
IET Wireless Sensor Systems

Special Issue: Smart Cities and Smart Sensory Platforms

Comprehensive survey of the IoT open-
source OSs

ISSN 2043-6386
Received on 5th February 2018
Revised 27th September 2018
Accepted on 27th September 2018
E-First on 30th October 2018
doi: 10.1049/iet-wss.2018.5033
www.ietdl.org

Mahmoud H. Qutqut1,2 , Aya Al-Sakran1, Fadi Almasalha1, Hossam S. Hassanein2

1Faculty of Information Technology, Applied Science Private University, Amman 11931, Jordan
2Telecommunications Research Laboratory, School of Computing, Queen's University, Kingston, Ontario, Canada ON K7L 2N8

 E-mail: qutqut@asu.edu.jo

Abstract: The Internet of things (IoT) has attracted a great deal of research and industry attention recently and is envisaged to
support diverse emerging domains including smart cities, health informatics, and smart sensory platforms. Operating system
(OS) support for IoT plays a pivotal role in developing scalable and interoperable applications that are reliable and efficient. IoT
is implemented by both high-end and low-end devices that require OSs. Recently, the authors have witnessed a diversity of OSs
emerging into the IoT environment to facilitate IoT deployments and developments. In this study, they present a comprehensive
overview of the common and existing open-source OSs for IoT. Each OS is described in detail based on a set of designing and
developmental aspects that they established. These aspects include architecture and kernel, programming model, scheduling,
memory management, networking protocols support, simulator support, security, power consumption, and support for
multimedia. They present a taxonomy of the current IoT open-source OSs. The objective of this survey is to provide a well-
structured guide to developers and researchers to determine the most appropriate OS for each specific IoT devices/applications
based on their functional and non-functional requirements. They remark that this is the first such tutorial style paper on IoT OSs.

1 Introduction
The Internet of things (IoT) can be described as a dynamic
distributed networked system that represents the most energising
technological revolution nowadays [1]. IoT is a network that
consists of a massive number of things (e.g. sensors, machines, or
appliances) communicating, sending, and receiving data via the
Internet [2]. The number of physical objects that are connected to
the Internet has been exponentially growing [3]. According to
Gartner Inc. report, there will be about 21 billion connected
devices by the year 2020 [4]. There are many domains and fields
that the IoT can play an essential role and improve the quality of
our lives [5]. These domains and fields range from health
informatics, smart transportation, smart sensory platforms, to
emergency cases where human decision making might be difficult
[6].

IoT devices have constrained functionalities and minimal
footprint, which consume lower internal storage, memory, and
computation power than typical devices [7]. They are also battery
operated or embedded within integrated circuits. Some IoT devices
can survive for a month to several years before a new battery
placement is required [8]. However, now, due to the IoT revolution,
the functionalities of these devices are expanding. So the device or
the controller must be more intelligent in monitoring several
inputs, updating events to gateways, or devices as well as receiving
commands from the gateways or other devices [9]. IoT enables
physical objects to see, hear, and perform several tasks by allowing
them to communicate with each other to share information and to
coordinate in order to make decisions [9]. IoT devices are
considered heterogeneous, and they are used in different
applications. Various types of applications require different
architecture and hardware support that can operate on low-power
sources. Hence, having an operating system (OS) that satisfies all
the requirements for IoT devices in various domains is almost
impossible [10]. The IoT is implemented by both high-end and
low-end devices that required appropriate OSs. High-end devices
can operate using traditional OSs (such as Linux), whereas low-end
devices operate with limited capabilities OSs that cannot perform
the same task of traditional OSs. Furthermore, OS support for IoT
plays a pivotal role in deploying reliable and scalable large-scale

IoT deployments. Over the years, we have witnessed diverse OSs
emerging into the IoT environment to facilitate IoT deployments
and developments. Additionally, several research works have been
devoted to improve OS performance and capabilities in different
dimensions.

To this end, we provide a comprehensive overview of the most
common open-source OSs for IoT. The choice of open-source OSs
is because we can have more information about their requirements
and functionalities, allowing a thorough investigation of such OSs.
This paper is written in a tutorial style, where each OS is described
in-depth according to a group of design and development aspects
that we define. We remark that this is the first such tutorial style
paper on this topic. The primary objective of this paper is to
provide an easy to follow and well-structured guide for researchers
and developers targeting IoT platforms. First, we establish a set of
design and development aspects for IoT OSs to help in evaluating
and understanding each OS in-depth. Second, we present a
taxonomy to provide a classification of the different kinds of open-
source OSs for IoT from different perspectives. Then, we study
each OS from the following aspects; architecture and kernel,
programming model, scheduling, memory management,
networking protocols, simulator, security, power consumption, and
support for multimedia. This paper reveals the strengths and
weaknesses of each OS presented in this paper. Finally, we provide
several comparative analysis of the presented OSs in this paper and
summarise their features.

The remainder of this paper is organised as follows. Section 2
presents a general overview of IoT and its challenges and existing
OSs for IoT environment. Section 3 shows the related aspects of
designing and developing an IoT OS. Section 4 illustrates a
proposed taxonomy for open-source IoT OSs. In Section 5, we
discuss open-source OSs for low-end IoT devices, whereas in
Section 6 we present open-source OSs for high-end IoT devices.
Section 7 provides three comparisons between the discussed IoT
OSs followed by the conclusion of this paper in Section 8.

IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

323

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

2 Background
In this section, we provide an overview of IoT and its challenges.
We also elaborate on why we need different and modified OSs for
the IoT.

2.1 Internet of things

The number of Internet-connected devices and machines is
increasing exponentially [11]. These devices and machines create a
dynamic network that consists of billions of things/objects
communicating with each other. One of the main goals of IoT is to
facilitate the collection of data from one point to another at any
time and anywhere through efficient, secure, and reliable
connections [5]. IoT is characterised by its exceptionally
identifiable items, things, and their virtual representations in an
Internet-like structure [12]. Things can interact with each other at
any time and place, in any way, and from any device. They can
enter and leave the network without the need to be restricted to a
single physical location to exchange data [13]. In IoT, millions, if
not billions, of heterogeneous devices should be connected to the
Internet [14]. These devices vary in computational power, available
memory, communication, and energy capacity. The IoT
environment consists of protocols, network designs, and service
architectures that deal with a massive number of IoT objects and
devices to exchange data [15]. Thus, the IoT needs to support
multiple objects based on different types of radio interfaces with
various numbers of requirements regarding the available resources
[16]. IoT applications apply to different domains and disciplines
such as smart homes, environmental monitoring, health care,
inventory and products management, smoke and fire detectors,
transportation, security, and surveillance systems [17, 18].

2.2 IoT challenges

One of the crucial challenges in IoT is to manage, maintain, and
deal with an enormous number of heterogeneous devices and the
data generated by them. This massive number of connected things
and objects lead to many technical and application challenges. The
main challenges and issues in IoT are presented below:

Heterogeneity: IoT connects and manages a massive number of
heterogeneous devices (e.g. full-fledged web servers and other
devices) constitute a critical challenge that has different operating
conditions, platforms etc. to provide advanced applications that can
improve our life [18]. As a result, the complexity will be increased.
Hence, developing applications that run on all platforms will
become extremely difficult, and increases the need for standard
interoperable architecture [18]. Also, data should be exchanged of
large-scale heterogeneous network elements in dynamic local
autonomy with highly efficient network convergence [18].
Security issues: Owing to the number of heterogeneous devices
that are exchanging data over the Internet, there is a risk of people
privacy. This is because these devices will record huge amounts of
data about people daily lives that could be pieced collectively to
create an in-depth portrait of their presence [19]. So, it is essential
to ensure a secure data channel between the participated devices in
IoT. Also, it is a must to have a secure and reliable connection
between heterogeneous devices in the IoT environment [19].
Scalability: With a massive number of heterogeneous devices such
as smart sensors and light bulbs which are fitted with minimal
processing and storage units, scalability becomes a crucial
challenge for the current growth of IoT [20]. For example,
calculation of daily temperature variations around all the country
may require millions of devices resulting in a substantial amount of
data that cannot be easily processed and managed. That is why IoT
needs data compression and data fusion to reduce this significant
data volume [21].
Interoperability: One of the significant challenges in IoT
applications is interoperability for crossing layers among different
IoT devices and deployments [22]. Interoperability challenge
appears when heterogeneous devices use different data formats and
various protocols to collaborate in communication and data
exchange [23]. In IoT applications, there are multiple competing

application-level protocols, function, and devices exist to provide
communication interoperability. Each of these protocols maintains
unique characteristics and messaging architecture for different
types of IoT applications. These traditionally are built with
different languages and protocols. So, it is essential to design a
scalable IoT architecture, called middle-ware layer, to support a
large number of heterogeneous devices and work independently
from messaging protocol standards [22].
Architecture: IoT includes an increasing number of heterogeneous
interconnected devices and sensors that are often transparent and
invisible. Owing to the number of these devices and machines, a
single architecture cannot be applied to all these heterogeneous
devices [24]. Heterogeneous reference architectures adapted to IoT
environment should be open, and they should not restrict users to
use fixed or end-to-end solutions [24]. Also, they should be
flexible to deal with different deployments such as identifications
(radio-frequency identification, tags), intelligent devices, and smart
objects [24].

2.3 OSs for the IoT environment

Like any new software, an OS has to be integrated with existing
IoT environment. To keep the complex IoT environment running, a
new OS has to be customised to meet specific requirements. Owing
to some constraints existence in many traditional OSs, they are
impractical to be used in IoT as IoT devices are designed with
limited resources [25]. The adoption process of an OS requires that
the OS should be able to operate IoT devices efficiently. In addition
to that each IoT device may need to be customised to make use of
its components that may not be available in other devices.
Nowadays, we are surrounded by many smart devices that are
different in their levels of complexity depending on their purposes.
All of them have a processor, a memory to store data, and other
peripherals [9]. To adapt to the constraints of typical IoT devices
successfully, it is necessary to have an appropriate OS that allows
easy control, connectivity, and communications. We are witnessing
some OSs for IoT implementations and large-scale deployments
[25]. However, there is a rapid need for development tools,
standardisation, easy maintenance, and porting of applications
across a wide variety of hardware platforms.

3 Designing and developmental aspects of IoT
OSs
The OS is the most basic system software which runs directly on
hardware resources to act as an intermediate between applications/
users and hardware. An OS mainly contains various components
but necessary a kernel, utility software, and system shell [26]. The
kernel is the essential part of an OS. It is a programme that
manages all activities in the system and gives permissions to other
software and users to perform any action [26]. The traditional OSs
are designed for workstations and personal computers (PCs) with
plenty of resources. For this reason, they are not appropriate for
IoT devices with constrained resources and diverse data-centric
applications. IoT devices need a customised type of OS
considering their unique characteristics. Moreover, IoT devices
require an entirely different architecture of OS and an extensive
range of hardware support. In this section, we present the main
characteristics and criteria to be considered when designing and
developing an OS for IoT devices. These characteristics and
criteria are discussed below.

3.1 Architecture and kernel models

Architecture is one of the most critical criteria for designing an OS.
The core software component of an OS is known as kernel. The
architecture of an OS has an effect on the size of the core kernel
and on how to provide services to applications. There are mainly
five standard architectures for OS: monolithic, microkernel, virtual
machine, modular, and layered architecture [27]. We will discuss
all OS architectures in the following sections.

324 IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

3.1.1 Monolithic architecture: This architecture model does not
follow any specific structure, where the OS architecture is working
in the kernel space such as Linux and Unix. It is also called multi-
tier architecture because monolithic applications are divided into
four or more layers such as presentation, application, database, and
business layers. It mainly consists of a set of primitives or system
calls to access input/output (I/O) devices, memory, hardware
interrupts, the central processing unit (CPU) stack, file systems,
and network protocols [27]. The monolithic kernel has better
throughput than other kernels because they handle many aspects of
computer processing at the lowest level [28]. Hence, it requires to
incorporate code that deals with many devices, I/O, interrupt
channels, and other hardware operators [28]. The main
disadvantage of this kind of architecture is that its functionality has
high complexity because all its components are placed in one
element [28]. So, if any programme component modified, the
entire application has to be rewritten which may lead to crashes in
installation [28].

3.1.2 Microkernel architecture: This architecture model is
divided into a number of separated processes [28]. Some of these
processes run in the kernel space and some run in the user space.
The microkernel architecture provides only the main functionalities
of OSs such as scheduling, inter-process communication (IPC), and
synchronisation. All other OS functionalities including device
drivers and system libraries operate in threads [28]. The
microkernel architecture provides high implementation flexibility.
So, it allows to add additional features such as plugins to the core
application, and provide extensibility efficiently and easily.
Moreover, it allows other OSs to be built on top of this microkernel
such as Windows NT [28].

3.1.3 VM architecture: This architecture allows the user to run
one OS on another OS to enable a higher degree of software
portability and flexibility [29]. An OS that executes in this
architecture is called guest OS, and the VM is usually called a
hypervisor [29]. The hypervisor can be run on the top of an OS.
The VM is often implemented as a combination of real machine
and virtualisation software. The hypervisor provides access to the
hardware resources for the OS through specific interfaces. Its main
advantage is its portability, whereas its main disadvantage is its low
system performance [29].

3.1.4 Modular architecture: This architecture allows to replace or
add kernel components dynamically at run time. In a modular
kernel, some components with similar functionality will be located
in separate files called modules that can be configured and handled
for various types of functionalities easily [28].

3.1.5 Layered architecture: This architecture consists of several
layers, in which each layer is built on top of the one below [30].
The bottom layer (layer 0) is the hardware layer, and the highest
layer (layer n) is the user interface layer. The layered architecture is
manageable, easy to understand, and reliable. The main
disadvantage is that they are not a very flexible architecture from
an OS design perspective because it requires an appropriate
definition of the different layers and precise planning of the correct
placement of a layer [30].

3.2 Programming model and development environment

Programming model represents the style of programming applied
to create a software which is primarily used to guide the
development through programming languages. Many factors
influence the choice of an appropriate programming model such as
concurrency control mechanism, memory hierarchy design, and
other factors [31]. There are two types of programming models:
multithreading and event-driven programming [31]. Multithreading
is the most familiar model for developers but it is not considered
well suited for resource-constrained devices such as sensors. Event-
driven programming is the most common model for writing
programmes. It is useful for developing IoT devices but deemed
inconvenient for traditional application developers [27].

Sometimes the behaviour of devices and their algorithms may
need to be modified either because of their functionality or energy-
consumption properties. Hence, the OS should be able to be
reprogrammed and upgraded when required [32]. However, a
software development kit (SDK) for an OS provides the software
framework for the programmers for interfacing with different
microcontrollers, sensors, and devices to run on IoT devices. SDK
consists of a set of libraries [33]. Also, a standard programming
interface (API) should be provided such as portable OS interface
(POSIX) or standard template library (STL) to facilitate software
development and simplify the porting of existing software [34]. In
addition to that, when a code is propagating, a whole OS can be in
a dysfunctional state because multiple programmes will be running
concurrently. This transition time between programmes is
considered wasted time, and thus, draining energy. In this regard,
an efficient and robust reprogramming technique must be used to
propagate and maintain the new code promptly [35].

3.3 Scheduling

The selection of the scheduling strategy is tightly bound to the
capabilities of a system to fulfil real-time requirements in order to
support different priorities and degrees of interaction with users
[34]. There are different scheduling algorithms such as priority-
based and non-priority-based schedulers. Priority-based
schedulers are classified into preemptive and non-preemptive.
Preemptive schedulers select the highest priority task to run even if
there is another running task. Non-preemptive schedulers will wait
till the lower running task completes its execution in the processor
[36]. Preemptive scheduling is called so because interrupting the
processes during execution is possible. The processor might switch
from the ready or waiting state to the running state. Non-
preemptive scheduling takes place when a process terminates or
turns from running to a waiting state. It is called non-preemptive
because processes cannot be interrupted or scheduled [36].

3.4 Memory management and performance

In a traditional OS, memory management refers to the method of
allocating and deallocating memory for operations. There are two
conventional memory management techniques: static and dynamic
memory management methods [27]. The static memory
management method is simple and useful when dealing with
limited memory resources. However, the results are inflexible due
to the run-time memory allocation which cannot occur. On the
other hand, the dynamic memory management method is more
flexible because memory can be allocated and deallocated at run
time. A process memory protection is also important which means
protection of one process address space from another to prevent
unauthorised interfering or data loss [27]. The OS should be
designed with the smallest footprint to provide the fastest
performance including memory operations. Memory management
and performance are significant characteristics of IoT device and is
the primary reason why so many sophisticated OSs cannot be
easily adapted to IoT devices [32].

3.5 Communication and networking protocols support

Another important aspect of choosing or designing an OS is the
communication and networking protocol supported. Protocols
specify interactions among different communicating entities. They
exist at different levels in a telecommunication connection [37].
Choosing an optimised communication and networking protocol
for a particular application is highly essential [37]. Especially, with
a wide range of communication and networking protocols such as
wireless fidelity (WiFi), ZigBee, Bluetooth, and second-generation
(2G)/3G/4G cellular technologies etc. [37]. There are also several
new growing communication and networking protocols such as
thread as an alternative for home applications, and Whitespace TV
technologies that can be applied in cities. Relying on the
application and its factors such as data requirements, security,
power consumption will dictate the choice of the most appropriate
communication and networking protocols [38]. IoT devices can be
directly connected using cellular technologies such as 2G/3G/4G

IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

325

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

cellular, or they can be connected through a gateway, making a
local area network, to get a connection to the Internet [37, 38]. The
mentioned technologies of ubiquitous computing such as
embedded sensors, light communication, and Internet protocols
(IPs) are essential for IoT [37]. However, they impose several
challenges and introduce the need for specific standards and
communication protocols [37]. Processes communicate with each
other within the same system or with a different one or even with
other processes on heterogeneous devices. Therefore, IoT OSs
must provide communication and networking protocols and
heterogeneity must also be taken into consideration as well [27,
37].

3.6 Simulation support

Simulator refers to the process of imitating one OS into another OS
or another device. Simulations and emulations can also make
programmes to run on OSs which were not intended formerly for
them [27]. The OS simulator provides varying degrees of
scalability and detail for understanding the behaviour of IoT
devices throughout two main aspects of a computer system's
resources which are memory and process management. The
primary user interface for OS simulator contains a CPU, where all
codes are available to the simulator to create multiple instances of
the code as separate processes [27].

3.7 Security

With the tremendous progress of IoT, more and more objects/things
will be connected to the Internet. So, it is essential to ensure a
secure data channel between the participated devices in IoT [39].
Also, it is a must to have a secure and reliable connection between
heterogeneous devices in IoT environment [19, 39]. The IoT
entities will mostly neither be a single-use, nor sole-ownership
solution. The devices, things, and the control policies could have a
different use, policies, administration, and connectivity domains.
Consequently, devices will be ordered to have open access to some
data users. On the basis of the fact that the collected information
may contain personal information of the users, so it is essential to
ensure the security of the devices in IoT. Generally, these IoT
devices are limited in the resources, memory, and computational
power. Moreover, they are more susceptible to attacks than other
endpoint devices such as computers, tablets, or smartphones. One
of the challenges facing the security of IoT is its components spend
most of the time unattended, so that they can be physically
attacked. Another challenge is that most of the communications in
IoT are wireless, which makes eavesdropping extraordinarily easy.
Also, IoT devices cannot apply complicated security schemes due
to their limited capabilities [40].

Security is a top priority and should be considered in the
hardware too as similar to conventional desktop computers, severe
challenges exist. IoT devices will be expanded to most aspects of
our lives, so we have to overcome these difficulties and challenges
[41].

To provide security, there are several traditional security
techniques such as patch upgrades, security scanning, virus
checking and killing, intrusion detection, and other security
techniques. However, these techniques and tools can be used for a
small part of the IoT system that can hardly overcome with the
rapid growth of security threats and attacks. Trusted platform
module (TPM) security system of IoT is a technology designed to
provide hardware-based and security-related functions. TPM
hardware chips can be used with any OS [42]. A TPM chip stores
cryptographic keys to be used for encryption that set on computer's
motherboard. When enabled, the TPM provides full disc
encryption capabilities. It becomes the ‘source of trust’ for the
system to provide integrity and authentication to the boot process.
It holds hard drives locked until the system completes an
authentication check or a system verification. The chip includes the
following trusted modules: user, perception, terminal, network, and
an agent. These modules are specially designed to avoid the
different security threats in the applications of IoT [42]. Moreover,
security problems of IoT can be described from the network layer
such as sensor attacks, sensor abnormalities, radio interference,

network content security, hacker intrusion, and illegal
authorisation. However, IoT may face many security issues at the
application layer such as database access control, privacy
protection technology, information leakage tracking technology,
secure computer data destruction technology, and protection
technology of secure electronic products and intellectual property
of software [42].

3.8 Power consumption

Power efficiency is a crucial constraint with portable devices that
run on battery source [43]. Power models are developed from
physical measurements on the hardware platform. In certain
situations, batteries are required to operate for 10 years at least.
Even though that power utilisation is mainly dependent on
hardware selection, OSs which sustain power management features
are capable to efficiently manage applications to enhance battery
life and allow for long sleep cycles as much as possible [44]. The
OS represents the primary software component and determines the
total power in many modern application executions. The selection
of OS can have a significant impact on the power consumption of
an OS in both active and passive manners. An active manner when
there is active power management as the OS can take specific
actions to control, limit, or optimise the device power
consumption, whereas in a passive mode, the architectural features
of the OS have an indirect effect on power consumption [44].

3.9 Supporting multimedia

Some IoT applications may require that OSs support time
constrained data types such as streaming media applications,
distributed games, and online virtual environments. Most
traditional OSs are incompatible with these timing constraints, and
they are also poorly matched to the multimedia processing since
user requirements changing dynamically. Moreover, supporting
commercial real-time multimedia software has the additional
requirement that the OS must provide for controlling and
communicating resource usage among independent real-time
activities. Moreover, audio and video sources generate data that
needs exhaustive processing to be compressed and decoded for
streaming. The data exchange occurs from these sources to other
destinations such as loudspeakers and video situated on the
computer or at another remote station. Multimedia data is
processed on the way from the source to the sink through copying,
moving, and transmitting operations. OSs manage the resources
where the data processing occurs. The OS must be able to process
audio and video, and the amount of data that has to be transferred
can be substantial [45].

Fig. 1 summarises the main features and aspects discussed in
this section. We use these design and development aspects to
evaluate the open-source IoT OSs discussed in our survey.

4 Classifications of IoT OSs
OSs can be classified based on different criteria. For example, they
can be classified by their source code either open or closed. Also,
they can be categorised according to the purpose of their design
into either specially designed IoT OS or customised version of an
existing OS. Another classification for OSs is to divide them into
Linux based or non-Linux based. Finally, OSs can be classified
based on the targeted devices whether high-end IoT devices or low-
end IoT devices.

In open sources, the source is available to anyone so that the
user can use the freely distributed code, and modify it even for
commercial purposes to fit a particular requirement such as Linux
OS. Closed source OSs use code that is implemented by private
parties and is kept unpublished to have full control over the OS and
keep its proprietary [9]. An OS is usually classified into two
different software ecosystems. The first is Linux based, and the
second is non-Linux based. Linux OS is an open-source cross-
platform based on Unix OS that can be installed on PCs, servers,
and other hardware. On the other hand, non-Linux OS is not based
on Linux or Unix; rather it depends on other OSs such as Windows
and ReactOS.

326 IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

The last classification of IoT OSs is based on the capability and
performance of IoT devices; they can be classified into two
categories. The first category is for high-end IoT devices which
include single-board computers such as the Raspberry Pi (RPi).
High-end IoT devices can run traditional OSs such as Linux. The
second category is for low-end IoT devices, which have limited
resources and cannot run by traditional OSs. An example of low-
end IoT devices is Arduino.

In this paper, we target the most used and state-of-the-art open-
source IoT OSs due to the limit on the number of pages. For the
closed source IoT OSs, we recently published a paper on this topic
[46]. Fig. 2 shows a proposed taxonomy of open-source IoT OSs
based on low-end or high-end IoT devices, and on Linux based and
non-Linux based from a high-level perspective either.

5 OSs for low-end IoT devices
In this section, we will describe the most widely used low-end OSs
for IoT devices from the aspects and criteria presented in Section 3.
The main objective of this section is to provide an exhaustiveness
understanding of each low-end IoT OS.

5.1 TinyOS

TinyOS is an open-source non-Linux-based OS designed explicitly
for low-end IoT devices, embedded and wireless devices such as
sensor node networks, smart buildings, and smart sensory
platforms [47]. TinyOS is built based on a set reusable software
component [47]. It is written using NesC programming language,
which has a similar syntax to C language [47]. Each TinyOS
component has a frame and a structure of private variables. These
components have three computational abstractions: commands,
events, and tasks [47, 48]. Commands are used to call a component
to do a specific task. Events are mechanisms for entering

component communication, while tasks are used to represent
component concurrency [49].

5.1.1 Architecture and kernel models: TinyOS has a monolithic
architecture and uses a component-based architecture that depends
on the application requirements. This reduces the size of the code
needed to setup hardware [47]. Different components are grouped
with the scheduler to run on the mote platform. The mote platform
has very insufficient physical resources depending on which
components are active. Typical TinyOS motes consist of a 1 
microprocessor without interlocked pipeline stages (MIPS)
processor and tens of kilobytes of storage. A component is an
independent computational element that shows one or more
interfaces. Components have three computational abstractions:
commands, events, and tasks. Mechanisms for inter-component
communication are commands and events, whereas tasks are used
to express intra-component concurrency. A command is a request
to perform some service while the event signals represent the
completion of service [27, 47]. Fig. 3 shows the architecture of
TinyOS. The scheduler schedules operation of those components.
Each component consists of four parts: command handlers, event
handlers, an encapsulated fixed-size frame, and a group of tasks.
Commands and tasks are performed in the context of the frame and
operate on its state. Each component declares its commands and
events to allow the modularity and easy interaction with other
components [32].

5.1.2 Programming model and development
environment: TinyOS supports an event-driven concurrency
model which consists of split-phase interfaces, deferred
computation, and asynchronous events [31]. TinyOS is
programmed in NesC for memory limitations of sensor networks
which are similar but not compatible with the C language. It allows
writing pieces of reusable code which explicitly indicates their

Fig. 1  Overview of the designing and developmental aspects of IoT OSs

Fig. 2  Proposed taxonomy of open-source IoT OSs

IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

327

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

dependencies [47]. Also, TinyOS uses a mechanism called Trickle.
Trickle is an algorithm used for propagating and maintaining code
updates when needed. Trickle applies a polite gossip policy, where
nodes occasionally broadcast code to all neighbour nodes, and
remain silent. When a node hears an older summary of its own, it
broadcasts an update rather than sending a network signal with
packets. Then, the algorithm manages the process of sending, so
each node only hears a small trickle of packets which is just
enough to stay up to date. Trickle propagates new code within
seconds and makes the maintenance cost less in terms of time
(propagation of new code to all neighbours’ nodes) [35]. The
primary challenge in TinyOS development is the creation of
flexible and reusable components [49].

5.1.3 Scheduling: The task scheduler in TinyOS is a simple non-
preemptive first-in–first-out (FIFO) scheduler using a bounded size
scheduling data structure. The TinyOS scheduler sets the processor
to sleep when the tasks are completed; to maximise CPU utilisation
as well as the OS performance [50].

5.1.4 Memory management and performance: TinyOS uses
static memory allocation with memory protection. There are no
concepts of dynamic memory allocation such as hidden heaps,
dynamic memory, or function pointers because TinyOS
programmes are organised in components and are written in NesC
language [47]. TinyOS has a small footprint as it uses a non-
preemptive FIFO task scheduling. It applies synchronisation clock
in software, which increases the number of entries in the task
queue at compile time when the system begins with 1, 32 kHz, or
1 MHz.

5.1.5 Communication and networking protocols
support: TinyOS has built-in support for common network
protocols such as transmission control protocol (TCP), user
datagram protocol (UDP), ICMPv6, IPv6, IPv6 over low-power
WPAN (6LoWPAN), IPv6 routing protocol for low-power and
lossy networks (RPL), and constrained application protocol
(CoAP), in addition to hydrogen routing protocol that is used for
reliable communication [51].

5.1.6 Simulation support: To validate the analysis model of
TinyOS applications, a TinyOS Simulation (TOSSIM) simulation
environment has been developed. TinyOS simulation (TOSSIM)
provides a high flexibility simulation of TinyOS applications which
work by replacing components with simulation implementations
[47]. Moreover, TOSSIM provides developers an integrated
environment of the network and troubleshooting capabilities.
Server-side applications can be connected to a TOSSIM proxy only
if it is a real sensor network. Hence, facilitating the transition
between the simulation and real deployments [47]. TOSSIM also
provides support integration for troubleshooting and debugging
applications directly on the mote. Unfortunately, TOSSIM does not
support gathering power measurements [47].

5.1.7 Security: TinyOS uses TinySec library which was
developed using the NesC programming language and
implemented by the link layer to provide confidentiality, message
authentication, integrity, and semantic security [52]. The default
block cipher encryption in TinySec is Skipjack algorithm that is
used with cipher block chaining (CBC-CS) method. Skipjack has
an 80 bit key length that provides immunity to brute force attacks
[52]. Skipjack generates message authentication code (MAC)
method which utilises CBC-MAC [52]. However, CBC-MAC has
security lacks since it furnishes semantic security with an 8 B
introduction vector which includes only a 2 B counter overhead per
packet [52]. TinySec holds <10% energy, inactivity, and transfer
speed overhead [52].

5.1.8 Power consumption: TinyOS provides efficient low-power
consumption operation and limited storage using a simple
execution model [44]. TinyOS execution model is based on split-
phase operations and interrupts handlers. It allows the scheduler to

decrease its random access memory (RAM) utilisation and easily
maintains sync code. This avoids the need for threads and allowing
all programmes to execute on a single stack. However, it implies
that if one sync code runs for a long term, then it prevents other
sync code from running; which can negatively influence system
responsiveness [44].

5.1.9 Supporting multimedia: TinyOS supports full IP network
stack, with standard IP protocols such as UDP, TCP, and hypertext
transfer protocol (HTTP) that are used to stream multimedia
content. The frameworks available for video codecs and
multimedia streaming are limited in this OS and have no extended
support. Moreover, real-time transport protocol (RTP) is not found
in the base of TinyOS [53].

5.1.10 More about TinyOS: TinyOS applies fully non-blocking
split-phase operations that enable developers to re-define the kernel
API by choosing an existing set of operations or by implementing
one system call stack. In this method, all I/O operations that last
longer than a few hundred microseconds are asynchronous and
have a callback known as deferred procedure calls [47].

5.2 Contiki OS

Contiki is an open-source non-Linux-based OS for low-end IoT
devices designed especially for IoT. It is lightweight, highly
portable, and multitasking OS that runs on tiny low-power
microcontrollers with minimal memory. Contiki OS is written in C
programming language. It uses 2 kB of RAM and 40 kB of read-
only memory (ROM). Nowadays, Contiki can be run on various
hardware platforms such as Alf and Vegard RISC processor (AVR),
MSP430, and Z80 [31, 52, 54].

5.2.1 Architecture and kernel models: In contrast to TinyOS.
Contiki OS has a modular architecture [25]. The core of Contiki
OS mainly consists of multiple lightweight event schedulers and a
polling mechanism. The event schedule is responsible for
dispatching events to run processes and periodically calls
processes’ polling handlers, which identifies the action of the
polled process [31]. On the other hand, the polling mechanism
identifies high priority events. Polling mechanism is used by
processes that operate near the hardware to check the status
updates of hardware devices. All processes that implement a poll
handler are requested in order of their priority [54]. Fig. 4 shows
the architecture of Contiki OS. Contiki OS contains sensor data
handling, communication protocols, and device drivers as services.
Each service has its interface and implementation.

5.2.2 Programming model and development
environment: Unlike TinyOS, the programming models in Contiki
support both multithreading and event-driven using protothreads.
The main advantage of protothreads is their very minimal memory
overhead with no extra stack for a thread. Since events run to
completion, Contiki does not allow interruption of handlers to post
new events, and it does not allow process synchronisation [27].
Programming models with Contiki are defined by events in a way

Fig. 3  Architecture of TinyOS (reproduced from [27])

328 IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

that all tasks are executed in the same context [52]. Protothreads
mechanism runs on top of the event-driven kernel. A protothread
process is invoked whenever a process receives an event, and the
protothreads mechanism decides which memory should be
allocated [55]. Contiki is implemented by system libraries which
are connected with programmes. Programmes can be connected
with libraries in three ways. The first way, the programmes can be
statically connected with libraries that are part of Contiki core.
Second, programmes can be statically linked with libraries that are
part of the loadable programme. Third, programmes can call
services using a specific library. Libraries that are applied as
services can be replaced dynamically at the running time. Consider
a programme that uses the memcpy() and atoi() functions to copy
memory and to convert strings to integers, respectively. The
memcpy() function is a frequently used C library function; whereas
atoi() is used less often. Therefore, in this example, memcpy() has
been included in the Contiki core but not atoi(). The memcpy()
function will be linked against its static address in the core when
the programme is linked to produce a binary. The object code for
the part of the C library that implements the atoi() function must,
however, be included in the binary programme [31]. Moreover,
Contiki uses loadable modules to perform dynamic code
reprogramming and upgrading. With loadable modules, only
specific parts of the codes need to be modified when a single
programme is changed [56]. Besides, Contiki provides a command-
line shell which is useful during development and debugging of
Contiki systems [57].

5.2.3 Scheduling: The scheduling used in Contiki OS is similar to
TinyOS, in which both use FIFO scheduling strategy. In Contiki,
all event-driven scheduling is done at a single level and events
(preemptive multitasking); events are executed as they arrive [31].

5.2.4 Memory management and performance: Unlike TinyOS,
Contiki supports dynamic allocation or deallocation of memory
through mmeb() and mmem() as well as malloc(). The memb()
memory block allocator is the most frequently used. The mmem()
managed memory allocator is used infrequently and it uses the
standard C library malloc() heap memory allocator [58]. In
addition, Contiki uses Contiki coffee file system technique for data
storage inside the sensor network. It allows multiple files to exist
on the same physical onboard flash memory [58].

5.2.5 Communication and networking protocols
support: Contiki OS supports many protocols such as CoAP and
the message queue telemetry transport (MQTT) [59]. In addition to
that, the two main communication stacks are uIP and Rime stack
that consists of a set of custom lightweight protocols for power
constrained wireless networks [59]. Contiki supports a full IP
network stack with standard IP protocols such as UDP, TCP, and
HTTP [60]. Also, it has support for 6LoWPAN adaptation layer,

the RPL IPv6 multi-hop routing protocol, and the CoAP RESTful
application-layer protocol [61].

5.2.6 Simulation support: Cooja simulator supports Contiki,
which is a useful tool for Contiki OS application development.
Cooja makes simulation colossally less demanding by providing a
simulation environment to allow testing of code before running it
on the target hardware devices [62].

5.2.7 Security: Contiki OS uses ContikiSec transport layer
security (TLS)/datagram transport layer security (DTLS), which is
a secure network layer, and contains three modes: authentication,
confidentiality, and integrity in communication. ContikiSec uses
low-energy utilisation and security while complying with a little
memory footprint [52].

5.2.8 Power consumption: Contiki is intended to run on low-
power devices that may need to keep running for quite long time
on batteries [63]. To help the improvement of low-power devices
power consumption, Contiki provides software-based power
profiling mechanism for estimating the system power utilisation
and for knowing where the power was consumed giving power
awareness [62].

5.2.9 Supporting multimedia: Contiki supports full IP network
stack protocols such as UDP, TCP, and HTTP that are used to
stream multimedia contents. The frameworks available for video
codecs and multimedia streaming are limited in this OS and has no
extended support. Moreover, RTP protocol is not found in the base
of Contiki.

5.2.10 More about contiki OS: One of the essential features of
Contiki is dynamic loading; which is the ability to link modules at
run time [64]. Contiki transferred nodes can be battery-operated
because of the ContikiMAC radio duty cycling mechanism which
allows nodes to sleep between each relayed message [65]. Unlike
TinyOS that has no blocking operations, Contiki provides some
conditional blocking of functions in a sequential instruction block.

5.3 Real-time OS for IoT (RIOT) OS

The RIOT is known as ‘the friendly OS for the IoT’. RIOT is an
open-source non-Linux-based OS specialised for low-end IoT
devices with a minimum of 1.5 kB of RAM and 5 kB of ROM
[66]. RIOT provides a uniform abstraction over the details of
different IoT hardwares. It was developed by a grassroots
community using C programming language. RIOT can run on
various platforms including embedded systems, and it is easy to
use. It supports many functionalities such as interruption handling,
memory management, IPC, and synchronisation. Moreover, RIOT
has many advantages such as reliability, predictability,
performance, and scalability [67].

5.3.1 Architecture and kernel models: In contrast to the other
OSs such as TinyOS or Contiki. RIOT has a microkernel
architecture, which has been designed to work on several IoT
platforms with different CPU architectures (32 bit, 16 bit, 8 bit)
such as ARMv7, ARM Cortex-M0 + , MSP430, and some recent
AVR microcontrollers. The microkernel architecture of RIOT OS
was developed using C + +, and it supports full multithreading that
provides a developer-friendly API and allows C + + and ANSI C
application programming. RIOT kernel will never crash because it
supports error device drivers. The architecture design of RIOT also
contains POSIX compliance [42, 68]. Fig. 5 shows the structure of
RIOT, which is divided into four layers. The first layer is the
kernel; which consists of the scheduler, inter-process
communication, threading, thread synchronisation, supporting data
structures and type definitions. The second layer is platform
specific code (CPU boards), which contains the configuration for
that particular CPU. The third layer is device drivers, which consist
of the drivers for external devices such as network interfaces,
sensors, and actuators. The fourth layer comprises of libraries,

Fig. 4  Architecture of Contiki OS (reproduced from [27])

IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

329

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

network code, and applications for demonstrating features and
testing. Moreover, this layer includes a collection of scripts for
various tasks as well as predefined environment documentation
(doc) [67].

5.3.2 Programming model and development
environment: RIOT is similar to Contiki that it also supports
preemptive multithreading. RIOT is developed using standard
programming languages such as ANSI C and C + + [69]. With
RIOT, developers can code the application once and run it on
various IoT hardware devices. Moreover, RIOT provides common
programmer APIs such as Berkeley software distribution (BSD)
sockets or POSIX thread (pthread) functionalities [70]. Besides,
RIOT can run and debug the same as in Linux and MacOS using a
set of popular debugging tools such as GNU Debugger (GDB) and
Valgrind [67]. The C + + programming capabilities used in RIOT
allow RIOT to use powerful libraries such as the Wiselib, which
contains algorithms for routing, clustering, time sync, localisation,
and security. RIOT has other programming features such as
dynamic linking support, Python interpreter, and energy profiler
[71]. Also, RIOT provides virtualisation, where the code and
application can run as a simple Unix process. RIOT uses Wireshark
for packet analysing [67].

5.3.3 Scheduling: Together with Contiki. RIOT implements
preemptive priority-based and tickless scheduling, where each task
has a priority in execution that helps the scheduler to select the
highest priority task to run on CPU. RIOT tasks with the highest
priority are executed first, and if there are more than one high
priority tasks, a round-robin (RR) mechanism will be used [71].

5.3.4 Memory management and performance: In RIOT OS,
both dynamic and static memory allocations are provided for
applications [72]. RIOT OS does not have a memory management
unit (MMU) or floating point unit. However, it has a low memory
footprint in the order of a few kBs [66, 68].

5.3.5 Communication and networking protocols
support: RIOT OS supports several networking protocols
including TCP/IP v4 and v6 and the latest standards for connecting
constrained systems to the internet engineering taskforce (IETF)
6LoWPAN [72]. In addition to that, RIOT has built-in support for
other IoT-related network protocols such as CoAP and RPL [73].

5.3.6 Simulation support: At the time of writing this paper, RIOT
OS does not have a simulator. Rather, we can have a full-scale
simulation for RIOT applications from Contiki–Cooja simulator for
IoT [67].

5.3.7 Security: RIOT supports powerful attack detection
capabilities called secure cyber-physical ecosystem (CPS). CPS is
a system that interacts, monitors, and controls smart objects
through complicated processes. When an attack is detected, then
the reaction to it occurs [69].

5.3.8 Power consumption: The simplicity of microkernel
architecture of RIOT is the main characteristic to enable maximum
energy efficiency [67]. RIOT context switching can happen in two
situations. The first situation is when a corresponding kernel
operation gets called by itself such as a mutex locking. The second
situation is when an interruption happens in a thread switch.
Fortunately, the first situation will happen once in a while. Then,
when RIOT's kernel gets called again, a task switch can be
performed in very few clock cycles [71]. Moreover, RIOT OS is an
exceptionally suited software platform to optimise energy
consumption on battery-powered microcontroller (MCU)-based
devices and consumes less energy [68].

5.3.9 Supporting multimedia: RIOT supports full TCP/IP
network stack protocols such as UDP, TCP, and HTTP that are used
to stream multimedia content. It has many onboard modules which
are essential for developing multimedia applications [71].

5.4 LiteOS

LiteOS is an open-source Linux-based lightweight OS designed to
run on low-power devices. This makes LiteOS suitable for a wide
range of areas including wearable, smart homes, connected
vehicles, and microcontrollers. LiteOS can be installed on devices
that run by Google Android OS, and it can connect with other
third-party devices. It is developed purposely to provide a Unix-
like OS for IoT developers and to provide programmers with
familiar programming paradigms such as a hierarchical file system
developed using LiteC programming language and a Unix-like
shell [27, 74].

5.4.1 Architecture and kernel models: In contrast to RIOT,
LiteOS has a modular architecture divided into three subsystems;
LiteShell, LiteFS, and the kernel [32] as shown in Fig. 6. LiteShell
is a Unix-like shell that provides support for shell commands such
as file management, process management, and debugging.
LiteShell resides on a base station or a PC. This leverage allows
more complex commands as the base station, or PC has abundant
resources. The LiteShell can only be used with user intervention.
Some local processing is done on the user command by the shell
and then transmitted wirelessly to the intended IoT node. The IoT
node does the required processing of the command and sends a
response back which is then displayed to the user. When a mote
does not carry out the commands, an error code is returned. The
second architectural component of LiteOS is its file system,
LiteFS, which consists of sensor nodes as a file and it mounts a
sensor network as a directory and then lists all one hop sensor
nodes as a file. A user on the base station can use this directory
structure just as the traditional Unix directory structure and can
also use legitimate commands. The third subsystem of LiteOS is
the kernel which resides on the IoT node. The kernel supports
concurrency multithreading, dynamic loading, and uses RR and
priority scheduling, which allows developers to register event
handlers through callback functions [27].

5.4.2 Programming model and development
environment: LiteOS is a multitasking OS that supports
multithreading. In LiteOS, processes run applications in separate
threads. Each thread has its allocated memory which helps in
protecting the memory. LiteOS also provides support for event
handling [27]. Also, it supports dynamic reprogramming and
replacement mechanism through the user application.
Reprogramming can be performed either if the source code of the
OS is available or not. If it is available, it will be easily recompiled
with new memory settings, and all pointers of the old version will
be redirected, whereas if the source code is not available, it uses a
differential patching mechanism to upgrade the older version. Also,
LiteOS supports online debugging including variable watches and
a vast number of breakpoints. Additionally, it contains extensive
development libraries [76].

5.4.3 Scheduling: LiteOS implements both priority-based and
RR scheduling in the kernel. The task to be executed is chosen

Fig. 5  Architecture of RIOT OS (reproduced from [66])

330 IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

from the ready queue using priority-based scheduling. When a task
requires a resource that is not available currently, the task allows
interrupts and goes to sleep mode [32].

5.4.4 Memory management and performance: LiteOS
implements dynamic memory allocation with an almost zero
overhead through system calls using malloc() and free() API
functions. The malloc() function allocates memory using a pointer.
If the size of memory is zero, then malloc() returns to either NULL
or a unique pointer value that can be passed to free() function. The
free() function frees the memory space, which must have been
returned by a previous call to malloc() function. This enables
adapting the size of dynamic memory as required by an application
[77].

5.4.5 Communication and networking protocols
support: LiteOS does not have any built-in networking protocols
that support real-time applications [77]. LiteOS provides support
for long-distance connection based on technologies such as long-
term evolution (LTE) and NodeB (NB)-IoT, and short-distance
connection based on communication protocols such as ZigBee and
6LoWPAN [74].

5.4.6 Simulation support: AVRORA simulator can be used to
emulate LiteOS on physical IoT devices. AVRORA is a set of
simulation tools for programmes written for the AVR
microcontroller. AVRORA contains an adaptable system for
simulating and prototyping programmes, which allows Java API
experimentation, profiling, and investigation [78].

5.4.7 Security: In terms of security, LiteOS provides independent
user space and application separation through a set of system calls.
The authentication mechanism is needed between the base station
and mounted motes, especially low-cost authentication
mechanisms. To ensure the security of communications between
the sensors and systems, LiteOS has a security component by
embedding Hi3519 chip Huawei Lite OS that can be implemented
to security cameras and portable high-definition camera [74].

5.4.8 Power consumption: LiteOS supports ultra-low-power
consumption; it can be used to run MicaZ motes having 128 B of
flash memory, 4 kB of RAM, and 8 MHz CPU. LiteOS battery can
power a device for five years or more [74, 79].

5.4.9 Supporting multimedia: LiteOS does not support any
implementation of networking protocols that support multimedia
applications [27].

5.4.10 More about LiteOS: LiteOS offers many novel features
including zero configuration, auto-discovery, auto-networking, fast
boot, a hierarchical file system, a wireless shell interface for user
interaction and real-time operations. It also provides extensive
wireless support including LTE and mesh networking [60]. LiteOS
supports Windows XP, Windows Vista, and Linux in addition to
both MicaZ and IRIS nodes. Moreover, it supports both plug-and-
play routing stack. Other advantages of LiteOS are that it has an
extremely lightweight event logging and it has a built-in
hierarchical file system. Finally, LiteOS snapshots a thread state
and can restore it to a previous state [74].

5.5 FreeRTOS

FreeRTOS is an open-source non-Linux, multitasking, preemptive,
and mini real-time OS for low-end IoT devices mainly developed
using C and some assembly functions [80]. It is very scalable,
simple, easy to use, and highly portable. Its main strength is the
small kernel size, which makes it possible to run different small
applications. Another strength is that FreeRTOS supports an
extensive variety of hardware architectures, which make it a good
choice to be used with different IoT applications [81, 82].

5.5.1 Architecture and kernel models: FreeRTOS has a
microkernel real-time operating system (RTOS) architecture, which
is designed to be small, simple, and easy to use [28]. FreeRTOS
kernel is specifically designed for embedded processors. FreeRTOS
consists of hardware layer, device driver, FreeRTOS kernel, and the
tasks to be performed. Fig. 5 shows the architecture of FreeRTOS.

5.5.2 Programming model and development
environment: FreeRTOS is professionally developed. It is free
open source and fully supported, even when used in commercial
applications. However, FreeRTOS decreased the debugging efforts
due to the lack of hardware abstraction layer (HAL) by using the
STM32Cube MCU firmware [83]. In addition, FreeRTOS supports
multiple threads, mutexes, semaphores, and software timers [77].
All FreeRTOS kernels contain three or four C files (depends on the
usage of coroutines) which are; (i) list.c, (ii) queue.c, and (iii)
tasks.c, and one microcontroller source file are needed. The tasks.c
performs most of the scheduler assembler functionalities. The list.c
defines the structures and functions to be used by file tasks.c. The
queue.c performs thread-safe queues that are used for
synchronisation and intertask communication. These files are
included in the .zip file related only to the applications which make
the code more readable and maintainable. FreeRTOS API is
designed to be simple and easy to use [84].

5.5.3 Scheduling: The scheduler used in FreeRTOS is either a
fixed prioritised preemptive or cooperative scheduler strategies
depending on the configuration of the scheduler [77]. A fixed-
priority scheduling ensures that the processor executes the highest
priority task that is ready to be executed at any given time by using
the RR scheduling policy [77].

5.5.4 Memory management and performance: FreeRTOS
supports dynamic memory allocation, and its memory footprint is
small [84].

5.5.5 Communication and networking protocols
support: FreeRTOS uses 6LoWPAN and CoAP networking
protocols [85] in addition to the open source, and thread-safe
TCP/IP stack for FreeRTOS called FreeRTOS + TCP [85].

5.5.6 Simulation support: FreeRTOS can be simulated in both
Windows and Linux OSs using the following simulators. Win32
simulator using visual studio 2015 for Windows OS and developed
by Dushara Jayasinghe [84], whereas POSIX/Linux simulator is
used for Linux OS using GNU compiler collection (GCC) and
Eclipse provided by William Davy [84].

Fig. 6  Architecture of LiteOS (reproduced from [75])

IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

331

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

5.5.7 Security: FreeRTOS uses WolfSSL, which is a lightweight
TLS/secure sockets layer (SSL) library. WolfSSL is used to provide
security, authentication, integrity, and confidentiality of
communications over the FreeRTOS. WolfSSL is best suited for
the embedded system since it is 20 times smaller in footprint
compared with the OpenSSL library [84, 86].

5.5.8 Power consumption: In order for the microcontroller to
function in the low-power state, FreeRITOS uses idle task hook.
Using this method, it decreases power consumption through
process tick interruptions. However, if too many tick interruptions
occur, the power consumption will increase more than the power
saving limit. The tickless of FreeRTOS is an idle mode that stops
the periodic tick interrupt during idle periods. This makes a
correcting adjustment to the RTOS tick count value when the tick
interrupt is restarted [84] (Fig. 7).

5.5.9 Supporting multimedia: FreeRTOS is designed for low-
powered applications, which leaves the expensive encoding/
decoding process to external devices. However, the TCP and UDP
stack support in FreeRTOS can be used to implement some
applications limited to image contents using Javascript and
HTML5.

5.5.10 More about FreeRTOS: This OS is recommended to
handle time-critical tasks that require user control and sensor
monitoring as it can be handled through multiple threads, software
timers, and semaphores along with tickless mode for low
consumption of resources while running various applications.

5.6 Apache Mynewt OS

Apache Mynewt is an open source, Linux-based, and real-time OS
originally developed by Runtime Inc. and hosted by Apache.
Mynewt OS targets low-end devices that have limited memory and
storage capabilities that need to operate for a long time under
power constraints. Additionally, Mynewt OS has many powerful
features such as precise reconfigurability of concurrent connections
and granular power controls [87].

5.6.1 Architecture and kernel models: Mynewt OS has a
modular architecture. Mynewt targets ARM Cortex M0–M4 and
RISC-V architectures with a plan to extend the hardware support to
MIPS architecture [88]. Also, Mynewt OS is supported on the
Arduino Zero, Arduino Zero Pro, and Arduino M0 Pro processors
[88, 89].

5.6.2 Programming model and development
environment: Mynewt OS supports multithreading tasks [89].
Developers can debug code by setting breakpoints, avoiding stack
smashes, and eliminating stolen interrupts [89].

5.6.3 Scheduling: Mynewt OS supports tickless preemptive
priority-based scheduling [89].

5.6.4 Memory management and performance: Mynewt OS
supports memory heap and memory pool allocation [87].

5.6.5 Communication and networking protocols
support: Mynewt OS provides full support for the TCP/IP suite. It
also supports protocols for constrained networks such as CoAP and
6LoWPAN [87]. Also, Mynewt OS has full implementation of the
Bluetooth low-energy 4.2 stack, Bluetooth mesh, LoRa PHY, and
LoRaWAN [87].

5.6.6 Simulation support: Mynewt can be simulated using the
Quick Emulator (QEMU).

5.6.7 Security: Apache Mynewt OS enables secure remote
updates to maintain ongoing security. Also, Mynewt OS provides
safe bootloader to verify firmware integrity and authenticity [89],
and uses security manager protocol for pairing and transport
specific key distribution for securing radio communication [89].

5.6.8 Power consumption: Mynewt has low-power consumption;
devices operate in sleeping mode to conserve battery power and
maximise power usage [87].

5.6.9 Supporting multimedia: At the time of writing this paper,
there is no support for multimedia contents or devices in Apache
Mynewt OS.

5.6.10 More about Apache Mynewt: HAL is used in Mynewt to
provide a uniform interface for peripherals across different
microcontrollers, which allow direct access to peripherals for
granular power control [89].

5.6.11 ARM Mbed OS: ARM Mbed is an open-source Linux-
based OS for low-end IoT devices licenced under Apache Licence
2. ARM cores introduce it for 32 bit ARM Cortex M
microcontrollers. It supports all essential open standards for
connectivity and device management. ARM Mbed OS provides a
platform that includes the following features: connectivity, security,
cloud management services, and device management
functionalities that are required by IoT devices [33, 90].

5.6.12 Architecture and kernel models: ARM Mbed OS
supports monolithic architecture [25]. ARM Mbed OS runs on 32 
bit ARM embedded architecture and supports a few other platforms
[91]. Fig. 8 shows the architecture of ARM Mbed OS and its
different layers.

5.6.13 Programming model and development
environment: ARM Mbed OS uses a single thread and adopts an
event-driven programming model [91]. ARM Mbed OS is
developed using C and C + + programming languages. Moreover, it
has many programming features that allow developers to select

Fig. 7  Architecture of FreeRTOS (reproduced from [80])

Fig. 8  Architecture of ARM Mbed OS (reproduced from [91])

332 IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

from different types of microcontrollers. Also, Mbed API can keep
application code readable, simple, and portable [91].

5.6.14 Scheduling: Mbed OS includes a basic non-preemptive
scheduler with limited synchronisation and communication
primitives to support its communication and cloud protocols [91].

5.6.15 Memory management and performance: ARM Mbed
OS supports dynamic memory allocation [91].

5.6.16 Communication and networking protocols
support: Mbed OS provides support for many communication
protocols such as WiFi, Bluetooth low energy, Lightweight M2M
(LwM2M), and Ethernet [92]. Also, it supports several networking
protocols including HTTP/CoAP stack with TLS and DTLS for
end-to-end IP (v4 and v6) security with 6LoWPAN, SSL, and
MQTT [10, 93].

5.6.17 Simulation support: Mbed OS can be simulated using
QEMU, which is a generic and open-source machine emulator and
virtualiser [94].

5.6.18 Security: Untrusted and malicious codes are blocked in
Mbed OS for IoT platforms as the communications between device
and cloud, and the life cycle of the system itself occurs through
uVisor which separates security domains on Arm Cortex-M3, M4,
and M7 microcontrollers with a memory protection unit [91].
There are two mechanisms to guarantee security in Mbed by
integration with the application development. The first is Mbed
TLS for cryptographic and SSL/TLS capabilities. The second is
Mbed OS uVisor for hardware-enforced secure domains [94].

5.6.19 Power consumption: The Mbed OS has support for an
advanced power management technique that increases power
efficiency and improves throughput [94]. This technique allows to
turn off some external devices and processor to power down
unused devices inside the processor chip and enter low-power sleep
modes. It is also possible to modify the clock rate on Mbed OS
from 128 to 48 MHz [94].

5.6.20 Supporting multimedia: Imaging modules can be
integrated easily to Mbed OS through a set of imaging sensors
available as an extension. Streaming media contents can be
achieved using a simple TCP connection or any other high-level
communication protocols [94].

5.6.21 More about ARM Mbed OS: The Arm Mbed device
connector can connect IoT devices to the cloud without needing
any additional infrastructure [91].

6 OSs for high-end IoT devices
In this section, we will describe the most widely used OSs for high-
end IoT devices from the aspects and criteria presented in Section
3.

6.1 uClinux OS

uClinux is an open-source Linux-based OS for high-end devices. It
is an extension to the Linux kernel. uClinux kernel includes a
collection of Linux 2.x kernel releases intended for single
microcontrollers without an MMU. Also, it has a set of user
applications, libraries, and toolchains. This OS needs special
support for inter-processor communication [77, 78].

6.1.1 Architecture and kernel models: uClinux OS follows a
monolithic architecture [95]. uClinux kernel supports various CPU
platforms such as ColdFire, Axis ETRAX, and others. The primary
difference with Linux OS is it has MMU-less. However, uClinux
OS additionally supports different file systems including files
designed especially for the embedded solutions similar to Linux
OS. There have been previous attempts to achieve compatibility

between uClinux and Linux to make uClinux as similar as possible
to Linux. These attempts proposed several applications that
developed under general public licence. These applications should
support MMU-less version of Linux with slightly few changes
[95]. Fig. 9 shows the architecture of uClinux OS.

6.1.2 Programming model and development
environment: uClinux OS supports multithreading programming
model [97]. uClinux includes a cross-compiler platform that is built
from the GNU compiler tools (GCC). Its architecture is x86 which
is often built without the ability to be modified on any uClinux
target. Debugging can be performed using GNU debugger (gdb)
[98].

6.1.3 Scheduling: uClinux implements priority-based preemptive
scheduling [77].

6.1.4 Memory management and performance: uClinux is
derived based on Linux 2.0 kernel and is designed for
microcontrollers without MMUs, so any process can read and write
other process memory. It provides dynamic and static memory
allocation [99]. However, uClinux OS has the downside in memory
management hardware that does not fit low-end IoT device [25].

6.1.5 Communication and networking protocols
support: uClinux OS uses uIP and lwIP networking protocols [95].
uClinux also has a wide networking and communication protocols
support including a full TCP/IP stack, IPv6, WiFi, and other
networking protocols [95].

6.1.6 Simulation support: uClinux can be simulated using GDB/
ARMulator and SWARM-Software ARM-arm7 emulator.
ARMulator is developed using C programming language and
provides more than just an instruction set simulator; it provides a
virtual platform for system emulations. It can emulate an ARM
processor and other ARM co-processors [98].

6.1.7 Security: uClinux OS applies a shepherd process to manage
security issues [100]. A shepherd process is responsible for
accessing security association, and later dropping that access when
a root trip happens. uClinux consists of three main primitives;
register, start, and finish. Each of these primitives communicates

Fig. 9  Architecture of uClinux OS (reproduced from [96])

IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

333

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

with the kernel to execute their particular functions. Moreover,
uClinux applies the encrypted storage security technique which
forces cryptographic overheads. uClinux supports run-time
interception of the different system calls. For example, running and
open files can make such calls take longer time. When a root trip
starts, shepherd process uses a register to perform any security
actions through communication to the kernel and must be allowed
to drop its security association before that root trip finishes. When
a register finishes its function, the shepherd process can perform its
task to achieve the security. Such as, the mount-efs reads the
UCLinux file system (UCFS)'s secret key from/etc/crypt.key
unseals it and pipes it into cryptsetup. Then, sets up a
cryptographic loopback device, and mounts the file system. Next,
its security association becomes accessible; a shepherd process
uses start action to put the shepherd process to sleep and only
wakes it up when a root trip happens. When it wakes up, it must
drop its security association. Finally, when the shepherd process is
sure that its security association is protected, it uses finish
preemptive through communication to the kernel to complete the
root trip. Hence, allow untrusted programmes to run with a
privileged effective user. In this way, any number of security
associations can be fully protected [100].

6.1.8 Power consumption: uClinux supports power management
techniques which can be modified, so that the idle process can be
called when no other processes are running. This makes the kernel
enter into a sleep mode until further processing is required. The
kernel uses a kernel ticker to wake up the system 100 times per
second which causes a problem. However, this problem can be
solved by building a tickless kernel that only calculates when the
process needs to wake up. This solution reduces the number of
interrupts occurred [98].

6.1.9 Supporting multimedia: uClinux provides support for
multimedia through a software project for the record, convert, and
processing audio and video streams called FFmpeg. FFmpeg uses
HTTP server for live broadcasts processing and gst-real time
streaming protocol (RTSP) streaming server which is a library on
top of GStreamer. The gst-RTP server is designed to enable many
sources to connect, rebroadcasting, and transmit video and audio
streams over a network to single or multiple users [98]. GStreamer
supports multimedia processing, encoding, and streaming libraries
[98].

6.1.10 More about uClinux: uClinux OS supports a vast number
of devices, filesystems, networking protocols, and applications
(such as GNU software). The source code of uClinux is available
to end users and developers. It is tested and refined by many
programmers and users. Moreover, systems running uClinux OS
may be configured in different ways other than that of the familiar
Unix-like Linux distribution.

6.2 Raspbian OS

Raspbian is an open-source Linux-based OS for high-end devices
based on Debian (Linux) and optimised for RPi hardware [101].
Raspbian provides more than 35,000 packages that can be installed
from the terminal. It has a pre-compiled software in a simple
format for easy installation [102]. RPi is a credit-card-sized and
inexpensive single-board computer that can to be run by Linux and
other lightweight OSs [103]. It can be run on multiple low-
performance ARM processors [103].

6.2.1 Architecture and kernel models: Similar to uClinux OS,
Raspbian OS follows a monolithic architecture [104]. Fig. 10
shows the architecture of Raspbian OS.

6.2.2 Programming model and development
environment: Like uClinux OS, Raspbian OS supports
multithreading [105]. It is written using Python programming
language, and the code can be modified according to the
requirements of an application [105]. A considerable number of

programming languages have been adapted for Raspbian OS such
as Python, C, C + +, Java, Scratch, and Ruby; all installed by
default on the Raspbian OS [105]. Also, scripting languages such
as HTML5, Javascript, and JQuery are supported [105].

6.2.3 Scheduling: Raspbian utilises real-time preemptive
scheduling [106].

6.2.4 Memory management and performance: Raspbian OS
supports a virtual memory technique that is performed by hardware
through MMU. Raspbian also offers virtual memory swapping
which divides the hard disc into parts to exchange fractions of main
memory. Hence, allowing occupied regions that did not take
sufficient time to become available for allocation [104].

6.2.5 Communication and networking protocols
support: Raspbian OS supports a wide range of communications
through serial peripheral interface (SPI), UART, I2c, and universal
serial bus (USB). It also implements the full stack of TCP/IP and
Bluetooth. Similar to other Linux distributions, Raspbian OS has
support for almost all networking protocols that are imported from
Debian distribution. In addition, a free open-source library for LTE
and other wireless protocols are available to be used easily with
Raspbian [105].

6.2.6 Simulation support: Raspbian OS can be simulated using
QEMU ARM which is a CPU architecture emulator and
virtualisation tool. QEMU is capable of emulating an ARM
architecture which is very similar to the RPi boards. This allows
booting an RPi image directly to x86 or x86–64 systems. However,
to deal with the QEMU virtualised hardware which is not a core
component of the RPi, Raspbian OS must have a RPi kernel for
QEMU to control the QEMU kernel image [103].

6.2.7 Security: Raspbian OS supports many encryption,
authentication, and authorisation techniques that suit most IoT
applications. The open-source community provides support for this
OS and for most encryption algorithms that are available from
Raspbian repositories. Customised security requirements can be
easily integrated into Raspbian OS even if it requires modification
in core libraries. Encryption algorithms such as AES 128, AES
256, data encryption standard (DES), and Blowfish are available in
all framework libraries in addition to HTTP secure and virtual
private network protocols [105]. Selective encryption algorithms
for multimedia streaming are also supported in Raspbian OS [107].

6.2.8 Power consumption: One of the great things about creating
a cluster with ARM-based processors is low-power consumption;
each RPi uses about 2 W of power (when running at 700 MHz)

Fig. 10  Architecture of Raspbian OS (reproduced from [105])

334 IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

[103]. Raspbian OS power consumption is based on the RPi boards
used and type of applications running on the device itself. Table 1
summarised the power consumption using different RPi boards
[105].

6.2.9 Supporting multimedia: Raspbian OS can perform live
audio and video streaming by using session initiation protocol
(SIP) and RTP protocols [105]. Raspbian OS employs code-excited
linear prediction compression algorithms to ensure low latency and
high-quality communication [102, 108]. Moreover, it supports HD
videos and music [105]. Also, GStreamer is supported on Raspbian
OS; which supports streaming, encoding and packing of various
multimedia formats such as flv and H264 [105]. A full list of
supported plugins can be found in [101]. In addition, a special
camera module is available for RPi boards and Raspbian OS [105].
The module supports 1080p30, 720p60, and VGA90 video modes.
The camera is connected through camera serial interface port
available on RPi, and there are several third-party libraries built for
it including the Python Picamera library [105].

6.2.10 More about Raspbian OS: Raspbian OS has a desktop
environment called Lightweight graphical X11 desktop
environment. It is very similar to Windows and Mac desktops and
provide an attractive user interface [101]. Moreover, it includes
Wayland display server protocol which allows efficient use of the
graphics processing unit for hardware accelerated graphical user
interface drawing functions for Robots [102].

6.3 Android Things OS

Android Things is an open-source Linux-based OS for high-end
IoT devices. It is developed by Google and derived from Android
OS. Android Things OS is coded using a specialised programming
language called Weave, which is a common cross-platform
language. Android Things OS can run on high-end IoT devices
offering a few tens of megabytes of memory because it depends on
the lower levels of Android which can keep running on
insignificant system requirements such as light bulbs. It has a user-
friendly interface which makes it easier to set up hardware. Also,
Android Things may run wearable devices due to both environment
common characteristics, and the energy-consumption restriction
[33, 90, 109, 110]. Android Things supports many hardware
platforms such as Intel (X86), Edison (Dual-core Atom 500M),
minnowboard, Qualcomm (Arm), dragonboard (MSM8916, QCore

A53), Marvell (Arm), ABox Edge (IAP140, QCore A53),
Freescale (Arm), and Rockchip (Arm) [111]. The structure of
Android Things OS is shown in Fig. 11.

6.3.1 Architecture and kernel models: In contrast to Raspbian
OS, Android Things OS has a modular architecture [112].

6.3.2 Programming model and development
environment: Similar to Raspbian OS, Android Things OS
supports multithreading and a number of Android SDKs such as
APIs and AdMob, where authentication is required for user input
[112]. Moreover, Android Things OS developers can develop their
programmes using C and C + + programming languages in addition
to Java [111].

6.3.3 Scheduling: Android Things OS scheduler supports either
prioritised preemptive or cooperative depending on the
configuration of the scheduler [113].

6.3.4 Memory management and performance: Android Things
OS implements dynamic memory allocation through system calls
[77] and it has a small memory footprint [111].

6.3.5 Communication and networking protocols
support: Android Things OS supports WiFi, bluetooth low energy,
ZigBee, IPV6, and other networking protocols [112].

6.3.6 Simulation support: Android Things OS is not yet
supported on Android Studio Android Virtual Device as other
Android platforms. However, it can be employed on RPi 3, Intel
Edison, and NXP Pico in order to be used for the initial simulation
[111].

6.3.7 Security: As Android Things OS is an open software based
on Android, it allows building applications smoothly and quickly.
Hence, there will be more security loopholes such as virus attacks
and hacking [111]. Android Things OS uses verified secure boot
and signed over-the-air updates which make it more secure [111].
Android Things OS provides full disc encryption so all data will be
protected. Everything on the drive will be encrypted including the
files which keep exact copies of the data that the user has been
working on such as temporary files [111].

Table 1 Power consumption of different RPi boards [105]
Pi mode Pi state Power consumption
a +  idle, high-definition multimedia interface (HDMI) disabled, light-emitting diode (LED) disabled 80 mA (0.4 W)
a +  idle, HDMI disabled, LED disabled, USB WiFi adapter 160 mA (0.8 W)
b +  idle, HDMI disabled, LED disabled 180 mA (0.9 W)
b +  idle, HDMI disabled, LED disabled, USB WiFi adapter 220 mA (1.1 W)
model 2 B idle, HDMI disabled, LED disabled 200 mA (1.0 W)
model 2 B idle, HDMI disabled, LED disabled, USB WiFi adapter 240 mA (1.2 W)
zero idle, HDMI disabled, LED disabled 80 mA (0.4 W)
zero idle, HDMI disabled, LED disabled, USB WiFi adapter 120 mA (0.7 W)

Fig. 11  Architecture of Android Things OS (reproduced from [111])

IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

335

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

6.3.8 Power consumption: Android Things OS is running on
WiFi and Bluetooth low energy using the minimum system
requirements such as low memory and small processors. Hence, it
needs less power requirement to run [111].

6.3.9 Supporting multimedia: Android Things OS can fully
support high-performance multimedia streaming and processing
[111]. It supports the same stack of Android OS media contents
such as H264, MP3, and VP9 [111]. This processing includes
several tasks such as image and video analytics and data processing
that can be processed inside the device instead of processing on the
cloud [111].

6.3.10 More about android things: Google Cloud Platform
components (such as Firebase) can be easily integrated with
Android Things OS [112]. Developers will be able to use different
cloud services for storage, state management, and messaging [112].
When it comes to Weave, SDK will be embedded in the devices for
local and remote communications. Moreover, Weave is an
independent protocol that can be as Zigbee, Z-Wave, and Bluetooth
Smart. What makes Android Things OS unique is that it is
compatible with all Android Source Packages [111].

Other open-source OSs: There are a few open-source OSs that
are still growing and not popular or deprecated that are not covered
in this paper such as Pyxis, Ubuntu Snappy Core, and Ostro. For
example, through many searches, we revealed very little about
Pyxis OS which has been deprecated and replaced by Pyxis 2. It
does neither seem to be a PPC64, nor it is CentOS/Linux based. It
looks such as a custom OS written in C# for Arduino
microcontrollers. It also appears to be a small project developed
around 2010 with no updates afterward. Other OSs still work very
hard to shine in the field but the competition is high as this area is
growing dramatically.

7 Comparisons of IoT OSs
In this section, we provide several summarised tabular overviews
of all OSs listed in this survey. Table 2 summarises the

programming features of all OSs discussed in this paper. This table
lists the programmability features for each OS in terms of the
kernel and architectural usage for a basic application, scheduling
type, programming model, supported programming language, the
ability of reprogramming, and supporting of real time. We noted
that the common programming languages used in IoT OSs include
C, C + +, and Java. Java always runs on top of an IoT OS. So, the
choice is not between C/C + + or Java; it is whether C or C + + and
Java.

Table 3 provides a summary of the hardware requirements for
the surveyed IoT OSs. This table defines the OS hardware
configuration requirements in terms of RAM and ROM usage for a
basic application, processor, and main supported hardware
platform. The purpose of hardware specifications is to give
appropriate design decisions for devices that will run by IoT OSs.

Finally, we briefly summarise the primary technical aspects of
IoT OSs in Table 4. It highlights implementation aspects in terms
of the remote scriptable wireless shell, remote file system interface
for networked nodes, file system, online debugging, dynamic
memory, simulation support, and list of supported network
technologies and protocols.

8 Conclusion
The proliferation of the IoT is dramatically increasing and already
covers many prominent domains and disciplines such as smart
cities, smart sensory platforms, and intelligent transit systems. OS
support is vital in facilitating the development and subsistence of
IoT. In this paper, we provide a comprehensive study of the most
used and state-of-the-art open-source OSs for IoT. We first
investigate the design and development aspects of IoT OSs. Then,
we propose a taxonomy to classify and categorise the state-of-the-
art and most used IoT OSs. We provide an extensive overview of
open-source IoT OSs, where each OS explained in details based on
the established designing and developmental aspects. These aspects
are; architecture and kernel models, programming model, and
development environment, scheduling, memory management and
performance, communication and networking protocols, simulator,
security, power consumption, and multimedia support. We survey

Table 2 Programming features summary for open-source IoT OSs
OS Kernel Scheduler Programming model Language support Real time
TinyOS monolithic non-preemptive FIFO event driven NesC not supported
Contiki modular preemptive FIFO event driven, protothreads C partially supported
RIOT microkernel preemptive priority,

tickless
multithreading C, C + + supported

LiteOS modular preemptive priority (RR) multithreading LiteC + + not supported
FreeRTOS microkernel preemptive, optional

tickles
multithreading C supported

Mynewt modular preemptive multithreading Go (golang), C supported
Mbed monolithic non-preemptive single thread C, C + + supported
uClinux monolithic preemptive multithreading C partially supported
Raspbian modular, monolithic preemptive multithreading Python, C, Ruby, Java, PHP, C + +,

Node.js
supported

Android Things modular preemptive multithreading Weave using C, C + + supported

Table 3 Recommended hardware requirements for IoT OSs
OS Min-RAM, kB Min-ROM, kB Processor/CPU, MHz
TinyOS 1 4 7.4, 8 bit
Contiki 2 30 8 bit
RIOT 1.5 5 16–32 bit
LiteOS 4 128 8 MHz
FreeRTOS 10 12 32 bit
Mynewt 8 64 12–200 MHz
Mbed 16 32-bit 32
uClinux 512 512 200
Raspbian 512–256 — ARM Cortex-A53
Android Things 128 32 [111] ARM, Intelx86, MIPS [102]

336 IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

each OS's characteristics, advantages, and disadvantages. Also,
several comparisons concentrating on the similarities and
differences between the discussed OSs are presented. We remark
that this is the first such tutorial style paper on IoT OSs.

Finally, we argue that each IoT OS has some limitations
depending on the targeted deployment scenario. For that reason, it
is challenging to have an OS that satisfies all requirements.
Moreover, choosing an appropriate OS for IoT applications is
critical to the success of IoT deployments and implementations.
The developer must carefully study the strengths and weaknesses
of the candidate OSs to make the best choice. As each IoT OS has
its pros and cons that can be used to identify the appropriate OS
based on the functional, non-functional, power consumption,
sensors connectivity, communication methods, and many other
requirements. Thus, this research is designed to bridge the existing
gap in knowledge of the adoption and implementation of OSs for
IoT from different aspects. This survey provides an easy to follow
and well-structured guide in a tutorial style for researchers and
developers targeting IoT OSs.

9 Acknowledgment
This work made possible by a financial support from the Applied
Science Private University in Amman, Jordan.

 References
[1] Ma, H.: ‘Internet of things: objectives and scientific challenges’, J. Comput.

Sci. Technol., 2011, 26, (6), pp. 919–924
[2] Mattern, F., Floerkemeier, C.: ‘From the internet of computers to the Internet

of things’, in Sachs, K., Petrov, I., Guerrero, P. (Eds.): ‘From active data
management to event-based systems and more’ (Springer, Berlin, Germany,
2010), vol. 33, (2), pp. 242–259

[3] Zhu, Q., Ruicong, W., Chen, Q., et al.: ‘IoT gateway: bridging wireless sensor
networks into internet of things’. Proc. IEEE/IFIP Eighth Int. Conf.
Embedded Ubiquitous Comput. (EUC), Hong Kong, China, December 2010,
pp. 347–352

[4] Gartner Inc.: ‘Gartner says 8.4 billion connected ‘Things’ will be in use in
2017, up 31 percent from 2016’. Available at https://www.gartner.com/
newsroom/id/3598917, accessed June 2017

[5] Sundmaeker, H., Guillemin, P., Friess, P., et al.: ‘Vision and challenges for
realizing the Internet of things’ (European Commission, Brussels, 2010)

[6] Islam, S., Kwak, D., Kabir, M., et al.: ‘The Internet of things for health care: a
comprehensive survey’, IEEE Access., 2015, 3, pp. 678–708

[7] Keoh, S., Kumar, S., Tschofenig, H.: ‘Securing the Internet of things: a
standardization perspective’, IEEE Internet Things J., 2014, 1, (3), pp. 265–
275

[8] Mainwaring, A., Polastre, J., Szewczyk, R., et al.: ‘Wireless sensor networks
for habitat monitoring’. Proc. ACM Int. Works Wireless Sensor Networks and
Applications, Atlanta, GA, USA, September 2002, pp. 88–97

[9] Al-Fuqaha, A., Guizani, M., Mohammadi, M., et al.: ‘Internet of things: a
survey on enabling technologies, protocols, and applications’, IEEE Commun.
Surv. Tutor., 2015, 17, (4), pp. 2347–2376

[10] Why the Need for Special Operating Systems for IoT and Wearable Devices?
Available at https://dzone.com/, accessed June 2017

[11] Cisco Visual Networking Index.: Global Mobile Data Traffic Forecast
Update, 2016–2021. Available at https://www.cisco.com/

[12] Razzaque, M., Milojevic-Jevric, M., Palade, A., et al.: ‘Middleware for
Internet of things: a survey’, IEEE Internet Things J., 2016, 3, (1), pp. 70–95

[13] Roman, R., Najera, P., Lopez, J.: ‘Securing the Internet of things’, IEEE
Comput. Netw., 2011, 44, (9), pp. 51–58

Table 4 Technical aspects comparison of IoT OSs
OS Remote

scriptable
shell

Remote
file system

File system Online
debugging

Dynamic
memory

Simulator
supported

Network stack and protocol
supported

TinyOS noa no single level
(ELFb,

matchbox)

yesc No TOSSIM,
PowerTossim

BLIPd, TinyRPL, CoAP, WiFi, LTE,
MQTT, LoWPAN, TCP, BBRe, IPv6,

Bluetooth, multi-path routing
Contiki nof no single level no yes Netsim, Cooja,

MSPSim, Java
nodes

RPL, uIP, uIPv6, MQTT,
6LoWPAN, CoAP, WiFi, Bluetooth

Riot OS yes yes hierarchical yes yes Cooja simulator TCP, UDP, IPv6, 6LoWPAN, RPL,
CoAP, CBORg, UBJSONh,

OpenWSN, WiFi, Bluetooth, LTE,
MQTT

LiteOS yesi yes hierarchical
Unix-like

yes yes AVRORA simulator NB-IoT, 6LoWPAN, ZigBee, LTE,
Bluetooth

FreeRTOS yes yes hierarchical yes yes QEMU uIP, lwIP, TCP, LoWPAN, CoAP,
MQTT

Mynewt yes yes hierarchical yes yes QEMU BLE, IPv6, 6LoWPAN, HTTP, TCP,
CoAP, MQTT, UDP, LoRa PHY,

LoRaWAN
ARM Mbed yes yes hierarchical yes yes QEMU 6LoWPAN, Ethernet, Zigbee LAN,

HTTP, Zigbee IP, WiFi, BLE, IPv6,
CoAP, MQTT

uClinux yes yes hierarchical yes yes GDB/ARMulator uIP, lwIP, WiFi, Bluetooth, LTE,
IPv6, MQTT

Raspbian yes yes hierarchical yes yes QEMU RTP, LTE, HTTP, TCP, MQTT
Android
Things

yes yes hierarchical yes yes RPi 3, Intel Edison,
and NXP Pico

IPv6, Zigbee, Z-Wave, Bluetooth
Smart

aThrough the application specific shell such as Simple cmd exists.
bExecutable and Linkable Format.
cThrough the Clairvoyant.
dBerkeley Low-power IP.
eBottleneck Bandwidth and Round-trip.
fThrough the mote shell.
gConcise Binary Object Representation.
hUniversal Binary JSON.
iThrough the base PC, Unix commands.

IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

337

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

[14] Internet of Things (IoT) Connected Devices Installed Base Worldwide from
2015 to 2025 (in billions). Available at https://www.statista.com/, accessed
August 2017

[15] Lee, J., Sung, Y., Park, J.: ‘Lightweight sensor authentication scheme for
energy efficiency in ubiquitous computing environments’, Sensors, 2016, 16,
(12), pp. 2044–2059

[16] Tarkoma, S., Ailisto, H.: ‘The Internet of things program: the Finnish
perspective’, IEEE Commun. Mag., 2013, 51, (3), pp. 10–11

[17] Al-Turjman, F., Alturjman, S.: ‘Context-sensitive access in industrial Internet
of things (IIoT) healthcare applications’, IEEE Trans. Ind. Inf., 2018, 14, (6),
pp. 2736–2744

[18] Miorandi, D., Sicari, S., De Pellegrini, F., et al.: ‘Internet of things: vision,
applications and research challenges’, Ad Hoc Netw., 2012, 10, (7), pp. 1497–
1516

[19] Roman, R., Zhou, J., Lopez, J.: ‘On the features and challenges of security
and privacy in distributed Internet of things’, Comput. Netw., 2013, 57, (10),
pp. 2266–2279

[20] Balakrishna, C.: ‘Enabling technologies for smart city services and
applications’. Proc. IEEE Int. Conf. Next Generation Mobile Applications,
Services and Technologies (NGMAST), Paris, France, September 2012, pp.
223–227

[21] Wang, L., Alexander, C.: ‘Big data analytics and cloud computing in Internet
of things’, Amer. J. Inf. Sci. Comput. Eng., 2016, 2, (6), pp. 70–78

[22] Sarkar, C., Nambi, A., Prasad, R., et al.: ‘DIAT: a scalable distributed
architecture for IoT’, IEEE Internet Things J., 2015, 2, (3), pp. 230–239

[23] Qin, Z., Denker, G., Giannelli, C., et al.: ‘A software defined networking
architecture for the Internet-of-things’. Proc. IEEE Network Operations and
Management Symp. (NOMS), Krakow, Poland, June 2014, pp. 1–9

[24] Chen, S., Xu, H., Liu, D., et al.: ‘A vision of IoT: applications, challenges,
and opportunities with China perspective’, IEEE Internet Things J., 2014, 1,
(4), pp. 349–359

[25] Hahm, O., Baccelli, E., Petersen, H., et al.: ‘Operating systems for low-end
devices in the Internet of things: a survey’, IEEE Internet Things J., 2016, 3,
(5), pp. 720–734

[26] Silberschatz, A., Galvin, P., Gagne, G.: ‘Operating system concepts’ (Wiley,
New York, USA, 2013, 9th edn.)

[27] Farooq, M., Kunz, T.: ‘Operating systems for wireless sensor networks: a
survey’, Sens. J., 2011, 11, (6), pp. 5900–5930

[28] Will, H., Schleiser, K., Schiller, J.: ‘A real-time kernel for wireless sensor
networks employed in rescue scenarios’. Proc. IEEE Conf. Local Computer
Networks (LCN), Zurich, Switzerland, October 2009, pp. 834–841

[29] Dunlap, G., King, S., Cinar, S., et al.: ‘Revirt: enabling intrusion analysis
through virtual-machine logging and replay’. Proc. Symp Operating Syst.
Design and Implementation (OSDI), Seattle, USA, December 2002, pp. 211–
224

[30] Bandyopadhyay, D., Sen, J.: ‘Internet of things: applications and challenges in
technology and standardization’, Wirel. Pers. Commun., 2011, 58, (1), pp. 49–
59

[31] Dunkels, A., Groonvall, B., Voigt, T.: ‘ContikiVA lightweight and flexible
operating system for tiny networked sensors’. Proc. Annual IEEE Int. Conf.
Local Computer Network (LCN), Tampa, FL, USA, November 2004, pp.
455–462

[32] Chien, T., Chan, H., Huu, T.: ‘A comparative study on operating system for
wireless sensor networks’. Proc. Int. Conf. Advanced Computer Science and
Information Syst., Jakarta, Indonesia, December 2011, pp. 73–78

[33] Azure IoT device SDK for C. Available at https://docs.microsoft.com/en-us/
azure/, accessed August 2017

[34] Baccelli, E., Hahm, O., Günes, M., et al.: ‘OS for the IoT – goals, challenges,
and solutions, OS for the IoT – goals, challenges, and solutions’. Wkshps
Interdisciplinaire sur la SÃl'curitÃl’ Globale (WISG), Troyes, France, January
2013, pp. 1–6

[35] Levis, P., Culler, D., Shenker, S., et al.: ‘Trickle: a self-regulating algorithm
for code propagation and maintenance in wireless sensor networks’. Proc.
USENIX/ACM Symp. Networked System Design and Implementation
(NSDI), San Francisco, CA, March 2004, pp. 15–28

[36] Abdelsamea, M., Zorkany, M., Abdelkader, N.: ‘Real time operating systems
for the Internet of things, vision, architecture and research directions’. Proc.
World Symp. Computer Applications and Research, Cairo, Egypt, March
2016, pp. 72–77

[37] Deniz, U., Al-Turjman, F., Celik, G.: ‘An overview of Internet of things and
wireless communications’. Proc. Int. Conf. Computer Science and
Engineering (UBMK), Antalya, Turkey, October 2017, pp. 506–509

[38] Sulyman, A., Oteafy, S., Hassanein, H.: ‘Expanding the cellular-IoT umbrella:
an architectural approach’, IEEE Wirel. Commun., 2017, 24, (3), pp. 66–71

[39] AlTurjman, F., Alturjman, S.: ‘Confidential smart-sensing framework in the
IoT era’, J. Supercomput., 2018, 74, (10), pp. 5187–5198

[40] Atzori, L., Iera, A., Morabito, G.: ‘The Internet of things: a survey’, Comput.
Netw., 2010, 54, (15), pp. 2787–2805

[41] Perrig, A., Szewczyk, R., Wen, V.: ‘SPINS: security protocols for sensor
networks’, Wirel. Netw., 2002, 5, (8), pp. 521–534

[42] Xiong, L., Zhou, X., Liu, W.: ‘Research on the architecture of trusted security
system based on the Internet of things’. Proc. Int. Conf. Intell. Computer
Technology and Automation, Shenzhen, Guangdong, China, March 2011, pp.
1172–1175

[43] Demir, S., Al-Turjman, F.: ‘Energy scavenging methods for WBAN
applications: a review’, IEEE Sens. J., 2018, 18, (16), pp. 6477–6488

[44] Lajara, R., Pelegri-Sebastia, J., Solano, J.: ‘Power consumption analysis of
operating systems for wireless sensor networks’, Sensors, 2010, 10, (6), pp.
5809–5826

[45] Hamoudy, M., Qutqut, M., Almasalha, F.: ‘Video security in Internet of
things: an overview’, Int. J. Comput. Sci. Netw. Secur. (IJCSNS), 2017, 17,
(8), pp. 199–255

[46] Al-Sakran, A., Qutqut, M., Almasalha, F., et al.: ‘An overview of the Internet
of things closed source operating systems’. Int. Wireless Communications and
Mobile Computing Conf. (IWCMC), Limassol, Cyprus, June 2018

[47] Levis, P., Madden, S., Polastre, J., et al.: ‘TinyOS: an operating system for
sensor networks’, in Weber, W., Rabaey, J., Aarts, E. (Eds.): ‘Ambient
intelligence’, vol. 1 (Springer, New York, 2005), pp. 115–148

[48] Levis, P., Lee, N., Welsh, M., et al.: ‘TOSSIM: accurate and scalable
simulation of entire TinyOS applications’. Proc. Int. Conf. Embedded
Networked Sensor Systems, CA, USA, November 2003, pp. 126–137

[49] Gay, D., Levis, P., Culler, D.: ‘Software design patterns for TinyOS’. Proc.
ACM Conf. Languages, Compilers, and Tools for Embedded Syst., IL, USA,
June 2005, vol. 40, pp. 40–49

[50] Hill, J., Culler, D., Horton, M., et al.: ‘Mica: the commercialization of
microsensor motes’, Sens. Mag., 2004, 19, pp. 40–48

[51] Sruthi, M., Rajkumar, R.: ‘A study on development issues over IOT
platforms, protocols and operating system’. Int. Conf. Innovations in
Information Embedded and Communication Systems, Coimbatore, India,
March 2016

[52] Casado, L., Tsigas, P.: ‘Contiki Sec: a secure network layer for wireless sensor
networks under the Contiki operating system’. Proc. Nordic Conf. Secure IT
Systems, New York, NY, USA, October 2009, pp. 133–147

[53] Ma, H.: ‘Experimental evaluation of a video streaming system for wireless
multimedia sensor networks’. Proc. Tenth IEEE IFIP Annual Mediterranean
Ad Hoc Network Workshops, Sicily, Italy, August 2011, pp. 165–170

[54] Farooq, M., Aziz, S., Dogar, A.: ‘State of the art in wireless sensor networks
operating systems: a survey’. Proc. Int. Conf. Future Generation Information
Technology, Berlin, Heidelberg, December 2010, pp. 616–631

[55] Dunkels, A., Schmidt, O., Voigt, T., et al.: ‘Protothreads: simplifying event-
driven programming of memory-constrained embedded systems’. Proc. Int.
Conf. Embedded Networked Sensor Systems, Boulder, CO, USA, October
2006, pp. 29–42

[56] Dunkels, A., Finne, N., Eriksson, J.: ‘Run-time dynamic linking for
reprogramming wireless sensor networks’. Proc. Fourth ACM Conf.
Embedded Networked Sensor Systems (Sensys), Boulder, CO, USA, October
2006, pp. 15–28

[57] Dunkels, A., Mottola., L, Tsiftes, N., et al.: ‘The announcement layer: beacon
coordination for the sensornet stack’. Proc. Wireless Sensor Networks Conf.
(EWSN), Bonn, Germany, February 2011, pp. 211–226

[58] Tsiftes, N., Dunkels, A., He, Z., et al.: ‘Enabling large-scale storage in sensor
networks with the coffee file system’. Proc. Int. Conf. Information Processing
Sensor Networks, San Francisco, CA, USA, August 2009, pp. 349–360

[59] Klauck, R., Kirsche, M.: ‘Bonjour Contiki: a case study of a DNS based
discovery service for the Internet of things’. Proc. Int. Conf. Ad hoc, Mobile,
and Wireless Networks (ADHOC-NOW), Berlin, Germany, June 2012, pp.
316–329

[60] Kuladinithi, K., Bergmann, O., Pötsch, T., et al.: ‘Implementation of CoAP
and its application in transport logistics’. Proc. Wkshps on Extending the
Internet to Low power and Lossy Networks, Chicago, IL, USA, April 2011,
pp. 1–7

[61] Kovatsch, M., Duquennoy, S., Dunkels, A.: ‘BA low-power CoAP for
contiki’. Proc. IEEE Eighth Int. Conf. Mobile Ad hoc and Sensor Syst.
(MASS), Valencia, Spain, October 2011, pp. 855–860

[62] Contiki.: The open source OS for the Internet of things. Available at http://
www.contiki-os.org/, accessed on August 2017

[63] Tsiftes, N., Eriksson, J., Dunkels, A.: ‘Poster abstract: low-power wireless
IPv6 routing with ContikiRPL’. Proc. Ninth ACM/IEEE Int. Conf.
Information Processing in Sensor Networks, Stockholm, Sweden, April 2010,
pp. 406–407

[64] Munawar, W., Alizai, M., Landsiedel, O., et al.: ‘Dynamic TinyOS: modular
and transparent incremental code-updates for sensor networks’. Proc. IEEE
Int. Conf. Commun. (ICC), Cape Town, South Africa, May 2010, pp. 1–6

[65] Kalyoncu, S.: ‘Wireless solutions and authentication mechanisms for Contiki
based Internet of things networks’, PhD Thesis, Halmstad University, 2013

[66] RIOT Documentation. Available at https://riot-os.org/api/, accessed on
September 2017

[67] Emmanuel, B., Gündoğan, C., Hahm, O., et al.: ‘RIOT: an open source
operating system for low-end embedded devices in the IoT’, IEEE Internet
Things J., 2018, doi: 10.1109/JIOT.2018.2815038

[68] Roussel, K., Song, Y., Zendra, O.: ‘RIOT OS paves the Way for
implementation of high-performance MAC protocols’. Proc. Fourth Int. Conf.
Sensor Networks (SENSORNETS), Angers, France, April 2015, pp. 5–14

[69] Baccelli, E., Hahm, O., Petersen, H., et al.: ‘RIOT and the evolution of IoT
operating systems and applications’, ERCIM News, April 2015, 101

[70] Petersen, H., Adjih, C., Hahm, O., et al.: ‘IoT meets robotics-first steps, RIOT
car, and perspectives’. Proc. ACM Int. Conf. Embedded Wireless Systems and
Networks (EWSN), Graz, Austria, February 2016, pp. 269–270

[71] Milinkovi, A., Milinković, S., Lazic, L., et al.: ‘Choosing the right RTOS for
IoT platform’, NFOTEH-JAHORINA, 2015, 14, (3), pp. 504–509

[72] Baccelli, E., Hahm, O., Gunes, M., et al.: ‘RIOT OS: towards an OS for the
Internet of things’. Proc. 32nd IEEE Conf. Computing Communications
(INFOCOM), Turin, Italy, April 2013, pp. 79–80

[73] Shang, W., Afanasyev, A., Zhang, L.: ‘The design and implementation of the
NDN protocol stack for RIOT-OS’. Proc. IEEE Globecom Wkshps (GC
Wkshps), Washington, DC, USA, December 2016, pp. 1–6

[74] Huawei LiteOS. Available at http://www.huawei.com/, accessed on
September 2017

[75] Vanitha, V., Palanisamy, V., Johnson, N., et al.: ‘LiteOS based extended
service oriented architecture for wireless sensor networks’, Int. J. Comput.
Electr. Eng., 2010, 2, (3), pp. 432–436

[76] Cao, Q., Abdelzaher, T., Stankovic, J., et al.: ‘The LiteOS operating system:
towards Unix-like abstractions for wireless sensor networks’. Proc. Int. Conf.

338 IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

Information Processing in Sensor Networks (IPSN), USA, April 2008, pp.
233–244

[77] Gaur, P., Tahiliani, M.: ‘Operating systems for IoT devices: a critical survey’.
Region 10 Symp. (TENSYMP), Ahmedabad, Pakistan, May 2015, pp. 33–36

[78] Hammad, M., Cook, J.: ‘Lightweight deployable software monitoring for
sensor networks’. Proc. IEEE 18th Int. Conf. Computing Communications
and Networks, Washington, D.C., USA, August 2009, pp. 1–6

[79] Ranjan, A., Sahu, H., Misra, P.: ‘A survey report on operating systems for tiny
networked sensors’, arXiv preprint arXiv:1505.05269, May 2015

[80] Deharbe, D., Galv'ao, S., Moreira, A.: ‘Formalizing FreeRTOS: first steps in
formal methods: foundations and applications’. Proc. 12th Brazilian Symp.
Formal Methods (SBMF), Gramado, Brazil, August 2009, pp. 101–117

[81] Andersson, K., Andersson, R.: ‘A comparison between FreeRTOS and
RTLinux in embedded real-time systems’, Linkoping University, 2005

[82] Hos'ek, P.: ‘Supporting real-time features in a hierarchical component
system’, MSc thesis, Charles University, 2010

[83] Yang, C., Chih, H.: ‘An open source audio effect unit’. Proc. IEEE Int. Conf.
Systems, Man, and Cybernetics (SMC), Budapest, Hungary, October 2016,
pp. 638–643

[84] FreeRTOS. Available at http://www.freertos.org/, accessed on September
2017

[85] Kruger, C., Hancke, G.: ‘Implementing the Internet of things vision in
industrial wireless sensor networks’. Proc. IEEE Int. Conf. Industrial
Informatics, Budapest, Hungary, July 2014, pp. 627–632

[86] Johny, A., Jayasudha, J., Anurag, R.: ‘Security in automotive domain using
secure socket layer’, Int. J. Eng. Innov. Technol., 2013, 3, (4), pp. 214–219

[87] Apache Mynewt OS. Available at https://mynewt.apache.org/, accessed on
October 2017

[88] Kordestani, M., Bourdoucen, H.: ‘A survey on embedded open source system
software for the Internet of things’. Proc. Free and Open Source Software
Conf., Muscat, Oman, February 2017, pp. 27–32

[89] An Operating System for Arduino. Available at https://www.arduino.cc/,
accessed on September 2017

[90] Malche, T., Maheshwary, P.: ‘Harnessing the Internet of things (IoT): a
review’, Int. J. Adv. Res. Comput. Sci. Softw. Eng., 2015, 5, (8), pp. 320–323

[91] Mbed IoT Platform. Available at https://www.mbed.com/en/platform/,
accessed on September 2017

[92] Persson, P., Angelsmark, O.: ‘Calvinâ merging cloud and IoT’. Proc. Int.
Conf. Ambient Systems Networks and Technology (ANT), London, UK, June
2015, pp. 210–217

[93] Balsamo, D., Elboreini, A., Al-Hashimi, B., et al.: ‘Exploring ARM Mbed
support for transient computing in energy harvesting IoT systems’. Proc.
Seventh IEEE Int. Wkshps Advances in Sensors and Interfaces, Vieste, Italy,
June 2017, pp. 115–120

[94] arm MBED. Available at https://www.mbed.com/, accessed on September
2017

[95] Nikkanen, K.: ‘Uclinux as an embedded solution’, Bachelor's thesis, Turku
Polytechnic Institute, 2003

[96] Lu, Z., Zhang, X., Sun, C.: ‘An embedded system with uClinux based on
FPGA’. Proc. Pacific-Asia Wkshps on Computational Intelligence and

Industrial Application (PACIIA), Wuhan, China, December 2008, pp. 691–
694

[97] Wang, M., Liu, F.: ‘Research and implementation of uCLinux-based
embedded browser’. Proc. Second IEEE Asia-Pacific Service Computing
Conf., Tsukuba Science City, Japan, December 2007, pp. 504–508

[98] uClinux in the GDB/ARMulator. Available at http://www.uclinux.org/pub/
uClinux/utilities/armulator/, accessed on September 2017

[99] Teng, J., Tseng, C., Chen, Y., et al.: ‘Integration of networked embedded
systems into power equipment remote control and monitoring’. Proc.
TENCON IEEE Region Conf., Chiang Mai, Thailand, November 2004, vol.
100, (3), pp. 566–569

[100] Kyle, D., Brustoloni, J.: ‘Uclinux: a Linux security module for trusted-
computing-based usage controls enforcement’. Proc. ACM Wkshps on
Scalable Trusted Computing, New York, NY, USA, November 2007, pp. 63–
70

[101] Vujovic, V., Maksimovic, M.: ‘Raspberry Pi as a wireless sensor node:
performances and constraints’. Proc. Int. Convention Information and
Communication Technology Electronics and Microelectronics (MIPRO),
Opatia, Croatia, May 2014, pp. 1013–1018

[102] Prasad, S., Mahalakshmi, P., Sunder, A., et al.: ‘Smart surveillance
monitoring system using Raspberry Pi and PIR sensor’, Int. J. Comput. Sci.
Inf. Technol., 2014, 5, (6), pp. 7107–7109

[103] Kiepert, J.: ‘Creating a Rraspberry Pi-based Beowulf cluster’, Boise State
University, May 2013, pp. 1–17

[104] Silva, S.: ‘A Linux microkernel based architecture for OPENCV in the
Raspberry Pi device’, Int. J. Sci. Knowl. (IJSK), 2014, 5, (2), pp. 44–52

[105] The MagPi Magazine. Available at https://www.raspberrypi.org/magpi/
tutorials/, accessed on September 2017

[106] Murikipudi, A., Prakash, V., Vigneswaran, T.: ‘Performance analysis of real
time operating system with general purpose operating system for mobile
robotic system’, Indian J. Sci. Technol., 2015, 8, (19), pp. 1–6

[107] Almasalha, F., Khokhar, A., Hasimoto-Beltran, R.: ‘Scalable encryption of
variable length coded video bit streams’. Proc. IEEE 35th Conf. Local
Computer Networks (LCN), Denver, CO, USA, October 2010, pp. 192–195

[108] Bagal, N., Pandita, S.: ‘A review: real-time wireless audio–video
transmission’, Int. J. Emerg. Technol. Adv. Eng., 2015, 5, (4), pp. 168–170

[109] MartinFerna'ndez, F., CaballeroGil, P., CaballeroGil, C.: ‘Authentication
based on non-interactive zero knowledge proofs for the Internet of things’,
Sensors, 2016, 16, (1), p. 75

[110] Amorim, V., Delabrida, S., Oliveira, R.: ‘A constraint-driven assessment of
operating systems for wearable devices’. Proc. Computing Systems
Engineering (SBESC), Joao Pessoa, Brazil, November 2016, pp. 150–155

[111] Android Things. Available at https://developer.android.com/things/, accessed
on October 2017

[112] Android Platform Architecture. Available at https://developer.android.com/
guide/platform/index.html, accessed on September 2017

[113] Akula, P., Yamuna, V., Ananda, C., et al.: ‘Development of data logger for
MAV using FREERTOS ON PIC32’, Int. J. Eng. Sci. Res. Technol., 2015, 4,
(9), pp. 2277–9655

IET Wirel. Sens. Syst., 2018, Vol. 8 Iss. 6, pp. 323-339
© The Institution of Engineering and Technology 2018

339

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:01:01 UTC from IEEE Xplore. Restrictions apply.

