; j=1

makespan = max{t, } (5)
j=1

Formulating the problem as a bipartite graph matching
renders the Munkres algorithm [15] a suitable solution. The
Munkres algorithm, also known as the Hungarian algorithm,
is a combinatorial optimization algorithm capable of solving
the classical bipartite graph matching which is the assignment
problem in polynomial time, specifically with a time complex-
ity of O(N?). However, in contrast to classical bipartite graph
matching, where every vertex from group A is matched with
a single vertex from group B, this is not always the optimal
case for service allocation. This is since multiple services can
be assigned to the same worker within the same cycle. On top
of that, the Munkres algorithm is relatively slow, due to its
multiple steps and calculations.

To address the aforementioned problems, we need to take
the problem a step back to graph matching, better known
as the maximum flow algorithm [16]. More specifically, the
multi-source multi-sink variation of the problem, where we
add an imaginary source that connects to all the sources and
an imaginary sink that connect to all sinks. To apply this to
bipartite graph matching, we can set the capacity of those new
edges to one, limiting the flow to one per source and one per
sink (i.e., service). In our case, we want the graph to match
the sinks (services) once to avoid assigning redundant work
to the workers. However, we strive to allow workers to have
multiple services. Thus, we introduce our first parameter. 3,
which allows the user to set the capacity for the number of
services assigned per worker. By default, this can be set to the
number of services, so any number of services can be assigned
to the same worker if needed.

The maximum flow algorithm with the worker capacity set
to one, can maximize the number of matches between workers
and services, overriding previous matches if services assigned
so far result in a dead-end, where some services are left
unmatched. Hence, the maximum flow algorithm can result in
the maximum possible number of matching, but they cannot be
guaranteed to be the best matches. Replacing the pathfinding
portion of the maximum flow algorithm with the shortest path
alternative, such as the Bellman-Ford algorithm, elevates it to
the minimum cost maximum flow (MCMF) algorithm, which
guarantees matches that result in the lowest cost (i.e., service
execution time). However, with the cap on source edges at
the number of services. The MCMF can assign all services
to one worker. The first approach of bipartite graph matching
tends to optimize the makespan, while MCMF optimizes the

flowtime. CORA bridges the gap between the two approaches.
Whenever a service s; is matched with a worker d;, we change
the cost on the edge from the added “super-source” to d; from
zero to the sum of edge weights for all services assigned to
this worker, multiplied by «, as given by equation (6), where
« is a tuneable parameter, such that 0 < o < 1.

€s,j = Z Q- €5 (6)

i€A;

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CORA
compared to six prominent heuristic-based resource allocation
schemes that could be tweaked to fit into the community-
oriented EED-based computing environments. These schemes
are Work Queue [13], Min-min [11], Max-min [11], LJFR
SJFR [12], and Sufferage [12]. In addition, we compare CORA
to the Munkres algorithm [15]. We use the following perfor-
mance metrics: 1) makespan, 2) flowtime, and 3) runtime.

A. Simulation Setup

The data generated and used in this simulation is the
ETC matrix, service set of communities, and worker set of
communities. This data is generated using a uniform distri-
bution with some parameters to distinguish between different
scenarios. Unless otherwise specified, the number of services
and workers is set to 500. In total, we generated and simulated
16 classes of instances by varying the following parameters:

« Worker heterogeneity: represents the variance among the
execution times of a given service across all workers. This
value can range between 1 and 50 in our simulation. In
the average extreme edge computing environment, worker
heterogeneity can be considered high due to the wide
range of available workers. However, in some cases of
corporate-owned devices, they can be relatively close or
even identical.

e Service heterogeneity: describes the possible variation
among the execution times of services on a given worker,
where a low variance indicates that a given worker can
run all services with a small execution time gap, while
a high indicates a case of vastly dissimilar services. We
simulated service heterogeneity between 1 and 50.

o ETC matrix consistency: can have one of two possible
values; consistent or inconsistent. In a consistent ETC
matrix, a worker d; executes any service s; faster than
dy. In this case, worker d; executes all services faster
than worker dj. In contrast, an inconsistent matrix char-
acterizes the case where worker d; may be faster than
worker dj, for some services and slower for others.

o Community density: defines the number of edges in the
graph and the number of unique communities available
in the environment at the time of simulation, which
translates to the possibility of community overlapping
between services and workers. This, in turn, results in
matching with fewer constraints. The number of unique

5586

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:38:45 UTC from IEEE Xplore. Restrictions apply.

Hybrid Event - 2022 IEEE Global Communications Conference: Communications Software and Multimedia

TABLE I
COMPARISON OF STATISTICAL RESULTS ON MAKESPAN AND FLOWTIME FOR 500 SERVICES IN SECONDS.
Instance Min-min Max-min LJFR_SJFR WorkQueue Sufferage CORA Munkres
ms. ft. ms. ft. ms. ft. ms. ft. ms. ft. ms. ft. ms. ft.

lo-lo-c-s | 1014 502 | 943 513 | 1016 511 | 1117 524 | 2450 498 | 700 505 | 700 505
lo-lo-c-d | 1034 505 | 903 512 | 858 S5l1 973 526 | 3776 504 | 697 503 | 697 503
lo-lo-i-s 1137 536 | 1112 552 | 1099 550 | 1232 598 1533 537 | 658 535 | 658 535
lo-lo-i-d | 1116 530 | 1065 543 | 1071 539 | 1219 598 1113 530 | 590 525 | 590 525
lo-hi-c-s | 1053 515 | 956 528 | 1012 520 | 1049 541 3326 508 | 694 509 | 694 509
lo-hi-c-d | 952 509 | 948 521 891 518 | 1075 542 1107 508 | 703 505 | 703 505
lo-hi-i-s 1231 551 | 1147 563 | 1140 565 | 1272 620 1539 549 | 689 547 | 689 547
lo-hi-i-d | 1120 538 | 1086 552 | 1056 547 | 1202 618 1075 536 | 626 533 | 626 533
hi-lo-c-s | 1072 511 974 525 | 1012 520 | 1229 545 1978 508 | 707 510 | 707 510
hi-lo-c-d | 1040 509 | 987 524 | 911 519 | 1005 541 1399 509 | 689 506 | 689 506
hi-lo-i-s 1199 546 | 1143 567 | 1155 563 | 1248 615 1618 548 | 672 545 | 672 545
hi-lo-i-d | 1090 537 | 1072 560 | 1057 550 | 1240 617 1126 538 | 611 532 | 611 532
hi-hi-c-s | 2432 686 | 1794 796 | 1930 746 | 8479 2062 | 5137 690 | 1735 714 | 2230 799
hi-hi-c-d | 1793 622 | 1425 713 | 1786 682 | 8838 2129 | 2830 633 | 1314 639 | 1627 667
hi-hi-i-s | 3614 759 | 2089 853 | 2125 824 | 9277 2170 | 2998 773 | 2089 787 | 2089 857
hi-hi-i-d | 1709 683 | 1574 762 | 1629 760 | 8633 2133 | 2307 709 | 1433 699 | 1598 714
Mean 1413 565 | 1201 599 | 1234 589 | 3068 961 2207 567 | 913 568 | 974 581

The instance format is ww-xx-y-z, where ww is service heterogeneity (high/low), xx is worker heterogeneity (high/low), y is matrix
consistency (consistent/inconsistent), and z is community density(sparse/dense). The ms. stands for makespan while ft. indicates the flowtime

column under each approach

communities, ranges between 10 and 30, while the num-
ber of edges per node can vary between 2 and 10.

B. Results and Analysis

Table I shows the makespan and flowtime results obtained
from running the scheduler evaluations for every instance.
The results shown for every instance are the average of five
different simulations. The embedded row clarifies the two
columns under each approach. The mean value per approach
across all instance classes within the table is shown in the
last row. The first column indicates the instance name, in a
format that is explained in the note under the table, and the
remaining columns indicate the values of makespan followed
by flowtime from left to right, respectively for each approach.
The highlighted bold value is the minimum value for either
makespan or flowtime per instance. As depicted in the table,
CORA and Munkres share the minimum makespan across all
instances. This is due to their common nature of prioritizing
distributing services over different workers and the possibility
of reallocating to consider the allocation order that prevents
service stacking that significantly increases makespan. How-
ever, it is not always desirable to have one service per
worker. This idea is highlighted by the instances with high
service heterogeneity and service heterogeneity. This can be
attributed to the fact that high worker heterogeneity increases
the possibility of having workers that are powerful enough to
execute multiple services before other workers execute a single
one. Another reason is high service heterogeneity, resulting
in short services that can be stacked and completed before or
close to relatively long services. In those four instances of high
worker heterogeneity and high service heterogeneity, we can
see CORA’s ability to adapt and achieve even lower makespan
results. For example, on average, CORA achieves a 24% lead
compared to the second-best heuristic. The Munkres algorithm
is not considered in this comparison because of its runtime,

which will be discussed later. This is in addition to the fact
that Munkres lacks the ability to assign multiple services to
a worker, significantly reducing its potential for generaliza-
tion. For the flowtime, most approaches, with the exception
of workQueue, are relatively close to each other. However,
CORA still outperforms most of the other approaches and
comes third within a negligible 0.5% difference behind the best
approach on average. Moreover, CORA retains the minimum
flowtime for 9 out of 16 instances, which means that in those
cases, it is the best option on the two fronts.

Figure 2(a) and Figure 2(b) further illustrate the difference
between CORA and the other approaches in average makespan
and flowtime, respectively. We can observe the trade-off that
other heuristics must make; while the Sufferage and Min-
min have a slight lead in average flowtime, they fall behind
for makespan. On the other hand, LJFR_SJFR and Max-
min retain a relatively low makespan but have to sacrifice
some flowtime. Breaking this pattern is the Munkres and
CORA. The latter has a considerable lead over all approaches,
including the Munkres algorithm. Testing across different data
sizes with a varying number of services shows that for all
approaches, except for workQueue, the makespan remains
consistent, while workQueue experiences a slight increase for
larger numbers. Furthermore, the flowtime remains consistent
for all approaches with the number of services.

Resource allocation that results in minimum makespan
and flowtime is the main goal of the scheduler. However,
calculating a near-optimal solution can take a relatively long
time, sometimes, to the point where the resulting allocation is
no longer relevant as the scheduler runtime exceeds the time
the services could have taken in a less optimal solution. Thus,
the scheduler runtime is vital to any live allocation approach.
WorkQueue sacrifices optimality for speed and simplicity,
hence, it has a complexity of O(IN M), where N is the number

5587

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:38:45 UTC from IEEE Xplore. Restrictions apply.

Hybrid Event - 2022 IEEE Global Communications Conference: Communications Software and Multimedia

1000

3000 =

2000 =

500 —4

1000 —

Mean Makespan (sec)
Mean Flowtime (sec)

(a) Mean Makespan

(b) Mean Flowtime

60 -

40

20 -

Mean Runtime (sec)

0 200 400 600

Number of Services
(c) Runtime under varrying number of services

800 1000

-~ WorkQueue -® Sufferage -4 Min-min

-¥ LJFR_SJFR

Max-min - CORA -® Munkres

Fig. 2. Performance Results for Min-min, Max-Min, LJFR_SJFR, WorkQueue, Sufferage, CORA, and Munkres.

of services and M is the number of devices. The Min-min,
Max-min, LJFR_SJFR, and Sufferage all share a complexity
of O(N2M). CORA has a time complexity of O((N+M)?E),
where E is the number of edges in the formulated graph,
which can vary depending on the graph density. Munkres time
complexity is O(6(N + M)?). As depicted in Figure 2(c). The
Munkres algorithm’s longer runtime is due to factors resulting
from the multiple steps that it has to go through before the
assignment. In contrast, on average CORA does not encounter
the same problem achieving a run time that is up to six times
faster than the Munkres algorithm.

V. CONCLUSION AND FUTURE WORK

Democratizing the edge by exploiting ample yet underuti-
lized resources of EEDs can open a new tech market for in-
dividuals, businesses, enterprises, and municipalities to create
their own edge cloud and monetize underused resources. Re-
source allocation in EED-enabled computing environments is
crucial for modern applications, and finding a balance between
reduced latency, cost-efficiency, and privacy is challenging.
In this paper, we have proposed the Community-Orientated
Resource Allocation (CORA) scheme, which utilizes clusters
and communities to check all the boxes. CORA recognizes the
need for a more complicated approach to retain an acceptable
efficiency. CORA has proved to be on par with six other
prominent approaches in terms of flowtime and runtime.
Additionally, CORA has a 24% better makespan on average in
16 different scenarios of resource allocation with communities.
Accommodating potential gains from the cluster scheduler, and
the ability to tune parameters, results indicate that CORA is
a suitable middle-ground for users prioritizing security and
privacy but also seeking high efficiency and utilization of
geographically distant devices. In the future, we plan to modify
the runtime estimation approach to utilize container history
and share knowledge across different services’ histories.

ACKNOWLEDGMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number ALLRP 549919-20.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

(12]

[13]
[14]

[15]

[16]

5588

REFERENCES

K. Gyarmathy, “Comprehensive guide to IoT statistics you need to know
in 2020,” VXchnge [online]. Tampa, Florida: vXchnge, 2020 (1), 3 [cit.
2020-07-10]. https://www.vxchnge.com/blog/iot-statistics, 2020.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1657-1681, 2017.

M. Gaur and M. Jailia, “Cloud computing data security techniques—a
survey,” in Renewable Energy Towards Smart Grid. Springer, 2022,
pp. 55-65.

P. Ranaweera, A. D. Jurcut, and M. Liyanage, “Survey on multi-access
edge computing security and privacy,” IEEE Communications Surveys
& Tutorials, vol. 23, no. 2, pp. 1078-1124, 2021.

L. Peterson, T. Anderson, S. Katti, N. McKeown, G. Parulkar, J. Rexford,
M. Satyanarayanan, O. Sunay, and A. Vahdat, “Democratizing the
network edge,” ACM SIGCOMM Computer Communication Review,
vol. 49, no. 2, pp. 31-36, 2019.

A. Islam, A. Debnath, M. Ghose, and S. Chakraborty, “A survey on
task offloading in multi-access edge computing,” Journal of Systems
Architecture, vol. 118, p. 102225, 2021.

“HomeEdge homepage,” https://wiki.lfedge.org/display/HOME/Home+
Edge+Project, accessed: 2021-10-01.

1. Ahmad, M. G. AlFailakawi, A. AlMutawa, and L. Alsalman, “Con-
tainer scheduling techniques: A survey and assessment,” Journal of King
Saud University-Computer and Information Sciences, 2021.

R. Zhou, Z. Li, and C. Wu, “Scheduling frameworks for cloud container
services,” IEEE/acm transactions on networking, vol. 26, no. 1, pp. 436—
450, 2018.

K. Kaur, S. Garg, G. Kaddoum, S. H. Ahmed, and M. Atiquzzaman,
“KEIDS: Kubernetes-based energy and interference driven scheduler
for industrial IoT in edge-cloud ecosystem,” IEEE Internet of Things
Journal, vol. 7, no. 5, pp. 4228-4237, 2019.

S. S. Murad and R. Badeel, “Optimized min-min task scheduling
algorithm for scientific workflows in a cloud environment,” J. Theor.
Appl. Inf. Technol, vol. 100, pp. 480-506, 2022.

S. Khurana and R. K. Singh, “Survey of scheduling and meta scheduling
heuristics in cloud environment,” in Computational Methods and Data
Engineering. Springer, 2021, pp. 363-374.

“Kubernetes homepage,” https://kubernetes.io, accessed: 2021-10-01.

J. Dickerson, K. Sankararaman, K. Sarpatwar, A. Srinivasan, K.-L. Wu,
and P. Xu, “Online resource allocation with matching constraints,” in
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2019.

W. Fangyang and L. Yuming, “Extended Kuhn-Munkres algorithm for
constrained matching search,” 2021.

A. Bernstein, M. P. Gutenberg, and T. Saranurak, “Deterministic decre-
mental sssp and approximate min-cost flow in almost-linear time,”
in 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS). 1EEE, 2022, pp. 1000-1008.

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:38:45 UTC from IEEE Xplore. Restrictions apply.

