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Abstract
Current route planning systems report to the 

driver routes based on expected travel time and 
distance. However, these systems do not provide 
individualized routing options. With the current 
routing systems lacking the provision of individu-
alized routing choices, a routing framework which 
provides a personalized route option not solely 
based on time and distance would be a step up. 
With the expanding sensing and computing capa-
bilities in both vehicles and smart devices along 
with the promising low-latency of 5G networks, a 
real-time personalized route planner is achievable. 
In this article, a route planning framework that 
utilizes the in-vehicle and smartphone sensors to 
build a crowdsensed database on road surface 
quality and the driver’s personalized skillfulness in 
different driving environments is proposed. Such 
databases are leveraged to provide drivers with 
routing options based on their personal preferenc-
es. This framework is tested and validated through 
a case study of a real driving scenario in Kingston, 
Ontario to show the framework capabilities com-
pared to conventional route planning. 

Introduction
According to the World Health Organization 
(WHO), traffic crashes are currently the eighth 
leading cause of death globally [1]. Intelligent 
transportation systems (ITS) [2, 3] target the 
enhancement of traffic safety and management 
by utilizing the current communication and sens-
ing technologies on vehicles, smart devices, and 
road infrastructural levels [4]. The ITS sector spans 
a wide range of applications including contextu-
al-aware traffic lights, advanced driver assistance 
systems (ADAS), collision aware systems, and 
route planning services [5]. 

Facilitated by the wide deployment of the 
Internet of Things (IoT) devices and the recent 
advances in their sensing capabilities, various 
dynamic route planning methodologies have 
been recently proposed to primarily fulfill the 
expectations of future smart-city traffic operations. 
For instance, Google Maps has been using GPS 
crowdsensed data from drivers to detect congest-
ed driving segments in real-time. Based on this 
data, Google Maps offers drivers a few route plan-
ning options to minimize the instantaneous trav-
el time. Likewise, the Waze application provides 
route planning choices based on which route has 
the shortest distance or travel time. Waze issues 
real-time traffic warnings such as car accidents 
based on information inputted by drivers [6]. A 

path planning system that aims to maximize an 
aggregate task quality through the utilization of 
crowd-sensed data is proposed in [7]. Recently, 
a framework presented in [8] uses a large-scale 
vehicle crash database to provide safety-based 
routing options based on roads’ characteristics. 
In this system, road features such as road length, 
number of lanes, lane width, road curvature and 
grade were used to train a hybrid neural net-
work model. The model comprises an initial clus-
tering phase of the input features followed by 
training three multilayer perceptron (MPL) neu-
ral networks. Predicted crash rates were utilized 
to assign risk indices for different road segments 
based on their static features. 

Despite the aforementioned efforts, the inclu-
sion of a more personalized routing option is 
missing. For instance, in addition to providing the 
shortest distance or travel time, Google Maps pro-
vides a few personalized routing options such as 
the possibility to avoid highways, tolls or ferries. 
These limited preferences lack road quality and 
personalized safety-based choices that take into 
account the level of skill or comfort the driver has 
driving on different road surfaces and in divergent 
conditions. The information on road structural 
health is valuable since deteriorated road sur-
face conditions may affect the vehicle operation 
and driver comfort while introducing dangerous 
driving conditions that threaten the safety of all 
on that road [3]. Similarly, some drivers may pre-
fer routes in which their personalized risk is low 
based upon their driving history in similar driving 
environments.

Recent vehicular sensing technologies, low-la-
tency communication technologies (e.g., 5G), and 
the immense cloud computing capabilities [9] 
have the potential to provide drivers with more 
personalized route planning options. On a vehicu-
lar sensing level, recent inertial measurement units 
(IMUs) provide precise information about road 
anomalies through the analysis of linear acceler-
ations as well as angular rotations. Crowdsensed 
big data of such measurements provides more 
robust and accurate results [3]. Furthermore, the 
fusion of such measurements with the output 
readings of recent contextual aware sensors such 
as cameras, radar, and lidar modules can provide 
vital and highly accurate information about vehi-
cle behavior relative to the driving environment. 
Such information is inferred by utilizing sequence 
modeling techniques such as Hidden Markov 
Models (HMMs) or Recurrent Neural Networks 
(RNNs) [10]. In addition to IMUs, other low cost 
vehicular sensing platforms include On-Board 
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Diagnostic II (OBDII) units and smartphones 
which have recently shown to provide an accept-
able compromise between cost and accuracy. 
Processing and analysis of such vehicular sensed 
data can provide useful insights on personalized 
behavioral competence levels in different driving 
environments (i.e., personalized driver profiles) as 
well as the road conditions, which can be regular-
ly updated [3, 11]. Storing drivers profiles along 
with road conditions in the cloud would enable 
more personalized route planning options based 
on safety or comfort.

In this article, we present a dynamic per-
sonalized route planning framework based on 
crowdsensed vehicular data. The proposed sys-
tem exploits crowdsensed vehicular data and 
smart devices to build a cloud-based database 
that contains road segments qualities. More-
over, the behavioral information of drivers 
along with the environmental context of these 
behaviors are utilized to build a probabilistic 
safety-based database hosted in the cloud in 
which personalized environmental-aware driv-
ers’ profiles are stored. The road information 
and driver profiles are used to provide route 
navigation options now based on individual-
ized safety levels and driving comfort within an 
abundance of environmental attributes.

The remainder of this article is organized as 
follows. In the following section the different 
types of vehicular sensors that facilitate the work 
of the proposed dynamic route planning frame-
work are discussed. Following that, the in-vehicle 
data collection and pre-processing for road anom-
aly classification, behavior detection, and vehi-
cle positioning is presented. Then we discuss the 
cloud module components. The route planning 
problem formulation is then discussed. Challenges 
and practical considerations of the proposed sys-
tem are then covered and conclusions are drawn 
in the final section.

Vehicle as a Sensing Node (VaSN)
The concept of using the vehicle as a mobile 
sensing node has been previously proposed in 
the literature [4] and applied in industry such as 
in Waymo google car which is a self driving car 

equipped with a vast amount of sensors includ-
ing lader-based lidars, vision and radar sensors 
[12]. Moreover, Uber introduced UberMove-
ment which is a dataset that utilizes vehicular 
sensors to collect crowdsensed data used to 
measure zone-to-zone average travel times by 
day across different cities where Uber operates. 
Such data is expected to aid cities in better route 
planning and congestion reduction [13]. In this 
section, we show how the concept of using the 
vehicle as a mobile sensing node can be utilized 
in the context of our dynamic route planning 
framework.

Current vehicular sensors can provide infor-
mation on the behavior of the vehicle, its 
position, the surrounding area and what road 
anomalies are present [3, 10]. Modern vehicles 
are equipped with inertial sensors that measure 
vehicles’ linear acceleration and angular rota-
tion, speed/timing sensors, steering wheel angle 
(SWA) sensors, and GPS receivers. The utiliza-
tion of these sensors provides information on the 
behavior of the vehicle based on its movement, 
road conditions as well as vehicles’ precise posi-
tions when GPS is integrated with inertial navi-
gation systems (INSs). In addition, some vehicles 
are equipped with built-in sensors that monitor 
surroundings. Examples include forward and 
rearward view cameras, short and long range 
radar sensors.

Moreover, modern smart devices are supple-
mented with a wide range of motion sensors that 
can be leveraged to collect the inertial sensor 
measurements in vehicles. With the growing pro-
cessing capabilities of these devices, intra-vehi-
cle cross referencing between such sensors and 
external IMUs can be performed internally via 
smart devices and can provide information on 
vehicles’ motion, position and road conditions, 
whereas contextual-aware information about sur-
roundings can be inferred from the smart devic-
es front and rear cameras and/or from external 
short-range radar modules as shown in Fig. 1. As 
depicted in the figure, vehicular network data, 
radar range data, and On-Board GPS data are 
acquired by the smartphone through blue-tooth 
links. The cross-referenced information regarding 

FIGURE 1. Vehicle as a sensing node.
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the driving behavior, road irregularities and anom-
alies, position and surroundings are used to build 
datasets that are stored either on the on-board 
vehicle computer or on a smartphone in the vehi-
cle.

With the recent advent of cellular communi-
cations as well as the high computing power of 
cloud servers, vehicular stored data can be sent 
and processed to provide the drivers with real-
time and quasi real-time road services. Accurate 
assessment of the quality of the road along with 
a driver’s safety-based competence levels in dif-
ferent road environments can be computed in 
the cloud to provide drivers with personalized 
route planning options. The assessment of road 
conditions can be achieved by cross-referencing 
crowdsensed road quality data from various vehi-
cles (i.e., inter-vehicle cross-referencing), whereas 
assessing drivers’ competence levels in different 
driving environments can be achieved by finding 
the statistical correlation between different driving 
behaviors in different driving environments with 
the personalized crash and near-crash risk rate 
in these environments [2]. In the following sec-
tions we discuss the framework components on 
both vehicle and cloud levels and the utilization 
of these two components in providing dynamic 
route planning.

In-Vehicle Data Acquisition and Processing
The proposed personalized route planning frame-
work is primarily based on two components: the 
quality of road segments and the personalized 
risk profiles in different driving environments. The 
detection of road anomalies and the inference of 
driving behaviors, stamped with the location they 
occurred in, are the foundation of the proposed 
route planning framework as the inferred informa-
tion is eventually processed and used to update 
“segments’ qualities” and “personalized drivers’ 
profiles” databases inside the cloud.

In this section, we discuss the in-vehicle data 
acquisition and processing that are required for 
road anomaly and driving behavior detection and 
how this information is utilized in the context of 
the proposed framework.

Road Information Services (RIS)
Road quality is a critical aspect while consider-
ing travelers safety and comfort during their daily 
commute. For instance, deteriorated road surface 
conditions may cause both vehicle damage and 
dangerous driving scenarios that may cause a 
life-threatening event. Municipalities usually mon-
itor road surface conditions and irregularities by 
conducting road surveys utilizing dedicated vehi-
cles or via the voluntary reporting from drivers 
[3]. However, conventional road quality monitor-
ing strategies are costly and less frequent. Also, 
participatory schemes lack the adequacy and 
comprehensiveness in the drivers’ reporting.

As depicted in Fig. 2, inertial sensors such as 
accelerometers and gyroscopes present in either 
the driver’s smart devices or IMUs mounted in 
vehicles can be engaged in monitoring road 
quality. Accelerometers and gyroscopes measure 
the linear accelerations and angular rotations in 
the three dimensions. These measurements are 
used to describe and identify the vehicle motion 
dynamics. Accordingly, road irregularities that 
cause sudden and harsh vibrations of the land 
vehicles are reflected in the form of abrupt dis-
turbances of the linear acceleration and angular 
rotation measurements within both smart devices 
and IMUs. However, the inertial sensors are vul-
nerable to short and long term noises, drifts and 
biases. In addition, some high-frequency vehicle 
motion dynamics may mix with the road anoma-
lies on the inertial sensors measurements leading 
to uncertainties while detecting these anomalies. 
Conventional filtering techniques can reduce the 
inertial sensors noises. However, they can elim-
inate the frequency components of the vehicle 
motion dynamics, or the ones that describe the 
effects of road anomalies.

A wavelet packet decomposition (WPD) can 
decompose the signal in multi-levels of approx-
imation in terms of frequencies [3]. At each 
decomposition level, the signal approximations 
and details are decomposed further, each into a 
new level of approximations and details. Thus, the 
utilization of the WPD assures the removal of the 
noise frequency components, and the separation 
of the frequency components that describe the 
usual motion of a vehicle from those that con-
tain the road anomalies. In our system, a WPD 
technique is utilized to de-noise the inertial mea-
surements and extract the frequency components 
of road anomalies. The inertial measurements 
are time windowed every one second and then 
processed with feature extraction techniques. To 
distinguish every road irregularity various feature 
extraction techniques are adopted such as statisti-
cal, time, frequency, and time-frequency features. 
Accurate categorization of the road anomalies is 
needed to enable a full view of the road quality 
and to provide municipalities with an adequate 
description of the road anomalies to provide the 
appropriate maintenance processes. For anoma-
lies categorization, machine learning-based multi-
class classifiers are applied to classify each road 
anomaly and its corresponding asperity level effi-
ciently. Afterwards, the classified road anomaly 
or irregularity (Ai) is location stamped at (Li) using 
integrated geo-referencing techniques and then 
saved in a timely updated database to be commu-

FIGURE 2. In-vehicle data acquisition and processing.
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nicated to the cloud for reporting purposes and 
further processing required to the road quality 
assessment. 

Behavior Detection
An important step in the hierarchy of driver risk 
profiling is the ability to continuously infer differ-
ent driving behaviors. Detected behaviors along 
with the simultaneous environmental context 
are utilized to predict the statistical correlation 
between the behavior and the associated risk 
probability measured in terms of the crash rate, as 
will be detailed later.

Figure 2 depicts the in-vehicle sensory data that 
is used to infer a vehicle’s movement behavior. 
Two types of data are acquired to model the vehi-
cle’s behavior. First is data that defines the vehi-
cle’s absolute motion behavior. This includes data 
from speedometers, accelerometers, and gyro-
scopes. This data are complemented by a second 
type of data which is the contextual awareness 
data that defines the vehicle’s relative motion to 
surrounding vehicles and/or objects. An example 
of this data is the range, and range rate outputs 
of short range radar sensors. To demonstrate the 
importance of this data consider a speeding vehi-
cle in two driving scenarios. In the first scenario, 
the vehicle is excessively speeding in a free traf-
fic area while in the second scenario a vehicle is 
excessively speeding while tailgating another vehi-
cle. Although the first vehicle’s behavior is clearly 
distinct from the other vehicle, considering only 
absolute movement variables, the behavior of 
both vehicles would be equally decoded as both 
are speeding. Such a generalization would even-
tually reflect inaccurate insights on the behaviors 
that are highly correlated to crash risk.

Denoised measurements over a pre-adjusted 
time frame (e.g., 3 seconds) are fed to a sequence 
model that is priory trained to output one of the 
pre-defined M behavioral classes. First order time 
HMM models are proven to classify such behav-
iors with a high level of accuracy [10]. In HMMs, 
the vehicle’s measurements form the low level 
emission layer matrix B. This matrix is stochastically 
related to higher level states that represent possible 
driving modes in this case. The number of possible 
states is an HMM’s tunable hyper-parameter that is 
case-specific according to the application. After a 
training phase, the Viterbi algorithm is typically uti-
lized to decode the most probable state sequence 
where each decoded sequence represents a pos-
sible driving behavior. To ensure high modeling 
accuracy, the sampling rate at which the mea-
surement samples are taken is very crucial. Since 
a vehicle’s motion represents a highly dynamic 
system, the sampling time should be on the scale 
of sub-seconds. The sampling time is another mod-
el’s hyper-parameter which when optimized shall 
ensure a good compromise between the accuracy 
of the model and its computational complexity. A 
detected behavior (Bi) is stamped with its location 
co-ordinates (LBi) and the 2-tuple (Bi, LBi) is sent to 
the cloud in real-time for further processing to be 
detailed later.

Integrated Positioning
The monitored road conditions and drivers’ 
behaviors require accurate geo-referencing in 
order to enable efficient reporting and analysis. 

For instance, GPS is the most widely-used tech-
nology used for navigation and localization [14]. 
In general, a GPS receiver requires line of sight 
of four satellites to calculate its current position. 
However, GPS is susceptible to partial or com-
plete outages and multipath in downtown areas, 
in tunnels or under bridges. On the other hand, 
INS is a self-contained localization technology that 
does not succumb to GPS challenges [14]. INS as 
an autonomous system able to afford information 
about the moving platform position, velocity and 
attitude utilizing the inertial sensor measurements 
in a process known as dead reckoning (DR). With 
the knowledge of the vehicle’s previous position 
and the inertial measurement, DR is able to iden-
tify the vehicles’ current position. Nevertheless, 
INS drifts over time due to inertial sensors noises, 
biases and errors that limit the capabilities of this 
technology. Integrated localization provides accu-
rate geo-location that overcomes both GPS and 
INS challenges through augmenting both solu-
tions together.

As shown in Fig. 2, the linear accelerations 
and angular rotations collected from the inertial 
sensors within the vehicle or embedded in the 
in-vehicle smartphone are applied to the signal 
de-noising component. WPD, as described earlier, 
is used to separate the frequencies that describe 
the vehicle motion from the ones that represent 
noise or road surface effects. Afterwards, in the 
integrated positioning component, the GPS loca-
tion measurements are integrated with de-noised 
inertial measurements using extended Kalman fil-
ter to provide an accurate positioning solution. 
The detected road surface conditions (Ai) and 
drivers’ up normal driving events are then accu-
rately geo-referenced with their corresponding 
locations (Li) and stored in the in-vehicle database. 
In addition, the integrated positioning component 
is provided back to the drivers to accurately navi-
gate them during their trips. 

On-Cloud Road Assessment and  
Driver Profiling

In this section, we explain how the information 
retrieved from vehicles is utilized to build data-
bases containing road segment quality data and 
personalized driver profiles. With a sequence 
of computational procedures in the cloud, such 
databases are developed and leveraged toward 
providing drivers with more personalized route 
planning options based on the quality of the route 
and on the personalized expected risk profiles of 
drivers that have travelled these routes. In the fol-
lowing two subsections, the details of the devel-
opment of the two databases is provided.

Road Quality Assessment
The road anomalies database collected by each 
crowdsensing node (vehicle) is communicated 
to the cloud as shown in Fig. 3. Accordingly, the 

An important step in the hierarchy of driver risk profiling is the ability to continuously infer different 
driving behaviors. Detected behaviors along with the simultaneous environmental context are utilized 

to predict the statistical correlation between the behavior and the associated risk probability  
measured in terms of the crash rate.
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detected irregularities Aj and their corresponding 
locations Lj are used to update a bigger database 
that contains the inter-vehicle cross referenced 
crowdsensed road anomalies. In order to accu-
rately assess the road segment quality, the loca-
tion stamped road anomalies need to be matched 
to the correct road segment. For instance, in 
Canada, the road information database shown 
in Fig. 3 is built through accessing the National 
Road Network (NRN) Canada, which includes 
road segment information such as location, name, 
type, direction, address range, rank and class [15]. 
Afterwards, an inference based system such as 
fuzzy inference is used to assess the road seg-
ment quality according to some inputs such as 
the anomalies density with respect to the segment 
length, type of the anomalies (e.g., pothole, man-
hole, transversal cracks), anomalies severity level, 
and number of lanes in the segment. These inputs 
are mapped by different membership functions 
(e.g., sigmoid function) and then fuzzified by var-
ious Mamdani fuzzy rules. Then, a deffuzification 
output is classifying the data into three main class-
es of quality: good, moderate, and poor segment 
quality. The road segment quality assessment is 
held in the cloud in an offline process and then 

updated into a database with the assessed road 
segments and their corresponding quality to be 
used in the further online assessment to the driv-
er’s potential routes.

Personalized Driver Profiling
Each driver is given a unique risk score in each 
driving environment (Envj) based upon their per-
sonalized behavioral attributes in such an environ-
ment. In brief, a risk score of a subject driver is 
calculated based on a scoring function hosted on 
the cloud. The scoring function depends on the 
expected risk probability of detected behaviors. A 
typical scoring function assigns a risk score for a 
driver in a certain driving environment based on 
the average risk probability of driving behaviors 
of the driver in that environment. A driver with a 
high risk probability is assigned a low score and 
vice versa. The risk score of a driver in a given 
environment is updated following the detection of 
driving behaviors in that environment on a per-trip 
basis using the risk scoring function hosted on the 
cloud.

Risk scores are calculated according to the 
following set of procedures. First, the real time 
2-tuple (Bi, LBi) is sent from the vehicle to the 

FIGURE 3. On-cloud road segment quality assessment.
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cloud. On the cloud, LBi is used to determine the 
environmental attributes at which the behavior 
Bi occurred through a real-time context-aware 
module. With an access to the road information 
database (i.e., NRN) and the dynamic road infor-
mation network (e.g., weather network), the real-
time context-aware module will work as a mapper 
that extracts the environmental attributes (Envj) 
at LBi from its inputted information. The statistical 
expected risk of the detected behavior Bi with 
the extracted environmental information at loca-
tion LBi is inputted to a pre-trained risk prediction 
model on the cloud. Such pre-trained risk predic-
tion models have been proposed in the literature 
using the behavioral and contextual information 
provided in large-scale naturalistic driving (ND) 
datasets (e.g., SHRP2 dataset [2]). The calculated 
expected risk of Bi at LBi is then used to update 
the driver’s risk score at Envj. Hence, the per-
sonalized risk score is calculated in terms of the 
aggregated expected risks of different detected 
behaviors at Envj. The driver profiling process is 
briefly depicted in Fig. 4.

Context-Aware Route Planner
With the aid of the developed segments quality 
and driver profile databases, personalized route 
planning options are provided to drivers. In this 
section, the proposed route planning system is 
thoroughly discussed from the initiation of the 
route request to the proposed route recommen-
dation with the underlying in-cloud modules and 
sub-processes. An explanatory case study is then 
provided to highlight the significance of the pre-
sented framework. 

Route Planning System Flow
In the proposed system depicted in Fig. 5, a route 
request from location (A) to location (B) is initi-
ated from the subject vehicle (SV) to the cloud 
along with the SV’s personalized route prefer-

ences which are comprised of the route’s quality 
level, and the route’s expected risk level. On the 
cloud server, the route request is forwarded to 
a route planning service provider which outputs 
a set of potential routes. Suggested routes that 
consider a trip’s travel time and distance are then 
communicated to a real-time context-aware mod-
ule. This module extracts the road segments of 
potential routes along with their static attributes 
(e.g., curvature, number of lanes, roughness, and 
so on) and their real-time information (e.g., weath-
er, traffic density, and so on).

To check the quality level of a certain potential 
route, the context-aware module creates a list of 
quadruples, where the number of quadruples cor-
responds to the total number of road segments 
in that route, and each quadruple consists of the 
x and y coordinates of the start and end of each 
segment. Using the developed list, the quality of 
each segment is then extracted from the database 
of segments’ quality. The route overall quality 
level is then determined through the route quality 
assessment fuzzy-based module which assigns a 
quality level to a route based on the route seg-
ments’ average quality. The route quality level q ∈ 
Q = {Good, Moderate, Poor}.

To assess a potential route from the SV’s per-
sonalized risk perspective, the context-aware 
module creates a list of n-tuples. The number of 
the list entries (i.e., number of n-tuples) reflects 
the number of road segments in the potential 
route, whereas the entries in each n-tuple include 
the static and dynamic environmental attributes of 
each road segment in the potential route (i.e., n 
attributes). The behavioral profile of the SV, which 
reflects their historical behavioral risk score in sim-
ilar driving environment, in each of the route seg-
ments is then pulled from the personalized drivers’ 
profiles database. The overall risk of a potential 
route is then determined through the route risk 
indexing module which assigns a risk severity level 

FIGURE 5. Personalized context-aware route planner.
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to the potential route based on a weighted aver-
age of the segments’ individual risk scores. The 
personalized SV’s route risk level r ∈ R = {Risky, 
Moderate, Safe}.

Based on the extracted information on 
the potential routes’ quality levels and the per-
sonalized SV’s risk levels in these routes, the 
context-aware route planner classifies routes 
according to the following optimization formula:

min
r, q

α. r + β
q  

where a and b are binary weights, respectively, 
assigned to the risk and quality levels of a certain 
route by the SV. These weights reflect the willing-
ness of the subject driver to include the personal-
ized risk and road quality of a route in the route 
planning optimization process. If both parameters 
are 1, both risk and road quality factors will be 
utilized to find the optimal route, whereas if both 
parameters are zero, the optimal route will be 
based only on the optimal expected travel time.

Case Study
In this section, we present a case study for a 
real scenario of a route request between source 
point (A) and destination (B) in the downtown 
area of the city of Kingston, Ontario. The case 
study highlights the difference between the con-
ventional best route suggested by Google Maps 
and the best route based on the route’s quality 
and risk level offered by our system. In this case 
study, Google Maps (accessed April 2019) in an 
afternoon driving scenario has suggested three 
potential routes according to the estimated travel 
time and trip distance between points A and B 
while considering the real time traffic. As depicted 
in Fig. 6, Google Maps outweighed Route 1 over 
the other two routes as it provides the shortest 
expected travel time and distance.

In addition to minimum travel time, our pro-
posed system considers the potential routes’ qual-

ity and risk levels. To assess the surface condition 
of each potential route, the road segments’ infor-
mation (e.g., location coordinates) are extracted 
utilizing the real-time context-aware module. For 
instance, Routes 1, 2 and 3 consist of 26, 20, and 
24 road segments, respectively. Afterwards, the 
information of each road segment’s quality rank 
within each potential route is extracted from the 
database of segments’ quality. The route quality 
assessment module is then used to indicate the 
average surface quality for each potential route. 
Accordingly, Routes 1, 2, and 3 have a comput-
ed average quality of Poor, Moderate, and Poor, 
respectively.

To assess the personalized risk of the subject 
driver in the three potential routes, the real-time 
context-aware module outputs the static and 
dynamic environmental attributes for the road 
segments of the three routes. Considering the stat-
ic environmental attributes, number of lanes, traf-
fic flow direction and curvature, and the dynamic 
attribute of weather, Route 1 will be comprised of 
21 road segments with environmental attributes E 
= [Double Lane, One Way, No Curvature, Sunny] 
and five road segments with E = [Single Lane, Two 
Way, No Curvature, Sunny]. Likewise, Route 2 will 
have six road segments with E = [Double Lane, 
One Way, No Curvature, Sunny] and 14 road seg-
ments with E = [Single Lane, Two Way, No Cur-
vature, Sunny], and Route 3 will be composed of 
seven road segments with E = [Double Lane, One 
Way, No Curvature, Sunny], 15 road segments 
with E = [Single Lane, Two Way, No Curvature, 
Sunny], and two road segments with E = [Single 
Lane, Two Way, Curvy, Sunny]. For a subject driver 
with a skillfulness level of Moderate in a [Double 
Lane, One Way, No Curvature, Sunny] road envi-
ronment, Moderate in a [Single Lane, Two Way, 
No Curvature, Sunny] road environment, and 
Risky in a [Single Lane, Two Way, Curvy, Sunny] 
driving environment, the route risk indexing mod-
ule assigns a weighted average personalized risk 
levels for the subject driver in Routes 1, 2, and 3, 
respectively, as Moderate, Moderate, and Risky.

Accordingly, for a subject driver whose per-
sonalized preferences include both the route 
quality and risk levels, the optimal route which 
will minimize the proposed system’s cost function 
will be Route 2, rather than Route 1 chosen by 
Google Maps.

Challenges and Practical Considerations
Connected and autonomous (CAV) systems may 
be subjected to security and trust threats that can 
appear in different forms and should be addressed 
carefully [5]. For instance, in our system risk 
scores can be manipulated if the vehicular sensors 
are hijacked and false readings are sent to the 
cloud. Another form of a security threat could be 
through attacking the vehicle-to-cloud (V2C) com-
munication channel that is used to carry the vehic-
ular data about driving behaviors to the cloud. 
Finally, cloud server attacks in which risk scores 
are changed or over-written in the post-processing 
phase of vehicular measurements could also raise 
a trust challenge. Novel advancements and inno-
vations in the cyber-security domain are expected 
to tackle these challenges.

Concerning the system’s complexity, the com-
putationally extensive processes needed to cre-

FIGURE 6. Route planning scenario including conventional and proposed routing 
metrics. QI and RI are, respectively, the road quality and risk indices.
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ate the risk profiles and road segments qualities 
databases are performed offline. Most of the pro-
cedures required during the online route recom-
mendation process are searching procedures that 
have low time complexity when a proper searching 
algorithm is applied. Moreover, the recent comput-
ing capabilities of mobile devices and cloud servers 
facilitate the execution of both offline and online 
procedures with a low time latency.

Conclusion
Providing route planning options that consider the 
quality of the road surface and drivers’ personal-
ized skillfulness levels of driving on such routes 
has its useful implications on the comfort and 
safety of drivers. With current service providers 
considering mainly travel time and trip distance 
as route planning metrics, an individualized route 
options will add more route selection flexibility 
based on the individual preferences of the driv-
er. In this article, we introduced a framework for 
dynamic route planning based on the personal 
preferences of the driver. Specifically, two route 
planning metrics represented in route quality 
and personalized route safety are proposed and 
discussed covering the underlying in-vehicle and 
in-cloud processes. The proposed framework is 
intended to complement current route planning 
systems such as Google Maps rather than replac-
ing them. As a proof of concept, a case study 
done in Kingston, Ontario demonstrating the dis-
crepancies between conventional and proposed 
route planning options is provided.
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