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Abstract—This article presents a dynamic access control
framework for the Internet of Things (DACIoT). The main objec-
tive of DACIoT is to prevent unauthorized access to IoT devices
and tightens the authorized access while an IoT device is in
use. The rigidness of existing access control (AC) techniques
in terms of manual policy specification, discontinuity of access
decision making, and immutability to changing access behaviors
makes these solutions fall short in highly dynamic IoT environ-
ments. DACIoT supports three functionalities that are lacking in
existing AC solutions: 1) automatic policy generation; 2) contin-
uous policy enforcement; and 3) adaptive policy adjustment. The
DACIoT extends the standard reference model of the extensible
AC markup language (XACML) with the added three function-
alities to improve the adaptability of attribute-based AC policies
to highly dynamic IoT environments. Results show that DACIoT
provides improved security, dynamic adaptability, and can scale
efficiently to IoT environments.

Index Terms—Access control, artificial intelligence, context
awareness, device authorization, information technology, Internet
of Things (IoT), mobile computing, security and privacy.

I. INTRODUCTION

THE TRACES of the IoT concept go back to the early
work done by Ashton in 1999, which received world-

wide attention from both academia and industry [1]. The
general premise of the IoT is to extend everyday objects with
computing capabilities to identify, generate, and communicate
information regarding their physical environments. Typically,
these objects are physical and virtual sensors, radio-frequency
identification (RFID) tags, and smartphones [2]. A mixture of
enabling software and hardware technologies have contributed
to the success of the IoT. These technologies can be grouped
into two categories: 1) IoT functional supporting technologies,
such as RFID, GPS, cellular technologies, Wi-Fi, microcom-
puters, and microprocessors, which add intelligence to the
connected objects enabling them to acquire, communicate, and
process contextual information and 2) IoT nonfunctional sup-
porting technologies, such as cryptography, authorization, and
access control (AC) technologies, which improve the security
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and privacy of IoT environments by securing the data stored,
processed, and exchanged between IoT devices and data con-
sumers, hence increasing the adoption of the IoT, thereby
using the technology to its full potential. The increasing num-
ber and density of connected IoT objects coupled with the
developments in the integrated technologies have widened the
range of potential IoT applications in several domains, includ-
ing health care, intelligent transportation, logistics, and smart
buildings [3].

Despite the persuasive advantages and benefits that IoT offers,
the new technology has not achieved widespread adoption [4].
This is primarily due to the security and privacy concerns
that IoT raises. The omnipresence of IoT devices allows for
the collection, processing, and dissemination of what could be
considered very sensitive information about individuals, which
undermines their security and intrudes on their privacy. The
overprovisioning of access permission to the data generated
by IoT devices and advancements in data analysis techniques
have opened the door for third parties (e.g., data brokers) [5]
to aggregate, infer, and release sensitive information about the
users of these devices. For example, collecting real-time energy
data at fine granularity allows an electric utility company to
study the power consumption patterns of the consumer for the
purpose of improving customer experience. However, off-the-
shelf data analytic tools can reveal subtle inferences about the
behavior of the occupants, including daily schedules, repeated
usage patterns, and anomalies.

Therefore, it has become evident that security and privacy
concerns will impede the widespread use of the IoT technol-
ogy, unless access to IoT devices can be tightly controlled.
Otherwise, the security and privacy risks of the new technol-
ogy will outweigh any of its benefits. AC techniques offer
primary solutions to address these concerns, but the current
state of the art falls short to adequately fulfill the require-
ments of highly dynamic environments, where many attributes
consistently change and hence, the context on which access
decisions are made. A novel dynamic access framework is
required to live up to the challenge and meet the stringent
requirements of IoT environments.

II. BACKGROUND AND MOTIVATIONS

AC is a combination of three security concepts: 1) authenti-
cation; 2) authorization; and 3) accountability. Authentication
is a two-step process, including an identification step in which
the system asks the user to provide their valid and recognized
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credentials to the system (e.g., username and password, smart
card, and retina scan); a verification step by which a system
verifies the credentials of the user. The authentication is com-
pleted when the credentials of accessing the entity are valid
and accepted, otherwise, authentication fails [6]. Authorization
determines whether an authenticated accessing entity has suffi-
cient privileges to access system resources and what operations
are allowed or prohibited for this specific entity on the
resources of interest [7]. The level of authorization that an
accessing entity can be assigned is determined by evaluating
its associated properties, such as identity, role(s), proximity,
access history, privacy preferences, against a set of predefined
access rules. Accountability is the process that guarantees that
all operations carried out by users, systems, or processes can
be identified and that the mapping to the user and the opera-
tion are maintained [6]. This work focuses on the authorization
concept. Both authentication and accountability are beyond the
scope of this research.

There are three primary phases through which AC systems
are developed.

Phase I) It determines the high-level security and privacy
rules according to which AC must be regulated.
The collection of these rules referred to as access
policy (e.g., HIPAA) [8].

Phase II) It is the formal representation of the access pol-
icy and procedures, referred to as an AC model
(e.g., role-based AC model (RBAC) [9]).

Phase III) It is the development of the low-level soft-
ware and hardware functionalities that imple-
ment and enforce the security rules defined in the
access policies and formalized by the AC model.
Typically, these functionalities are referred to as
policy enforcement mechanisms (e.g., antivirus
software and firewalls).

The three core elements of an AC system are the subject,
object, and operation. The subject is the accessing entity that
actively causes information to flow between system compo-
nents or that changes the system state (e.g., a person, device,
application, and process). The object is the passive entity that
receives data (e.g., light bulb and door lock). The operation is
the action invoked by a subject and applied to an object (e.g.,
set and get).

AC schemes have been studied extensively over the past
few decades and remain an area of intense research interest.
This is due to rapidly changing technologies and growing
security and privacy concerns. However, controlling who can
access what under which conditions is challenging in the
IoT context. The extremely large number of heterogeneous
and resource-constrained IoT devices communicating over
dynamic, distributed, and ad hoc networks via low band-
width connections creates a unique set of authorization and
AC challenges, rendering standard AC policies, models, and
mechanisms unfit for IoT scenarios.

The three major limitations in traditional AC mechanisms
for IoT environments are: 1) manual access policy manage-
ment; 2) discontinuous access decision enforcement; and 3)
static access permission assignment. In the following, we
summarize these limitations and their respective challenges.

A. Manual Access Policy Management

Traditional AC systems and authorization techniques
assume closed computing environments where all users and
resources of the system are known in advance. In addition,
these techniques rely on AC policies that are configured by
security experts, and are unlikely to change during runtime.
However, due to the dynamic nature of IoT these assumptions
are not valid for the following reasons: 1) unknown IoT enti-
ties (e.g., users, applications, and devices) can join and leave
the system anytime and at their discretion; 2) the unbounded
number of interactions among these entities can result in fre-
quent changes in security and privacy requirements of the
resource administrator and consequently frequent changes in
the underlying AC policies; and 3) access to IoT devices will
be controlled mostly by owners who may not have sufficient
policy management skills to define AC policies with adequate
security measures. In such environments, manual policy man-
agement, such as adding/removing access rules and identifying
and resolving conflicts in access policies, becomes a complex
and error-prone task. Therefore, the automation of the access
policy generation process is required to overcome inflexibility
in traditional policy management techniques, eliminate errors
and conflicts in AC policies, and ensure authorized access in
highly dynamic IoT environments.

B. Discontinuous Access Decision Enforcement

Traditional AC models are proposed to protect data that
is permanently stored with static or infrequently changing AC
policies. Typically, these models enforce access decisions only
at the time access is requested and do not consider changes in
access conditions while the resource is in use. Advancements
in IoT enabling technologies along with ubiquitous connec-
tivity have led to a new generation of smart services based
on real-time data access. A delay in making access decisions
when context changes may result in negative consequences.
Therefore, continuity in access policy enforcement becomes a
necessity in highly dynamic IoT environments not only at the
time of request but also for the entire access session.

C. Overprovisioning of Access Permissions

Typically, AC models assign access permissions based on
static considerations, such as identity or roles. However, these
models usually result in defining access policies that assign
more access permissions than are required by the accessing
entity. To alleviate this problem, researchers have focused
on improving the flexibility of AC policies such that pol-
icy administrators can define customized AC policies that
consider, beside the identity and role, the dynamic access
condition factors, such as time, location, purpose of access,
and interrelationships among users [10]–[12]. The AC liter-
ature refers to these factors collectively as access context.
However, the highly dynamic nature of IoT makes it difficult,
if not impossible, to predict all access contexts and assign
the appropriate access permissions to each possible context.
This unique characteristic of IoT requires an adaptive permis-
sion assignment technique that adjusts AC policies at runtime
in order to prevent the exploitation of outdated AC policies
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and reduces the chance for users to abuse or misuse excessive
access permissions.

The main contributions of this work are given as follows.
1) We introduce an automatic access policy specification

schema that, in response to changes in access context
and in compliance with business objectives, generates
new AC rules at runtime. We use context, attributes, and
predication to describe the core AC elements.

2) We design and implement a continuous policy enforce-
ment (CPE) mechanism that captures with high gran-
ularity the frequent changes in the access context and
potential modifications of the access policies while an
IoT resource is in use.

3) We introduce an adaptive policy adjustment (APA) tech-
nique that dynamically refines the system access policies
in response to changes in the device-to-device access
behavior.

III. RELATED WORK

Many efforts have been put to extending basic AC mod-
els with several features in order to address IoT-specific AC
challenges. Research efforts in this direction can be broadly
categorized into: improving AC policy management, enabling
lightweight and real-time policy enforcement, and enabling
dynamic and self-adjusted AC policies.

Improving Policy Management: Anggorojati et al. [13]
proposed a capability-based context-aware AC delegation
model (CCAAC) for federated IoT networks. The main objec-
tive of this work is to enable IoT devices to delegate access
rights to another IoT device based on the attributes and context
of the delegate and resources of interest. Although CCAAC
improves access policy management through dynamic rule
specification, it cannot adapt to dynamic context changes.
Jindou et al. [14] integrated social network services (SNSs)
with RBAC to control access in Web of Thing (WoT)
environments. The authors extend the standard RBAC to
consider the user profile and social links in the user-
role assignment, enabling personalization of access policies.
Alkhresheh et al. [12] proposed a context-aware automatic
access policy specification schema to prevent unauthorized
data access in highly dynamic IoT environments. In this work,
attribute-based AC (ABAC) [15] policies are automatically
generated to overcome the inflexibility in traditional access
policy specification techniques and improve adaptability to
dynamic changes. The experimental evaluation of this proposal
shows that it offers great flexibility and improved scalability
in policy specification.

Enabling Real-Time Policy Enforcement: One approach
to enable real-time policy enforcement is to implement
the AC logic at end devices, enabling them to make and
enforce access decisions in a peer-to-peer fashion. Hernåndez-
Ramos et al. [16] proposed a distributed capability-based AC
(DCapBAC) to implement the authorization logic in con-
strained end devices. This solution is a promising attempt
toward achieving end-to-end security and trust between IoT
devices. However, DCapBAC uses a central entity to issue
access tokens to devices to enforce access decisions, which

does not scale well in IoT environments. This idea is extended
in [16] to control device-to-device communications using an
extensible AC markup language (XACML)-based architec-
ture to issue authorization tokens. Both approaches use static
context in the decision making.

Another approach to real-time access policy enforcement is
to perform the authentication process at the device level and
offload the authorization task to less restricted edge devices
(e.g., gateway). Alkhresheh et al. [17] proposed a continuous
access policy enforcement mechanism for IoT deployments
called CAPE. CAPE describes AC elements using predicates,
and stores them as primitive facts (PFs) in a k-dimensional
tree (K-D tree) data structure [18]. The mechanism matches
access requests with PFs, generates access policies, and makes
context-aware access decisions at runtime.

Enabling Self-Adjusted AC Policies: Atlam et al. [19]
proposed an adaptive risk-based AC (AdRBAC) model for
IoT environments. The model controls access based on con-
textual and risk factors, including user historical context (i.e.,
access behavior), resource sensitivity, action severity, and risk
history. It uses smart contracts [20] to monitor the user’s
behavior to prevent any potential security breaching during
access sessions. Recently, the authors extended their work to
adopt XACML as a policy language and an architecture for
AC in IoT settings [21]. Zhang et al. [22] proposed a smart
contract-based AC framework for IoT systems. The framework
uses blockchain to provide a distributed and trustworthy AC
scheme. Also, Outchakoucht et al. [23] used the blockchain
technology to build a trusted and distributed AC architecture in
decentralized IoT environments. The authors adopt reinforce-
ment machine learning algorithms to update the AC policies at
runtime. Access policies are stored in smart contracts that exe-
cute automatically in response to authorized access requests.
Although these approaches can provide some form of dynamic
and adaptive access policies, they lack consistency in real-time
access due to updating the policies after the fact and can-
not continuously enforce authorized access based on dynamic
changes.

IV. PROPOSED FRAMEWORK

Although many basic principles of standard AC models con-
tinue to apply in IoT contexts, a holistic AC solution that caters
to the highly dynamic nature of IoT is still missing. This article
proposes a dynamic AC framework for the Internet of Things
(DACIoT), a dynamic AC framework for IoT environments.
DACIoT introduces three novel AC concepts that we deemed
lacking in current AC frameworks: 1) automatic policy gen-
eration; 2) CPE; and 3) APA, which address, in one-to-one
correspondence, the three aforementioned limitations in exist-
ing IoT AC solutions. We propose DACIoT as an extension to
the successful XACML reference model defined by the organi-
zation for the advancement of structured information standards
(OASISs) [24].

A. XACML Reference Model

XACML organizes access policies into three levels: 1) pol-
icy set; 2) policy; and 3) rule. It uses targets to index policy
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sets, policies, and rules. A target is a predicate of one or more
variables defined on the subject, the resource and the operation
of access requests. The target specifies the type of requests a
policy set or policy can be applied to. If a policy applies to a
given access request, its rules are evaluated to make the access
decision, otherwise, the policy is skipped.

The main components of the XACML AC framework are
given as follows.

1) Policy Enforcement Point (PEP): PEP intercepts access
requests to system resources and forwards them to the
policy decision point (PDP) where access decision is
made. PEP executes the access decisions it receives
from PDP. It implements fulfilling obligations that PDP
may include in the access decisions. An XACML obli-
gation is an instruction from the PDP to the PEP on
what action(s) must be performed before and/or after an
access is approved.

2) Policy Decision Point: PDP evaluates access requests
and makes access decisions based on available attributes
that describe the access requests elements (subject,
object, and operation), and applicable AC policies.

3) Policy Information Point (PIP): PIP acts as the source of
attributes that PDP requires to evaluate access requests
against ABAC policies. PIP collects attributes that per-
tain to the subject, resource of interest, and environment
in which the access requests take place, and provides
these attributes through the context handler (CH) to the
PDP upon access decision making.

4) Policy Administration Point (PAP): PAP supports policy
management functionalities, including adding/removing
and modifying access policies. It also stores the access
policies defined by the policy administrator.

5) CH: It controls the workflow of the AC system. It
represents a hub through which PEP, PDP, and PIP com-
municate. CH forwards access requests it receives from
PEP to PDP and returns the access decisions from PDP
to PEP. It also fetches the attributes and resource content
required for PDP to make access decisions.

We build our AC framework on the foundations of XACML
for the following reasons.

1) XACML provides a standard AC architecture, policy
language, and a request/response protocol [25], [26]. It
offers system administrators high flexibility to define,
modify, and reuse the authorization logic.

2) XACML uses ABAC policies to control access based on
a wide range of attributes, including subject, resource,
and environmental attributes. This provides high flexibil-
ity to describe general AC requirements by combining
multiple AC policies and support specific business AC
needs.

3) XACML provides an extensible and dynamic authoriza-
tion approach, where AC policies can be dynamically
extended to include new subject, object, and/or attribute
in the authorization process.

B. Extending XACML Access Model

Despite the superiority that ABAC policies show over all
previous AC policies, it suffers from three limitations in

highly dynamic environments: 1) manual access policy man-
agement; 2) discontinuous access decision enforcement; and
3) overprovisioning of access permissions. To overcome these
limitations, we replace three components in XACML and iden-
tify the lacking functionality in each component followed
by our proposed solution. Then, we highlight the advantages
that our solution provides over the corresponding XACML
standard component. Fig. 1 depicts the XACML reference
architecture with the proposed replacement components in
dashed lines. We replace the three shaded components: PDP,
PEP, and PAP with automatic policy specification (APS), CPE,
and APA, respectively. In the following, we point out the lim-
itations of the old components and describe the functionalities
of the new replacing components.

1) Automatic Policy Specification: One limitation of tradi-
tional ABAC AC policy is that it describes core AC elements
and their attributes holistically. Holistic in the sense that pol-
icy administrators need to consider all possible associations
of the AC elements and define the attributes and conditions
that govern every single association (i.e., rule) in the pol-
icy specification process. The tight coupling describes parallel
relationships among AC elements, which limits the flexibility
in policy expression. For example, if policy administrators are
to add a new type of subject to the access policy, they need to
define an access rule that describes the attributes and condi-
tions that associate the subject with every type of object he is
authorized to access. The same applies for adding new types
of objects or operations.

Another limitation of ABAC policy is that it is static in
the sense that access policies are specified at the setup time
and do not change. For example, if the policy administra-
tor is to define an access rule that increases or limits the
access permissions of a certain subject on a certain object,
the policy administrator needs to look up and update all
predefined access rules that associate with the subject and
object. Otherwise, the new access rule would create conflicts
granting the subject inconsistent access permissions on the
same object. Such an approach limits the adaptability of AC
policies in dynamic access scenarios; it complicates the pol-
icy management and introduces significant policy maintenance
overhead (e.g., policy conflict resolution).

APS is designed to overcome the inflexibility in policy
specification methods. APS breaks down AC rules to their
fundamental elements: subject, operation, and object, and
creates two types of association: 1) element–element and
2) element–element–context. The former, which we call the
element association, simply associates elements into subject–
object, object–operation, and operation–subject pairs. The
latter, which we call the guard context (GC), attaches the
contextual conditions described in the original access rule
to all element associations. We store the element associa-
tions and their GCs as PFs in the policy database as shown
in Fig. 2. When an access request is received, an access
rule(s) is automatically generated if there exists in the pol-
icy database element associations that match the elements of
the access request; the access is granted if the real-world
conditions of the request elements satisfy the GCs defined
for each element association. Otherwise, access is denied by
default.
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Fig. 1. Extended XACML reference model.

Fig. 2. Primitive facts.

GC: It is a set of predefined application-dependent values or
thresholds represented as key–value pairs, for example (loca-
tion: “lab room”), (time, “9:00 A.M.”). These key–value pairs
describe the environmental conditions defined by the object
administrator under which a subject of certain attributes (e.g.,
identity, role, and access credits) can perform operations of
certain attributes, such as (type: “read”), (granularity: “per
minute”) on an object of certain attributes, such as (CPU
utilization: “< 70%”), (energy level: “> 80%”).

Operational Context (OC): It is represented by key–value
pairs similar to GC. However, values in OC are real-time mea-
surements that reflect the real-world conditions of the subject,
object, and the requested operation at the time of access.
If these measurements satisfy the GC conditions that are
defined separately for each element, then access is permitted.
Otherwise, access is denied by default.

PF: We describe the core AC elements using abstractions,
in a key–value pair representation, which contain both the

attributes that characterize elements and the GC that deter-
mines the qualification context (or constraints) relevant to each
element that controls access to objects. We build these basic
abstractions and represent them in predicates as follows.

Element Abstraction: Element (X) is a descriptor repre-
sented by a tuple of the form {type:value, key1:
value1, key2: value2,...}. The tuple contains a key
type whose value is {subject|operation|object} to
indicate this tuple is pertaining to the which of the access
core elements. A descriptor is likely to contain a time and
location keys that identify a certain time frame and location
that control access to objects. For example, a subject must
be in location x and time t to perform an operation of a cer-
tain object. The element descriptor is a unified fact defined by
the object administrator on attributes of the access elements
and their associated context. For example, the following basic
abstraction represents a factual tuple for a subject x:

element x = {type:“subject”,name:“Any”,
study-level: “undergraduate”,advisee:
“True”,location:“IoTResearchLab”,time:
“6:00-16:00”}.

This descriptor contains a type key, three subject attributes
that basically identify the subject, and two access constraints
that determine the GC required to gain access to a protected
object.

Request Abstraction: The request abstraction consists of a
request template that defines the request elements and OC.
The request descriptor contains patterns of the form

p = {type:value, key1: value1,
key2: value2,...}.
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Listing 1: Automatic Access Policy Specification
Algorithm

input : Primitive Facts PF, Access Request AR
output: Access Decision, CGC

1 begin
2 for AR do
3 Extract all attributes values of the subject
4 x = {type : “subject”, key1 : value1, key2 : value2 . . .}
5 Extract all attributes values of the operation
6 y = {type : “operation”, key1 : value1, key2 : value2 . . .}
7 Extract all attributes values of the object
8 z = {type : “object”, key1 : value1, key2 : value2 . . .}
9 end

10 Generate PF-query{x}, PF-query{y}, PF-query{z}.
11 Result := Deny
12 for all element ∈ PF do
13 if ∃ subject(x) and operation(y) and object(z) in PF: then
14 Result:= Permit
15 CGC:= GCsubject ∩ GCoperation ∩ GCobject
16 Break
17 end
18 end
19 Return (Result,CGC)
20 end

For example, the following tuple represents a print service
request (pertaining only to operation):

{type:“operation”,name:“print”,loca-
tion:“6th floor”,time:“8:00-14:00”}.

A request descriptor matches an object if there is an oper-
ation in the fact base (FB) that satisfies every pattern in the
request template.

In Listing 1, the access policy specification algorithm takes
the PFs and the access request parameters as inputs and auto-
matically produces the AC decision and the common GC
(CGC) as an output.

When APS receives an access request (i.e., target and
attributes) from the CH, it extracts the attributes associated
with the access request at runtime, lines 2–6, and uses the PFs,
stored in the FB, to dynamically compute access rules and make
an access decision in response to the access request at hand,
lines 7–11. In line 13, the algorithm calculates the CGC, which
is the intersection of GCs associated with the subject, operation,
and object elements of the generated access rule. CGC is a core
parameter upon which CPE is ensured during an access session.
Breaking the access rules down into PFs has many benefits: 1)
it enables the AC system to generate and update access rules
automatically and at runtime; 2) it allows the AC system to
reuse PFs in the generation of access rules, thus reducing the
space complexity as the number of rules increases; and 3) it
removes the burden of detection and resolution of access rule
conflicts because access rules are stored in form of PFs and
a change in one fact would automatically affect all possible
access rules that can be generated based on this fact.

2) Continuous Policy Enforcement: The literature of AC
models that use context information in making access decisions
divide into two implementation approaches. The first (and
most simply implemented) is discontinuous enforcement, this
approach verifies the context information, assigns the access
privileges, and makes the access decision only at the time access

is requested. It does not consider changes in context after the
access decision is made, such as the work by authors in [13]
and [27]–[29]. This approach can result in security and privacy
breaches by disclosing system resources to users whose access
context has changed since the time the access decision was
enforced, and therefore, they become nonauthorized users. The
second is continuous enforcement. This approach constantly
monitors the OC of an access session and continuously updates
the assigned access privileges according to changes in access
context and discloses system resources only to those users
who are authorized under the current context. However, this
approach, if not carefully implemented, may place considerable
computation and communication burdens on the AC system.
While discussion on the first approach has dominated the
research area in recent years, there is little, if any, research
investigating the practicality of the second approach in high
dynamic environments, such as IoT.

CPE aims to capture changes in access context at fine
granularity and continuously enforce the appropriate access
permissions in highly dynamic IoT scenarios, while not pos-
ing significant computation or communication overhead. It can
handle two types of context changes: 1) when the OC changes,
which are more frequent and happen as a result of changes in
real-world conditions of the access elements (e.g., mobility)
and 2) when the GC changes, which are less frequent and hap-
pen as a result of updating the access policies (i.e., add/remove
access rules), or inferring new facts that could affect the access
decision of an ongoing access session. The CPE supports the
following functionalities.

1) Session Registry (SR): The SR stores a status record
for each active session. The status record maintains the
session id, the initial GC upon which the request was
granted, and a status flag that indicates the current status
of an access session (e.g., active, inactive, or suspended).

2) Session Monitor (SM): We extend the CH with an SM
functionality that continuously reads the environmental
attributes from available sensors, and potential policy
update notifications from the adaptive policy adjuster
component. The SM keeps track of changes in the OC
and CGC associated with the access elements involved
in an active session.

When APS grants a new access session, it passes the tar-
get, access decision, and CGC of the granted access request to
the CPE component. In Listing 2, CPE uses the information it
receives from APS and performs the following steps: 1) it cre-
ates an access session that connects the subject to the resource
and stores the session parameters in the SR, lines 4–9; 2) it
initiates an instance of SM to monitor the OC of the access
session, line 6; 3) in lines 12–18, the SM enforces the CGC
constraints over the lifetime of an access session; it ensures
that the initial CGC of an ongoing access session is always
satisfied by the current sensor inputs. Otherwise, the access
session is terminated. If the PFs are updated, our algorithm,
lines 21–24, does not interrupt the ongoing access sessions,
rather it re-evaluates all ongoing access sessions against the
changes in the PF. For each ongoing access session a re-
evaluation access request is submitted to the CH, and the CH
proceeds with the normal request evaluation procedure. If an
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Listing 2: Continuous Access Policy Enforcement
Algorithm

input : Target T , CGC, Session registry SR, policy_update
output : Session History SH
initialize: SR← {} , SH← {}

1 begin
2 if T /∈ SR then
3 Create new session S
4 S.id := T // Attributes
5 S.status := Active
6 S.OPC := new SM ( T ) // monitor
7 SR← {S}
8 end

// Update CGC for re-evaluated sessions
9 S.CGC := CGC

10 while True do
11 if policy_update = False then
12 for all S ∈ SR do // Check OPC changes
13 if S.OPC �⊆ S.CGC then
14 SR.Remove(S)
15 S.terminate()
16 SH← {ReqT,CGCterminated} // Logs
17 end
18 end
19 end
20 else
21 for all S ∈ SR do // re-evaluate sessions
22 CH ( S.id )
23 policy_update = False
24 end
25 end
26 end
27 end

access request is denied upon re-evaluation, our algorithm,
line 9, updates its CGC with the new value calculated by APS
(φ in case of denial), therefore, the SM terminates the corre-
sponding session once it checks the session OC against the
new CGC. Otherwise, the access session resumes, however,
with a new CGC that may restrict, relax or keep the access
permissions previously associated with the access session; and
4) CPE provides the access logs it collects in line 16 to the
adaptive policy adjuster component for further processing.

3) Adaptive Policy Adjustment: A major limitation in exist-
ing AC approaches is that they rely on policy administrators
to define AC policies that always assign the appropriate access
privileges to requesting entities. These approaches assume that
all access conditions under which system resources can be
accessed are known beforehand and are unlikely to change.
However, the highly dynamic nature of IoT environments cre-
ates access contexts in which predefined AC policies cannot
meet the security and privacy objectives of the policy admin-
istrator. In these access contexts, obsolete AC policies may
either assign less access privileges than that actually needed
by requesting entities; blocking access requests that become
legitimate (e.g., emergencies), or assign more access privi-
leges than that actually needed by requesting entity; exposing
system resources to insider attacks [30]. While the former case
reduces the availability and utilization of system resources, the
latter case can extend further to compromise the confidential-
ity and integrity of these resources. In our framework, we
give priority to addressing the problem of overprovisioning of
access privileges and leave the former case for future work.

In IoT context, insider threats come from current or former
connected IoT devices which have or had access privileges on
the system resources, and the users in control of these devices,
intentionally abuse these access privileges in a manner that
negatively affects the security and privacy objectives of the
resource’s administrator. Unlike traditional Internet devices,
a compromised IoT device can cause damage that extends to
the physical world. The severity of these damages increases in
sensitive contexts especially when these devices are controlled
by system insiders. Detecting abnormal access behaviors, such
as insider attacks in highly dynamic IoT environments is chal-
lenging due to highly dynamic access contexts under which the
IoT device can be accessed. In addition, AC policies become
obsolete quickly in IoT environments due to frequent changes
in security and privacy requirements, which further increases
the attack surface of the system resources.

Recently, the detection and prevention of insider threats
have attracted the interest of researchers in the IoT secu-
rity field. A number of solutions have been proposed to
approach insider threats in IoT environments based on behav-
ioral models and anomaly detection techniques [31], [32].
Although these approaches do not focus on the adaptation
of the AC policies as a countermeasure to prevent insider
attacks, they give great insights for insider threat detection
in IoT environments.

APA is designed to react instantly to changes in access con-
text and adjusts the AC policies at runtime with minimal or no
human intervention. With this, we prevent users of IoT devices
from abusing their access privileges or exploiting obsolete AC
policies to gain unauthorized access. We leverage the experi-
ence from the field of anomaly detection to build the APA
components. APA classifies the device access behaviors based
on proactive measures provided by the policy administrator
and uses the knowledge it acquires from detected abnormal
accesses to generate access policy adjustments at runtime.

APA implements two subcomponents: 1) access behavior
classifier and 2) access policy adjuster.

Access Behavior Classifier: An access behavior represents
the manner in which a user utilizes the system resources. We
define the access behavior as the set of access requests sub-
mitted by the user to the authorization server (AS) within
a predefined time window. Formally, we define the access
behavior, denoted by AB, as follows:

AB = {ARt−k, ARt−k+1, . . . , ARt}
where ARt−k is the first access request in the access behavior
AB in a time window k. Each access request is represented
by the set of attributes that characterize the elements of the
access request (i.e., user, resource, and operation) and the con-
text information that describes the environment in which the
access request takes place (e.g., time and location). Formally,
we define the access request, denoted by AR, as follows:

AR = {ATu, ATr, ATo, ATc}
where ATu = {atu1, . . . , atux } is the set of user attributes, ATr =
{atr1, . . . , atry} is the resource attributes, ATo = {ato1, . . . , atoz }
is the operation attributes, and ATc = {atc1, . . . , atcw} is the
context or environment attributes. An attribute is expressed as
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Listing 3: Access Policy Adjustment Algorithm
input : Abnormal Access Behavior AB0, Fact Base FB, Proactive

Measures D, adjustment threshold THadj
output: adjustments ADJ

1 begin
2 ADJ← {} // initialize
3 for Req ∈ AB0
4 for A ∈ Req
5 Calculate Pr(D|A)

6 if Pr(D|A) ≥ THadj
7 Query.target← {A.key, penalty}

ADJ← ADJ ∪ {Query}
8 end
9 end

10 end
11 ADJ← {Consult_Admin(ADJ)}
12 for Fact ∈ FB
13 for Query ∈ ADJ
14 if Query.key ⊆ Fact.target
15 Fact.update(Query.value)
16 end
17 end
18 end
19 Notify(CPE)
20 end

at = name op value, where op is a relational operator (e.g.,
=, �=,<) between the attribute name and a value from the
range of possible values of this attribute.

We define an abnormal behavior, denoted by AB0, as the
AB that consists of one or more access requests that violates
administrator-defined proactive measures (e.g., frequent access
denials and resource overuse).

The access behavior classifier performs two tasks: 1) the
offline training, during which the classifier models the access
behaviors based on the historical access information sub-
mitted by the CPE component (i.e., user access logs) and
administrator-defined proactive measures and 2) the access
behavior classification, during which the classifier compo-
nent classifies incoming access requests and reports abnormal
access behavior(s) to the access policy adjuster component.

Access Policy Adjuster: Once the classifier model is built,
we need to apply the knowledge it acquires during the training
phase to adjust the AC policies. Listing 3 shows the access
policy adjustment algorithm. The adjustment algorithm takes
the abnormal access behavior reported by the classifier and the
administrator-defined proactive measures as inputs, and returns
a set of access policy adjustments in the form of PFs update
queries. The algorithm performs four steps given as follows.

1) It extracts the set of attributes that describe the sub-
ject, resource, operation, and environment associated to
each request in the abnormal access behavior, and for all
combinations of these attributes, it calculates the prob-
ability of a resource misuse given that the attribute (or
combination of attributes) A is present in the abnormal
behavior AB0, lines 3–5.

2) It evaluates the calculated probabilities against an
administrator-defined adjustment threshold, and gener-
ates new policy, lines 6–8, in the form of update queries.
The update query is defined on the attribute(s) that con-
tribute most to the abnormal access behavior. The query
target consists of a key–value pair. The query key is

set to the value of the attribute key or combination of
keys; specifying to which access element(s) of a PF,
the update query applies (e.g., subject, operation, object,
environment, or a combination of these). The query
value determines the penalty of resource misuse.

3) It consults the policy administrator and gets the final
approved policy adjustments, and updates the FB by
updating all PFs that contains a key–value pair that
matches the query target, lines 12–18.

4) It notifies the CPE of the policy update line 19.
We calculate the conditional probability, line 5, as follows:

Pr(D|A) = Pr(A ∩ D)

Pr(A)
(1)

where Pr(D|A) represents the contribution of the attribute A
to the abnormal behavior AB0.

Pr(D) is the probability of resource misuse in AB0, defined
as follows:

Pr(D) = # of misuse incidents

k
. (2)

Pr(A) is the probability of an attribute A to present in AB0,
defined as follows:

Pr(A) = # of A presences in AB0

k
. (3)

Pr(A ∩ D) is the probability of an attribute A to present in a
resource misuse incident in AB0, defined as follows:

Pr(A ∩ D) = # of A presences in misuse incidents

k
(4)

k is the number of access requests in AB0.
The adjustment threshold THadj is a predefined application-

dependant value that is set by the policy administrator. The
evaluation of the calculated probability can result in the gen-
eration of one of two types of policy adjustment: 1) revocation
adjustment, which applies only to the element association type
of PFs or 2) limitation adjustment, which applies to the GC
type of PFs. Both types of policy adjustments can be defined
to adjust PFs based on single or combined access elements.
The former is a recommendation for the policy administrator
to adjust the PFs based on access element (e.g., subject), while
the latter is a recommendation for the policy administrator to
adjust the PFs based on two or more access elements (e.g.,
subject and object).

Setting THadj to a small value increases the probability of
the adjuster component to pose more restrictions on the access
policies. For example, if we set THadj to a value that is less
than Pr(A∩D), the adjuster component will always recommend
to adjust all PFs that contain the attribute A.

For attributes that have categorical values, such as the names
of core access elements and locations, we set the value of mis-
use penalty to Null. For numerical attributes values, such as
the time, we define the penalty, denoted as P0, as a function of
the attribute contribution to the abnormal behavior as follows:

P0 = A.value− (
Pr(D|A)− THadj

)
(A.value). (5)

For example, if the probability of the attribute
(subject-id: “Adam”) to present in a misuse inci-
dent, in abnormal behavior, is greater than or equals to
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Fig. 3. Proposed AC architecture for DACIoT.

(THadj), the adjuster component generates an update query
and sets the query target as follows:

Query.target← {subject− id : “Adam”, Null}.
If the update query is approved by the policy administra-
tor, the attribute (subject-id:“Adam”) is updated with
(subject-id: “Null”) in all element associations whose
subject is Adam, thus all access permissions that subject Adam
has on the system resources will be revoked.

Assume that the adjustment threshold (THadj) equals
0.5 and the probability of the combined attributes
(subject-id:“Adam”, time:“10:00-11:00”) to
present in a misuse incident is 0.75, the adjuster component
generates an update query and sets the query target as follows:

Query.target← {subject− id : “Adam”

time : “10:00 − 11:00”, time : “10:00 − 10:45”}.
If the update query is approved by the policy admin-

istrator, the combined attributes (subject-id:“Adam”,
time:“10:00-11:00”) is updated with (subject-id:
“Adam”,time:“10:00-10:45”), thus the time frame
during which Adam can access the system resources is reduced
by 15 min.

C. DACIoT Access Control Architecture

Fig. 3 depicts our proposed AC architecture for DACIoT.
The architecture consists of three interacting entities: 1) the
AS; 2) the accessing user; and 3) the target IoT device. AS is
the entity that decides which IoT resources a user can access,
by implementing the functionalities of the APS, CEP, and
PAP. The implementation and placement of the AS may vary
depending on the scale, latency constraints, and the number of
users/devices in a specific area. An area of intense users/IoT
devices deployment may require multiple servers, each serving
a cluster of resources/users.

Deciding whether to locate the APS centrally to support
multiple CEPs, to dedicate one APS to each CEP, or to adopt
a hybrid of the two approaches can be associated with various
latency and performance features. In particular, the placement
of CEP (e.g., at the application side, at the resource manager

side, or at the proxy) can contribute to how efficiently the AS
handles a large number of access requests.

For these reasons, we chose to design a unique decentralized
proxy-based AC architecture and we placed all AS components
on the network edge. The proxy devices can be WI-FI access
points, smartphones, or other edge node devices with sufficient
computational resources and battery capacity. Our designed
architecture brings many advantages that are given as follows.

1) Technical: The proxy device provides the computa-
tion and communication capabilities that IoT devices
cannot support for resource-demanding computations,
such as the automatic access policy specification and
context monitoring. In addition, it lowers end-to-end
latency required for continuous access policy enforce-
ment, by having the access decision made close to where
access requests are originating and real-time context
information is provided. Furthermore, placing the APS
and CEP within the same trust domain, removes the need
for securing the communication channel between the two
components.

2) Nontechnical Advantages: Decentralization preserves
data privacy; it provides device owners or administra-
tors with the ability to exert direct control over their
data, rather than allowing it to be manipulated or shared
by third parties. The architecture allows the data owner
to determine who can access which device and for what
reason before the data leaves their trust domain.

In the following section, we present a use-case scenario that
illustrates the interactions among the three entities of the
DACIoT architecture: 1) user; 2) IoT device; and 3) AS.
The use-case provides several examples of access requests
and demonstrate how the proposed AC functionalities (i.e.,
APS, CPE, and APA) react to these access requests. More
information about the DACIoT architecture and control flow
is also provided.

V. USE-CASE SCENARIO

Suppose Adam, a graduate student at University X, is
meeting his supervisor Eve in the School’s conference room.
According to Eve’s calendar, the meeting is scheduled for
1 h (e.g., 10:00–11:00) every week. When Adam comes on
campus, based on his current context (i.e., student’s profile,
location, and time), DACIoT grants Adam access to some
resources campus wide, such as smart parking, Wi-Fi network,
and school’s main entrance. When Adam enters the build-
ing, DACIoT considers the change in Adam’s context and
dynamically assigns additional access privileges to Adam,
based on the new fact (i.e., Adam’s new location), such as
entrance to the conference room. While waiting for Eve, Adam
may not have privileges to access the conference room facil-
ities. However, when Eve arrives, Adam’s context changes
again so that during the meeting time, DACIoT considers
the coexistence of both Eve and Adam in the conference
room and allows Adam to access conference room-specific
resources [e.g., air conditioner (HVAC)]. Suppose that Eve
has another meeting at 12:00. When Eve leaves the conference
room, DACIoT considers the change in Adam’s context and
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Listing 4: XACML AC Policy
1 1 PolicyCombiningAlgId=“Permit-Overrides”>
2 2 <Target/>
3 3 <Policy PolicyId=“SoC resources”
4 4 RuleCombinationAlgId=“First-Applicable”>
5 5 <Target/>
6 6 <Rule RuleId=“1” Effect=“Permit”>
7 7 <Target>
8 8 <Subjects>
9 9 <Subject> faculty-member </Subject>

10 10 <Subject> staff </Subject>
11 11 <Subject> grad-Student </Subject>
12 12 </Subjects>
13 13 <Resources>
14 14 <Resource> smart-parking </Resource>
15 15 <Resources><Resource> main-entrance

</Resource>
16 16 <Resources><Resource> wi-fi </Resource>
17 17 </Resources>
18 18 <Actions>
19 19 <Action> implied-action </Action>
20 20 </Actions>
21 21 </Target>
22 22 </Rule>
23 23 <Rule RuleId=“2” Effect=“Permit”>
24 24 <Target>
25 25 <Subjects>
26 26 <Subject> supervisor </Subject></Subjects>
27 27 <Subjects>
28 28 <Subject> grad-student </Subject></Subjects>
29 29 <Resources><Resource> HVAC </Resource>
30 30 </Resources>
31 31 <Actions><Action> implied-action </Action>
32 32 <Environments>
33 33 <Environment>Location:conf-room <Environment>
34 34 <Environment> Time:10:00-11:00 <Environment>
35 35 </Environments>
36 36 </Target>
37 37 </Rule>
38 38 </Policy>
39 39</PolicySet>

immediately revokes all access permissions Adam has to
the conference room facilities. This scenario illustrates how
DACIoT dynamically and continuously controls access to
university resources.

A. DACIoT Policy Specification

Listing 4 shows the AC policy defined in XACML language
to control access to the university resources considered in this
access scenario. The policy includes two access rules: rule 1,
lines 6–21, states that a faculty member, staff or a graduate
student can reserve a parking spot in the school smart-parking,
unlock the main entrance and connect to the school’s Wi-Fi
network; rule 2, lines 22–36, states that a graduate student can
control the air conditioner (HVAC) in the conference room
only in the presence of their supervisor and within the time
frame 10:00–11:00. Table I shows the PFs that DACIoT gen-
erates to give the same effect of access rule 1 defined for
graduate students in this use-case scenario. Note that no envi-
ronmental (or contextual) conditions are defined in access rule
1. Therefore, the corresponding PFs simply define the subject–
object, operation–subject, and object–operation associations
for each object. For example, DACIoT generates PF1 to PF3 to
control the access of the graduate students to the smart-parking

TABLE I
PFS FOR ACCESS RULE 1

TABLE II
PFS FOR ACCESS RULE 2

object. Access rule 2 is an example of a context-aware access
rule, it defines three contextual conditions a subject needs to
satisfy to gain access to the protected object. The contextual
conditions define restrictions on the subject location, request
time, and subjects’ coexistence referring to the collocation of
subjects. We assume that the policy administrator uses the
DACIoT administrator interface to define the university AC
rules during system setup time. Table II shows the PFs that
DACIoT generates to give the same effect of the access rule
2 defined for graduate students.

In PF11, the key coexistence refers to collocation of
both Eve and Adam in the conference room.

B. DACIoT Workflow

The AC goes through three operational phases: 1) discov-
ery and authentication; 2) authorization; and 3) secure access.
The mechanisms of device discovery and user authentica-
tion are beyond the scope of this research. Therefore, we
assume that their functionalities are in place. The access starts
by the requesting entity (i.e., Adam’s smartphone) discov-
ering resources in its proximity. We assume that Adam has
a smartphone that supports Bluetooth low-energy technology
(BLE) [33] to scan and discover available IoT devices and
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services. If a resource of interest is publicly discoverable, the
resource responds with its profile and the reference to the
designated AS. Adam then submits an access request to AS.
AS replies with a challenge asking the accessing entity for
access credentials. If the requesting entity is authenticated,
the AS evaluates the access request based on the attributes of
the requesting entity, requested resource, and environment and
sends the decision along with the set of access permissions
back to the requesting application in form of self-contained
access token. The user application attaches this token to every
request to the protected IoT device. The IoT device verifies
the access token every time a new access request is submit-
ted. If the token is valid and the user has permissions, the IoT
device allows access to its resources based on the set of per-
missions and access expiration time embedded in the access
token. Otherwise, access is denied.

Fig. 4 shows the time sequence diagram that illustrates how
the different components of DACIoT interact with each other
to control access to IoT resources and maintain up-to-date AC
policies during the lifetime of an access session.

The innovation in DACIoT is that, after an access request is
permitted, the AS continuously checks the OC of the request-
ing and requested entities. If the OC does not satisfy the
GC specified in the access token, the access token is deemed
invalid and the access session is terminated immediately. For
example, if Eve leaves the conference room at 10:30, all access
tokens that Adam has obtained during meeting time continue
to be valid time-wise until 11:00, however, if Adam submits an
access request, for instance, to control the HVAC, the HVAC
verifies the access token associated to Adam’s request through
the SM module. The SM module in turns extracts the cur-
rent OC of Adam as well as the HVAC through the CH,
and finds that the OC of Adam has changed (i.e., coexis-
tence is false) and does not comply with the GC specified
in the access token. As a result, the SM terminates the access
session, returns an access token invalidation to HVAC. The
HVAC in turn denies all subsequent access requests that use
this access token.

To elaborate on how DACIoT handles APS and adjustment,
suppose that the access logs generated by the SM module show
that Adam, either accidentally or intentionally, attempted to
access school resources (i.e., office or lab rooms he is not
authorized to) without plausible reasons. Although the univer-
sity access policy would deny Adam’s access requests, this
scenario may indicate that Adam is either abusing his access
privileges for personal benefits or Adam’s access key is being
used by an attacker.

When Adam’s access denials exceed, for instance, the
threshold defined by the policy administrator for graduate
students, the classifier module classifies Adam’s access behav-
ior as abnormal and triggers the adjuster module to provide
the appropriate countermeasures. The adjuster module ana-
lyzes the abnormal access behavior of Adam and finds,
for instance, that Adam’s identity attribute (i.e., subject-id:
“Adam”) contributes most to the abnormal behavior with a
probability of 95%, followed by Adam’s role attribute (e.g.,
role: “grad student”) with probability of y%, Adam’s environ-
mental attributes (e.g., location) with probability of z%, and

so on. Based on the administrator-defined adjustment thresh-
old (e.g., 0.75), the adjuster module recommends to revoke all
access permissions assigned to Adam until he gets reviewed.
In such a case, all policy adjustments are defined based on
the subject identity (i.e., Adam). If the policy administrator
approved the recommended policy adjustments, the adjuster
module sets the subject-id to Null in all PFs in which the
subject-id value is “Adam” (i.e., PF1, PF2, PF4, PF5, PF7, PF8,
PF10, and PF11), and notifies the SM module of the PF update.

The SM does not interrupt Adam’s other ongoing access
sessions (e.g., Wi-Fi connection), rather it re-evaluates them
against the up-to-date PFs. For each ongoing access session
that Adam has, the SM submits a re-evaluation access request
to the APS module. The APS considers the re-evaluation
access requests as new access requests and queries the FB
searching for PFs that match the access rules. The APS updates
the CGC for each re-evaluated access session, which is null in
this case (i.e., Adam has no permissions), and sends it back to
the SM module. The SM module immediately terminates the
corresponding access session ( all access sessions that belong
to Adam in this case).

Another interesting scenario is when the adjuster module
finds that most of Adam’s access denials took place in spe-
cific contexts. For example, 85% of Adam’s access denials
were in the conference room waiting for his supervisor. In
such cases, the adjuster module recommends to limit Adam’s
access permissions by updating all PFs in which the subject is
Adam and the location is the conference room (i.e., PF10 and
PF11). Such scenario results in partial revocation of access per-
missions assigned to Adam such that Adam is denied access
to the resources in the conference room only, but still can
access other university resources considered in this use-case
scenario.

VI. EXPERIMENTAL VALIDATION

To validate the functionality of DACIoT, we developed a
dynamic AC prototype on an IoT environment. We carried
out a number of experiments to validate DACIoT operation
in order to ensure that it functions as expected. The pro-
totype consists of two parts: 1) the client and 2) the AS.
The client part is a mobile-based interface that supports two
operational modes: 1) user and 2) administrator. The user
interface enables the IoT users to search for and connect to IoT
devices available in their proximity, including the designated
ASs of the device. The administrator interface enables the pol-
icy administrator (or device owner) to define and manage AC
policies for their IoT devices. This part of the prototype is
deployed on a Samsung Galaxy S7 smartphone (quad-core
2.2-GHz Snapdragon 820, 32-GB storage, 4-GB RAM, Super
AMOLED 2560x1440 pixels display, 5.1 inches) with a rooted
Android 6.0 Marshmallow platform [34], connected to a Wi-Fi
network. In addition, we assume that users in this case sce-
nario use a smart key to access the external and internal doors
of a university building.

The AS part is deployed on a Raspberry Pi 3 (quad-core
1.2-GHz ARM Cortex A53, 1-GB SDRAM, 10/100 MBPS
Ethernet, 802.11n Wireless LAN, Bluetooth 4.0) [35] and
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Fig. 4. DACIoT AC flow.

implements the authorization functionalities introduced in this
article: APS, CPE, and APR. In addition, it handles device
registration (i.e., authentication and attribute management) as
well as context monitoring. For authentication, we authenticate
users based on their cell phone numbers. For attributes man-
agement (i.e., PIP), we use a simple form of a database to store
the subject, object, and operation attributes in a CSV formatted
excel file and retrieve these upon access request evaluation. For
environmental attributes, we consider two attributes: 1) subject
location and 2) request time. The subject location is moni-
tored based on Bluetooth proximity to the AS, and the time
of requests is determined based on server local time. For IoT

resources, we use two commercial IoT devices in this proto-
type: 1) a SensorTag [36] device representing an IoT device
that continuously generates data, such as room temperature and
2) a WeMo smart switch [37] representing an IoT device that
can be actuated. We use a smart switch and sensor tag devices
to replace the mechanical door lock and Wi-Fi connectivity
resources, respectively.

In our experiments, we look into three policy validation
metrics, including access policy correctness, consistency, and
completeness as follows.

Access Policy Correctness: This metric checks if an AC
policy leaks access permission to unauthorized or unintended
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users. In order to ensure the correctness of the AC policies
that DACIoT generates, we used the DACIoT administrator
interface to create the AC policy described in Listing 4.
Next, we used the DACIoT user interface to submit access
requests to the DACIoT server and observed the results. To
ensure test coverage, we generated a set of test requests that
encompasses all permutations of attribute values considered
in our use-case. To simplify the generation of test requests,
we assumed that the OC of an access request either satisfies
or does not satisfy the contextual conditions (e.g., Adam is
either in or out of the conference room). The total number
of test requests is 512 test requests (2 subject-identities × 2
subject-roles × 4 objects-identities × 4 operations-identities
× 2 location values × 2 time values × 2 coexistence
values). A sample request is of the following format:
{subject-id:“Adam”,role:“grad-stu”,object-
id:“HVAC”,operation-id:“control”,location:
“conf-room”,time:“9:00”,coexistence:“true”}
and the generated decision is {permit}, similar to XACML
response. We verified that the access decision generated by
DACIoT for all the 512 test requests is the same as the
decision generated by XACML. This provides confidence that
the DACIoT logic is correct.

Access Policy Consistency: This metric ensures that the AC
policy is conflict free. A policy or rule conflict occurs when
access policies (or rules) grant in-consistent access permis-
sions to an accessing entity [38]. Detecting policy (or rule)
conflicts is challenging, it involves detecting the conflicting
policies (or rules) and identifying the type of conflict among
policies (or rules) at runtime. In addition, it requires dynamic
verification to ensure conformance with security require-
ments specified by access policies. For example, XACML
defines four policy or (rule) combination algorithms, including
First-Applicable, Only One-Applicable, Deny-Overrides, and
Permit-Overrides. These algorithms resolve conflicts when an
access request applies to more than one policy or (rule). For a
first-applicable policy or (rule), the decision of the first appli-
cable policy or (rule) is returned. For an only one-applicable
policy or (rule), the decision of the only applicable policy or
(rule) is returned; Indeterminate (i.e., conflict or error) is
returned if there are more than one applicable policy or (rule),
or if one or more attribute(s) is missing. For a deny-overrides
policy or (rule), Deny is returned if any policy or (rule) eval-
uation returns deny; Permit is returned if all policy or (rule)
evaluations return permit. For a Permit-Overrides policy or
(rule), Permit is returned if the evaluation of any policy or
(rule) returns permit; Deny is returned if the evaluations of
all policy or (rule) return deny. If an access request applies to
none of these algorithms Not-Applicable is returned.

However, DACIoT requires no policy combination algo-
rithm; DACIoT follows the white list authorization approach
where all access requests are denied except those defined in
the white list in the form of PFs. DACIoT removes the burden
of detection and resolution of access policies (or rules) con-
flicts and always generates consistent access policies because
DACIoT does not store access policies or rules permanently,
rather it generates them on the fly based on the always up-to-
date PFs. Therefore, a change in one fact would automatically

Fig. 5. DACIoT access response time.

affect all possible access rules that can be generated based on
that one fact.

Access Policy Completeness: This metric assures that each
access request will be either accepted or denied by the AC
policy. For example, if an attribute is missing from an access
request, XACML policy does not make a final access deci-
sion, rather it shifts into an indeterminate state, which requires
further processing (i.e., policy or rule combining algorithm).
Unlike XACML policies, if DACIoT receives a request with a
missing attribute, a subject attribute for instance, the APS will
search the FB for a PFs that exactly match the three access
elements of this request and can get into one of two states
that both leads to an access denial: 1) no PF is defined for the
subject with missing attributes, as such, access is denied and
2) one or more PFs are defined for the subject element with
a missing attribute. Yet, due to missing attributes, the subject
can only match the requested operation or the requested object
but not both, hence access is also denied.

VII. PERFORMANCE EVALUATION

In order to evaluate the performance of the DACIoT,
we conducted several experiments that investigate various
aspects of DACIoT, including access response time, aver-
age re-evaluation time, access behavior classification accuracy,
and policy adjustment accuracy (PAA). Experiments show
how DACIoT can adapt to application security and time-
sensitivity requirements offering three re-evaluation strategies.
Experiments also demonstrate how DACIoT can maintain up-
to-date AC policy recommending precise policy adjustments
based on highly accurate access behavior classification.

A. Access Response Time

In our experiments, we define the access response time as
the time that DACIoT requires to evaluate an access request
and enforce the access decision. This includes access request
analysis, attribute extraction, and PF matching.

Fig. 5 depicts the access response time of DACIoT and
XACML AC engines for 100 concurrent access sessions versus
a varying number of access rules.

To evaluate an access request, the XACML AC engine
checks the attributes of the access request against the access
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policy or policy set. If a request satisfies the target of a policy,
then the request is further checked against the rule set of the
policy; otherwise, the policy is skipped without further exam-
ining its rules. The same applies to the target of the policy set.
The high complexity of XACML policies in terms of policy
hierarchy and rule conflicts makes linear searching (i.e., brute
force) the natural way of processing access requests.

In DACIoT, we structured the PFs in a K-D tree to achieve
faster PFs matching, incur less overhead to access policy
enforcement and facilitate runtime policy adjustment. We
chose the K-D tree data structure because of its usefulness
in applications that involve multidimensional search keys over
large scale data sets. We built three separate K-D trees for the
subjects, objects, and the operations offline. The time com-
plexity of DACIoT is simply bounded by the time required to
search each of the subject, object, and operation K-D trees.
Assuming the three K-D trees are of the same size n, and the
fact that K-D tree is a special case of binary trees, DACIoT
has logarithmic time complexity T which is given as follows:

T(n) = 3 ∗ N ∗ O(log(n)) (6)

where N is the number of access rules. When n >> 2k >> N,
where k is the number of attributes and context constraints
that describe each type of the core AC elements, the time
complexity can be further simplified to

T(n) = O(log(n)). (7)

For each number of access rules, we calculate the access
response time of DACIoT and XACML over 10 runs and take
the average. Results show that at a low number of access
rules the access response time of DACIoT tends to increase
rapidly when the number of access rules increases. This is
because the K-D tree search needs to visit relatively more
tree branches for a lower number of points (i.e., access rules),
however, DACIoT provides more flexible access rules than
XACML. When the number of access rules increases signif-
icantly, DACIoT search outperforms XACML search for the
following reasons: 1) XACML uses brute-force search whose
time complexity is linear, while DACIoT uses decision trees in
which the time complexity is logarithmic; 2) for a given access
request, XACML needs to check all applicable rules in order
to return an access decision, whereas DACIoT needs only to
check the existence of the request’s AC elements in the sub-
ject, object and operation K-D trees, starting with the shortest
tree, to make an access decision. In the worst case, DACIoT
searches all three trees and still outperforms XACML; and
3) XACML policies may have duplicate rules which likely
to increase when the total number of access rules increases,
and consequently the search time. However, DACIoT relies
on PFs to generate distinct and conflict-free access rules, thus
requiring less search time. In addition, when the number of
access rules increases, the probability of fact-reuse increases
which also significantly reduces the search time. For exam-
ple, DACIoT is 60 ms faster than XACML at 1750 access
rules. This result shows that our approach improves the flex-
ibility of access rules and can scale efficiently to large scale
environments, such as IoT.

B. Re-Evaluation Time

Re-evaluation time is the time DACIoT takes to re-evaluate
all active access sessions in response to changes in the PFs,
more specifically, it is the time elapses between the detection
of changes to the PFs and the completion of re-evaluation of
all ongoing access sessions against the changes to the facts.
DACIoT supports three Re-evaluation strategies that cater to
various security and time sensitivity requirements of different
business applications. The re-evaluation strategies include: Re-
evaluate and Decide, Stop and Re-evaluate, and Hybrid.

1) Re-evaluate and Decide supports application domains in
which resource utilization is a priority rather than limited
unauthorized access. Following this strategy, DACIoT
does not interrupt ongoing access sessions, rather it first
re-evaluates them against the AC policy and based on re-
evaluation results, DACIoT only stops the denied access
sessions. The strategy maximizes resource utilization
giving a chance for users whose access sessions might
not be affected by the policy changes to continue seam-
less access to protected resources. In addition, it incurs
less re-evaluation time than other strategies because
DACIoT only needs to terminate the affected access ses-
sions and no further processing is required. However,
this strategy compromises system security because it
may expose system resources to unauthorized access
during the re-evaluation time.

2) Stop and Re-evaluate strategy supports application
domains in which system security is a priority. Following
this strategy, DACIoT stops all ongoing access ses-
sions when any changes in access context is detected,
reserves their parameters, and re-evaluates the access
sessions against the AC policy. Based on the revalua-
tion results, DACIoT restores permitted access sessions.
This strategy provides more secured access to system
resources than other strategies at the expense of limited
interruption. With this strategy, however, both system
and users are subject to opportunity costs because legit-
imate users are blocked from utilizing system resources
during re-evaluation time. In addition, the strategy
incurs more re-evaluation time re-establishing nonaf-
fected access sessions.

3) Hybrid strategy takes advantage of previous strategies
and overcomes their limitations. Following this strategy,
DACIoT switches between re-evaluation strategies based
on application-dependent switching threshold. Several
dynamic factors can be considered to calculate the
switching threshold, including the user access history,
resource sensitivity, and system threat level, among oth-
ers. This strategy makes a fair compromise between
resource utilization and security; it enables users to
fully utilize system resources in normal access contexts
and maintains sufficient system security in critical or
unexpected access contexts.

Fig. 6 depicts the actual re-evaluation time of DACIoT
versus a variable number of concurrent access sessions. The
figure shows that the re-evaluation time for the three strategies
is proportional to the number of concurrent access sessions
and tends to increase slowly when the number of concurrent
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Fig. 6. DACIoT re-evaluation time.

TABLE III
ESTIMATED RE-EVALUATION TIME OF DACIOT STRATEGIES

access sessions increases. In this experiment we use a random
variable with normal distribution to generate the switching
threshold values for the hybrid strategy.

We apply linear regression to obtain the estimated time for
DACIoT re-evaluation. Table III shows the slope and intercept
values for the estimated re-evaluation time of the three strate-
gies. The slope values show that for every additional access
session, the re-evaluation time increases by an average of 1.69,
2.28, and 1.86 ms for the Re-evaluate and Decide, Stop and
Re-evaluate, and Hybrid strategies, respectively. The estimated
re-evaluation time is calculated using the following equation:

TimeEST = b0X + b1 (8)

where b0 is the slop, X is the number of concurrent access
sessions, and b1 is the intercept. For example, DACIoT can re-
evaluate 100 concurrent access sessions against an entirely new
access policy (i.e., 1500 access rules) in 205.86 ms using the
Hybrid strategy. These numbers show that DACIoT can effi-
ciently adapt to frequent changes in AC policies and maintain
authorized access and usage of protected resources in highly
dynamic and large-scale IoT environments.

C. Space Complexity

Unlike traditional AC approaches, such as XACML,
DACIoT does not store AC rules in their final form, rather
it decomposes AC rules into PFs. To evaluate the space com-
plexity of DACIoT, we assume that each AC element requires
one memory unit of storage. Therefore, a single XACML rule
(i.e., subject–object–operation) consumes three memory units,
whereas the corresponding DACIoT PFs (i.e., subject–object,
object–operation, and operation–subject) consume six memory

Fig. 7. DACIoT space complexity.

units. This seemingly gives advantage to XACML over our
approach. However, assume a system with two subjects S1, S2,
one object O and one operation OP. For this system, XACML
needs to define two access rules as follows: R1 : S1−O−OP
and R2:S2−O−OP. The two rules require six memory units.
Note that the information of the object and operation in R1
is duplicated in R2. DACIoT defines the corresponding PFs
as follows: S1 − O, O − OP, OP − S1 for R1 and it only
defines S2 − O, OP− S2 for R2. Therefore, DACIoT requires
ten memory units to store the two rules. Fig. 7 shows the
space complexity of DACIoT and XACML versus the num-
ber of access policies. DACIoT begins slightly lagging at a
low number of access policies, but significantly outperforms
XACML when the number of policies increase.

D. Access Behavior Classification Accuracy

To evaluate the classification accuracy of DACIoT, we used
a real-life data set that consists of 180 000 access logs to the
doors of the School of Computing at Queen’s University. The
data collected over the time period from December 1, 2016
to April 30, 2019. Each access log contains the following
parameters: user ID (i.e., key ID), door ID, user attributes,
door attributes, access time, and access value (i.e., decision).
We defined the following cases as abnormal access behaviors:
1) if the user is denied access three times with normal access
context (i.e., weekdays, and/or during morning, afternoon and
evening) and 2) if the user is denied access two times in a
row in sensitive context settings (i.e., weekends and/or during
night).

Our classification problem belongs to the many-to-one
category of sequence classification problems. We want our
classifier to take a sequence of multiple access requests as
input and map it to one behavioral class as output. We
implement the DACIoT classifier component using a recur-
rent neural networks (RNNs) [39]. We chose RNNs because
it is designed to work with sequence prediction problems.
However, we want the classifier to classify the access behav-
ior every time a new access denial is recorded. Therefore,
the length of the input sequence is variable in our case. This
requires careful engineering of the RNN input layer.

To show the effect of data size on the classification
accuracy of different classifiers. We also implemented the

Authorized licensed use limited to: Queen's University. Downloaded on March 31,2021 at 17:38:50 UTC from IEEE Xplore.  Restrictions apply. 



11416 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

classifier component using the standard random forest classi-
fier (RF) [40]. We used the Python libraries Scikit-learn [41]
and Keras [42] to implement the RF and RNN classifiers.
For the RNN approach, we used the long short-term memory
(LSTM) [43] network. LSTM overcomes the training problem
(i.e., vanishing gradients) associated with the RNNs and in
turn has been used in a wide range of applications that involve
large data sets.

1) Data Preparation and Labeling: To prepare the clas-
sification data we performed the following steps. First, we
selected the top five users based on the total number of
accesses. This cuts down the data size to 13 296 access
logs. Since all parameters of the access logs are categori-
cal and do not provide quantitative information, we applied
the one-hot encoder (i.e., binarization) to these parameters
converting into numerical input features to train the classi-
fiers. Second, we defined 27 input variables as follows: five
categories for the users, three categories for user attributes
(i.e., faculty, staff, graduate students, and undergraduate stu-
dents), two categories for the day of access (i.e., weekday and
weekend), four categories to represent the access hour (i.e.,
morning, afternoon, evening, and night), 13 categories to rep-
resent the door ID which also represents the door location,
and one category for the access value. We added an out-
put label “Abnormal/Normal”İ behavior to the data set. The
default value to this label is 0 (normal) to all access logs.
We set the value to 1 (abnormal) for access logs that con-
tain abnormal access behaviors. Otherwise, the output label
is always set to 0 to denote normal access. Third, we split
the data set into training and testing sets with the percent-
ages 80 and 20, respectively. For the RF classifier, we fed the
training data without modifications. For the LSTM classifier,
however, we group the access logs between each subsequent
abnormal behaviors into one access sequence. The resultant
access sequences have different lengths, therefore, we calcu-
late the length of the longest sequence and use zero padding
to complete the short sequences. Fourth, we optimized the
hyperparameters for both models on the testing data.

Finally, we generated 150 synthetic access logs with differ-
ent probability distributions (e.g., uniform) from the original
data, and evaluated the two classifiers using the mock data. To
show the effect of data size on the classification accuracy of
different classifiers, we conducted two experiments using two
different data sizes (6000 and 10 000 access logs).

2) Classification Results and Discussion: One common
approach to classification accuracy is to calculate the area
under the receiver operating characteristic (ROC) curve, abbre-
viated to AUC. AUC is a measure of how well a classifier
can differentiate between two examination samples (e.g., nor-
mal/abnormal access behaviors). We chose the AUC as our
evaluation metric for the DACIoT classifier because AUC does
not depend on the class distribution, which makes it useful
for evaluating classifiers predicting rare events, such as abnor-
mal access behavior as in our case. In contrast, evaluating the
performance using the simple accuracy metric (the number
of correct predictions made divided by the total number of
predictions made) would favor classifiers that always predict
a negative outcome (i.e., normal access behaviors) over a

Fig. 8. Performance of LSTM versus RF/training data size = 4800 access
logs.

Fig. 9. Performance of LSTM versus RF, validation data = 150 logs.

rare positive outcome (i.e., abnormal access behaviors). Fig. 8
shows the performance of the two classifiers when trained
and tested on a relatively small number of access logs (4800
logs). The two classifiers score approximately the same AUC
over variable values of decision thresholds. The results show
that both classifiers poorly distinguish normal from abnormal
behavior due to the imbalance in the data set (i.e., permit logs
versus denial logs).

Fig. 9 shows the performance of the two classifiers when
validated using the mock data. RF outperforms LSTM because
RF gives priority to the majority class (i.e., permit logs), while
LSTM has less chance to learn from a small training data that
contains short access sequences.

Fig. 10 shows the performance of the two classifiers when
trained and tested on a relatively large number of access logs.
Again, the two classifiers score comparable AUCs. However,
the AUC results show that both classifiers can distinguish the
two access behaviors with a high level of accuracy. LSTM out-
performs RF because of the increased chances for the LSTM
classifier to learn from longer access sequences in larger train-
ing data sets. With longer access sequences, LSTM can learn
more about the access behavior of an individual user and build
a deep insight on the correlations between the user access
context and previous access decisions.
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Fig. 10. Performance of LSTM versus RF, training data = 8000 logs.

Fig. 11. Performance of LSTM versus RF, validation data = 150 logs.

Fig. 11 shows the performance of the two classifiers when
validated using the mock data. The AUC scores indicate that
LSTM accuracy improves faster when trained on larger data
sets due to the ability to learn the best set of features that can
generalize well on unseen data.

E. Policy Adjustment Accuracy

To measure the added security value that DACIoT brings
adjusting an AC policy, we calculate the PAA. PAA is the per-
centage of improvement in the protection of system resources
that DACIoT policy adjustment achieves over the original AC
policy defined by a system administrator. Assume R is the
number of policy adjustments DACIoT recommends and F
is the number of policy adjustments the policy administrator
refuses. Then, the PAA is calculated as follows:

PAA = R− F

R
. (9)

It follows from the definition of PAA that the added secu-
rity value of DACIoT is directly proportional to the number
of policy adjustments approved by the policy administrator. In
this experiment, we run the LSTM classifier on the entire data
set with a total number of 458 users. The classifier reports 466
abnormal access sequences out of a total of 495. We set the
adjustment threshold to the minimum value (0.024), which
is the maximum allowable number of access denials for a
user (three in our case) divided by the maximum sequence

TABLE IV
POLICY ADJUSTMENTS

length (124 access logs). With this threshold we allow the
adjuster component of DACIoT to generate all possible policy
adjustments.

DACIoT recommended a total of 716 adjustments: 279
adjustments based on the user ID, 301 adjustments based on
door ID, 21 adjustments for users on specific doors, and 115
adjustments for users in specific time of the day distributed
as follows: 16, 27, 40, and 32 adjustments for night, morn-
ing, afternoon, and evening times, respectively. We present
the list of adjustments to the policy administrator for analysis.
The administrator approved 68 adjustments and provided the
following feedback points.

1) Out of 279 (User ID) adjustments, 30 were approved.
Out of the 30 adjustments, there are two cases where
users should have been revoked their access keys. In the
first case, the user committed 79 access denials on the
same door, and in the second case, the user committed
10 access denials on seven different doors. The other 28
(User ID) adjustments are also recommended as com-
bined attributes adjustments: 10 (User ID and Door ID)
and 18 (User ID and Time) adjustments.

2) Out of the 301 (Door ID) adjustments, only 10 were
approved.

3) Out of 21 (User ID and Door ID) adjustments, 10 were
approved. In the ten cases, users were blocked access
to doors they had been authorized to access, but due
administrative changes in the access policy, access was
denied.

4) Out of 115 (User ID and Time), only 18 adjustments
were approved. Out of the accepted adjustments, there
were 15 that recommend restricting access on afternoon
times, three on night times. One possible justification is
that there is an increased possibility that employees left
their offices for lunch around noon time, which increases
the chances for accidental or intentional use of wrong
doors by authorized users.

Table IV summarizes DACIoT policy adjustment results.
For each category of policy adjustment, we present the num-

ber of generated and refused adjustments and the PAA. Setting
the adjustment threshold to the low value in this experiment,
resulted in less approved adjustments relative to the overall
recommended adjustments, thus the low value of overall PAA
(0.094%).

Fig. 12 shows the DACIoT PAA versus variable values of
the adjustment threshold. The results show that DACIoT starts
with low PAA at small values of THadj. This is because low
values of THadj increase the sensitivity of the access policy
adjuster to access denials, and also increase the probability
of recommending policy adjustments that restrict access to
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Fig. 12. PAA versus adjustment threshold.

users with infrequent access denials (i.e., high false-positive
rate). This increases the number of refused policy adjust-
ments relative to the total number of the recommended policy
adjustments and therefore, reduces the PAA.

As THadj increases the PAA improves significantly because
the policy adjuster becomes less sensitive to access denials
(i.e., low false-positive rate) and the total number of approved
policy adjustments (plotted in the figure) remains constant.
When THadj equals 0.607 the PAA reaches 100%. At this value
of THadj, all policy adjustments recommended by DACIoT are
approved by the policy administrator. When THadj exceeds
0.607, PAA remains constant, however, the total number of
recommended policy adjustments starts to decrease until it
reaches zero recommendations for THadj values 0.941 to 100.
Therefore, 0.607 is the optimum adjustment threshold value in
this use case, where DACIoT is capable of striking a balance
between the PAA and the total number of approved policy
adjustments.

VIII. CONCLUSION

AC is a key enabler for the widespread adoption of the
IoT technology. The highly dynamic nature of IoT environ-
ments poses unique AC challenges, rendering standard AC
policies, models, and mechanisms unsuitable for IoT scenar-
ios. In this work, we identified the limitations of current AC
approaches and the requirements of a robust and reliable AC
mechanism that can efficiently control access to IoT devices
and dynamically adapt to frequent changes in access contexts.

This article presents DACIoT, a dynamic AC framework
for IoT environments that improves access policy manage-
ment, ensures continuous authorized access to IoT devices
during the lifetime of an access session, and uses deep
learning techniques to propose dynamic changes in the AC
rules. The experimental validation of the DACIoT frame-
work demonstrates its ability to dynamically generate correct,
complete, conflict-free access rules, and continuously enforce
context-aware and up-to-date AC policies.

In the future, we plan to extend our work with a policy
caching mechanism that temporarily stores the dynamically

generated access rules to improve the access response time. We
also plan to extend our framework with an anomaly detection
component to detect changes in normal access behaviors (i.e.,
unseen behaviors) at runtime to maintain accurate and up-to-
date AC policies.
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