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Abstract—The growth in the number of smart devices has
mobilized the rise of CrowdSensing (CS) as an enabler of smart
cities, where state-of-the-art technologies are utilized to improve
citizens’ quality of life. CS is a novel sensing paradigm that
leverages data collected from smart devices to support a wide
range of services. Particularly, smart emergency management
systems are attracting increasing attention due to their potential
to save lives, as they accelerate the delivery of emergency services
including detection, mitigation and recovery. In this paper, we
study the problem of the detection of an abnormal change in a
monitored sensory variable, where the change is suggestive of an
emergency situation. Specifically, we formulate our problem as a
sequential change-point detection problem, where the underlying
distribution of the variable changes at an unknown time. Our
aim is to detect the change-point with minimal delay, subject to
certain performance constraints. We utilize Shiryaev’s optimal
solution in two variants of the problem depending on the
mobility behaviour of the participants, and conduct simulation
experiments to show the performance of our schemes.

I. INTRODUCTION

The upsurge of sensor-enhanced smart devices has facili-
tated the rise of CrowdSensing (CS) as an enabling paradigm
for smart cities. A smart city aims to offer its citizens an
improved quality of life by providing intelligent, efficient and
sustainable environments. Service providers in a smart city
exploit various state-of-the-art technologies and paradigms to
collect and analyze data to progress towards prosperous urban
communities [1].

In essence, a CS framework consists of a central server
which we refer to as the CS organizer, and a crowd of smart
device owners, referred to as the participants. Participants
contribute sensory data by leveraging the sensing, computing
and communications capabilities of their smart devices [2].
This allows the acquisition of real-time sensory data used
by service providers in a multitude of applications. Examples
include smart transportation, smart healthcare, and safe smart
cities; which is the focus of this work [3].

In a smart city, CS can be employed to improve the
functionalities of emergency services by increasing situational
awareness. In particular, CS improves core management op-
erations, including a) the prompt detection of irregularities
associated with an imminent emergency situation, b) provision
of real-time data for continuous situation monitoring and c) the
mitigation of damages by dynamic recovery planning [4].

In this work, we are concerned with the detection of
a change in some given observed phenomena via sensor-
enhanced smart devices, indicating a forthcoming or an exist-
ing emergency situation. As a motivational example, consider
the entrance of a shopping mall where the CS organizer contin-
uously monitors the noise levels by utilizing the microphones
in participants’ smart devices. Here, an abnormally high noise
measurement may be indicative of high density of shoppers in
that particular area, which may be a sign of a large gathering
that warrants special attention from concerned authorities.
Another example involves monitoring the temperature value
in a park, where an unexpectedly high value could signify
a risk of a fire in that particular location. In either case, it
is desirable that the CS organizer detects the change in the
reported measurements as soon as it occurs and alerts the
concerned authorities to take appropriate courses of action.

Intuitively, we want the CS organizer to implement a
scheme that detects the change in the monitored variable with
high reliability, measured by the probability of an erroneous
decision. Specifically, if the CS organizer incorrectly declares
that a change has happened, it is said that a false alarm has
occurred. The false alarms rate is a key performance metric
in emergency management systems, since a false alarm causes
unnecessary calling of service providers and responders, which
in turn leads to waste of resources. On the other hand, if the CS
organizer successfully recognizes a change in the monitored
variable, then there exists a decision delay, which is equal
to the difference between the time of the detection and the
actual time the change happened. Due to the context of the
scenario in emergency management systems, it is trivial that
the detection delay is also pivotal to the performance of the
scheme.

Therefore, a trade-off emerges between the quality of the
detection procedure (as measured by the probability of a false
alarm), and the delay until the CS organizer raises an alarm
due to a detected change. Our goal is to devise a scheme
that minimizes the decision delay within a given false alarm
probability threshold. Towards this end, we adopt a sequential
detection approach [5]. In sequential detection, data samples
are observed sequentially until enough samples have been col-
lected to stop further data acquisition and declare a decision.
Specifically, we formulate our problem as a sequential change-
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point detection problem, and present two variants depending
on the mobility behaviour of the participants contributing the
sensory data.

The remainder of the paper is organized as follows. In
section II, we discuss related work. In section III, we introduce
some preliminaries of the discussion, followed by the problem
formulation and solution in section IV. Section V tackles the
simulation results. Finally, section VI presents our conclusions.

II. RELATED WORK

The notion of a smart city revolves around the engagement
and integration of various technologies to enable safer and
more sustainable environments. Hence, the concept of smart
safe cities which incorporate smart emergency management
schemes has gained increasing attention recently.

The work in [6] surveys state-of-the-art IoT based protocols
appropriate for use in disaster management scenarios. The
authors discuss schemes specific to natural and man-made
disasters, as well as service-oriented and post-disaster man-
agement frameworks. Relevant issues include early warning
and notification, remote monitoring, real-time analytics, and
victim localization. The authors in [4] propose a vision of an
information infrastructure that supports emergency responders
in large-scale unstructured crisis situations. The proposed
infrastructure aims to transform the operations of emergency
management by exploiting large-scale CS, heterogeneous data
integration and analytics.

Another work [7] underlines that a system based solely on
municipal IoT components might suffer in crisis situations
due to breakages in connectivity. Hence, the authors propose
a novel end-to-end architecture that relies on CS for contin-
uous data acquisition. The infrastructure implements a data
processing component for timely knowledge discovery from
multimedia big data. This will aid the service providers in the
prediction and detection of a disaster, and collaborate in the
response and recovery missions.

While the above works deliver ambitious perspectives on the
realization of smart emergency management schemes, other
works focus on the realization of core operations related to
the prediction and management of a hazardous situation. The
scheme introduced in [8] evaluates the value of the data
contributions made by participants in a fire event. The scheme
exploits the physical attributes of a fire spread to assess
whether the temperature readings provided by the participants
are credible. This is achieved by partitioning the affected
area into sectors and implementing inter- and intra-sector
evaluation algorithms, where the final output is a reputation
score for each participant.

The work presented in [9] presents energy-efficient algo-
rithms for personal state recognition based on data collected
from smartphones. Specifically, their scheme aims to detect
cases when the sensory data indicates the owner has fallen to
the ground as opposed to walking or running, and alerts first
responders once a fall has been confirmed.

The work in [10] introduces a cost-efficient fine-tuned fire
detection convolutional neural network architecture for data

drawn from surveillance videos. Experimentation is performed
on real-world datasets confirm the effectiveness of the pro-
posed scheme compared to other traditional ones. However,
we note here that such schemes need prior training using
appropriate relevant data for effective performance, making
them suitable in existing infrastructure environments like
Wireless Sensor Networks (WSNs) or Closed-Circuit Televi-
sion (CCTV) networks. However, in CS schemes, this may
not always be feasible. Hence, in this work we construct
a framework that allows for the detection of irregularities
associated with emergencies based on data generated from CS
participants.

III. PRELIMINARIES

We are concerned with the detection of a change in a
given variable which we monitor through CS-generated data,
where the change signifies a possible emergency situation. We
establish a mathematical framework through which we can
minimize the time required to detect the change constrained
by a certain reliability condition. The framework is based on
opportunistic sensing [?], where the organizer collects sensory
data from the smart devices without direct interference by
the participants. This is convenient in an emergency situation
where people are less likely to pay attention to their smart
devices. We assume that the sensing process includes the
sampling of a single sensor in the smart device.

In reference to the shopping mall and park examples men-
tioned previously, there are two possible manners in which
the organizer can administer the sensing process. The first
approach is to take advantage of participants transiting the
place of interest at every time slot to collect data. In other
words, the organizer recruits a new set of participants at the
beginning of each time slot to perform sensing. This approach
is appropriate in situations where crowd members are available
in the place of interest for a period of time that approximates
one time slot. Consequently, this is suitable when the places
of interest are spatially limited and are characterized by high
mobility flow. For example, crowd members walking by the
main entrance of a shopping mall will usually be available
there for a few seconds, allowing the organizer to exploit their
presence for a finite number of time slots. Therefore, the CS-
contributed data is from a heterogeneous set of participants,
which can be renewed at every time slot.

The second approach is to consider a fixed number of
stationary participants in the place of interest until a change
is detected. In this manner, the same set of participants peri-
odically generates sensory data according to the organizer’s
schedule. Contrary to the former approach, this is suitable
in scenarios where crowd members are inclined to stay at a
certain place for longer durations sufficient to span a large
number of sensing slots. Moreover, the place of interest can
span a larger spatial area, where the considered participants
are sparsely spread. For example, people visiting a park for a
picnic averaging for an hour or more.

We observe that the fundamental difference between the
two approaches is whether the source of sensory data might
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TABLE I: Table of Notations

Notation Explanation
xi The set of sensory measurements received at time i
Ni Number of participants at time i
Xi Single data instance at time i
Xj Sequence of data instances until time j
τ The change-point
f0 The pre-change distribution of the sequence
f1 The post-change distribution of the sequence
td The time at which the organizer detects a change
Γ The time delay until a change is declared

ADD(td) The average detection delay
PFA The probability of a false alarm
α The threshold of PFA

λ The parameter of the geometric distribution
pj The posterior probability that a change has occurred
ts The Shiryaev optimal stopping time
wn,i The normalized LOF weight
ρkn→m The k-reachability distance of xn,i

LRDk
n The k local reachability density of xn,i

LOFk
n The k-LOF score of xn,i

change at the beginning of each sensing slot. Moreover, the
participants in the first approach are confined to a smaller
physical space, compared to the second approach where they
are distributed to cover a larger area. Consequently, we refer
to the former approach as the Centralized Expedient Sensing
(CES) scheme, and the latter as the Distributed Recurring
Sensing (DRS) scheme. These subtle differences call for some
distinctions in the mathematical treatment, as will be shown
in the shortly.

IV. PROBLEM FORMULATION AND SOLUTION

In this section, we begin by formulating the sequential
detection problem for the CES scheme and present the solu-
tion. Subsequently, we extend the formulation in accordance
with the DRS scheme and discuss its solution. Table I shows
notations employed in the paper.

A. The Centralized Expedient Sensing (CES) Scheme

In reference to the shopping mall entrance example, we have
established that the organizer expects to receive sensory data at
each time slot from a different set of participants. As a result,
the size of the set might change at each time slot. Hence,
we need to introduce a mathematical framework that handles
the heterogeneous and varying-size sets, such that we are able
to detect the change in the monitored variable under certain
performance constraints.

Specifically, let i = 1, 2, .. denote the index of the current
time slot. At i, the organizer receives the set xi which consists
of data measurements collected from Ni participants, i.e.
xi = {x1,i, x2,i, ..., xNi,i}. Our CES framework consists of
two components. The first component utilizes a pre-processing
technique that transforms the set xi into a single data instance
denoted by Xi. The second component, which is the core of
our scheme, implements a solution that detects a change with
minimal delay. For clarity, we first introduce the solution to
the detection problem for the case when the organizer obtains
sensory data from a single participant throughout the entire

sensing process (i.e., for the case when Ni = 1∀i), and
then introduce the pre-processing technique that enables us
to extend the solution for all values of Ni.

We formulate our problem as a sequential quickest change-
point detection problem [5]. Broadly speaking, detection prob-
lems involve the observation of data pertaining to a certain
phenomenon in order to make a decision about it. Contrary
to traditional detection problems, in sequential detection we
do not know beforehand the number of data instances used
in making a decision. Rather, there is an unknown number of
data instances, and the decision when to stop observing is part
of the detection procedure. Sequential detection is appropriate
for scenarios when both the reliability of the decision and
the decision delay are key to the performance. Moreover, the
quickest change-point detection problem, is a special case of
sequential problems. In such a problem, the distribution of
the monitored variable changes at an unknown time, and we
aim to raise an alarm as soon as the change occurs, hence
minimizing the decision delay.

Let Xj = {Xi : i = 1, 2, ..., j} be a sequence of
real random variables observed sequentially from a single
participant in time slots i = 1, 2, ..., j. Here, Xi resembles
the value of the monitored variables obtained via a sensor
in the smart device at time slot i. Initially, the sequence
follows a distribution f0, until a change occurs at an unknown
time τ ∈ Z+. Following the change, the random variables
Xτ , Xτ+1, ... follow a different distribution, denoted by f1.
At time slot j, we must choose between the two hypotheses:

H0 : Xj = {Xi ∼ f0, i = 1, 2, ..., j}
H1 : ∃τ ∈ Z+, s.t.:

Xj =

{
Xi ∼ f0, i = 1, 2, ..., τ − 1
Xi ∼ f1, i = τ, τ + 1, ..., j

(1)

Let td denote the time that a change is detected. If td ≥ τ ,
then there exists a detection delay Γ = td − τ , where Γ is
a discrete random variable. We define the average detection
delay as the conditional expectation of Γ, written as:

ADD(td) = E [Γ | td > τ ] =
∞∑
i=1

P (τ = i)Ei [td − i | td > i]

(2)
where Ei is the expectation when the change occurs at i. On
the other hand, if a detection is incorrectly declared before a
change to the variable actually happens, then a false alarm has
occurred. In such a case, td < τ , and the probability of a false
alarm (PFA) is:

PFA = P (td < τ) =
∞∑
i=1

P (τ = i)Pi(td < i) (3)

where Pi is the probability measure when the change occurs at
i. Our objective is to devise a detection policy that identifies
the change as soon as it occurs, while restricting the prob-
ability of making an erroneous decision. Therefore, we can
formally present our optimization problem as:

min ADD(td)
s.t. PFA ≤ α (4)
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where 0 < α < 1 is a threshold limiting PFA. The above
formulation is formally known as the quickest change-point
detection problem [5]. While no general solutions have been
found for the problem, there exists an explicit solution in the
Bayesian formulation, where the change-point τ is assumed
to be random with a known distribution. Specifically, τ is
modelled as a geometric random variable with parameter
0 < λ < 1. Thus, the probability that a change occurs at i
is:

P (τ = i) = λ(1− λ)(i−1), i = 1, 2, ... (5)

Given the above, and under the assumption that the random
variables in Xj are i.i.d., the problem can be solved as follows.
Let pj denote the a posteriori probability that a change has
occurred before time j, given the sequence Xj . Equivalently,
pj = P (τ ≤ j | Xj). It can be shown through Bayes’ rule
that pj can be recursively calculated as:

pj =

[
pj−1 + (1− pj−1)λ

]
Lj[

pj−1 + (1− pj−1)λ
]
Lj + (1− pj−1)(1− λ)

(6)

where Li is the likelihood ratio between the post-change and
pre-change distributions, found as Lj =

f1(Xj)
f0(Xj)

. Consequently,
it is shown that a Lagrangian relaxation of (4) can be solved
through dynamic programming to yield [5]:

ts = inf{j ≥ 1 : pj ≥ Aα} (7)

where inf denotes the infimum of a set, ts is the optimal
stopping time at which the organizer halts sensing process, and
0 < Aα < 1 is an appropriately chosen threshold that satisfies
PFA(ts) = α. This result is known as the optimal Shiryaev
test for the quickest change-point problem [5]. In general, it
is not trivial to find Aα that satisfies the condition on PFA.
However, it has been shown in [11] that setting Aα = 1 − α
provides a guarantee that PFA(ts | Aα) ≤ α, which satisfies
the constraint in Eq. (4).

Thus far, we assumed that the sequence Xj is generated
from a single participant throughout the sensing process until
a change is detected. However, as noted earlier, this is not the
case in the CES scheme, where transiting participants provide
a set of sensory measurements xi, whose size might vary for
different i. Hence, we need to propose a pre-processing tech-
nique that is conducted on the set xi, such that it is transformed
from Ni measurements into a singular data instance Xi.

In particular, we wish that our pre-processing technique
reflects the truth of the monitored variable at the place of
interest. We achieve this via a weighted average as follows:

Xi =

Ni∑
n=1

wn,ixn,i (8)

where wn,i ∈ [0, 1] is the Local Outlier Factor (LOF) score
[12]. The LOF is a consensus-based outlier detection tech-
nique, whose output is a measure of the consistency of the
sample xn among other samples. The LOF is an attractive
choice because it is computationally efficient, and it does
not require the knowledge of ground-truth to assess the data

measurements. Rather, the LOF gauges the distance-based
deviation of any data measurement compared to its neighbours.

Specifically, let d(n,m) represent the euclidean distance
between the two sensory data measurements xn,i and xm,i.
Additionally, let dkn denotes the distance between xn,i and
its kth neighbour. Then, we define Ekn as the set of all data
measurements in xi whose distance to xn,i is less than or
equal to dkn. Based upon which, we define the k-reachability
distance of xn,i as:

ρkn→m = max{d(n,m), dkm} (9)

Additionally, let the k-Local Reachability Density (LRD) of
n be the inverse of the average reachability distances in xn,i’s
neighbourhood, found as:

LRDk
n =

|Ekn|∑
∀m∈Ek

n
ρkn→m

(10)

Then, we can find the LOF of xn,i as the average of
the ratio of k-local reachability densities of xn,i and its k
neighbourhood. Mathematically:

LOF kn =

∑
∀m∈Ek

n
LRDk

m

LRDk
n · |Ekn|

(11)

where LOF kn is an outlierness measure of xn,i in [0,∞).
Particularly, an LOF measure of 1 indicates an inlier that is
perfectly consistent with the rest of the measurements in xi.
On the hand, LOF kn >> 1 indicates that xn,i is an outlier.
To ensure reliable performance, we repeat this procedure for
multiple values of the k parameter in k and take the maximum,
as shown in Algorithm 1, line 1 to line 9.

To be able to use the LOF score in Eq. (8), we must convert
the LOF measure into the range [0, 1]. We achieve this via
the normalization and regularization procedure presented in
[13]. Specifically, this procedure normalizes the LOF value
while improving the contrast between inliers and outliers. This
is achieved by projecting each LOF value onto a Gaussian
distribution FG(µ, σ). Here, µ and σ are the mean and variance
of all the LOF scores, respectively. Through Algorithm 1,
line 10 to line 12, we obtain wn,i whose value is around 0 for
outliers and 1 for inliers.

It is vital to emphasize that the LOF pre-processing compo-
nent is important in the CES scheme because of the transiting
nature of the participants. Even if we restrict Ni to be constant
over all time slots, the sensory data in xi is unlikely to be gen-
erated by the same set of participants. Hence, using the LOF
algorithm to project the set onto a single-dimensional variable
allows us to overcome this challenge without restrictions on
the set or number of participants.

In summary, the organizer is to execute Algorithm 1 for the
set xi to obtain Xi at each time slot. Then, the organizer
recursively evaluates pj as per Eq. (6) until the optimal
stopping time is found according to the optimal Shiryaev test
in Eq. (7).
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Algorithm 1 The LOF algorithm

Input: xi, k
Output: wn,i ∀n ∈ xi

1: for all xn,i ∈ xi do
2: for all k ∈ k do
3: for all m ∈ xi,m 6= n do
4: ρkn→m = max{d(n,m), dkm}

5: LRDk
n =

|Ek
n|∑

∀m∈Ek
n
ρkn→m

6: end for

7: LOF kn =

∑
∀m∈Ek

n
LRDk

m

LRDk
n·|Ek

n|
8: end for
9: LOFn = max{LOF kn ,∀k ∈ k}

10: LOFn = max{0, LOFn − 1}
11: ŵn,i = max{0, 0.5FG(LOFn)− 1}
12: wn,i = 1− ŵn
13: end for

B. The Distributed Recurring Sensing (DRS) Scheme

Contrary to the CES scheme explained in the previous
section, in the DRS scheme the organizer recruits a fixed
number of participants who are committed to their location
until a decision is made. As noted before, this is convenient in
scenarios where the place of interest stretches over a relatively
larger space, such that the organizer requires multiple partici-
pants distributed over different sub-locations. This implies that
merging the data measurements contributed from each sub-
location using Algorithm 1 will cause loss of information.

In other words, our question in the CES scheme is whether
a change has been detected in the place of interest (time
domain). While in DRS scheme, our question is whether a
change has been detected in any of the sub-locations of the
place of interest (spatial domain). Thus, the CES scheme
carries the detection policy on a single observation location
over several times, while the DRS carries the detection policy
on every stream originating from each participant at a specific
time.

The CES scheme conducts the detection procedure at the
central entity, i.e., the organizer. On the other hand, the DRS
scheme performs the detection procedure in a distributed
manner across the scattered participants. In general, it is shown
that the sequential change-point detection problem in (4) in a
distributed environment is computationally intractable even in
its simplest form [5].

Let us assume that the place of interest is divided into
L sub-locations. In the beginning of the sensing process,
the organizer recruits one participant who will stay at his
designated sub-location until the organizer halts the sensing
process in return for monetary incentives. If a participant
leaves the assigned sub-location, the organizer may choose
another appropriate replacement. Furthermore, the organizer
may recruit more than one participant at each sub-location
and combine their sensory measurements using Algorithm 1,

to ensure the sensing process is not interrupted by participants
leaving their respective sub-locations. Without loss of general-
ity, we assume that the organizer recruits L participants, where
participant l is dedicated to stay in his/her sub-location until
the change is detected.

Following with the notation in the previous section, at
time slot j, participant l has generated the sequence Y lj =
{Y l1 , Y l2 , ..., Y lj } of real random variables, where each element
corresponds to a single sensory data measurement. Each par-
ticipant leverages the computing abilities in his smart device
to locally perform the optimal detection procedure in Eq. (7)
on his own sequence Y lj . Our interest now shifts to construct
a fusion rule which combines the local decisions from each
participant. We consider two rules from the detection theory
literature, as follows:
• tmin: the organizer halts the sensing process for all

participants and declares that a change is detected as soon
as one of the L participants achieves the threshold on
PFA.

• tmax: the organizer halts the sensing process at an indi-
vidual participant as soon as he achieves the threshold
on PFA, and declares a change is detected once all
participants have achieved their respective thresholds.

We observe that the two fusion rules are applicable in
slightly different scenarios. Specifically, tmin is appropriate
for scenarios where a detection from a single participant is
worthy of raising an alarm, whereas tmax is suitable for
scenarios where unanimity of the detection must be reached.
Furthermore, it is noteworthy that tmax is shown to be globally
first order asymptotically optimal, given that an appropriate
threshold on PFA is chosen. On the contrary, the fusion rule
tmin does not possess this asymptotic optimality property [5].
Inevitably, tmax entails longer delays than tmin.

V. PERFORMANCE EVALUATION

We first introduce our simulation environment and parame-
ters, then present performance evaluation results.

A. Simulation Environment

We conduct simulations experiments to evaluate the pro-
posed schemes. The CES scheme collects sensory measure-
ments from a set of participants whose number Ni varies
in {1, 2, ..., 10}. These Ni measurements are combine into a
single data instance using the LOF algorithm where k is varied
in {2, 3, 4} when Ni > 3. If Ni ≤ 3, then we set wn,i = 1/Ni.
In the DRS scheme, we assume we have L = 10 sub-
locations and corresponding participants. We assume the pre-
and post-change distributions are Gaussian with f0 ∼ N (0, 1)
and f1 ∼ N (0.5, 1), respectively. Furthermore, we set the
geometric distribution parameter λ to 0.1, and we vary the
false alarm threshold α in (0, 0.2].

B. Simulation Results

We begin by plotting the evolution of the Shiryaev’s test
statistic pj in Fig. 1 for a sequence observed from a single
participant. We set the change-point τ to 100, where the
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Fig. 1: The evolution of Shiryaev’s statistic with i.

underlying distribution changes from f0 to f1. Moreover,
we set the Shiryaev’s threshold Aα = 0.8, indicating that
PFA = 0.2. By examining the figure, we note that the statistic
stays relatively low until the change-point τ . For subsequent
time slots, the statistic pj grows until it exceeds the threshold
Aα at j = 145. In other words, the organizer had a delay of
Γ = 145−100 = 45 additional time slots to detect the change.
From this figure, it is obvious that choosing a higher value for
Aα achieves a lower false alarm rate, but at the expense of
longer delay until the Shiryaev’s statistic exceeds Aα.

In Fig. 2, we perform Monte Carlo simulations to study
the behaviour of the ADD versus the false alarm threshold α
for both our proposed schemes; CES and DRS. For DRS, we
tackle both options of tmax and tmin. By examining the figure,
we notice that all schemes follow the same behaviour, as false
alarm threshold constraint becomes more relaxed, lesser delay
is achieved to detect the change. In addition, we note that the
DRS scheme following the tmax fusion rule has the largest
delay. This is expected since this scheme waits for all the
L participants to achieve the threshold on Aα. On the other
hand, the DRS scheme following the tmin fusion rule and the
CES scheme achieve comparable performance, with the tmin
scheme attaining slightly lower delays. This can be attributed
to the fact that with L = 10 participants, it is more probable
that one of these participants will detect the change faster
than a single-stream data sequence observation as in the CES
scheme.

VI. CONCLUSIONS

In this paper, we studied the detection of a change in
an observed variable based on CrowdSensing (CS) generated
data, where the change signifies a forthcoming emergency
situation. Our problem was formulated as a sequential change-
point detection problem, where the distribution of the variable
changes at an unknown time. Two variants of the problem
were introduced based on the mobility behaviour of the CS
participants: Centralized Expedient Sensing (CES) and Dis-
tributed Recurring Sensing (DRS). In both variants, we utilized
Shiryaev’s test to minimize the average detection delay under
false alarm constraints. We conducted Monte Carlo simulation
experiments to show the performance of our two proposals in
balancing the trade-off between the detection delay and the
false alarm constraint.

Fig. 2: ADD vs. α.
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