
Decentralized Data Allocation via Local
Benchmarking for Parallelized Mobile Edge

Learning
Duncan J. Mays, Sara A. Elsayed, Hossam S. Hassanein

School of Computing, Queen’s University, Kingston, ON, Canada
duncan.mays@queensu.ca, selsayed@cs.queensu.ca, hossam@cs.queensu.ca

Abstract—Multi-Access Edge Computing (MEC) has emerged
as a computing paradigm that can facilitate the use of Mobile
Edge Learning (MEL), where Machine Learning (ML) models
are processed at the edge. In MEL, it is important to address
system heterogeneity in a way that minimizes staleness to
improve learning accuracy. To do so, a centralized data allocation
approach is typically used. However, this approach tends to
overlook the privacy of learners, since learners’ capabilities are
assumed to be known beforehand by the orchestrator. In this
context, we propose the Data Allocation via Benchmarking (DAB)
scheme. DAB is a decentralized data allocation scheme that
eliminates staleness and achieves a certain QoS while preserving
the privacy of learners. DAB does not allow any information
about the learners to be known to the orchestrator. Instead, each
learner estimates the upper bound on the amount of data that it
can train such that a certain training deadline is not exceeded.
In addition, DAB proposes a novel method to enable each
learner to accurately estimate its own hardware characteristics
via benchmarking. Extensive performance evaluations on a real
testing environment have shown that DAB can outperform the
centralized data allocation scheme by up to 12% and 26% in
terms of loss and prediction accuracy, respectively. Performance
evaluations also show that the proposed benchmarking scheme
yields an 83% reduction in benchmarking error compared to a
prominent baseline scheme.

Index Terms—Distributed Learning, Federated learning, Par-
allel Learning, Resource Allocation, Mobile Edge Learning, Edge
Computing

I. INTRODUCTION

With the proliferation of Internet of Things (IoT), it is
expected that by 2027, 41 billion IoT devices will come online,
generating an additional 800 zettabytes of data [1] [2]. The
time-sensitive nature of such data is expected to force 90%
of analytics to be performed at the edge to avoid latency of
transmission to remote data centers in cloud computing [3].
MEC has emerged as a computing paradigm that can enable
data processing at the edge (i.e., edge processing) [4]. ML is
one example of such edge processing [5].

Performing ML in a distributed manner, which is referred to
as Distributed Learning (DL), has gained significant momen-
tum lately [5]. In particular, MEL, which enables ML models
to be collaboratively trained on a collection of resource-
constrained wireless edge devices, has been capturing the

attention of the research community [6]. This can be attributed
to the ongoing and substantial increase in the number of edge
devices (i.e., learners). Despite being resource-constrained
individually, the collective power of such devices can be
significantly profuse. The integration of these abundant yet
underutilized computational resources with MEL provides a
promising edge learning paradigm for a broad range of IoT
applications [5] [6].

MEL can be categorized into two categories; Parallelized
Learning (PL) and Federated Learning (FL) [5] [6]. In PL,
a global orchestrator transmits randomly picked subsets of
data to each learner, whereas in FL, the learners train on
locally stored datasets [5]. PL is used when the orchestrator
lacks computational resources to train an effective model, and
thus chooses to distribute the workload to a set of distributed
learners [6]. In FL, the learners collect their own data and
can take advantage of models trained on a larger dataset
while keeping their own data private [6]. Both PL and FL
involve a set of distributed learners, where each learner trains a
model independently and in parallel, and then the orchestrator
performs an aggregation process, by which these models are
turned into a single, more generalizable model [7] [8].

One of the major challenging issues in PL and FL is
system heterogeneity [9], as learners have varying computa-
tion and communication capabilities. In order to utilize such
heterogeneous devices, any workload distribution system must
have a way to determine the capabilities of these devices,
whether through prior knowledge of hardware specifications,
benchmarking or usage monitoring [10] [11]. Another aspect
is that failing to address system heterogeneity can limit DL to
the performance of its weakest learner [6] [13]. To resolve this
issue, research efforts have contemplated changing the size of
the learners’ local models, allocating different amounts of data
to each learner, and allowing learners to iterate over their local
data a variable number of iterations [6] [7]. However existing
schemes known to the authors assume that the learners’ com-
putation and communication capabilities are already known to
the orchestrator or that the learners are willing to share this
information with the latter [6] [9] [13]. In contrast, scenarios

978-1-6654-6749-0/22/$31.00 ©2022 IEEE 500

20
22

 In
te

rn
at

io
na

l W
ire

le
ss

 C
om

m
un

ic
at

io
ns

 a
nd

 M
ob

ile
 C

om
pu

tin
g

(IW
CM

C)
 |

 9
78

-1
-6

65
4-

67
49

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IW

CM
C5

51
13

.2
02

2.
98

24
96

7

Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:36:26 UTC from IEEE Xplore. Restrictions apply.

where learners are reluctant to share such information due to
privacy concerns are mostly overlooked.

In this paper, we strive to resolve the aforementioned
issues by proposing the DAB scheme. DAB addresses system
heterogeneity in PL by varying the amount of data allocated to
each learner based on their computation and communication
capabilities. It strives to eliminate staleness while preserving
the privacy of learners by considering the learners’ hardware
characteristics as private data that cannot be shared with the
orchestrator. To do so, DAB introduces a decentralized data
allocation approach, where each learner determines the upper
bound on the amount of data that it can process such that a
certain training time threshold (i.e., deadline) is not exceeded.

In order to determine the aforementioned upper bound, DAB
proposes a new benchmarking scheme, referred to as Subset
Benchmarking (SB), which enables each learner to locally
estimate its own computational capability. Note that most
existing benchmarking schemes in ML strive to characterize
learners based on the number of floating point operations that
they can execute every second [14]. In contrast, the proposed
SB scheme strives to accurately estimate the rate at which each
learner can train a given model.

To the best of our knowledge, DAB is the first decentral-
ized data allocation scheme in PL that eliminates staleness
while preserving the learners’ privacy. In addition, SB is a
new benchmarking scheme that strives to accurately estimate
the rate at which a learner is able to train a given model
in PL. Finally, in contrast to simulation-based performance
evaluations, all tests and evaluations in DAB are conducted
on a real system composed of heterogeneous and distributed
devices.

The remainder of the paper is organized as follows. Section
II highlights some of the related work. Section III provides a
detailed description of the proposed scheme (DAB). Section
IV presents the performance evaluation and results. Section V
summarizes our conclusions and future work.

II. RELATED WORK

In this section, we provide an overview of some of the
related work in distributed learning, as well as benchmarking.

A. Distributed Learning

The issue of system heterogeneity in DL (i.e., FL and PL)
has been investigated in various works [6] [13] [15]. To resolve
the issue of system heterogeneity, existing research efforts
tend to change the size of the workload assigned to learners
based on their capabilities, so that all learners can complete
their task at the same time [13] [15]. To do that, one of
the following three approaches is adopted: 1) changing the
number of learning iterations that each learner performs [16],
2) changing the size of the model given to each learner [13],
and 3) changing the amount of data allocated to each learner
[17] [18].

In [16], learners perform a different number of local updates
in each global communication cycle. However this approach
tends to result in stale updates, which can affect the training
accuracy [15]. Note that staleness is a metric that can be
applied to two parameter updates from different learners,
and that is meant to give some indication of the redundant
information provided by both updates [6]. Some works have
shown the benefit of allowing some staleness as a trade-off
for better utilizing powerful learners with fast communication
links [15] [16].

HeteroFL [13] deals with system heterogeneity by sending
models of different sizes to learners with different capabilities.
The orchestrator prunes the central model into different sizes
using lottery ticket methods from [19]. These sub-models are
sent to the learners. Upon global aggregation, the orchestrator
expands all sub-models into their original size, and then
aggregates them as normal. This method is resource-intensive,
since the orchestrator must distill the model into parameter
sets of different sizes.

In [17] and [18], significant improvements are yielded
by changing the amount of data that is allocated to each
learner. These methods are not computationally expensive
for the orchestrator. In addition, they have the potential of
eliminating staleness. However, most existing schemes that
vary the amount of data allocated to each learner tend to
assume that the orchestrator has a priori knowledge of the
compute and communication characteristics of all the learners
it recruits [6] [17] [18]. Despite facilitating centralized data
allocation, which leads to more informed decisions, such
schemes also tend to overlook the need for decentralized
data allocation to preserve learners’ privacy pertaining to their
device characteristics.

In this work, we vary the amount of data allocated to
each learner while fixing the number of iterations in order
to eliminate staleness. In contrast to existing schemes, we
propose a decentralized data allocation policy where learn-
ers’ privacy is paramount. Learners’ privacy is preserved by
keeping any information pertaining to its characteristics local
to the learner, rather than transmitting it to the orchestrator. In
particular, learners only communicate with the orchestrator to
download data and return their trained parameters. In addition,
compute characteristics are obtained via benchmarking. In
contrast to most existing schemes, performance evaluation is
conducted on real edge computing environment rather than
being simulation-based.

B. Benchmarking

The number of Floating Point Operations Per Second
(FLOPS) that a machine is capable of has been used to
characterize the training ability of a given hardware [14]. The
FLOPS-based method, which is used to predict the runtimes
of deep learning workloads, works by running the desired
workload on a reference GPU, and then scaling the runtime
by the ratios of the peak FLOPS of the reference and target

501

Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:36:26 UTC from IEEE Xplore. Restrictions apply.

GPU. However, this method of performance modeling has
been shown to be inaccurate [11].

The rate at which GPUs can perform backpropagation
on Artificial Neural Networks (ANNs) is known to have a
complicated relationship with esoteric hardware characteristics
[20]. The present state-of-the-art in predictive performance
modeling for deep learning is Habitat [11], which works
exclusively with pytorch modules on CUDA-enabled GPUs.
Habitat relies on information about hardware utilization and
the amount of time each operation takes. It obtains this in-
formation by monkey-patching system calls, and using CUDA
events [21]. While implementing Habitat on most systems is
theoretically possible, doing so can take many work hours
and require skilled developers. Our work uses a benchmarking
paradigm that is simple, and that strives to accurately predict
the training rate of static models on almost any runtime.

III. DATA ALLOCATION VIA BENCHMARKING (DAB)
In this section, we present the system model, the proposed

SB scheme, and the procedure used to calculate the upper
bound at each learner.

A. System Model

Consider a set of n learners that are recruited by the
orchestrator in exchange of some incentives, denoted W =
{w1, w2, ..., wn}. Upon recruitment, each learner wk ∈ W
independently runs two benchmarks, namely ck and bk. The
benchmark ck represents the compute power of learner wk,
which is the rate at which wk can train the model in data
samples per second. The benchmark bk represents the down-
load bandwidth of learner wk, which is the bandwidth of the
network connection that the learner has with the orchestrator
in bytes per second. Given ck and bk, the learners then
calculate the maximum number of data shards ak that they
can download and train for µ iterations before a given deadline
D is reached. Similarly with other works, we assume that the
channel is perfectly reciprocal within one global cycle [6]. The
global update cycle of DAB operates as follows:

1) The orchestrator sends the training deadline D to each
learner.

2) Each learner wk runs benchmarks to obtain ck and bk.
3) Each learner wk determines the upper bound ak on

the amount of data that it can download based on the
estimated values of ck and bk.

4) Each learner wk downloads ak data shards, as well as
the model parameters from the orchestrator.

5) Each learner wk executes µ gradient updates on its local
parameters.

6) Each learner wk uploads its parameters to the orchestra-
tor.

7) The orchestrator averages all parameters, and steps 4-7
are repeated until convergence.

The time that a learner wk takes to download the data
and the model parameters, performs learning updates, and

Algorithm 1 : DAB at Learners
1: Input:
2: Number of data shards used in the benchmark n
3: Dummy model used in the benchmark dummy model
4: Training deadline D
5: Global update index G
6:
7: data allocation(dummy model, n, D)
8: Begin
9: tsd←curent time // tsd is the download start time

10: download n & record ted // ted is the download end time
11: Td = ted −t

s
d // Td is the download time

12: bk = n/Td // bk of learner wk , ∀wk ∈W
13: tst←curent time // tst is the training start time
14: train dummy model on n data shards & record tet
15: Tt = tet −tst // Tt is the training time
16: ck = n/Tt // ck of learner wk , ∀wk ∈W
17: numb shards= ak // Eq. 5
18: for all g ∈ G do // each iteration in G
19: download numb shards
20: download the most recent set of parameters from the orchestrator ρ
21: for all i ∈ µ do // each iteration in µ
22: train the client model on the downloaded data using ρ
23: send parameters back to the orchestrator to be aggregated
24: return training parameters
25: End

uploads the parameters is represented by ηk. The time for the
orchestrator to perform an aggregation is negligible. For any
learner wk, ηk is bounded above by the global deadline D.

B. Subset Benchmarking (SB)

As demonstrated in Algorithm 1, to estimate the communi-
cation capability of devices in SB, each learner wk downloads
a predetermined number, n, of randomly selected data shards.
Given the amount of time it takes to download the data shards,
the learner can then infer its download speed bk (lines 9-12).
To estimate the compute capability of devices, each learner wk
trains a dummy model on this training data while measuring
the rate at which gradient updates are performed to estimate
ck (lines 13-16). It is important that this dummy model has
a matching architecture to the network being trained, but that
the parameters are kept separate. We call our benchmarking
method subset benchmarking since this task is meant to
represent a subset of the training task.

SB exploits the iterative nature of backpropagation, where
training a neural network is essentially repeating the same
process for each batch in an epoch, and for every epoch
until convergence. Thus, we benchmark learners by running
a subset of the learning task on the learner, and extrapolating
the runtime to the whole workload.

C. Calculating the Upper Bound

Once a learner wk estimates its two benchmarks, namely ck
and bk, it calculates the upper bound on the amount of data
it can train within the deadline D. To determine this bound,
each learner wk first estimates the amount of time it takes to
download the model parameters and the training data, which
is denoted αk and is given by Eq. 1, where Ωm represents the

502

Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:36:26 UTC from IEEE Xplore. Restrictions apply.

TABLE I
HARDWARE CHARACTERISTICS OF THE TESTBED DEVICES

Device Clock Speed Cores Memory Network
2070 Super 1605 MHz 2560 8 GB Ethernet
Jetson Nano 920 MHz 128 2 GB Ethernet

Pi1 1.4 GHz 4 512 MB WiFi
Pi2 1.8 GHz 4 4 GB WiFi
Pi3 1.5 GHz 4 4 GB WiFi

size of the model parameters in bytes, Ωd represents the size
of each data shard in bytes.

αk =
Ωm + Ωdak

bk
(1)

Each learner wk then estimates the amount of time it takes
to train the model on ak data samples for µ iterations, which
is denoted βk, and is given by Eq. 2.

βk =
µak
ck

(2)

The time that each learner wk takes to upload its data,
denoted γk, is then estimated as given by Eq. 3.

γk =
Ωm
bk

(3)

The total training time that a learner wk takes is the sum
of the time it takes to download the model parameters and
the training data, train the model on ak data samples for
µ iterations, and upload its data. This total training time is
denoted as ηk, and is the sum of αk, βk, and γk, as given by
Eq. 4

ηk = αk + βk + γk =
Ωm + Ωdak

bk
+
µak
ck

+
Ωm
bk

(4)

Each learner is required to finish µ training iterations before
a certain training deadline D. Thus, the total training time ηk
that each learner wk takes must be less than D (i.e., ηk < D).
As shown in Algorithm 1, given their benchmarking scores bk
and ck, each learner calculates the maximal ak that enables it
to finish µ training iterations before D (line 17). Such a value
for ak is obtained as given by Eq. 5.

ak <
D − 2Ωm

bk
µ
ck

+ Ωd

bk

(5)

Once ak is determined, each learner wk repeats the fol-
lowing steps for G number of global iterations (line 18): 1)
wk downloads ak data shards, as well as the most recent
model parameters from the orchestrator (lines 19 & 20), 2)
wk executes µ gradient updates on its local parameters (lines
21 & 22), and 3) wk sends its parameters to the orchestrator
(line 23), which aggregates the received parameters and sends
the average values back to all the learners.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DAB com-
pared to a representative of staleness-aware centralized data
allocation schemes, which is referred to as the Centralized
Staleness-Aware Data Allocation (CSA) scheme [6]. We also
evaluate the performance of SB compared to the baseline
FLOPS benchmarking scheme [14]. We use the following
performance metrics: 1) the average benchmarking runtime
error, which is calculated as the average of the ratio of
the difference between the predicted runtime and the actual
runtime rendered by each learner to train the network, to
its actual runtime, 2) the loss of the trained network, which
is calculated as the categorical cross entropy, and 3) the
prediction accuracy, which is calculated as the ratio of correct
predictions to the total number of predictions.

A. Experimental Setup

We implement DAB, CSA, SB, and FLOPS on a real testbed
composed of three Raspberry Pi devices, as well as one 2070
Super, and one Jetson Nano. The hardware characteristics of
each one of these devices are presented in Table I. The imple-
mentation is done using our custom-built Python framework
that we refer to as Axon [12]. Experiments are conducted by
training a feed-forward neural network as a classifier on the
MNIST dataset [22]. The training set is composed of 60,000
greyscale images of handwritten digits at 28x28 resolution,
with corresponding labels numbered zero through nine and
is split into data shards of 500 samples each. The network
architecture, which we refer to as TwoNN, is a feed-forward
network with layer widths [784, 50, 20, 10], each of which is
activated using the ReLu activation function, except the last
layer which uses the softmax activation function. We train
the network using the Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 0.1. The number of learning
iterations, µ, is set to five, whereas the training deadline, D,
is set to 15 seconds. The FLOPS of a learner is calculated
by multiplying two 512x512 matrices 100 times, and keeping
track of the time for the whole computation.

B. Results and Analysis

We evaluate SB compared to FLOPS in terms of the average
runtime benchmarking error over varying numbers of data
shards used in the benchmark, ranging from 2 to 8. The
dummy model used in this experiment is a neural network that
is trained on an amount of data of 120 shards at the 2070 Super
and Jetson Nano devices, and 15 data shards at each of the
Raspberry Pi devices. Note that the architecture of the neural
network used is the same as the one stated above. As depicted
in Figure 1, SB yields a significant reduction in benchmarking
error, reaching up to 83%. This can be attributed to the fact
that FLOPS restricts its estimations of the training time to
the rate at which the hardware can perform floating point
operations. However, the performance of various platforms in
training neural networks is highly difficult to predict, since it

503

Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:36:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The average runtime benchmarking error of SB and FLOPS over
varying benchmark size (data shards).

involves many bottlenecks other than what FLOPS is restricted
to.

In contrast, SB goes beyond such a restriction by using a
dummy model that mimics the actual ML model that needs
to be trained, thus timing the execution of the process itself,
rather than developing a model for it. Note that since FLOPS
does not use data shards, it remains constant. In contrast, as
the size of data shards (i.e., benchmark size) increases, the
benchmarking runtime error in SB decreases. This is because
the more data shards that the dummy model is trained on,
the more samples the average score is made from, which
makes it closer to the actual training rate.Performance does
not significantly improve when benchmark size is increased
above 8 shards. It is worth mentioning that while SB has high
accuracy, it is not generic. A learner’s benchmarking score is
specific to a single model architecture and cannot be used to
predict that learner’s training rate for other models.

We evaluate the performance of DAB compared to CSA in
terms of loss and accuracy over varying global update index
on two clusters; a cluster of two devices, Pi1 and Jetson Nano,
and a cluster of four devices, Pi1, Pi2, Pi3, and Jetson Nano.
At each global update, the orchestrator averages the parameters
of the models from each learner, and assesses the performance
of the averaged parameters.

As depicted in Figure 2(a), the loss yielded by DAB while
being trained on two devices closely approaches that yielded
by CSA. This is despite being a decentralized scheme, thus
lacking the global view of the hardware characteristics of the
entire learners that CSA possesses. This can be attributed to
the fact that DAB eliminates staleness by fixing the number
of iterations, whereas CSA strives to minimize staleness un-
der varying number of iterations. In addition, although the
orchestrator does not have a global knowledge of the learners’
hardware characteristics in DAB, it has a global knowledge of
the upper bound of the data that each learner can download
while abiding to the required training deadline. Note that DAB
gets closer to CSA, with almost a 0% gap as the global update
index decreases, whereas the gap starts to slightly increase
by up to 6%, as the global update index increases. As the
global update index increases, the leverage gained by CSA due
to optimizing the number of learning iterations that learners

(a) Loss on a cluster of Pi1 and Jetson
Nano

(b) Loss on a cluster of Pi1, Pi2, Pi3
and Jetson Nano

Fig. 2. Loss of DAB and CSA over varying global update index on two
clusters.

(a) Accuracy on a cluster of Pi1 and
Jetson Nano

(b) Accuracy on a cluster of Pi1, Pi2,
Pi3 and Jetson Nano

Fig. 3. Accuracy of DAB and CSA over varying global update index on two
clusters.

perform starts to manifest.
We conduct the same experiment to assess the loss of DAB

compared to CSA on a cluster of four devices. As shown
in Figure 2(b), as the global update index decreases, DAB
outperforms CSA by up to 12%, whereas it starts to yield a
slightly higher loss than CSA, reaching 5%, as the number of
global update index increases. DAB outperforms CSA at lower
global update index because CSA operates on a fixed number
of data samples, which is split between learners, whereas
DAB enables each learner to determine the maximum amount
of data that it is able to process in the given time frame
(with duplication if needed). This means that in the presence
of extra training resources, DAB trains the neural network
on more data per global update than CSA does, which is
why it outperforms CSA when provided with four training
devices but not when only two devices are available. As the
global update index increases, CSA outperforms DAB, since
the leverage gained by CSA due to determining the optimal
number of iterations becomes more evident. Note that this
requires a global knowledge that DAB does not provide for
privacy reasons.

We perform the same aforementioned experiments to assess
the prediction accuracy of DAB and CSA. A corresponding
behavior to the loss is demonstrated in the accuracy plots
in Figures 3(a) and 3(b). In the first cluster of two devices,
depicted in Figure 3(a), DAB closely approaches CSA, with

504

Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:36:26 UTC from IEEE Xplore. Restrictions apply.

almost a 0% gap as the global update index decreases, whereas
the gap starts to slightly increase by up to 2% as the global
update index increases. In particular, DAB reaches a prediction
accuracy of 93% compared to 95% in CSA. This is because
the loss of the network trained with DAB is higher than the
network trained with CSA. As depicted in Figure 3(b,) in the
cluster of four devices, DAB outperforms CSA by up to 26%
as the global update index decreases, whereas it renders an 8%
lower accuracy than CSA as the global update index increases.
This can be attributed to the inverse behavior in terms of loss
depicted in Figure 2(b).

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the decentralized DAB
scheme that eliminates staleness in PL by fixing the number of
iterations among all learners. DAB does so while preserving
the privacy of learners by refraining from sharing any informa-
tion about their hardware characteristics with the orchestrator.
Instead, each learner estimates its own capabilities, and uses
these estimations to determine the upper bound on the amount
of data that it can train, such that a certain training deadline
is not exceeded. In addition, we have proposed a new bench-
marking scheme in PL, called SB, to allow each learner to
estimate its own hardware characteristics.

Performance evaluations have been conducted on a real
testbed, composed of multiple heterogeneous and distributed
devices. Extensive performance evaluations have shown that
SB significantly outperforms FLOPS by up to 83% in terms of
runtime benchmarking error. It has also been shown that DAB
outperforms CSA in terms of loss and prediction accuracy by
up to 12% and 26%, respectively, as the global update index
decreases, whereas the latter outperforms DAB by up to 5%
and 8%, respectively, as the global update index increases.
In the future, we plan to develop a dynamic data allocation
scheme that responds to the changes that occur in the learners’
capabilities, and that handles malicious learners submitting
fraudulent upper bounds to the orchestrator.

VI. ACKNOWLEDGEMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number: ALLRP 549919-20.

REFERENCES

[1] W. Y. B. Lim et al., ”Federated Learning in Mobile Edge Net-
works: A Comprehensive Survey,” in IEEE Communications Surveys
& Tutorials, vol. 22, no. 3, pp. 2031-2063, third quarter 2020, doi:
10.1109/COMST.2020.2986024.

[2] K. Gyarmathy, “Comprehensive Guide to IoT Statistics
You Need to Know in 2020,” 2020. [Online]. Available:
https://www.vxchnge.com/blog/iot-statistics

[3] Rhea Kelly, “Internet of Things Data To Top 1.6 Zettabytes by
2020 – for 5G Mobile Networks and Beyond (IEEE ICC’20
Workshop - Campus Technology,” 2015. [Online]. Available:
https://campustechnology.com/articles/2015/04/15/internet-of-things-
data-to-top-1-6-zettabytes-by-2020.aspx

[4] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, ”A Survey
on Mobile Edge Computing: The Communication Perspective,” in IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358,
Fourth quarter 2017, doi: 10.1109/COMST.2017.2745201.

[5] J. Konecny, H. B. McMahan, D. Ramage, ”Federated Optimiza-
tion: Distributed Optimization Beyond the Datacenter”, CoRR, vol.
abs/1511.03575, 2015.

[6] U. Mohammad, S. Sorour, ”Asyncronous Task Allocation for Federated
and Parallelized Mobile Edge Learning”, 2020. [Online] Available:
https://arxiv.org/abs/1905.01656

[7] Yu, H., S. Yang, S. Zhu. Parallel restarted sgd with faster convergence
and less communication: Demystifying why model averaging works for
deep learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pages 5693–5700. 2019.

[8] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V.
Ivanov, C. Kiddon, J. Konecný, S. Mazzocchi, H. B. McMahan, T. V.
Overveldt, D. Petrou, D. Ramage, J. Roselander, ”Towards Federated
Learning at Scale: System Design,” ArXiv, vol. abs/1902.01046, 2019

[9] T. Li, A. K. Sahu, A. Talwalkar and V. Smith, ”Federated Learn-
ing: Challenges, Methods, and Future Directions,” in IEEE Signal
Processing Magazine, vol. 37, no. 3, pp. 50-60, May 2020, doi:
10.1109/MSP.2020.2975749.

[10] M. A. Iverson, F. Ozguner and L. Potter, ”Statistical prediction of
task execution times through analytic benchmarking for scheduling in a
heterogeneous environment,” in IEEE Transactions on Computers, vol.
48, no. 12, pp. 1374-1379, Dec. 1999, doi: 10.1109/12.817403.

[11] G. X. Yu, Y. Gao, P. Golikov, G. Pekhimenko, ”A Runtime-Based Com-
putational Performance Predictor for Deep Neural Network Training”,
USENIX Annual Technical Conference 2021: 503-521

[12] D. Mays, ”Axon-ECRG,” 2021. [Online] Available:
https://github.com/DuncanMays/axon-ECRG

[13] E. Diao, J. Ding, V. Tarokh, ”HeteroFL: Computation and Communi-
cation Efficient Federated Learning for Heterogeneous Clients” 2021.
[Online] Available: https://arxiv.org/abs/2010.01264

[14] R. Tang, A. Adhikari, J. Lin, ”FLOPs as a Direct Optimization Objective
for Learning Sparse Neural Networks”, 2018, ArXiv

[15] Z. Wei, S. Gupta, X. Lian, and J. Liu, “Staleness-Aware Async-SGD
for distributed deep learning,” IJCAI International Joint Conference on
Artificial Intelligence, vol. 2016-Janua, pp. 2350–2356, 2016.

[16] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K.
Chan, “When Edge Meets Learning : Adaptive Control for Resource-
Constrained Distributed Machine Learning”, in INFOCOM, 2018. [On-
line]. Available: https://researcher.watson.ibm.com/researcher/files/us-
wangshiq/SW INFOCOM2018.

[17] U. Mohammad and S. Sorour, “Adaptive Task Allocation for Mobile
Edge Learning,” in 2019 IEEE Wireless Communications and Net-
working Conference Workshop (WCNCW). IEEE, apr 2019, pp. 1–6.
[Online]. Available: https://ieeexplore.ieee.org/document/8902527/

[18] U. Y. Mohammad, S. Sorour, and M. S. Hefeida, “Task allocation
for mobile federated and offloaded learning with energy and delay
constraints”, in IEEE ICC 2020 Workshop on Edge Machine Learning
for 5G Mobile Networks and Beyond (IEEE ICC’20 Workshop -
EML5G), Dublin, Ireland, Jun. 2020.

[19] J. Frankle, M. Carbin, ”The Lottery Ticket Hypothesis: Find-
ing Sparse, Trainable Neural Networks”, 2019. [Online]. Available:
https://arxiv.org/abs/1803.03635

[20] H. Zhu et al., ”Benchmarking and Analyzing Deep Neural Network
Training,” 2018 IEEE International Symposium on Workload Character-
ization (IISWC), 2018, pp. 88-100, doi: 10.1109/IISWC.2018.8573476.

[21] NVIDIA Corporation. CUDA Runtime API - Event
Management, 2019. https://docs.nvidia.com/cuda/cuda-runtime-
api/group CUDART EVENT.html

[22] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, ”Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.

505

Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:36:26 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

