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Abstract

Democratizing Edge Computing (EC) by leveraging the prolific yet underutilized com-

putational resources of IoT devices, also referred to as Extreme Edge Devices (EEDs),

has gained significant momentum lately. In such edge computing paradigms, fair re-

source allocation is a major concern. However, fairness is typically considered from

the requester’s perspective, whereas fairness for workers is mostly overlooked. In this

thesis, we propose the Multitiered Worker-oriented Resource Allocation (MWORA)

framework. MWORA aims to minimize the drop rate and task response delay while

enabling fair resource allocation that maintains a specific satisfactory profit for work-

ers. Such a satisfactory profit is maintained to prevent workers from leaving the

system and ensure their recurrent subscription to the service provider. MWORA also

accounts for the fact that EEDs are user-owned devices and are thus subject to a

dynamic user access behavior, which can affect the level of computational resources

endowed by workers. MWORA considers this by enabling multitiered computational

resources to be granted by each worker depending on the price of the allocated task.

MWORA formulates the resource allocation problem as an Integer Linear Program

(ILP). We also propose the MWORA-Weighted Sum (MWORA-WS) scheme to de-

rive an analytical solution using the Karush–Kuhn–Tucker (KKT) conditions and La-

grangian analysis. Extensive simulations show that MWORA outperforms prominent
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resource allocation schemes in terms of the average response delay, service capacity,

worker satisfaction ratio, and fairness. In addition, it is shown that MWORA-WS

closely approaches the optimal solution rendered by MWORA.
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Chapter 1

Introduction

1.1 Overview and Motivation

With the proliferation of the Internet of Things (IoT), it is estimated that 23.3 billion

IoT devices will be connected to the Internet by 2025 [1]. This unprecedented surge

is expected to impose severe demands on computing resources to meet the rigorous

Quality of Service (QoS) requirements associated with latency-sensitive and data-

intensive IoT applications [2]. Satisfying such requirements can be challenging in

cloud computing, due to the substantial amount of data that must be fully transmitted

to distant data centers, which increases delay and creates a heavy traffic load at

backhaul links [3].

Edge Computing (EC) has paved the way toward mitigating the aforementioned

issues by moving the computing service closer to end users [2]. However, most EC

platforms and models rely on infrastructure-based edge nodes exclusively controlled

by cloud service providers and/or network operators [4]. Breaking this monopoly

by harvesting plentiful yet underutilized computational resources of Extreme Edge
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Devices (EEDs) 1 [5], such as tablets, smartphones, and autonomous vehicles, can

democratize the edge and enable more players to develop and manage their own edge

cloud. Democratizing the edge can foster a new tech market that is people-retained,

democratically controlled, accessible and/or rewarding to all. In addition, parallel

processing at EEDs can bring the computing service closer to end-users, which can

significantly reduce the delay [6]. Given its significant impact, resource allocation is

crucial in such computing paradigms [6].

Aside from load balancing approaches [7], most resource allocation schemes in EC

have considered fairness from the requesters’ perspective while overlooking worker

fairness. In EED-enabled computing environments, overlooking workers fairness re-

garding achieving a satisfactory profit can cause workers to leave the system, avoid

recurrent subscription to the service, and join other competing service providers (e.g.

service facilitators acting as mediators between requesters and workers [8]). In the

long run, this can affect the QoS, since the available resources might not be able to

cope with the load imposed by incoming requests.

Another important aspect that is typically overlooked in EED-enabled computing

environments is the fact that EEDs are user-owned devices, which makes them subject

to a dynamic user access behavior. In particular, at any point in time, users can

stream a video, play a video game, or run any intensive application on their own

devices. This can profoundly impact the level of available computational resources

that such devices are willing to offer for offloaded tasks. In other words, EEDs may

not be available at the moment the service provider solicits their resources or may

not be willing to forego all of their computational resources. Thus, it is imperative to

design resource allocation schemes that account for the dynamic user access behavior

1In this thesis, we use the terms “Workers” and “EEDs” interchangeably.
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exhibited by EEDs.

1.2 Objectives and Contributions

Our objectives can be summarized as follows:

1. Achieving edge democratization that leverages the prolific yet underutilized

computational resources of EEDs (i.e., workers) while enabling resource alloca-

tion that ensures worker-oriented fairness and preserves workers participation

in the service.

2. Making resource allocation decisions that maximize the QoS provided to re-

questers by minimizing the drop rate and task response delay.

3. Accounting for the dynamic user access behavior exhibited by workers and its

impact on the level of computational resources that they may be willing to offer.

4. Ensuring attainable solutions.

5. Studying the long-term impact of workers’ departure from the system on the

QoS provided to requesters.

The contributions of this thesis are as follows:

1. Multitiered Worker-oriented Resource Allocation (MWORA): MWORA addresses

Objectives 1, 2 and 3. It formulates the resource allocation problem as an

Integer Linear Program (ILP) and is solved using the Gurobi optimizer [9].

MWORA aims to minimize the drop rate and task response delay, while sus-

taining a certain level of satisfactory profit demanded by each worker in order to

ensure workers fairness and their continuous participation in the service. This
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is while abiding by a certain budget specified by the service provider and a

certain deadline indicated by each requester. In addition, MWORA considers

the impact of the dynamic user access behavior on the level of computational

resources provided by workers. It does so by considering that this level can

differ based on the cost of compromising the worker’s convenience. Take, for

instance, the scenario in which a user is streaming a video on their device. In

this scenario, the worker (user’s device) could be willing to forego the video

by pausing and devoting their maximum computational capability to an of-

floaded task if it is worth a high financial reward. Alternatively, if the reward

is moderate, the worker could continue streaming the video and devote less

computational capability to the offloaded task. Note that the worker here is

sacrificing a smaller portion of their capabilities to preserve some of its own

convenience. If the task’s reward is too low, the worker could refrain from giv-

ing up any of their resources. Thus, in contrast to existing schemes, MWORA

fosters granting multitiered computational capabilities by each worker based

on the financial reward associated with the offloaded task. To the best of our

knowledge, MWORA is the first scheme that solicits multitiered computational

capabilities and aims to achieve fair resource allocation for workers by ensuring

that each worker receives a certain demanded reward.

2. MWORA-Weighted Sum (MWORA-WS): MWORA-WS addresses Objective

4. It provides an analytical solution using the Karush–Kuhn–Tucker (KKT)

conditions [10] and Lagrangian analysis [11]. MWORA-WS offers an upper-

bound solution to the resource allocation problem provided by MWORA, since

the closed-form solution yielded by the latter is not attainable, due to the fact
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that the decision variable is expressed in terms of other unknown multipliers.

Extensive simulations have shown that MWORA-WS closely approaches the

optimal solution, yielding a significantly small gap compared to MWORA.

3. Extensive Simulations over Rounds of Operation: This addresses Objective 5. In

order to capture the impact of maintaining workers participation in the service

on the QoS, we conduct extensive simulations over multiple rounds of opera-

tion, where the satisfaction of each worker is assessed at the end of each round

to determine if it leaves the system or continues offering its computational re-

sources to the service provider. The following rounds then proceed with only the

workers that have been satisfied. Performance evaluation shows that MWORA

yields significant improvements in terms of various QoS metrics compared to

prominent resource allocation schemes that do not consider worker’s fairness

and satisfaction.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides a literature

review of edge computing paradigms, as well as resource allocation schemes in edge

computing. Chapter 3 presents MWORA, the underlying system model, problem

formulation, and a detailed discussion of the performance evaluation compared to

other prominent resource allocation schemes. Chapter 4 introduces MWORA-WS

the underlying problem relaxation, analytical solution, and performance evaluation

compared to the optimal solution yielded by MWORA. Finally, Chapter 5 concludes

our work and outlines future research directions.
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Chapter 2

Edge Computing Paradigms and Resource

Allocation Schemes

This chapter provides an overview of the most prevalent computer paradigms. Start-

ing with Cloud Computing [12], Fog Computing [13], Mobile Cloud Computing [14],

Multi-access Edge Computing [15, 16], and Mist Computing (referred to as extreme

edge computing) [5].

2.1 Edge Computing Paradigms

Considering the rapid growth in data usage, it becomes challenging for individuals

and organizations to maintain all their vital information and services. That is mainly

why Cloud Computing (CC), Mobile Cloud Computing (MCC), and Mobile Edge

Computing (MEC) paradigms have become instrumental to many application areas.

CC services have shown many advantages and benefits in the last decade: high-

performing storage and ample processing capabilities at reduced costs. Nevertheless,

cloud computing suffers several significant disadvantages, such as high latency, down-

time and service outages, and security vulnerability [14].
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It is estimated that 23.3 billion IoT devices will be connected to the Internet by

2025 [1]. This growth will ultimately lead to surging demands in data storage and

computing resources, along with networking infrastructure to accommodate users’ re-

quirements in terms of (QoS), and quality of experience (QoE). The existing conven-

tional cloud models are unable to support the demands of the diversified applications

and services that need to develop, process, and store these traffic trends [17]. Hence,

research efforts were pushed toward proposing a new model of computing called fog

computing [18].

The central concept behind fog computing was inspired by the natural phe-

nomenon of fog, where a layer of moist air much closer to the earth’s surface than

clouds. This concept is translated into bringing cloud capabilities closer to the users

by processing data at the network’s edge [18]. With a similar analogy, edge com-

puting and its related paradigms, MCC, MEC, and extreme edge computing, were

introduced. These paradigms are collectively referred to as the as next-generation of

cloud computing [19], where data is processed directly on devices rather than being

sent to other nodes or data centers [6].

The edge infrastructure is anticipated to receive a cumulative capital expenditure

of up to $800B, according to [20]. Furthermore, according to [21], the edge computing

market is anticipated to grow from $36B in 2021 to $87B by 2026. Such investment

shows the importance of the edge computing market.

Edge computing’s main objectives are to minimize the communication latency,

and reduce the volume of data transferred to the cloud, therefore alleviating pres-

sure off of the bandwidth. These objectives ensure that information, particularly in

real-time applications, do not suffer from latency problems and cause performance
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degradation. However, scheduling tasks to the limited resources at the edge remains a

significant challenge. Thus, different scheduling/resource allocation techniques were

proposed in the literature. In all instances, maintaining fairness is one of the key con-

siderations for real/critical time tasks and task scheduling. In this chapter, we review

the latest proposed scheduling/resource allocation algorithms that achieve fairness

between users while scheduling independent tasks on a single-edge server. However,

before discussing the related work that focuses on fair resource allocation, we will

provide an overview of resource allocation in edge computing.

2.2 Resource Allocation in Edge Computing

Resource Allocation refers to the collection of actions and techniques the partici-

pants(users/edge nodes/service providers) use to efficiently assign the task (request/data

provided by the users) to the available resource (could be any computing/storage re-

sources) to execute and complete the assigned task and for the participants to achieve

their objectives depending on the availability of those resources. Different actions can

be taken to achieve the desired objectives by the participant, such as computation

offloading actions, which decide where to offload the task to the edge node or cloud

and how to offload it [22].

There are two classifications for computation offloading: direction offloading or

granularity offloading [23]. Edge computing architecture consists of three layers: the

device layer, the edge layer, and the cloud layer. Direction offloading is used to offload

between different layers or within the layer itself. For example, vertical offloading

occurs when the a device offloads to edge layer, or an edge server offloads to the cloud

layer. Alternatively, horizontal offloading occurs within the layer itself. For example,
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offloading from one device to another, or from one edge server to another [23]. On the

other hand, granularity offloading is categorized into full offloading (also called binary

offloading), where the tasks are fully offloaded to another entity for computation, and

partial offloading, where the task is partitioned, some partitions are processed locally,

and some are offloaded [23, 24].

In addition, resource allocation actions are needed to allocate the tasks to the

available resource [25]. Resource provision is needed for service placement decisions

[26]. However, resource scheduling has different methodologies depending on the

control architecture, which can be either centralized or distributed, which will be

further discussed in the following Section 2.3.

2.3 Resource Allocation Schemes based on Control Architecture

The resource allocation process in edge computing is managed with either a central-

ized approach with one central entity, or a distributed approach with multiple entities.

The following sub-sections, 2.3.1 and 2.3.2, will describe centralized and distributed

control approaches, respectively.

2.3.1 Centralized-based

In the centralized based, a central entity handles resource allocation by collecting all

the necessary information about task requests and resource availabilities, and notifies

the involved node devices of the resource allocation decisions. Several benefits are

associated with the centralized-based control architecture approach:

1. The environment is predictable and stable most of the time.

2. It is easy to implement a centralized control architecture.



2.3. RESOURCE ALLOCATION SCHEMES BASED ON CONTROL
ARCHITECTURE 12

3. It can easily find the optimal solution.

Different approaches for resource allocation are used in centralized architecture,

such as Convex Optimization, Heuristic Algorithm, and Machine learning (ML) [23].

In convex optimization an optimization model to maximize/minimize or both

under certain constraints is developed to help in resource allocation and offloading

decisions. Convex optimization techniques are widely used and can quickly obtain a

sub-optimal result. Studies in [27, 28] used the convex optimization technique to help

the computation offloading decisions while minimizing the response time.

The Heuristic Algorithm is one of the most popular techniques for solving NP-hard

problems using simple heuristics or meta-heuristic algorithms such as greedy-based

or genetic-based algorithms. Heuristic algorithms are efficient but are not guaranteed

to find the optimal solution. A study in [29] used a heuristic algorithm to solve the

placement problem while minimizing the service cost.

The above methods cannot quickly adapt to the dynamic access behavior of the

users; therefore, they cannot achieve optimal resource allocation decisions. Hence,

Machine learning included as a resource allocation techniques for centralized meth-

ods since it has strong parallel processing and learning capabilities. However, the

drawback of it requires a large amount of data and parameters, and it is consid-

ered a black-box technique since the learning process cannot be observed. Therefore,

the study in [30] used deep supervised learning techniques to minimize the overhead

computation offloading decisions.
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2.3.2 Distributed-based

In a distributed environment, each node makes allocation decisions individually.

Therefore, compared to the centralized based, the distributed based is more flexi-

ble and has a lower complexity since the optimization problem can be divided into

several sub-problems.

Different methods for resource allocation are used in a distributed architecture,

such as Game theory, Matching theory, Auction, and Federated learning [23].

The fundamental concept of a distributed approach based on game theory is to

treat each user as a player. The optimal response option is made collaboratively or

non-collaboratively by the players. It is simple and easy to implement. However, it

may not obtain the global minimum solution. A study in [31] used the Stackelberg

game to maximize the revenue of the edge server.

The matching theory is mainly used in studying the relationship between users and

service providers. It has a tremendous advantage particularly in highly dense networks

but can be used only for binary offloading decisions. Authors in [32] proposed an

algorithm to minimize overhead computations.

In auctions, edge nodes act as sellers, and the requesters act as bidders trying to

achieve a trade-off between the requesters and the nodes. It is practical in real-world

scenarios, but the solution may not be optimal since it will always need a third party

for auction management. The study in [33] used the Auction technique to provide

resource-sharing solutions in MEC.

Federated learning is part of machine learning that enables the training of dy-

namic resource scheduling algorithms on numerous distributed edge devices without
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exchanging data. For example, a [34] used federated learning for computation offload-

ing decisions.

2.4 Resource Allocation Schemes based on Performance Indicators

In this section, we survey the latest resource scheduling algorithms by categorizing

them by their objectives. Primarily, existing works have consider one or more of the

following factors as their objective(s):

• Deadline: Maximum time allowed to complete a request.

• Cost: A cost that a requester pays to a service to execute computation, com-

munications or data storage requests over a specified time span.

• Energy: The amount of consumed energy by a resource to fulfill a request.

• Latency: The time it takes for a request to be sent to a receiver and processed.

Simply, latency is the combination of execution and response time.

• Scalability: A system’s capability to sustain its efficiency as the number of

service requests or resources increases.

• Reliability: A system’s capability to complete its required job in a specified

time under defined constraints.

• Security: Ensuring that safe techniques are used to protect the data.

These are the most commonly used measures in assessing any scheduling algorithm

or comparing it with an existing proposed algorithm. The study in [35] provides a

detailed description of these measures. According to their analysis, 23% of categorized
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resource allocation schemes aim to improve the response delay; as in [36], while 5%

aim to improve the execution delay. The remaining 72% are distributed among the

remaining factors, including the recruitment cost [37].

Resource allocation is a technique used to allocate computing resources to var-

ious processes, threads, data flows, and programs/applications [38]. Fair resource

allocation is required to balance the load on the system, ensure fair distribution of

resources, and give priority according to the set of defined rules in the implemented

scheduling algorithm while allocating the available resources [7, 38].

In general, fair resource allocation strives to guarantee the capability of a system

to serve all requests and achieve specific QoS measures [7]. Aside from load balancing

schemes [7], existing research efforts have mostly considered fair resource allocation

from the requester’s perspective.

In the following subsections, we will discuss related research efforts that attempt

to allocate resources fairly while considering different objectives, such as minimizing

delay, minimizing energy consumption, and maximizing profit.

2.4.1 Delay-based

In [39], the authors aim to minimize the maximum server delay in a multi-user and

multi-server system in MEC by fairly selecting the appropriate server on which the

requester can offload tasks, which minimizes the overall delay of the system. In [40], a

multi-objective optimization problem formulation aims to minimize the delay, energy

consumption, and cost paid to the MEC service provider. A study on minimizing

delay and energy consumption is also proposed in [41] by partitioning the task and

offloading it to multiple devices in MEC. The work in [42] partitions the task into
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portions and aims to minimize the sum difference between the actual delay taken and

the desired delay of each portion. In [43], the authors present a resource allocation

scheme that maximizes the number of tasks executed within their allowed deadline

while simultaneously ensuring fairness by prioritizing the tasks and maintaining high

network stability.

2.4.2 Energy-based

A study in [44] aims to minimize the energy consumption used by mobile devices under

a particular average delay constraint. Similarly, a study in [45] aims to minimize

the weighted sum of energy consumption while abiding by a certain average delay

constraint. In [46], the authors aim to minimize the delay while jointly abiding by the

task deadline. In [47], the authors aim to minimize the average energy consumption

needed to execute all tasks in a device-to-device (D2D) system. Similarly, a study

in [48] aims to minimize the energy consumption of mobile devices in D2D systems

using 5G cellular networks by using Lyapunov optimization [49].

2.4.3 Profit-based

A study in [50] aims to maximize the profit of edge devices to get a high QoS using

auction-based computation offloading. Similarly, a study in [51] that uses an auction-

based mechanism aims to motivate edge devices to provide a service by maximizing

their profit through conducting several rounds of auctions. In [52], the authors aim

to maximize the profit while abiding by the task deadline using a single objective

optimization model. Similarly, [53] aims to maximize service providers’ profit using

a heuristic-based genetic algorithm.
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Chapter 3

Multitiered Worker-Oriented Resource Allocation

(MWORA)

In this chapter, we present MWORA, its underlying system model, problem formu-

lation, and performance evaluation. In MWORA, the system consists of user-owned

devices operating as workers, a set of requesters with tasks that need to be offloaded

for execution, and a Service Provider (SP) functioning as the centralized entity respon-

sible for making resource allocation decisions in the system. The SP has a coverage

area, a set of workers operating within this coverage area, and a set of tasks received

from the requesters. The SP is responsible for allocating the tasks to the participating

workers under certain constraints and limitations.

3.1 System Model

Given a set of workers W = {w1, w2, . . . wm}, a set of requesters U = {u1, u2, . . . uk},

and a set of tasks T = {t1, t2, . . . tn} at any given time. Each task ti has a certain com-

putation workload or intensity qi (in CPU cycles/bit) and involves a certain amount
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of data in bits, denoted Li, and should be executed within a specified deadline, de-

noted ϵi. The distance between requester ui and worker wj is denoted dij, Rij denotes

the data rate of the link between ui and wj, and the propagation speed is denoted v.

SP has a specific budget β that is used to recruit the available workers. This budget

should not be exceeded.

Each worker wj specifies a certain price τj that it should be paid per executing

one CPU cycle. Also, each worker wj specifies a minimum profit it should gain to

be deemed satisfied (i.e., a satisfactory reward), denoted sj. This satisfactory reward

acts as an indicator of a worker’s satisfaction by SP. One of the SP’s primary functions

when assigning tasks to workers is to assign one or more tasks to a worker who is

capable of completing each of the assigned tasks within the task deadline ϵi. At the

same time, the assigned tasks must render the required satisfactory profit sj of each

worker without exceeding the budget β.

The cost of executing each task ti on worker wj is denoted pij and is given by Eq.

3.1.

pij = τjqiLi (3.1)

Each worker wj has a maximum CPU clock speed denoted cmax
j (in CPU cy-

cles/sec). Each worker wj is willing to dedicate one of three possible levels of its cmax
j

according to a high and low-profit threshold that each worker specifies, denoted ΩjH

and ΩjL, respectively. The CPU cycle frequency that each worker wj is willing to

dedicate to execute task ti is denoted cij, and is given by Eq.3.2, where 0 ≤ δ ≤ 1.
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cij =


δcmax
j if pij ≥ ΩjH

αjδc
max
j if ΩjL ≤ pij < ΩjH

0 otherwise

(3.2)

Note that δcmax
j is the maximum load capacity that can be purchased from worker

wj that ensures that it is not completely overwhelmed. The capacity level αjδc
max
j

reduces the capacity that can be purchased from wj by a defined factor αj , where

0 ≤ αj ≤ 1. If the price of executing task ti on worker wj, pij, does not correspond

to any of the preceding levels, the worker refrains from devoting any capacity level to

task ti (the task ti will be added to a new set named Ni) ; therefore, ΩjL of wj acts

as a cut-off point below which the worker does not perform the task.

The response delay associated with executing task ti on worker wj, denoted γij,

is composed of the execution delay, transmission delay, and propagation delay, and is

given by Eq. 3.3.

γij =
qiLi
cij

+
Li
Rij

+
dij
v

(3.3)

Figure 3.1 summarizes the main workflow for MWORA system model and the

needed information that needs to be exchanged between the workers, requesters, and

the tasks.
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3.2 Problem Formulation

The objective is to minimize the drop rate (i.e., maximizing the service capacity: the

number of tasks executed) and minimize the total response delay. We formulate the

problem as an ILP multi-objective problem, where the binary decision variable xij is

set to 1 if task ti is assigned to wj, and 0 otherwise, as given by Eq. 3.4.

xij =

 1 if ti is assigned to wj

0 Otherwise
(3.4)

The problem formulation is shown below:

min
xij

(|T | −
∑
j∈W

∑
i∈T

xij) (3.5a)

and

min
xij

∑
j∈W

∑
i∈T

xijγij (3.5b)
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subject to:

∑
j∈W

xij ≤ 1 ∀i ∈ T (3.5c)

∑
j∈W

∑
i∈T

xijpij ≤ β (3.5d)

∑
j∈Ni

xij = 0 ∀j ∈ W (3.5e)

∑
i∈T

xijcij ≤ δcmax
j ∀j ∈ W (3.5f)

∑
j∈W

∑
i∈T

xijγij ≤ ϵi ∀i ∈ T (3.5g)

∑
i∈T

xijpij ≥ ψsj ∀j ∈ Wj (3.5h)

The objectives in Eq. (3.5a) and Eq. (3.5b) are subject to the constraints (3.5c)-

(3.5h). Constraint (3.5c) specifies that each task must be assigned to only one worker,

thus ensuring that each task is assigned only once. Constraint (3.5d) ensures that the

total reward gained by all workers from the tasks assigned to them does not exceed

the budget specified by the SP. Constraint (3.5e) ensures that no task is assigned to

a worker from the set Ni, which is the set of tasks with which the worker has a zero

cij . Constraint (3.5f) ensures that for each worker, the CPU cycle frequency used to

execute all the tasks assigned to it does not exceed the maximum load capacity that

can be purchased from the worker. Constraint (3.5g) ensures that when assigning a

task to a worker, the task is executed within the task deadline ϵi. Constraint (3.5h)

ensures that for each worker, the total reward gained from all the tasks assigned to

it is no less than a certain threshold.
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3.3 Performance Evaluation

This section evaluates the performance of MWORA compared to a baseline resource

allocation approach, referred to as Requesters-oriented Fair Allocation (ROFA). ROFA

is a representative of existing resource allocation schemes that focus on fairness in

terms of the QoS provided to requesters without considering the satisfaction of work-

ers [39]. Note that ROFA does not support multitiered computational capabilities.

In order to show the separate effect of workers satisfaction and the multitiered com-

putational capabilities fostered by MWORA, we implement ROFA twice, once with

multitiered computational capabilities and once where each worker grants only a single

level of computational capabilities. The former approach is referred to as ROFA-MC,

and the latter is referred to as ROFA-SC.

In order to show the effect of satisfying workers, we implement MWORA, ROFA-

MC, and ROFA-SC over 10 rounds, where only the satisfied workers remain in the

system for the next round to execute the incoming tasks. To demonstrate this ef-

fect, we show the results of each scheme for the first and last rounds, referred to

as MWORA-F and MWORA-L, ROFA-MC-F, ROFA-MC-L, and ROFA-SC-F and

ROFA-SC-L, respectively.

We use the following performance metrics:

1. Average response delay is the average time taken to offload and execute the

tasks (i.e., the average γij, where γij is given by Eq. 3.3).

2. Service capacity ratio is the ratio of the number of successfully executed tasks

to the total number of tasks. The service capacity ratio reflects how MWORA

is minimizing the drop rate, since the latter is the inverse of the former.
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3. Workers satisfaction ratio is the ratio of the number of workers that acquire

their desired satisfactory reward sj to the total number of workers. The worker’s

satisfaction ratio highlights the novel perspective of MWORA.

4. Workers fairness, which is calculated using Jain’s fairness index [54], denoted

F , and is given by Eq. 3.6, where πj denotes the actual reward obtained by

worker wj, and F ranges from 0 (best case scenario) to 1 (worst case scenario).

The worker’s fairness reflects how fair MWORA is from the worker’s perspective.

F =

(∑n
j=1 πj − sj

)2
n ·
∑n

j=1

(
π2
j − s2j

) (3.6)

5. Total energy consumption of workers, which is the sum of the energy

consumed by each worker due to task execution, as given by Eq. 3.7 [55], where

µj is the onboard CPU capacitance of worker wj, and λ = 2. The total energy

consumption of workers reflects the cost paid for minimizing the drop rate and

satisfying the workers.

∑
j∈W

∑
i∈T

xijµjqiLic
λ−1
ij (3.7)

3.3.1 Simulation Setup

MWORA, ROFA-MC, and ROFA-SC are all implemented using Gurobi optimizer

[9], and since our problem is multi-objective problem Eq. 3.5a is set to have the

first priority and the second is for Eq. 3.5b. Simulations are performed over a

500m× 500m area, where all requesters and workers are uniformly distributed. The

total number of tasks unless otherwise specified, is set to 250, and unless otherwise
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specified, the number of available workers is set to 100. The data size of tasks is

uniformly distributed in the range of [5, 10] bits. Unless otherwise specified, Unless

otherwise specified, the average task computational intensity q is set to 20. The

propagation speed v is set to 120 m/s and the data rate is uniformly distributed in

the range of [15, 30] bits/sec. The maximum computation capability of workers cmax
j

is set in the range of [300, 800] CPU cycles/sec. The price per one CPU cycle that

is specified by workers ranges between [0.1, 0.4]. The factor δ is set to 0.9, whereas

αj ranges between [0.1, 0.4]. The satisfactory profit of workers ranges between [100,

250], and ΩjH and ΩjL are set in the range of [90, 250] and [5, 89], respectively. The

budget is set to 2500. The value of ψ is set to 80%. The deadline of tasks ranges

between [0.5, 10] seconds. The onboard capacitance of all workers µj is set to 10−11

, and λ is set to 2.

Simulations are conducted over 10 rounds to show the effect of worker satisfaction.

Each round is a new time interval during which the SP assigns incoming tasks to

operating workers. The workers that are unsatisfied with their reward leave the

system, so the number of operating workers can decrease between successive rounds.

To demonstrate this effect, we present the first and last rounds of each scheme.

3.3.2 Results and Analysis

We evaluate the performance of MWORA, ROFA-MC, and ROFA-SC over varying

average task computation intensity q, varying number of tasks, varying budget, and

varying number of workers. We conduct four experiments to evaluate the performance

of MWORA. All experiments are repeated 50 times for each instance, and simulation

results are presented at a confidence level=95%. Note that the rendered confidence
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intervals are shown in Figure 3.3(a). Since the confidence intervals are negligible,

they are not explicitly depicted in the other figures for clarity of presentation. In the

legend notation of each experiment, the letter F after the scheme name indicates the

first round, and L indicates the last round.

3.3.2.1 The Impact of Task Intensity

In this experiment, we assess the performance of MWORA, ROFA-MC, and ROFA-SC

over varying average task computation intensity q. Below is a detailed discussion of

the performance results in terms of the average response delay, service capacity, work-

ers satisfaction, fairness, and energy consumption. Note that the performance results

of MWORA, ROFA-MC, and ROFA-SC are depicted in the first round (MWORA-F,

ROFA-MC-F, and ROFA-SC-F) and the last round (MWORA-L, ROFA-MC-L, and

ROFA-SC-L).

1. Average response delay

Figure 3.2(a) shows the effect of varying the average computational intensity q

on the average response delay of MWORA, ROFA-MC, and ROFA-SC. Note that

the average response delay in all schemes increases as q increases. This is due to

the increase in the number of CPU cycles that need to be executed, which increases

the execution delay. In addition, MWORA, ROFA-MC, and ROFA-SC exhibit an

increase in the average response delay between the first and last rounds. This is

because in the last round, fewer workers remain in the service, since all unsatisfied

workers that do not receive their demanded reward unsubscribe from the service,

leaving fewer workers to handle the incoming task requests and thus incurring higher
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(a) Average response delay
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Figure 3.2: Performance results of MWORA, ROFA-MC, and ROFA-SC over varying
task computation intensity q
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response delay.

As shown in Figure 3.2(a), MWORA-F and ROFA-MC-F yield the same aver-

age response delay. This can be attributed to the fact that workers in MWORA

and ROFA-MC dedicate the same amount of computational capability and make

the same resource allocation decisions during the first round, whereas the effect of

workers satisfaction exhibited by MWORA starts to manifest in the next rounds. In

contrast, ROFA-SC-F renders the lowest average response delay, yielding up to a 58%

improvement compared to MWORA-F, and ROFA-SC-F, respectively. This is since

in ROFA-SC, it is assumed that all workers are exploited at their maximum com-

putational capability. Note that in ROFA-SC, all workers have a single level rather

than multitiered computational capabilities. Consequently, workers are assigned a

single task at a time, and each worker executes the assigned task using its maximum

computational capability, thus reducing the delay.

Figure 3.2(a) also depicts the performance of MWORA-L, ROFA-MC-L, and

ROFA-SC-L, which represent the schemes in the last round of operation. Note that

MWORA-L outperforms ROFA-MC-L, with a significant delay reduction of up to

31%. This can be attributed to the fact that MWORA manages to retain the service

of a higher number of workers in the long run. This is since, as opposed to ROFA-MC,

MWORA accounts for the workers’ satisfaction. In contrast, ROFA-SC-L yields the

lowest average delay, with an improvement of 88% and 77% compared to ROFA-MC-

L and MWORA-L, respectively. This is due to the same reasons mentioned above.

However, as illustrated later, this comes at the expense of service capacity, which also

reflects the percentage of requests that are executed within the deadline. Thus, in

terms of satisfying more delay-sensitive tasks, MWORA yields the best results among
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all schemes.

2. Service capacity ratio

We conduct the same experiment to assess the service capacity ratio of MWORA,

ROFA-MC, and ROFA-SC over varying q. As depicted in Figure 3.2(b), the service

capacity decreases in both the first and last rounds of all schemes as q increases. This

is because as q increases, the price of executing the tasks increases, which limits the

number of tasks that can be executed within the budget limit. Note that MWORA-

F and ROFA-MC-F yield the same service capacity. This is since workers offer the

same computational capability for task execution during the first round. In addition,

MWORA-F significantly outperforms ROFA-SC-F, with an up to 28% improvement

in service capacity. The reason is that workers in MWORA have multitiered rather

than single computational capabilities, which increases the number of tasks that they

can perform at a time. In the last round, MWORA outperforms both ROFA-MC and

ROFA-SC, where MWORA-L yields improvements of up to 38% and 44% compared

to ROFA-MC-L and ROFA-SC-L, respectively. This can be attributed to the fact that

MWORA accounts for workers’ satisfaction, which increases the number of satisfied

workers, thus increasing the number of available workers that are willing to execute

more tasks in the long run.

3. Workers satisfaction ratio

Figure 3.2(c) depicts the workers’ satisfaction ratio of MWORA, ROFA-MC, and

ROFA-SC over varying q. Note that the workers’ satisfaction ratio increases as q

increases in both the first and last rounds in all schemes. This is because tasks with

higher computational intensity cost higher than those with lower intensity. Thus,
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workers gain larger rewards when performing tasks with higher computational inten-

sity, which increases the chance of their satisfaction. In the first round, MWORA ren-

ders superior performance compared to ROFA-MC and ROFA-SC, where MWORA-F

yields an improvement of up to 72% and 85% compared to ROFA-MC-F and ROFA-

SC-F, respectively. A similar pattern is also witnessed in the last round, where

MWORA-L yields an improvement of up to 14% and 16% compared to ROFA-MC-L

and ROFA-SC-L, respectively. This is since, as opposed to ROFA-MC and ROFA-

SC, MWORA accounts for the satisfaction of workers and strives to grant them a

certain satisfactory reward. Note that ROFA-SC yields the lowest satisfaction ratio

compared to MWORA and ROFA-MC, since workers in ROFA-SC offer a single level

rather than multitiered computational capabilities. This single level endowment lim-

its the number of tasks that can be executed, which reduces the rewards gained by

workers.

4. Workers fairness

Figure 3.2(d) shows the workers fairness index of MWORA, ROFA-MC, and

ROFA-SC over varying q. As previously mentioned, a lower fairness index (Eq. 3.6)

implies better fairness. Note that the fairness index decreases as q increases in both

the first and last rounds of all schemes. This is because the higher the value of q, the

higher the reward granted to workers, which increases the chance that workers either

receive their satisfactory reward or come close to receiving it, thus ensuring a fair

distribution of the available budget. It can be observed that MWORA significantly

outperforms ROFA-MC and ROFA-SC in both the first and last rounds. In particular,
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MWORA-F yields an improvement of up to 35% and 118% compared to ROFA-MC-

F, and ROFA-SC-F, respectively, whereas MWORA-L yields an improvement of up

to 34% and 114% compared to ROFA-MC-L, and ROFA-SC-L, respectively. This

is since MWORA accounts for workers fairness and strives to reach the satisfactory

reward demanded by each worker. It is worth noting that the leverage gained by

MWORA is more evident compared to ROFA-SC due to the multitiered nature of

MWORA, which enables more tasks to be allocated to workers, thus increasing the

chance of workers-oriented fairness.

5. Total energy consumption

Figure 3.2(e) shows the impact of varying q on the total energy consumption of

workers in MWORA, ROFA-MC, and ROFA-SC. It can be observed that as q in-

creases, the total energy consumption increases in both the first and last rounds of

all schemes. This is because as q increases, the intensity of tasks increases, which

causes the workers to expend more energy during their execution. MWORA-F and

ROFA-MC-F render the same level of energy consumption, since both schemes allo-

cate the same computational capability levels in the first round. In the last round,

MWORA-L yields up to a 91% higher energy consumption than ROFA-MC-L due

to the fact that MWORA-L performs more tasks, since it retains more workers in

the last round than ROFA-MC-L. In contrast, ROFA-SC yields the lowest energy

consumption in both the first and last rounds. In particular, ROFA-SC-F renders an

improvement of up to 87% to MWORA-F and ROFA-MC-F, respectively, whereas

ROFA-SC-L renders an improvement of up to 91% and 87% compared to MWORA-L

and ROFA-MC-L, respectively. This is since ROFA-SC uses a single rather than mul-

titiered computational capabilities, which forces each worker to perform a single task
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at a time, thus reducing the energy consumption. Consequently, it is evident that the

leverage gained by MWORA in terms of service capacity, workers satisfaction, and

fairness comes at the expense of energy consumption.

3.3.2.2 The Impact of the Number of Tasks

In this experiment, we assess the performance of MWORA, ROFA-MC and ROFA-SC

over varying number of tasks. Below is an analysis of the yielded results in terms of

the performance metrics.

1. Average response delay and service capacity ratio

Figure 3.3(a) and Figure 3.3(b) show the effect of varying the number of tasks on

the average response delay and the service capacity ratio, respectively in MWORA,

ROFA-MC, and ROFA-SC. As the number of tasks increases, the average response

delay increases and the service capacity ratio decreases in both the first and last

rounds of MWORA and ROFA-MC. This is because the increase in the number of

tasks that need to be executed prompts the need to solicit the lower rather than

the higher level of the computational capabilities of workers so as to enable mul-

tiple tasks rather than a single task to be executed on workers. As a result, the

service capacity ratio decreases since the chance of executing tasks within the task

deadline becomes lower, since some workers are soliciting the lower computational

capability. In addition, the execution delay increases, which in turn increases the

average response delay. In contrast, ROFA-SC-F renders the same average response

delay as the number of tasks increases. This is since ROFA-SC-F always solicits a

single rather than multitiered computational capabilities, thus enabling only one task

to be executed at a time using the maximum available computational capability of
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Figure 3.3: Performance results of MWORA, ROFA-MC, and ROFA-SC over varying
number of tasks
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workers. Hence, ROFA-SC-F yields the lowest average response delay, with an im-

provement of up to 20% compared to MWORA-F and ROFA-MC-F, respectively. In

addition, MWORA-F renders a higher service capacity ratio, with an improvement of

up to 23% compared to ROFA-SC-F, whereas MWORA-L yields the highest service

capacity ratio, with an increase of up to 33% and 52% compared to ROFA-MC-L

and ROFA-SC-L, respectively. Note that the service capacity ratio of ROFA-SC-F

decreases as the number of tasks increases. This is since the number of executed

tasks remains the same, while the total number of tasks increases, which leads to a

reduction in their ratio.

As shown in Figure 3.3(a) and Figure 3.3(b), MWORA-F and ROFA-MC-F yield

the same average response delay and service capacity ratio. This is since the effect

of workers’ satisfaction that MWORA fosters does not manifest in the first round.

In contrast, it can be observed that in the last round, MWORA significantly outper-

forms ROFA-MC, where MWORA-L yields a reduction in delay of up to 30% and an

increase in the service capacity ratio of up to 33% compared to ROFA-MC-L. This

can be attributed to the fact that MWORA-L succeeds in keeping more workers in

the system, since, as opposed to ROFA-MC-L and ROFA-SC-L, it accounts for their

satisfaction. Note that the higher the number of workers available in the system,

the higher the chance of executing more tasks and the higher the chance of selecting

workers with higher computational capabilities to execute the tasks, thus reducing

the delay. On the other hand, it can be observed that ROFA-SC-L yields the lowest

average response delay, with an improvement of up to 77% and 90% compared to

MWORA-L and ROFA-MC-L, respectively. This is due to the fact that ROFA-SC

uses a single level of the computational capability of workers, which is the maximum
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level.

3. Workers satisfaction ratio and fairness

Figure 3.3(c) and Figure 3.3(d) demonstrate the satisfaction ratio and fairness

of workers, respectively over varying number of tasks in MWORA, ROFA-MC, and

ROFA-SC. It can be observed that as the number of tasks increases, the satisfaction

ratio and fairness in both the first and last rounds of all schemes improve. This is

because the higher the number of available tasks, the higher the compensation that

workers can receive since they can execute more tasks, which increases the chance

of gaining their satisfactory reward or closely approaching it, thus ensuring a high

satisfaction ratio and an increased chance of a fair distribution of the rewards. It

can be observed that MWORA yields the best satisfaction ratio and fairness com-

pared to ROFA-MC and ROFA-SC in both the first and last rounds. In particular,

MWORA-F renders an improvement of up to 48% and 70%, as well as 22% and 61%

compared to ROFA-MC-F and ROFA-SC-F in terms of the satisfaction ratio and fair-

ness, respectively. In addition, MWORA-L renders an improvement of up to 33% and

41%, as well as 36% and 87% compared to ROFA-MC-L and ROFA-SC-L in terms

of the satisfaction ratio and fairness, respectively. This is due to the same previously

mentioned reasons.

5. Total energy consumption

Figure 3.3(e) illustrates the impact of the number of tasks on the total energy

consumption of workers in MWORA, ROFA-MC, and ROFA-SC. It can be observed

that as the number of tasks increases, the total energy consumption increases. This is

because the higher the number of available tasks, the higher the number of executed

tasks by workers, which increases the total energy consumption. Note that MWORA
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yields the highest energy consumption compared to ROFA-MC and ROFA-SC, since

it executes a significantly larger number of tasks. This is due to the same afore-

mentioned reasons. It is also worth noting that ROFA-SC renders the lowest energy

consumption, since it executes the lowest number of tasks. In particular, ROFA-SC-F

renders an improvement of up to 60% compared to MWORA-F and ROFA-MC-F, re-

spectively, and ROFA-SC-L renders an improvement of up to 56% and 47% compared

to MWORA-L and ROFA-MC-L, respectively.

3.3.2.3 The Impact of Budget

In this experiment, we evaluate the performance of MWORA, ROFA-MC and ROFA-

SC over varying budget β. Below is an analysis of the yielded results in terms of the

performance metrics.

1. Average Response Delay and Service Capacity Ratio

As shown in Figure 3.4(a) and Figure 3.4(b) depict the impact of varying the bud-

get on the average response delay and service capacity ratio, respectively, in MWORA,

ROFA-MC, and ROFA-SC. It can be observed that as the budget increases, the av-

erage response delay and service capacity ratio increase in both rounds of MWORA

and ROFA-MC. This is because as the budget increases, it becomes more afford-

able to pay more workers to execute a larger number of tasks. This increases the

chance of soliciting the lower capability level of workers to execute more tasks, while

at the same time affording the higher cost of more capable workers. This increases

the execution delay, thus the response delay, as well as the percentage of tasks that

can be executed within the deadline with respect to the total number of tasks (i.e.,
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Figure 3.4: Performance results of MWORA, ROFA-MC, and ROFA-SC over varying
budget
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service capacity ratio). In contrast, varying the budget has no impact on ROFA-SC

in terms of the average response delay and service capacity ratio. This is since, all

workers in ROFA-SC can only provide a single-level of their computational capability

regardless of the available budget, thus executing a single task at a time using the

maximum computational capability of workers. Thus, ROFA-SC-F yields the lowest

average response delay, with an improvement of up to 56% compared to MWORA-F

and ROFA-MC-F, respectively. In addition, MWORA-F renders a higher service ca-

pacity ratio, with an improvement of up to 25% compared to ROFA-SC-F, whereas

MWORA-L yields the highest service capacity ratio, with an increase of up to 20%

and 35% compared to ROFA-MC-L and ROFA-SC-L, respectively.

As shown in Figure 3.4(a) and Figure 3.4(b), MWORA-F and ROFA-MC-F yield

the same average response delay and service capacity ratio. This is since the effect of

workers’ satisfaction that MWORA fosters does not manifest in the first round. In

contrast, it can be observed that in the last round, MWORA significantly outperforms

ROFA-MC, where MWORA-L yields a reduction in delay of up to 14% compared to

ROFA-MC-L. This can be attributed to the fact that MWORA-L succeeds in keeping

more workers in the system, particularly as the budget increases, since as opposed

to ROFA-MC-L and ROFA-SC-L, MWORA-L accounts for their satisfaction. Note

that the higher the number of available workers in the system, the higher the chance

of executing more tasks and the higher the chance of selecting workers with higher

computational capabilities to execute the tasks, thus reducing the delay and increasing

the service capacity ratio. On the other hand, it can be observed that ROFA-SC-L

yields the lowest average response delay, with an improvement of up to 80% and

86% compared to MWORA-L and ROFA-SC-L, respectively. This is due to the same
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reasons mentioned above.

3. Workers Satisfaction Ratio and Fairness

Figure 3.4(c) and Figure 3.4(d) demonstrate the satisfaction ratio and fairness of

workers, respectively, over varying budget in MWORA, ROFA-MC, and ROFA-SC.

It can be observed that as the budget increases, the satisfaction ratio and fairness in

both the first and last round of MWORA and ROFA-MC improve. This is because

the higher the budget, the higher the reward that workers receive, which increases

the chance of gaining their satisfactory reward or closely approaching it, thus en-

suring a high satisfaction ratio and an increased chance of a fair distribution of the

rewards. In contrast, increasing the budget has no impact on the satisfaction ratio

and fairness in ROFA-SC, since all workers can only execute a single task at a time,

and thus the number of executed tasks remains the same regardless of the budget.

It can be observed that MWORA yields the best satisfaction ratio and fairness com-

pared to ROFA-MC and ROFA-SC in both the first and last rounds. In particular,

MWORA-F renders an improvement of up to 60% and 69%, as well as 21% and 65%

compared to ROFA-MC-F and ROFA-SC-F in terms of the satisfaction ratio and fair-

ness, respectively. In addition, MWORA-L renders an improvement of up to 10% and

18%, as well as 33% and 76% compared to ROFA-MC-L and ROFA-SC-L in terms

of the satisfaction ratio and fairness, respectively. This is due to the same previously

mentioned reasons.

5. Total energy consumption

Figure 3.4(e) illustrates the impact of the budget on the total energy consumption

of workers in MWORA, ROFA-MC, and ROFA-SC. It can be observed that as the
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budget increases, the total energy consumption increases in MWORA and ROFA-

MC. This is because the higher the budget, the higher the number of executed tasks

by workers, which increases the total energy consumption. In contrast, the budget

has no impact on the total energy consumption in both the first and last rounds of

ROFA-SC. This is since it has no impact on the number of executed tasks. Note that

MWORA yields the highest energy consumption compared to ROFA-MC and ROFA-

SC, since it executes a significantly larger number of tasks. This is due to the same

aforementioned reasons. It is also worth noting that ROFA-SC renders the lowest

energy consumption, since it executes the lowest number of tasks. In particular,

ROFA-SC-F renders an improvement of up to 60% compared to MWORA-F and

ROFA-MC-F, respectively, and ROFA-SC-L renders an improvement of up to 62%

and 58% compared to MWORA-L and ROFA-MC-L, respectively.

3.3.2.4 The Impact of the Number of Workers

Finally, we will demonstrate the performance results of MWORA, ROFA-MC and

ROFA-SC over a varying number of workers. Below is an analysis of the yielded

results in terms of the performance metrics.

1. Average Response Delay and Service Capacity Ratio

As shown in Figure 3.5(a) and Figure 3.5(b) depict the impact of varying the num-

ber of workers on the average response delay and service capacity ratio, respectively,

in MWORA, ROFA-MC, and ROFA-SC. It can be observed that as the number of

workers increases, the average response delay and service capacity ratio increase in

both rounds of MWORA and ROFA-MC. This is because as the number of workers
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Figure 3.5: Performance results of MWORA, ROFA-MC, and ROFA-SC over varying
number of workers
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increases, more workers are available to execute a larger number of tasks. This in-

creases the chance of soliciting the lower capability level of workers to execute more

tasks, while at the same time affording the higher cost of more capable workers. This

increases the execution delay, thus the response delay, as well as the percentage of

tasks that can be executed within the deadline with respect to the total number of

tasks (i.e., service capacity ratio). In contrast, ROFA-SC can only provide a single-

level of their computational capability, thus executing a single task at a time using

the maximum computational capability of workers, therefore, the number of executed

tasks is equal to the number of workers. Thus, ROFA-SC-F yields the lowest aver-

age response delay, with an improvement of up to 53% compared to MWORA-F

and ROFA-MC-F, respectively. In addition, MWORA-F renders a higher service ca-

pacity ratio, with an improvement of up to 23% compared to ROFA-SC-F, whereas

MWORA-L yields the highest service capacity ratio, with an increase of up to 33%

and 38% compared to ROFA-MC-L and ROFA-SC-L, respectively.

As shown in Figure 3.5(a) and Figure 3.5(b), MWORA-F and ROFA-MC-F yield

the same average response delay and service capacity ratio. This is since the effect of

workers’ satisfaction that MWORA fosters does not manifest in the first round. In

contrast, it can be observed that in the last round, MWORA significantly outperforms

ROFA-MC, where MWORA-L yields a reduction in delay of up to 25% compared to

ROFA-MC-L. This can be attributed to the fact that MWORA-L succeeds in keeping

more workers in the system, particularly as the number of workers increases, since, as

opposed to ROFA-MC-L and ROFA-SC-L, MWORA-L accounts for their satisfaction.

Note that the higher the number of available workers in the system, the higher the

chance of executing more tasks and the higher the chance of selecting workers with
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higher computational capabilities to execute the tasks, thus reducing the delay and

increasing the service capacity ratio. On the other hand, it can be observed that

ROFA-SC-L yields the lowest average response delay, with an improvement of up to

75% and 82% compared to MWORA-L and ROFA-SC-L, respectively. This is due to

the same reasons mentioned above.

3. Workers satisfaction ratio and fairness

Figure 3.5(c) and Figure 3.5(d) demonstrate the satisfaction ratio and fairness of

workers, respectively, over a varying number of workers in MWORA, ROFA-MC, and

ROFA-SC. As the number of workers increases, the satisfaction ratio and fairness in all

schemes’ first and last rounds decreases. This is because ensuring a high satisfaction

ratio and a fair distribution of the rewards is harder on the SP with the increase in

the number of workers as it results in higher competition. It can be observed that

MWORA yields the best satisfaction ratio and fairness compared to ROFA-MC and

ROFA-SC in both the first and last rounds. In particular, MWORA-F renders an

improvement of up to 53% and 76%, as well as 28% and 78%, compared to ROFA-

MC-F and ROFA-SC-F in terms of the satisfaction ratio and fairness, respectively. In

addition, MWORA-L renders an improvement of up to 22% and 19%, as well as 28%

and 67%, compared to ROFA-MC-L and ROFA-SC-L in terms of the satisfaction ratio

and fairness, respectively. This is due to the same previously mentioned reasons.

5. Total energy consumption

Figure 3.5(e) illustrates the impact of the number of workers on the total energy

consumption of workers in MWORA, ROFA-MC, and ROFA-SC. It can be observed

that as the number of workers increases, the total energy consumption increases.

This is because the higher the number of available workers, the higher the number of



3.3. PERFORMANCE EVALUATION 44

executed tasks by workers, which increases the total energy consumption. Note that

MWORA yields the highest energy consumption compared to ROFA-MC and ROFA-

SC, since it executes a significantly larger number of tasks. This is due to the same

aforementioned reasons. It is also worth noting that ROFA-SC renders the lowest

energy consumption, since it executes the lowest number of tasks. In particular,

ROFA-SC-F renders an improvement of up to 59% compared to MWORA-F and

ROFA-MC-F, respectively, and ROFA-SC-L renders an improvement of up to 76%

and 71% compared to MWORA-L and ROFA-MC-L, respectively.
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Chapter 4

MWORA-Weighted Sum (MWORA-WS)

4.1 Problem Relaxation

We propose the MWORA-Weighted Sum (MWORA-WS) scheme a relaxed version

of MWORA to derive an analytical solution as demonstrated in Section 4.2 using

the Karush–Kuhn–Tucker (KKT) conditions and Lagrangian analysis. MWORA-WS

compares the performance of the relaxed scheme that is constrained by a weight that

sums up to 1 to MWORA.

The objective of MWORA-WS is a weighted sum of minimizing the drop rate

while minimizing the total response delay. The problem is formulated as a weighted

sum single-objective problem with the same binary decision variable as in MWORA.

xij is set to 1 if the task ti is assigned to wj, or, xij is set to otherwise, according

to Eq. 3.4. MWORA-WS will use the same system model and simulation setup for

MWORA (described in Section 3.1 and 3.3.1)

The problem formulation is shown below:

min
xij

k̂

(
|T | −

∑
j∈W

∑
i∈T

xij

)
+ û

(∑
j∈W

∑
i∈T

xijγij

)
(4.1)
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4.2 Analytical Solution

MWORA-WS problem formulation shown in (4.1) is formulated as an ILP problem

that has a single linear objective function and a binary decision variable, which is

xij. The inequality constraints in (3.5c), (3.5d), (3.5f), (3.5g), (3.5h) are all linear

constraints. In order to analytically solve the problem, we simplify it by relaxing

the constraints. We first examine the problem’s convexity in (4.1) by analyzing the

inequality and equality constraints. The only non-convex constraint is the discrete

constraint (3.5e). By removing the discrete constraint (3.5e) and replacing it with

the continuous constraint as shown (4.2a) and (4.2b), thus all inequality constraints

become convex.

∑
j∈Ni

xij > 0 ∀i ∈ T (4.2a)

∑
j∈Ni

xij ≤ 0 ∀i ∈ T (4.2b)

After removing the discrete constraint in (4.1), Now the relaxed problem in (4.1) is

convex, and the analytical solution can be attainable. Note that closed-form solutions

for ILPs are not possible in general. Consequently, using Lagrangian multipliers [11]

and Karush–Kuhn–Tucker (KKT) conditions [10], we aim to obtain a upper bound

for the optimal objective value of xij.

The Lagrangian function of the relaxed program shown in (4.1) is given by Eq.(A.8)

in Appendix A. The Lagrangian multipliers associated with the objective function of

the relaxed program in (4.1), and its constraints are represented by the following

vectors k̂, û, â, b̂, ĉ(1), ĉ(2), d̂, ê, and f̂ , respectively. The upper bound optimal value
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of xij, which is responsible for assigning task ti to worker wj, is shown in (4.3) :

xij =



1−
∑

k ̸=j xik when â > 0

β−
∑

k ̸=i

∑
L ̸=j xkLpkL

pij
when b̂ > 0∑

k ̸=j xik when ĉ(1) > 0∑
k ̸=j xik when ĉ(2) > 0

δcmax
j −

∑
k ̸=j xikcik

cij
when d̂ > 0

ϵi−
∑

k ̸=i

∑
L ̸=j xkLγkL

γij
when ê > 0

ψsj−
∑

k ̸=i xkjPkj

Pij
when f̂ > 0

â+b̂β+δcmax
j +êϵi+f̂ψsj

k̂−ûγij

(4.3)

According to the bounds obtained in (4.3), the closed-form solution is not at-

tainable because the decision variable xij is expressed in terms of other unknown

multipliers. The proof of (4.3) and the complete analytical solution can be found in

Appendix A.

Moreover, we have implemented MWORA-WS using Gurobi optimizer [9] and

compared it with MWORA, and the results will be shown in the following Section

4.3.

4.3 Performance Evaluation

MWORA-WS will use the same five performance metrics used for MWORA (de-

fined in Section 3.3), and the same simulation setup and system parameters used in

MWORA (mentioned in Section 3.3.1). Table 4.1 presents a summary of the simula-

tion parameters. Unless otherwise specified.
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Table 4.1: Simulation Parameters of MWORA and MWORA-WS

Parameter Value
number of tasks 250
computation intensity of tasks on average (qi) 20 cycles/bit
data size of task (Li) [5, 10] bits
number of workers 100
price per one CPU cycle (τj) [0.1, 0.4]
computation capability of workers (cij) [300, 800] cycles/bit
budget (β) 2500

In MWORA-WS, we define the weights k̂, and û supplied to the objective function.

After conducting several experiments varying the weights k̂, and û to sum to 1, and

determining which weights for k̂ and û perform the best based on the five performance

metrics; when k̂ was set to 0.90, and û was set to 0.10, MWORA-WS showed the

best results regarding, service capacity ratio, and workers’ satisfaction ratio, workers

fairness.

4.3.1 Results and Analysis

To compare the performance of MWORA-WS to MWORA, we conducted four ex-

periments; first, we varied the average task computation intensity; next, we varied

the number of tasks, the budget, and lastly, the number of workers. In the exper-

iments legend notation, MWORA will be referenced as MO (Multi-Objective), and

MWORA-WS will be referenced as WS (Weighted Sum), also, in the notation, F after

the scheme name indicates the first round, and L indicates the last round.
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4.3.1.1 The Impact of Task Intensity

Performance results of MWORA versus MWORA-WS over varying computation in-

tensity q; all parameters were the same as listed in Table 4.1.

1. Average response delay

Figure 4.1(a) shows the effect of varying the average computational intensity q

on the average response delay of MWORA and MWORA-WS. Note that workers in

MWORA and MWORA-WS dedicate the same amount of computational capability

and make the same resource allocation decisions during the first round. Both schemes

need to satisfy the workers, the difference being that in MWORA-WS, the objective

function is constrained by weights.

As depicted in Figure 4.1(a), MWORA and MWORA-WS show an upward trend

as the average computational intensity q increases in the first and last rounds. The

increasing value of q increases the average response delay since it accounts for the

time needed to execute a task. MWORA shows a higher average response delay than

MWORA-WS in all experiments in the first round when varying the values of q.

MWORA is optimized and not weighted with specific weights as MWORA-WS. As

a result, MWORA executes more tasks; as shown in Figure 4.1(b), the total delay

and total executed tasks are higher for MWORA than MWORA-WS. Therefore, the

average response delay for MWORA has a slight increase compared to MWORA-WS.

MWORA has up to a 10% increase in an average response delay.

On the other hand, as seen in Figure 4.1(a), MWORA consistently outperforms

MWORA-WS in the last round. MWORA-WS closely approaches the optimal so-

lution rendered by MWORA, yielding a small gap of up to 7% in the last round,

respectively. MWORA-WS has a higher average response delay than MWORA in
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Figure 4.1: Performance results of MWORA and MWORA-WS over varying task computation
intensity q

Note: In this set of figures MWORA is referenced as MO (Multi-Objective), and MWORA-WS is referenced as WS (Weighted-Sum), F is the first round, and L
is the Last round.
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the last round. Even though the workers dedicate the same computational capability,

MWORA will retain a higher number of workers subscribed with the SP in the long

run and, unlike MWORA-WS, is constrained by weights that limit the remaining

number of subscribed workers. Unsatisfied workers who unsubscribe from SP are

usually workers with higher capabilities. As a result, the average response delay in

MWORA-WS in the last round is higher since the remaining workers, compared to

MWORA, have lower computational capabilities to execute tasks.

2. Service capacity ratio

Figure 4.1(b) assess the service capacity ratio of MWORA and MWORA-WS,

As depicted in Figure 4.1(b) the service capacity decreases in both the first and last

rounds for both schemes as q increases, because when the computational intensity

increases. As a result, the price of executing the tasks increases, which limits the

number of tasks that can be executed within the SP budget limit.

MWORA outperforms MWORA-WS in both the first and last rounds since weights

constrain MWORA-WS. Therefore the amount of executed tasks is limited due to the

weights supplied; as a result, MWORA-WS closely approaches the optimal solution

rendered by MWORA, yielding a small gap of up to 13%, in the first round and up to

a 28% in the last round, respectively. MWORA-WS shows a higher gap percentage

difference in the last round because a higher number of workers in MWORA continue

to subscribe with SP compared to MWORA-WS. As a result, MWORA is executing

more tasks.

3. Workers satisfaction ratio

Figure 4.1(c) depicts the workers’ satisfaction ratio of MWORA and MWORA-

WS over varying q. Note that the workers’ satisfaction ratio increases as q increases in
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both schemes’ first and last rounds. This is because the price increases for tasks with

higher computational intensity. Hence, workers are rewarded more when performing

tasks with higher computational intensity, and their satisfaction levels consequently

increase for both MWORA and MWORA-WS in the first and last rounds.

As depicted, MWORA-WS closely approaches the optimal solution rendered by

MWORA, yielding a small gap of up to 13%, in the first round and up to a 15%

in the last round, respectively. MWORA offers superior performance compared to

MWORA-WS because MWORA, in each round, retains more workers operating with

SP than MWORA-WS.

4. Workers fairness

Figure 4.1(d) shows the workers fairness index of MWORA, and MWORA-WS

over varying q. Recall that a lower fairness index implies better fairness in fairness Eq.

3.6. As depicted in Figure 4.1(d), MWORA surpasses MWORA-WS in the achieved

fairness in the first and last rounds, for varying levels of q, since MWORA-WS is

constrained with weights. As a result, workers in MWORA-WS are not executing the

number of tasks needed to render the satisfactory profit needed by workers compared

to MWORA workers. MWORA-WS closely approaches the optimal solution rendered

by MWORA, yielding a small gap of up to 27%, in the first round and up to a 38%

in the last round, respectively.

5. Total energy consumption

Figure 4.1(e) shows the impact of varying q on the total energy consumption of

workers in MWORA, and MWORA-WS. As shown in Figure 4.1(b) The energy con-

sumption increases because the intensity of tasks increases, which causes the workers

to expend more energy during their execution. MWORA-WS shows a lower energy
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consumption for both the first and last rounds, when compared to MWORA since

workers in MWORA-WS are executing a fewer tasks. For both schemes, the last

round shows lower energy consumption than the first round since fewer workers are

available. Also, in the first and last round, MWORA performs more tasks than

MWORA-WS, as shown in Figure 4.1(b), hence, exhibiting higher energy consump-

tion than MWORA-WS. as a result in the first and last round, MWORA yields up

to a 46% and 55% higher energy consumption than MWORA-WS, respectively.

4.3.1.2 The Impact of the Number of Tasks

Performance results of MWORA versus MWORA-WS when varying the number of

tasks. 4.1.

1. Average response delay

As shown in Figure 4.2(a), the first round, both schemes have identical values for

the average response delay when the number of tasks was set to 100, this is because

the number of tasks equals the number of workers. Each worker only takes one task

to gain profit. When we increase the number of tasks in the next experiment, we will

start seeing the difference between the MWORA and MWORA-WS.

For the first round, with the increase in the number of tasks, the average response

delay for both schemes is increased because more tasks are executed. MWORA in the

first round has a higher average delay than MWORA-WS, this is because MWORA

executes more tasks, as shown in Figure 4.2(b). Because of that, the total delay and

the total executed tasks is higher for MWORA than MWORA-WS. This is similar

to what was shown in the previous experiment when varying average task intensity.

Therefore, the average response delay for MWORA has a slight increase compared to
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Figure 4.2: Performance results of MWORA and MWORA-WS over varying number of tasks

Note: In this set of figures MWORA is referenced as MO (Multi-Objective), and MWORA-WS is referenced as WS (Weighted-Sum), F is the first round, and L
is the Last round.



4.3. PERFORMANCE EVALUATION 55

MWORA-WS. MWORA has up to a 8% increase in average response delay.

However, as shown in Figure 4.2(a), MWORA-WS closely approaches the optimal

solution rendered by MWORA, yielding a gap of up to 15% in the last round. The

average response delay in MWORA-WS is greater than in MWORA, this is because,

in the long run, MWORA will retain more workers with higher capabilities subscribed

to the SP compared to MWORA-WS. As a result, MWORA consistently outperforms

MWORA-WS in the last round.

2. Service capacity ratio

As demonstrated in Figure 4.2(b). Similar to Figure 4.2(a), in the first round, both

schemes had identical values when the number of tasks was set to 100 this is because

each task is assigned to one worker and the number of tasks equals the number of the

workers. With the increase in the number of tasks in the next experiment, we will see

MWORA executing more tasks compared to MWORA-WS since in MWORA-WS,

the amount of executed tasks is limited due to the sum of weights supplied. MWORA-

WS closely approaches the optimal solution rendered by MWORA, yielding a small

gap of up to 13%, in the first round and up to a 16% in the last round.

However, as a service capacity ratio percentage, it is decreasing when compared

to the preceding experiment; this is because, as we mentioned in Section 3.3 in the

second point of the performance metrics, service capacity is calculated based on the

number of successfully executed tasks divided by a total number of tasks. Therefore,

as a ratio, the percentage decreases when the number of tasks increases.

3. Workers satisfaction ratio

We evaluate the performance of MWORA and MWORA-WS in terms of workers’

satisfaction ratio in Figure 4.2(c). The workers’ satisfaction ratio increases as the
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number of tasks increase for both MWORA and MWORA-WS in the same round,

this is because more tasks are available for workers to be executed. Therefore, workers

are compensated more when they perform more tasks, and their levels of satisfaction

rise accordingly. It bears repeating that the workers’ satisfaction ratio is calculated

by considering the remaining number of workers in the system at each round. Conse-

quently, in the subsequent round, the satisfaction ratio of workers will be higher than

in the preceding round.

In addition, As depicted, MWORA offers superior performance compared to

MWORA-WS. MWORA-WS closely approaches the optimal solution rendered by

MWORA, yielding a small gap of up to 13%, in the first round and up to a 6% in

the last round, and this is because MWORA in each round retains more workers

operating with the SP than MWORA-WS and executing more tasks compared to

MWORA-WS as shown in Figure 4.2(b).

4. Workers fairness

As seen in Figure 4.2(d) MWORA is superior to MWORA-WS in terms of the

fairness achieved in the first and last rounds, for varying numbers of tasks, because

MWORA-WS is constrained by weights, which prevents its workers from performing

enough tasks to generate as much profit as their MWORA counterparts. MWORA-

WS closely approaches the optimal solution rendered by MWORA, yielding a small

gap of up to 22%, in the first round and up to a 29% in the last round. Remember

that in fairness Eq. 3.6, the lower the value, the fairer the system.

5. Total energy consumption

We study the impact of the total energy consumed by the workers in Figure 4.2(e).
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MWORA and MWORA-WS show a higher energy consumption than in the preced-

ing experiment when increasing the number of tasks as both schemes are executing

more tasks, as shown in Figure 4.2(b). However, MWORA-WS shows lower energy

consumption for both the first and last rounds since workers in MWORA-WS are

executing a lower number of tasks, as shown in Figure 4.2(b) compared to MWORA.

Except for the first round when the number of tasks was set to 100. MWORA and

MWORA-WS show identical energy consumption since they execute the same number

of tasks.

Moreover, the last round shows lower energy consumption for both schemes com-

pared to the first round since fewer workers are available for both schemes than in the

first round. Also, in the first and last rounds, MWORA performs more tasks than

MWORA-WS; as a result, MWORA exhibits a higher energy consumption compared

to MWORA-WS. MWORA yields up to a 17% and 34% higher energy consumption

compared to MWORA-WS in the first and last rounds, respectively.

4.3.1.3 The Impact of Budget

Performance results of MWORA versus MWORA-WS when varying the budget β

that the SP uses to recruit available workers.

1. Average response delay

As shown in Figure 4.3(a), the first round, both schemes have identical values for

the average response delay when the budget was set to 1500 since this budget was

enough to execute 100 tasks, as shown in Figure 4.3(b) only 40% of the tasks were

executed from a total of 250 tasks, this is because the number of tasks equals the

number of workers. In the final round MWORA has a higher average delay since
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Figure 4.3: Performance results of MWORA and MWORA-WS over varying budget

Note: In this set of figures MWORA is referenced as MO (Multi-Objective), and MWORA-WS is referenced as WS (Weighted-Sum), F is the first round, and L
is the Last round.
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MWORA executes more tasks, as shown in Figure 4.3(b). Consequently, the total

delay of MWORA and the total executed tasks is higher for MWORA than MWORA-

WS, similar to the behavior in the previous experiments when the number of tasks

and task intensity were varied. Therefore, the average response delay for MWORA

increased up to 6% compared to MWORA-WS.

However, Figure 4.3(a) shows that MWORA consistently outperforms MWORA-

WS in the last round. For the last round, the average response delay in MWORA-WS

is higher than in MWORA. This is because, in the long run, MWORA will retain more

workers with higher capabilities subscribed to the SP than MWORA-WS. MWORA-

WS closely approaches the optimal solution rendered by MWORA, yielding a small

gap of up to a 9% in the last round.

2. Service capacity ratio

As depicted in Figure 4.3(b). Similar to Figure 4.3(a), in the first round, both

schemes had identical values when the budget was set to 1500. This amount was

enough to execute 40% (100) of the available tasks. Given there were 100 workers,

each worker was assigned one task. With the increase in the budget in the next

experiment, we will see MWORA is executing more tasks compared to MWORA-WS

since in MWORA-WS amount of executed tasks is limited due to the sum of weights

supplied.

MWORA-WS closely approaches the optimal solution rendered by MWORA,

yielding a small gap of up to 13%, in the first round and up to a 22% in the

last round. In contrast, MWORA surpasses MWORA-WS in the last round since

MWORA continues to operate with the SP with more workers; consequently, more

tasks are executed.
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3. Workers satisfaction ratio

We evaluate the performance of MWORA and MWORA-WS in terms of workers’

satisfaction ratio in Figure 4.3(c). The workers’ satisfaction ratio increases as the

budget increase for both MWORA and MWORA-WS in the same round, and this

is because more budget is available for workers to execute more tasks. Therefore,

workers are compensated more when they perform more tasks, and their levels of

satisfaction rise accordingly.

In addition, as depicted in Figure 4.3(c), MWORA-WS closely approaches the

optimal solution rendered by MWORA, yielding a small gap of up to 13%, in the

first round and up to a 8% in the last round, and this is because MWORA in each

round retains more workers operating with SP than MWORA-WS and executing

more tasks compared to MWORA-WS as shown in Figure 4.3(b). It bears repeating

that the workers’ satisfaction ratio is calculated by considering the remaining number

of workers in the system at each round. Consequently, in the subsequent round, the

satisfaction ratio of workers will be higher than in the preceding round of the same

scheme.

4. Workers fairness

As seen in Figure 4.3(d), which shows that MWORA is superior to MWORA-WS

in terms of the fairness achieved in the first and last rounds when varying budget

because MWORA-WS is constrained by weights, which prevents its workers from

performing sufficient tasks to generate as much profit as their MWORA counterparts.

MWORA-WS closely approaches the optimal solution rendered by MWORA, yielding

a small gap of up to 5%, in the first round and up to a 16% in the last round. We

observe that the gap between the first and last rounds of each scheme decreases as
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the budget increases because, as mentioned before, more workers are subscribed to

the SP for both schemes in the last round.

Moreover, in the last round MWORA and MWORA-WS display identical values

in the first round when the budget is set to 1,500, as shown in Figure 4.3(b), and this

is because both schemes execute the same number of tasks.

5. Total energy consumption

We study the impact of the total energy consumed by the workers. As shown

in Figure 4.3(e), MWORA and MWORA-WS consume more energy as the budget

increases because they are executing more tasks. As shown in Figure 4.3(b), however,

MWORA-WS has lower energy consumption for both the first and last rounds because

workers in MWORA-WS are executing fewer tasks. In the first experiment, when the

budget was only 1500, MWORA and MWORA-WS executed the same number of

tasks. As a result that their energy consumption is identical.

Moreover, for both schemes, energy consumption is lower in the last round com-

pared to the first round, as there are fewer available workers in the last round, so

executing a fewer number of tasks. MWORA exhibits higher energy consumption

than MWORA-WS because it executes more tasks in the last round compared to

MWORA-WS, as shown in Figure 4.3(b). MWORA yields up to a 18% and 34%

higher energy consumption compared to MWORA-WS in the first and last round,

respectively.

4.3.1.4 The Impact of the Number of Workers

Finally, Performance results of MWORA versus MWORA-WS when varying the num-

ber of workers.



4.3. PERFORMANCE EVALUATION 62

60 80 100 120
Number  f W rkers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er
ag

e 
Re

sp
 n

se
 D
el
ay
 

 (s
ec
)

MO−F
WS−F
MO−L
WS−L

(a) Average response delay

60 80 100 120
Number of Workers

0

20

40

60

80

100

Se
rv

ice
 C

ap
ac

ity
 R

at
io

 (%
)

MO−F
WS−F
MO−L
WS−L

(b) Service capacity ratio

60 80 100 120
Number of Workers

0

20

40

60

80

100

Sa
tis
fa
ct
io
n 
Ra
tio

 (%
)

MO F
WS F
MO L
WS L

(c) Workers satisfaction ratio

60 80 100 120
Number of Workers

0.0

0.2

0.4

0.6

0.8

1.0

Fa
irn

es
s

MO−F
WS−F
MO−L
WS−L

(d) Workers fairness

60 80 100 120
Number of Workers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

To
ta
l E
ne
rg
y 
Co

ns
um

 t
io
n 

 (μ
jμ

MO(F
WS(F
MO(L
WS(L

(e) Total energy consumption of workers

Figure 4.4: Performance results of MWORA and MWORA-WS over varying number of workers

Note: In this set of figures MWORA is referenced as MO (Multi-Objective), and MWORA-WS is referenced as WS (Weighted-Sum), F is the first round, and L
is the Last round.
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1. Average response delay

As shown in Figure 4.4(a), for the first round, with the increase in the number of

workers, the average response delay for both schemes is decreased as more tasks are

executed since more workers are available consequently, the total delay increases as

the number of executed tasks increases, and the delay decreases.

However, in the final round MWORA has a higher average delay than MWORA-

WS, and this is because MWORA executes more tasks, as shown in Figure 4.4(b).

Because of that, the total delay of MWORA and the total executed tasks is higher

for MWORA than MWORA-WS in the same experiment. Therefore, the average re-

sponse delay for MWORA has a slight increase compared to MWORA-WS. MWORA

has up to a 16% increase in the average response delay.

Moreover, as shown in Figure 4.4(a), MWORA consistently outperforms MWORA-

WS in the last round. For the last round results, the average response delay in

MWORA-WS is greater than in MWORA, this is because, in the long run, MWORA

will retain more workers with higher capabilities subscribed with the SP compared

to MWORA-WS. MWORA-WS closely approaches the optimal solution rendered by

MWORA, yielding a small gap of up to a 20% in the last round.

2. Service capacity ratio

As illustrated in Figure 4.4(b). When increasing the number of workers, the service

capacity ratio increases compared to the preceding experiment since more workers are

available, therefore, more tasks are executed from the total available tasks. We will

see MWORA executing more tasks than MWORA-WS in each experiment since the

MWORA-WS amount of executed tasks is limited due to the sum of weights supplied.

MWORA-WS closely approaches the optimal solution rendered by MWORA, yielding
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a small gap of up to 20%, in the first round and up to a 44% in the last round.

3. Workers satisfaction ratio

We evaluate the performance of MWORA and MWORA-WS in terms of work-

ers’ satisfaction ratio in Figure 4.4(c). The workers’ satisfaction ratio decreases as the

number of workers increases for both MWORA and MWORA-WS in the same round,

this is because the SP cannot easily satisfy all the workers from the preceding exper-

iment in addition to the new workers in the current experiment. It bears repeating

that the workers’ satisfaction ratio is calculated by considering the remaining number

of workers in the system at each round. Consequently, in the subsequent round, the

satisfaction ratio of workers will be higher than in the preceding round.

As depicted in Figure 4.4(c), MWORA offers superior performance in the first

round compared to MWORA-WS. MWORA-WS closely approaches the optimal so-

lution rendered by MWORA, yielding a small gap of up to 19%, in the first round

and up to a 4% in the last round compared to MWORA-WS this is because MWORA

in each round retains more workers operating with the SP than MWORA-WS and is

executing more tasks compared to MWORA-WS as shown in Figure 4.4(b).

4. Workers fairness

As seen in Figure 4.4(d) which shows that MWORA is superior to MWORA-

WS in terms of the fairness achieved in the first and last rounds, when varying the

numbers of workers, because MWORA-WS is constrained by weights, which prevents

its workers from performing enough tasks to generate as much profit as their MWORA

counterparts. But as the number of workers increases, we observe an increase in the

fairness value (recall that, according to the Jain fairness equation, the lower the

value, the fairer the system). Indicating that the SP was not sufficiently fair to the
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workers since the SP budget is insufficient to satisfy all workers. MWORA-WS closely

approaches the optimal solution rendered by MWORA, yielding a small gap of up to

21%, in the first round and up to a 19% in the last round.

5. Total energy consumption

The impact of the total energy consumed by the workers is illustrated in Fig-

ure 4.4(e). MWORA and MWORA-WS show a higher energy consumption than in

the preceding experiment when increasing the number of workers as both MWORA

and MWORA-WS are executing more tasks, as shown in Figure 4.4(b). However,

MWORA-WS shows lower energy consumption for both the first and last rounds

since workers in MWORA-WS are executing a less tasks, compared to MWORA as

shown in Figure 4.4(b).

In addition, the last round of both schemes exhibits lower energy consumption

than the first round of each scheme, as fewer workers are available in the final round of

each scheme than in the first round. Furthermore, MWORA performs more tasks than

MWORA-WS in the first and last rounds. As a result, MWORA has a higher energy

consumption than MWORA-WS. MWORA yields up to a 16% and 13% higher energy

consumption compared to MWORA-WS in the first and last round, respectively.
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Chapter 5

Conclusion and Future Work

5.1 Summary and Conclusion

This thesis proposes the Multitiered Worker-oriented Resource Allocation (MWORA)

scheme. MWORA utilizes the abundant yet underutilized computational resources

of EEDs. In contrast to existing baseline resource allocation schemes, MWORA con-

siders that EEDs are user-owned devices and are subject to dynamic user access

behavior, which can impact their computational capabilities and introduce a human

factor related to preserving the user’s Quality of Service (QoS). To address this issue,

MWORA fosters multitiered computational capabilities granted by workers, compli-

ant with what the user is willing to sacrifice based on the corresponding reward of

the offloaded task. In addition, MWORA achieves fair resource allocation from the

worker’s perspective.

Maintaining the demanded profit encourages workers to remain in the system and

recurrently donate their computational services, which can significantly improve the

QoS overall. Extensive simulations have shown that MWORA achieves significant im-

provements compared to other baseline resource allocation schemes regarding average
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response delay, service capacity, worker satisfaction ratio, and fairness.

Moreover, we have compared MWORA, the multi-objective scheme to MWORA-

Weighted Sum (MWORA-WS). Simulation results have shown that in the long term,

MWORA-WS closely approaches the optimal solution rendered by MWORA, yield-

ing a small gap of up to 7%, 16%, 8%, 16%, and 13% in terms of average response

delay, service capacity ratio, worker satisfaction ratio, fairness, and total energy con-

sumption, respectively.

5.2 Future Work

Future work could include implementing MWORA in a distributed architecture in-

stead of a centralized architecture and using game theory to solve the resource allo-

cation problem. In game theory, each entity is treated as a player who would allocate

the resources. In addition, since MWORA uses binary offloading, and matching the-

ory works with binary offloading, using matching theory to study the relation between

users and service providers would be novel research in resource allocation. In addition,

a challenge that will face MWORA in implementing it in practice can we trust all the

information provided by the workers regarding their computational capabilities. To

address this challenge, many research efforts are investigating benchmark techniques

to asses the worker’s current state and capabilities.
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Appendix A

KKT and Lagrangian Analysis of the ILP Problem

Applying KKT conditions to the constraints in (3.5c), (3.5d), (3.5f), (3.5g), (3.5h),

(4.2a), (4.2b) and solving each one with respect to xij results in having the following

set of equations:

â

(∑
j∈ω

xij − 1

)
= 0 ∀i ∈ T and ∀j ∈ W (A.1a)

â
∑

xij = â (A.1b)

xij = 1−
∑
k ̸=j

xik when â > 0 (A.1c)

b̂

(∑
j∈ω

∑
i∈T

xijpij − β

)
= 0 ∀i ∈ T and ∀j ∈ W (A.2a)

b̂
∑
j∈ω

∑
i∈T

xijpij = b̂β (A.2b)

xij =
β −

∑
k ̸=i
∑

L̸=j xkLpkL

pij
when b̂ > 0 (A.2c)
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ĉ(1)

(∑
j∈Ni

xij = 0

)
∀i ∈ T (A.3a)

xij =
∑
k ̸=j

xik when ĉ(1) > 0 (A.3b)

ĉ(2)

(∑
j∈Ni

xij = 0

)
∀i ∈ T (A.4a)

xij =
∑
k ̸=j

xik when ĉ(2) > 0 (A.4b)

d̂

(∑
i∈T

xijcij − δcmax
j

)
= 0 ∀j ∈ W (A.5a)

d̂

(∑
i∈T

xijcij

)
= d̂δcmax

j (A.5b)

xij =
δcmax
j −

∑
k ̸=j xikcik

cij
when d̂ > 0 (A.5c)

ê

(∑
j∈ω

∑
i∈T

xijγij − ϵi

)
= 0 (A.6a)

ê
∑
j∈ω

∑
i∈T

xijγij = êϵi (A.6b)

xij =
ϵi −

∑
k ̸=i
∑

L̸=j xkLγkL

γij
when ê > 0 (A.6c)
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f̂

(
ψsj −

∑
i∈T

xijpij

)
= 0 ∀j ∈ W (A.7a)

f̂
∑
i∈T

xijpij = f̂ψsj (A.7b)

xij =
ψsj −

∑
k ̸=i xkjPkj

Pij
when f̂ > 0 (A.7c)

The Lagrangian function associated with the relaxed program in 4.1 is given by

the following Eq.(A.8):

L(k̂, û, â, b̂, ĉ(1), ĉ(2), d̂, ê, f̂) =

k̂

(
|T | −

∑
j∈W∈

∑
i∈T

xij

)
+ û

(∑
j∈W∈

∑
i∈T

xijγij

)
+

â

(∑
j∈W

xij − 1

)
+

b̂

(∑
j∈W

∑
i∈T

xijpij − β

)
+

ĉ(1)

(∑
j∈Ni

xij

)
+ ĉ(2)

(∑
j∈Ni

xij

)
+

d̂

(∑
i∈T

xijcij − δcmax
j

)
+

ê

(∑
j∈W

∑
i∈T

xijγij − ϵi

)
+

f̂

(
ψsj −

∑
i∈T

xijPij

)

(A.8)
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Solving the Lagrangian function in (A.8) to get the gradient of L with respect to

xij at the optimal point :

∆L
∆xij

= −k̂ + ûγij + â+ b̂Pij + ĉ(1) + ĉ(2) + d̂cij + êγij − f̂Pij (A.9)

Multiplying both sides of Eq.(A.9) by xij we get:

−k̂xij + ûxijγij + âxij + b̂xijpij+

ĉ(1)xij + ĉ(2)xij + d̂xijcij + êxijγij − f̂xijPij = 0

(A.10)

using Eqs.(A.1b),(A.2b),(A.3b),(A.4b),(A.5b),(A.6b),(A.7b) in Eq.(A.10) we get:

−k̂xij + ûxijγij + â+ b̂β + δcmax
j + êϵi + f̂ψsj = 0 (A.11)

solving Eq.(A.11) with respect to xij we get the following Eq.(A.12) which shows

the upper bound of xij.

xij =
â+ b̂β + δcmax

j + êϵi + f̂ψsj

k̂ − ûγij
(A.12)

upper bound values for xij shown in Eq.(4.3) are obtained from

Eqs.(A.1c),(A.2c),(A.3b),(A.4b),(A.5c),(A.6c),(A.7c) and (A.12)
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