
Computer Networks 97 (2016) 113–127

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Distributed Data Storage Systems for Data Survivability in

Wireless Sensor Networks using Decentralized Erasure Codes

Louai Al-Awami a,b,∗, Hossam S. Hassanein b

a Department of Computer Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
b School of Computing, Queen’s University, Kingston, ON, Canada

a r t i c l e i n f o

Article history:

Received 10 February 2015

Revised 14 January 2016

Accepted 19 January 2016

Available online 26 January 2016

Keywords:

Wireless Sensor Network

Data Survivability

Decentralized Erasure Codes

Network Coding

Distributed Data Storage

a b s t r a c t

Achieving reliability in Wireless Sensor Networks (WSNs) is challenging due to the limited

resources available. In this study, we investigate the design of data survivability schemes

using decentralized storage systems in WSNs. We propose a data storage system design

based on Decentralized Erasure Codes (DEC) that features a simple and decentralized con-

struction of the target code. The proposed framework allows sensor nodes to cooperate

to build an erasure code-based storage that can tolerate a given failure/erasure rate. Code

construction and decoding can both be performed randomly allowing for a distributed op-

eration with no prior setup or coordination between source nodes. Further, we present

two approaches that utilize Random Linear Network Coding (RLNC) to enhance the pro-

posed scheme in order to achieve energy efficiency. We present the theoretical basis of

the schemes then validate and evaluate their performance through simulations.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Wireless Sensor Network (WSN) technology is being in-

creasingly deployed in a diverse range of applications. In-

telligent Transportation Systems (ITSs) [1], Smart Grids [2],

and the Internet of Things (IoT) [3] are just a few examples

of technologies where WSNs are used. Generally, WSNs are

comprised of sensor nodes that are equipped with one or

multiple sensors, a processing unit, and a wireless com-

munication module. Sensor nodes cooperate in monitoring

a phenomenon of interest and in relaying the sensed data

to a sink node for processing. When produced in large

numbers, sensor nodes can be extremely inexpensive, and

hence they can be deployed in greater numbers to build

large scale networks. WSNs have stringent constraints,

especially regarding power consumption and scalability.
∗ Corresponding author at: School of Computing, Queen’s University,

Kingston, ON, Canada. Tel.: +1 6135336336.

E-mail addresses: louai@kfupm.edu.sa, louai@cs.queensu.ca

(L. Al-Awami), hossam@cs.queensu.ca (H.S. Hassanein).

http://dx.doi.org/10.1016/j.comnet.2016.01.008

1389-1286/© 2016 Elsevier B.V. All rights reserved.
Furthermore, reliability becomes a key requirement for

WSNs when deployed in unattended applications or under

harsh working conditions.

To preserve the sensed data captured by sensor nodes,

WSNs nodes can benefit from using Distributed Data Stor-

age Systems (DDSSs) technology. Data storage systems rep-

resent an essential component of today’s networks and

they have been researched for a long time. Lately, data

storage technology is being revisited especially in the con-

texts of Content Centric Networking (CCN) [4] and cloud

computing [2]. DDSSs utilize hardware redundancy and data

replication to protect data in case of possible failures. More

specifically, given a data packet, a DDSS replicates the

packet over multiple physical storage devices, such that

when a subset of these devices fails, the data packet can

be retrieved from the surviving ones.

In this study, our goal is to design a DDSS that is tai-

lored for WSNs data reliability applications. For that, we

first introduce the notion of data survivability as a quanti-

tative parameter that links the amount of redundancy re-

quired to the maximum failure that can be tolerated. We

http://dx.doi.org/10.1016/j.comnet.2016.01.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.01.008&domain=pdf
mailto:louai@kfupm.edu.sa
mailto:louai@cs.queensu.ca
mailto:hossam@cs.queensu.ca
http://dx.doi.org/10.1016/j.comnet.2016.01.008

114 L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127
then show how data survivability can be useful by imple-

menting a data survivability scheme, called Decentralized

30 Erasure Codes for Data Survivability (DEC-DS). DEC-

DS is based on Decentralized Erasure Codes (DEC) [5–7].

Besides being decentralized, DEC has a predictable alge-

braic structure allowing for quantifiable performance. After

that, we present two methods to enhance the energy effi-

ciency of DEC-DS by exploiting Network Coding (NC). The

two schemes are referred to as DEC Encode-and-Forward

(DEC-EaF) and DEC Encode-and-Disseminate (DEC-EaD). NC

[8] has emerged as an information-theoretic tool and has

been shown to decrease energy consumption and complex-

ity while increasing throughput and reliability [9]. Random

Linear Network Coding (RLNC) [10] has been later pro-

posed as a practical implementation of Network Coding.

In this study, we utilize RLNC to increase the efficiency

of the proposed storage system by reducing communica-

tion overhead and consequently energy requirements. The

main contributions of this paper are introducing the notion

of data survivability and presenting the three data storage

schemes, DEC-DS, DEC-EaF, and DEC-EaD.

The remainder of the paper is organized as follows. In

Section 2, we present some background material and re-

view related work. The proposed data survivability frame-

work is discussed in Section 3. Section 4 shows two

schemes using RLNC to improve the efficiency of the pro-

posed data survivability application. Experiments and re-

sults are discussed in Section 5. Finally, Section 6 con-

cludes the paper. Some important results from the theory

of random matrices over finite fields, which will be used

in designing the codes, are presented in Appendix A.

2. Background and related work

Before we discuss the proposed schemes, we present

the advantages and disadvantages of replication and

encoding-based storage. We then present the concept of

data survivability and how it differs from network surviv-

ability. We also present an overview of Fountain Codes and

DEC; and survey related literature on DDSSs in WSNs.

2.1. Replication Vs. encoding

Replicated data can be stored either as is (replication-

based storage) or encoded using erasure codes (coding-

based storage). Coding-based solutions can achieve many

advantages over replication-based solutions at a slight in-

crease in processing cost. Unlike coding, replication of-

ten requires more storage space on every storage node.

In other words, to attain the same level of reliability,

replication-based schemes require more redundancy than

coding-based schemes. In fact, for the same level of redun-

dancy, coding can achieve an order of magnitude higher

reliability than replication [11]. In addition, replication-

based approaches also need to keep track of where each

data exist, resulting in complicated data gathering proto-

cols. Moreover, it has been shown analytically that on av-

erage the number of data blocks needed to reconstruct

a complete data set from a replication-based distributed

storage is more than what is needed when using coding-

based distributed storage [12].
2.2. Data Survivability vs. Network Survivability

As aforementioned, WSNs combine a set of unique

requirements such as limited energy, dense deployment,

and harsh working conditions. Consequently, developing

a DDSS for WSNs needs to tackle such requirements. To

address data reliability, sensor data in WSNs need to be

maintained using a reliability mechanism. This is especially

important when a sink node is not available, such as in

the case of Delay Tolerant Networks (DTNs). In this regard,

we present data survivability as a design parameter that

describes the required data resilience against failures. We

make a distinction between data and network survivability.

Network survivability [13] focuses on using redundancy as

a means to guarantee network continuity in case of nodes

failure. Data survivability provides a means to prevent loss

of data in the network in case of failure through the use of

redundancy. Also, while network survivability requires re-

dundancy in hardware and software, data survivability uti-

lizes redundancy in storage and data. Other similar con-

cepts exist in the literature such as “service survivability”

which focuses on continuity of the service even when the

physical system fails, through using backup servers [14].

2.3. Fountain Codes

There exists some resemblance between Decentralized

Erasure Codes (DEC) and Fountain Codes. Therefore, we

provide a brief description of Fountain Codes to lay the

ground for the discussion on DEC. The literature on DDSSs

contains some overlap between the two codes. We believe

it is useful to discuss the two families and show why DEC

is better suited for data survivability.

Since their introduction in late 1990’s, Fountain codes

[15] have attracted an increasing interest in the research

community. The main attracting attribute of this family of

codes is that they are rateless, meaning they do not have a

fixed rate associated with them a priori. Hence, compared

to ordinary erasure codes such as Reed–Solomon Codes

[16], rateless codes can adapt to any given erasure chan-

nel with an associated erasure probability pe on-the-fly.

Given a set of k native data blocks of equal length B =
{b1, b2, . . . , bk} and a probability distribution ρ(k), the en-

coder of a Fountain code generates n encoded packets as

follows. To generate the ith encoded packet, the encoder

samples ρ(k) for a value 1 ≤ di ≤ k. Then, it uniformly se-

lects di random data blocks from B and xor’s the blocks lin-

early together under the mathematics of F2 generating an

encoded block ei. di is referred to as the degree of the en-

coded block ei. Similarly, ρ(k) is called the code degree dis-

tribution. In addition to the encoded block, a k-dimensional

binary encoding vector Gi = {gi1, gi2, . . . , gik} is appended to

ei; where every entry gij is set to 1 if bj was used to con-

struct ei and 0 otherwise. gij is referred to as an encoding

coefficient. Let E = {e1, e2, . . . , en} and G = {G1, G2, . . . , Gn}
be the set of encoded blocks and encoding vectors, respec-

tively. In general, k < n. The decoder on the receiving side,

keeps receiving encoded blocks until solving the system

of linear equations E1×n = B1×kGk×n, for B. The number of

packets required for decoding beyond k is referred to as

code overhead. Generally, the decoder requires n = (1 + ε)k

L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127 115

Fig. 1. Source and storage networks (k = 10, n = 18, and m = 4).
encoded blocks to recover all native data blocks, where ε
> 0.

The key design aspect of rateless codes is the de-

gree distribution ρ(k). In [17], Luby proposed LT codes

using the Robust Soliton Distribution. For a probability

of successful decoding 1 − δ, LT codes require an over-

head of only O(
√

k log2 (k/δ)) with decoding complexity of

O(klog2(k/δ)). Raptor codes [18], on the other hand, achieve

a linear encoding and decoding at the expensive of ex-

tra overhead (O(k)) using the idea of pre-coding. Note that

classic erasure codes such as Reed–Solomon Codes have an

encoding and decoding complexities of k(n − k) log(n).

Despite their advantages, Fountain codes have been de-

signed assuming all source data exist in one location, and

hence they are not straightforward to implement when the

source data are decentralized.

2.4. Decentralized Erasure Codes (DEC)

DEC was introduced by Dimakis et al. [6]. The basic op-

eration of DEC is illustrated in Fig. 1. Given a network of

k source nodes and n storage nodes, where k < n, each

source node j generates a single data block bj and for-

wards it to m storage nodes that are selected uniformly

at random. Upon receiving the data blocks, each storage

node i generates a random coefficient gij for every block

bj received, which is drawn from a finite field Fq for every

data block received and combines the received blocks as

follows:

ei = (gi1b1) ⊕ (gi2b2) ⊕ · · · ⊕ (gikbk).

Note that every storage node will receive a different set

of data packets, and also that gij �= 0 if bj was included

in the encoding at the current storage node and 0 oth-

erwise. The storage node then stores the encoded block ei

in addition to the k-dimensional vector of random coeffi-

cients Gi = {gi1, gi2, . . . , gik} used for encoding. To retrieve

the original blocks, the decoder needs to collect (1 + ε)k

encoded blocks to solve for B in the system of linear equa-

tions E1×n = B1×kGk×n, where E represents the vector of

encoded data, G represents the matrix of encoding coef-

ficients, and B is the vector of native data.

Despite its similarity to Fountain codes [15,19], DEC is

quite different. Whereas in Fountain codes d , the degree of
i
each encoded block (the number of packets used to gener-

ate a block) can be generated exactly to match ρ(k), DEC

has no means of controlling the distribution of the de-

gree of the encoded blocks since the generation of encoded

blocks is distributed. We argue that Fountain codes are not

suitable for situations such as in WSNs where source data

are decentralized, which makes achieving the required de-

gree distribution unpractical. Besides, if decoding is per-

formed off-line such as in the case of DTN, low complexity

decoding can be exploited for the sake of longer network

life.

In a distributed storage setup, DEC generates a different

overhead on the encoder side compared to the overhead

seen by the decoder, where overhead is defined as the

number of blocks beyond k needed for decoding. There-

fore, we define α and β to be the Encoding Overhead (EO)

and Decoding Overhead (DO) of DEC, respectively. Gener-

ally, α > β . Let mi be the number of redundant data pack-

ets disseminated by the ith source node. When mi = m is

equal for all source nodes, α = k(m − 1). Likewise, we can

express β = εk.

In [5–7], Dimakis et al. have introduced the idea of

DEC and shown that m ≥ 5 n
k

log(k) is sufficient to guaran-

tee that collecting any (1 + ε)k encoded blocks is enough

to recover the native k blocks with high probability for

some ε > 0. The decoding is assumed to be using Gaussian

Elimination which requires O(k3) arithmetic operations or

O(k2log (k)) when exploiting sparsity of the coefficient ma-

trix. Compared to the original DEC presented in [6], we ar-

gue that achieving survivability requires lower EO than that

required to achieve low delay decoding which comes at the

expense of higher DO. Fortunately, motivated by the results

in Appendix A, we know that the DO is upper bounded by

β = k + c where c � 8 for F2.

The construction of “Robust Soliton Distribution”-like

decentralized codes has been investigated in [20–28]. In

the node-centric approaches [20–24], the source data per-

form a random walk over a set of storage nodes, where at

each step, the source data are xor-ed with the local data at

the current storage node. On the other hand, packet-centric

approaches [25–28], allow source packets to perform a ran-

dom walk while encoding from the data on each newly

visited storage node, until eventually stopping at the walk-

terminating node. The work in [29] studies the suitability

of different erasure codes-based in-network storage to dif-

ferent types of networks. There also exists a body of work

where distributed encoded storage is used to tackle secu-

rity and data integrity [30,31]. For a more thorough survey

on the topic, see [32].

In this paper, we present a decentralized data surviv-

ability scheme (DEC-DS) for WSNs based on DEC. Unlike

the original DEC, our objective is to increase the immunity

of data to failure rather than reducing the number of pack-

ets required for decoding (β) as in [5–7]. Energy in WSNs

is crucial and using pure random walk can consume exces-

sive energy to implement. Also, random walk protocols are

asymptotic in nature, requiring a large number of nodes

to converge to the required distribution. Our approach has

been shown to be applicable to networks with as few as

ten nodes. In addition, all previous studies assume n, the

number of redundant nodes, to be given. We provide a

116 L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127

Fig. 2. Centralized vs. Decentralized Erasure Codes.

Fig. 3. Encoding Coefficients Matrix for Centralized vs. Decentralized Era-

sure Codes.
way to calculate the number of storage nodes needed to

achieve the required survivability. We also assume all en-

coding is performed over F2. The choice of field has a

tremendous impact on encoding/decoding performance in

practice [33], and binary encoding can provide simplicity

when compared to higher fields. To our knowledge, such

survivability scheme does not exist in the literature.

3. Decentralized Erasure Codes for Data Survivability

(DEC-DS)

The design of an erasure code in a centralized setup is

quite different than that in a decentralized one. The differ-

ence is illustrated in Fig. 2. In a centralized code (Fig. 2(a)),

all k native data blocks are available at a single encoder.

Hence, when sampling a degree d from the degree distri-

bution ρ(k), d can be exactly matched since all k native

packets are available to the encoder. In other words, if the

degree sampled from the distribution is d, the encoder has

all the k data packets where k ≥ d packets to generate a

packet with the same degree d. However, due to the dis-

semination phase in Fig. 2(b), the encoder at each node

may have only a subset of the k native blocks which could

be less than d. Therefore, the required degree d may not be

exactly matched. Mathematically speaking, in the central-

ized case (Fig. 3(a)) the degree of each row (the number

of non-zero entries) in the matrix (G) can be produced ex-

actly to match the random value d generated by the degree

distribution ρ(k). On the other hand, in the case of decen-

tralized codes (Fig. 3(b)), each source node chooses which

storage nodes receive its data by disseminating m dupli-

cate copies to m distinct storage nodes, resulting in setting

exactly m entries per column.

Due to the restriction imposed by the observation made

above, we need to resort to a different approach than that

used in centralized codes to control the distribution (den-

sity) of the matrix G and consequently its properties. For

this reason, we manipulate the overall distribution of the

matrix instead of manipulating the degree of each row.
One way to generate the exact distribution of a cen-

tralized erasure code is to send all source data to all

storage nodes (m = n) and let each storage node choose

a subset of the source data according to ρ(k). Clearly, the

communication requirements of such a solution are O(nk).

The good news is that we can do better since we have con-

trol over the distribution of G. In what follows, we show

how we can use the results from the theory of random ma-

trices over finite fields, to implement decentralized codes

for data survivability applications. Those results are dis-

cussed in Appendix A.

L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127 117

Table 1

Mathematical symbols used in the proposed schemes.

Attribute Meaning

k Number of source nodes

n Number of storage nodes

N Network size

s Data survivability

N(k, s) Network of k source and survivability s

X Set of source nodes

xi Source node i

Y Set of storage nodes

yi Storage node i

C(k, s) A code with n storage nodes and survivability s

m Redundancy Factor (RF)

Bj
R

Set of data packets received by node yj

ej Encoded packet at node yj

Bs Set of native data packets

bi Data packet from source node xi

α Encoding Overhead (EO)

Gj Encoding vector at node yj

gji ith Encoding coefficient at node yj

G Global generating matrix

G Local generating matrix

E Encoded data matrix

P Invertibility probability
To help the reader follow the description, we have sum-

marized the different notations used in Table 1. Consider a

network N(k, s), similar to the one in Fig. 1, with a set X

of k source nodes, X = {x1, x2, . . . , xk} and a required sur-

vivability s. Survivability is defined as the maximum frac-

tion of sensor nodes that can fail without compromising

the recoverability of the native data. For example, s = 0.8

corresponds to a code that can tolerate s × 100 = 80% fail-

ure (0.8 × N nodes), where N is the network size. We are

interested in designing a storage network with a code C(k,

s) and survivability s.

Let n be the number of storage nodes. Therefore, N =
k + n. n can be calculated as

n = k(s + 1). (1)

Let Y = {y1, y2, . . . , yn} be the set of storage nodes. In

addition to storage, nodes in Y are also assumed to serve

as relays. We assume that a multi-hop routing mechanism

is in place. Each source node xi generates a data block bi,

then selects a set of m storage nodes Z = {z1, z2, . . . , zm}
uniformly and randomly where Z⊆Y, and sends bi to the

set of selected nodes. We refer to m as the Redundancy Fac-

tor (RF). Let BS = {b1, b2, . . . , bk} represent the set of all na-

tive packets generated by all the k source nodes. We define

the EO as

α = (k − 1)m. (2)

Upon receiving a set of data blocks B
j
R
, each storage

node yj combines the received blocks linearly to generate

an encoded block ej as

e j = b1 ⊕ b2 ⊕ . . . ∀ bi ∈ Bj
R
,

where ej represents a linear combination of a sum of a ran-

dom subset of BS. The number of packets d j = |B j
R
| used

to construct an encoded packet ej is called the packet de-

gree of ej . Along with ej, a k-dimensional binary vector
G j = {g j1, g j2, . . . , g jk} is generated with entries as

gji =
{

0, if bi /∈ Bj
R

1, otherwise.
(3)

Gj is referred to as the encoding vector. Each node is as-

sumed to have a storage space for only one encoded packet

and its corresponding encoding vector. Let G be the global

generating matrix as seen in Fig. 3(b). When data are being

collected from the network, a subset of storage nodes is

contacted to forward their encoded packets along with the

corresponding encoded vectors to the data collector. The

data collector builds a local generating matrix G ∈ G using

the received encoding vectors, an encoded data matrix E us-

ing the encoded blocks, and solves for the native data B in

the system of equations B = EG
−1

.

Algebraically, to achieve a survivability s, we attempt

to build G such that it is reversible with high probability

even when s × k rows are deleted. According to Theorem 4

(Appendix A), a random binary square matrix achieves its

highest probability of reversibility when

log (k) + h(k)

k
≥ p ≥ 1 − log (k) + h(k)

k
(4)

where h(k) is some arbitrary function as in Appendix A. If

h(k) equals to some constant c, the resulting invertibility

probability (P) can be expressed as

c2e−2e−c

(5)

where c2 = π(0, 2) is given by Eq. (A.8). As shown in Fig. 4,

it is not difficult to see that 0 ≤ P ≤ c2, for F2. Further,

P = c2 ∀ x ≥ 7. The choice of a constant value for h(k) is

important since it affects the resulting overhead. Besides,

the value of such a constant can be made absolutely small.

The following theorem establishes the basis for the design

of the proposed DEC-DS.

Theorem 1. Let G be a k × n random matrix over F2, and s

≥ 0. Further, let n = (1 + s)k and m = (1 + s)(log (k) + c�
1
) +

c�
2. G is constructed by selecting m random entries in each of

the n columns and setting them to 1. Now, let G be a k ×
k′ matrix constructed by deleting n − k′ rows from G chosen

uniformly at random, where k ≤ k′ ≤ n − k. Then G is invert-

ible with a probability P = c1e−2e−c2
for some constant values

c�
1

and c�
2
.

Proof. From Theorem 4 (Appendix A), we know that p =
log k+h(k)

k
≤ 1/2. Also, for a constant h(k), p = log k+c�

1
k

. Fur-

thermore, Eq. (A.7) shows that on average a constant num-

ber of extra packets is required to guarantee invertibil-

ity. Let c�
2

denote the number of extra packets required.

Now, to maintain the same invertibility probability for the

square k × n matrix, we need

p = log (k) + c�
1

k

but,

p = m × k

n × k

hence,

m = np = n

k
(log (k) + c�

1) + c�
2 (6)

118 L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127

Fig. 4. P = f (x) = c2e−2e−x
.

= (1 + s)(log (k) + c�
1) + c�

2. (7)

�

The values of c�
1

and c�
2

correspond to the constant c in

Eq. (5) and the number of extra vectors required for de-

coding as in Table A.6, respectively. c�
1 can be chosen to

be ≥ 7 as discussed before. We have also seen that c�
2

≥ 8

guarantees successful decoding with high probability based

on the experimental values shown in Table A.6. When data

collection takes place, the data collector retrieves ej’s and

Gj’s to build two matrices E and G, respectively, and de-

codes the native blocks as B = EG−1. The only condition re-

quired for this to work is that G must be invertible.

Clearly, there is a compromise between EO and the ex-

pected DO. Choosing EO to be small saves energy during

dissemination and encoding but results in higher DO dur-

ing data collection and decoding. Remember that

(1 + s)(log k + 7) + 8 ≥ m ≥ 5(1 + s)(log k). (8)

So, the least density of the matrix, and therefore

the least energy needed, is achieved when m = (1 +
s)(log (k) + 7) + 8. Moreover, the value of c�

2 is insignifi-

cant for large values of k as in Table A.5. In other words,

for sufficiently large k, it is sufficient to have m = (1 +
s)(log (k) + 7).

To summaries, given a network of k source nodes and

survivability s, DEC-DS works as follows:

1. Generate n storage nodes where

n = k(s + 1). (9)

2. Each source node i generates a source data block bi.

3. Each source node i chooses

m = (s + 1)(log k + c�
1) + c�

2. (10)

distinct random storage nodes uniformly at random

and forwards a copy of bi to each of the selected

nodes.

4. Each storage node combines the received packets

linearly.
4. Routing and energy efficiency

By restricting their role to pure routing/forwarding, re-

lay nodes are not fully utilized by existing DEC schemes

when disseminating data. So, following generating a source

packet, choosing a set of candidate storage nodes, and for-

warding the packet by source nodes, relay nodes help for-

ward data packets to storage nodes without manipulating

them. However, based on the argument that the cost of

communication is generally much higher than processing

on wireless nodes, we utilize the coding opportunities that

arise during relaying packets using RLNC. Mathematically,

since RLNC allows for a broader dissemination of data at

a less energy cost, we can achieve the required density of

the coefficient matrix using less energy.

The proposed modifications improve the efficiency

of the dissemination process by allowing relay nodes

to participate in the encoding process during the dis-

semination phase. This can be done using one of

two strategies: Encode-and-Forward (EaF) or Encode-and-

Disseminate (EaD). The two schemes that are presented

here share the same fundamental model as the DEC-DS

scheme we previously presented in Section 3.

4.1. Encode-and-Forward (DEC-EaF)

In each step of the DEC-EaF coding algorithm, a target

storage node is randomly chosen by the source node, and

the native packet is forwarded accordingly in a multihop

fashion. Then, for every relay node by which the packet

passes, the relay node combines the packet it receives with

the encoded packets stored locally before forwarding the

new packet to the next hop. If no packet exists locally, the

relay node simply saves a copy of the relayed packet. The

source node is assumed to have multiple routes for every

destination node. While the choice of the destination node

is random, selecting the best route is not.

Table 2 summaries all the notations that will be

used in the description of the proposed schemes. Let

R j = {r1, r2, . . . , rh} be the set of possible routes to a

L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127 119

Table 2

Notations used in DEC-EaF and DEC-EaD.

Attribute Meaning

Ri Possible routes to node yi

rl lth Route to in Rj

sw A node in the route rl

Z Nodes previously visited

Z Nodes not yet visited

xi Source node i

m Current redundancy factor

σ Depletion of route i

ω Route selection gain

r Average hop count

θ Remaining copies to be disseminated

ωindex next hop for random walk

Algorithm 1 DEC Encode-and-Forward [DEC-EaF] (Source

Node).

1: Generate a packet xi

2: m ← m

3: Z ← φ
4: Calculate σ for each ri

5: for j = 1 → m AND m > 0 do

6: Selects a target storage node s j uniformly at

random

7: Choose r according to Eq. (16)

8: Route xi to s j through r

9: Z = Z ∪ si ∪ r

10: m = m − |Z|
11: Z = Z − (Z ∩ Z).

12: end for

Algorithm 2 DEC Encode-and-Forward [DEC-EaF] (Relay

Node).

1: Receive packet xi at relay node

2: if gi = 0 then

3: Generate a new coefficient g ji

4: e j = e j ⊕ (g ji × xi)

5: gi = g ji

6: end if

7: Forward xi to next node in route;
destination sj. Further, let rl = {s1, s2, . . . , sw} be the set of

nodes in route rl. Let Z be the set of nodes that have been

either chosen as destination nodes or those which were

in routes to previously selected destination nodes. In other

words, Z is the set of visited nodes. On the other hand, Z is

a set of nodes that have not yet been visited. Every time a

destination si and a route rl pair are selected, Z is updated

as follows

Z = Z ∪ si ∪ rl . (11)

We define the current redundancy factor m as a param-

eter to track the number of copies that have been encoded

on storage nodes. Accordingly, the current redundancy fac-

tor m is updated as

m = m − |Z|. (12)

In addition to subtracting the number of visited nodes

from m, the corresponding nodes that have been visited

are also removed from candidate destination nodes as fol-

lows

Z = Z − (Z ∩ Z). (13)

We also define the depletion (σ) of a route r1 as

σ (r1) = |r1 ∩ Z|. (14)

Furthermore, we define the route selection gain (ω) of

a route r1 as

ω(r1) = |r1| − σ. (15)

Next, suppose si is randomly selected as a destination.

Amongst the possible routes (Ri) to si we select ri such

that

{ri|ω(ri) > ω(r)} ∀r ∈ Ri. (16)

Equivalently, DEC-EaF chooses the shortest path routes

with the least number of visited nodes.

Algorithms 1 and 2 show pseudo codes describing the

mechanism at the source node and the relay nodes, respec-

tively.

It should be noted that the performance of the pro-

posed scheme depends on the topology of the network and

the routing protocol in use. Let rij be the hop count be-

tween source node xi and storage node yj. Let R = {ri j} ∀i ∈
X, j ∈ Y be a k × n matrix containing the hop count be-

tween every pair of source and storage nodes. The average
hop count r can be calculated as

r =

k∑
i=1

n∑
j=1

ri j

k × n
. (17)

The expected reduction in the required redundancy fac-

tor m should be roughly r. However, due to the fact that

the routes between nodes are not all disjoint, some relay

nodes may be visited by the same packets multiple times.

An example of how DEC-EaF works is shown in Fig. 5.

The nodes A, B, and C are assumed to be the source

nodes while the nodes denoted by numerals are the stor-

age nodes. First, node A chooses node 10 as a destination

storage node. Clearly, the shortest paths between A and 10

are 3 hops long, which are {6, 7, 8, 10} and {6, 7, C, 10}.

We assume {6, 7, 8, 10} is chosen randomly to break the

tie. Since 5 copies of the source data have been dissemi-

nated during the last step (including the source node A),

the new m = 7 − 5 = 2. In the next step, assume node 5

has been selected. Two candidate shortest path routes ex-

ist between A and 5; which are {6, 7, 8, 5} and {6, 4, B,

5}. However, the number of unvisited nodes in the former

equals 1 while in the latter equals 3. Therefore, {6, 4, B,

5} is chosen. If both routes have the same number of un-

visited nodes, one is selected randomly. Now, since the m

becomes < 1, the dissemination process stops. The same

logic can be applied for node B, using node 10 and route

{5, 8, 10} and node A and route {4, 6, A}. Finally, node C

selects and reaches node 11 through {13, 12, 11} and node

3 through {7, B, 3}. The resulting code is shown in Fig. 5(b).

120 L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127

Fig. 5. Example of DEC-EaF: m = 7.

Algorithm 3 DEC Encode-and-Disseminate [DEC-EaD]

(Source Node).

1: Discover neighboring nodes

2: Generate a packet xi

3: θ ← m

4: Choose a Neighbor windex

5: Forward (xi, θ) to windex

6: Advance index

Algorithm 4 DEC Encode-and-Disseminate [DEC-EaD] (Re-

lay Node).

1: Receive Packet xi;

2: if gi = 0 then

3: Generate a new coefficient gi;

4: e j = e j ⊕ (gi × x);

5: end if

6: θ = θ − 1 ;

7: if θ > 0 then

8: Forward xi to node w(index);

9: Advance index

10: end if
4.2. Encode-and-Disseminate (DEC-EaD)

In the second strategy, called DEC-EaD, source nodes

disseminate the source packets using a node-centric ran-

dom walk mechanism. Since the selection of target nodes

is random in the original DEC-DS, it makes sense to use

a random walk to eliminate the need for routing table

construction and maintenance. In random walk protocols,

there is no guarantee that a certain packet will not visit

the same node more than once.

The relay forwarding strategy in DEC-EaD is based on

the rotor-router model which is a quasirandom analog to

the random walk process. The rotor-router model has been

introduced in [34] and popularized by Jim Propp in 2001,

and has attracted a lot of interest. The main advantage of

the model in our application is that it reduces the chance

of forwarding packets to the same node when there are

some neighbors that have not been contacted. In addition,

the model is simple and eliminates the need for maintain-

ing a forwarding table for each source packet.

In DEC-EaD, each node maintains a list of all single-hop

neighbors. In addition, each relay node maintains an in-

dex for each packet. The index points to the next neighbor

to whom each packet will be forwarded when the packet

passes by the current relay node. Whenever a packet is for-

warded, the corresponding index is advanced to the fol-

lowing neighbor. This is required to reduce chances of

some packets revisiting the same nodes. Note that the or-

der in which neighboring nodes are selected is immaterial.

Like in DEC-EaF, when a relay node receives a packet, it

encodes it locally before forwarding. Then, it forwards the

packet to one neighbor according to the corresponding in-

dex. To track the distribution of the coding process, each

packet contains a redundancy factor counter (θ) which

tracks the number of copies of the packet remaining to

be disseminated. The counter is decreased by one at each
newly visited hop. When the counter reaches zero, the ran-

dom walk terminates. The process is formally described in

Algorithms 3 and 4.

Note that DEC-EaD does not require any routing. All

what is required is knowing the set of neighbors using

a neighbor-discovery mechanism. This is clearly an added

advantage over DEC-EaF besides the reduction in energy as

will be shown in the next section.

An example of the operation of DEC-EaD is shown in

Fig. 6 for m = 7. Node A starts the following random walk

{6, 7, C, 9, 6, 4, 2}. At each hop, the relay node chooses

one neighbor (different from the last hop) uniformly at

L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127 121

Fig. 6. An Example of DEC-EaD: m = 7.

Algorithm 5 Simulation Pseudo-code.

Require: k, s, and F2

n = (s + 1)k;

m = (s + 1)(log k + 7) + 8;
1: for i = 1 to 1000 do

2: Disseminate(n, m);

3: for failure level (f) from 0 to 1 do

4: CollectPackets(f);

5: end for

6: end for
random. In addition, each relay node decrements the value

of m in the packet by 1. When the random walk reaches

node 6 for the second time, it is forwarded to node 4,

since all other neighbors have been visited. In such a case,

m remains unchanged. Finally, the random walk terminates

at node 2. Similarly, node B and C executes their random

walks as {7, C, 13, 12, 9, 6} and {10, 8, 5, B, 4, 2}. The re-

sulting code is shown in Fig. 6(b).

5. Performance evaluation

As we stated earlier, our proposed schemes target re-

source limited networks. Therefore, they must achieve data

survivability at a reasonable energy cost. We also conjec-

tured that data survivability can be achieved using less re-

dundancy than required by the original DEC. In this sec-

tion we show through experimentation that DEC-DS can

guarantee data survivability while reducing redundancy re-

quirements. Note that redundancy reduction impacts the

energy required for data dissemination and encoding. We

also show that using RLNC results in remarkable energy

savings while achieving data survivability.

To evaluate the performance of the proposed schemes,

the following experimental setup is developed and tested

using simulation. The simulator takes as input: k, s, and

Fq, in addition to the required dissemination mechanism.

Since this study targets applications for WSNs, we use F2

in our experiments. Based on the number of source nodes

(k) supplied and the survivability (s) required, the values

for n and m are calculated using Eqs. (9) and (10). Based on

the justification given previously, we set c�
1

= 7 and c�
2

= 8.

The simulator starts by creating a network of k source

nodes and a storage network of n nodes. Note that in a

real implementation source nodes can also serve as stor-

age nodes. However, to simplify our simulation and analy-

sis, we assume no overlap between the sets of source and

storage nodes. Next, the dissemination and encoding phase

begins using the dissemination mechanism of choice, i.e.,
DEC, DEC-DS, DEC-EaF, or DEC-EaD. After the code is build,

the survivability of the code is tested for values corre-

sponding to survivability from 1 to s. To test the code sur-

vivability, we set f, the erasure rate, to values between 0

and 1. For each value of f, f × n uniformly randomly se-

lected storage nodes are deleted. Then, data collection is

carried out, and decoding is executed to test if the k native

data packets can still be decoded. To test decodability, stor-

age nodes are selected randomly to build G. If rank(G) = k,

decoding is successful and we record the number of pack-

ets used for decoding (β). Otherwise, decoding fails. In ad-

dition, the number of transmit, receive, and processing op-

erations executed during dissemination and encoding are

recorded.

To calculate the probability of successful decoding (Ps),

large number of different test cases are generated and

tested. Algorithm 5 illustrates the general steps of the

simulation.

The simulation was carried out for k = 10, 20, 30, 40,

and 50. The results are based on 1000 different runs

using different initial random choices of storage nodes

by source nodes. In the first part of the evaluation we

are interested in the coding-related aspects of the pro-

posed schemes, namely, probability of successful decod-

ing (Ps) and the average number of packets required for

122 L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127

Fig. 7. Probability of successful decoding (Ps): k = 10 − 50, s = 2, F2 .
decoding (β). The performance of the three schemes is

similar, therefore, we presented the results without desig-

nation of the used scheme. Ps can be defined as

Ps = Number of successful decodings

Total number of trials
. (18)

Fig. 7 shows the performance of the resulting code in

terms of Ps. The graph shows the values of Ps for different

values of k and for s = 2. The probability are as expected

since Ps = 1 ∀ f ≤ s
s+1 = 0.67. When f > 0.67, no enough

encoded data exist to recover all the native data. It is also

interesting to note that the code works even for networks

as small as k = 10. The decoding overhead (β) represents

the number of packets needed to successfully complete

the decoding process. As shown in Fig. 8, only one or two

packets are required on average beyond k to successfully

decode all packets. This is true for all values of k as small

as 10. We are also interested in the redundancy factor (m)

to compare the proposed scheme with the scheme in [6].

As shown in Fig. 9, DEC-DS requires less redundancy than

the original DEC to achieve data survivability. Furthermore,

the lowering redundancy does not compromise the decod-

ability of the code. The savings in redundancy translate to

lower energy requirements when applied to resource lim-

ited systems such as WSNs.

Beside the performance of the code with regard to sur-

vivability, it is essential to examine the energy needed to

implement each scheme. In case of DEC-DS and DEC-EaF, a

multipath shortest routing table is generated beforehand.

In addition, both algorithms use a link-state routing strat-

egy. Before, the dissemination phase starts, the routing ta-

ble is built with multiple routes for each destination in

case of DEC-EaF. On the other hand, DEC-EaD does not re-

quire any routing table; and neighbor discovery takes place

instead. Although the network may become disconnected
during data collection phase due to failure of nodes, we

assume the data collector is powerful enough to reach all

nodes. This assumption is driven by our focus on “data sur-

vivability” rather than “network survivability”.

In order to quantify the energy requirements, we define

the following energy model. We assume a network com-

posed of wireless nodes powered by batteries. The model

accounts for the energy consumed due to encoding, trans-

mission, relaying, and reception. The focus of this work is

on the number of operations executed during the dissem-

ination and encoding process. Hence, we use an abstract

energy model as described here.

The energy consumed by nodes can be due to either

sensing (in the case of source nodes), communications

(transmitting/receiving), or encoding. The corresponding

energies consumed are therefore represented by ξ s, ξ t, ξ r,

and ξ e, respectively, where ξ t, ξ r � ξ e. The energy of the

data collector is assumed to be infinite.

Accordingly, the cost of forwarding a packet by a relay

node without using RLNC is ξF = ξr + ξt for one reception

and one transmission. On the other hand, the cost of re-

laying with RLNC becomes ξRLNC = ξr + ξe + ξt . The extra

cost accounts for generating random coefficients, multiply-

ing the received packet by the random coefficient, and xor-

ing the result with the local encoded packet. Also, we do

not consider the energy consumed by sensing since it is

assumed to be equal for all nodes and can be factored out.

Table 4 shows the energy required to implement each

scheme for different values of k. We can see that DEC-EaF

and DEC-EaD can implement the required code using re-

markably less energy compared to DEC-DS. The number of

send (SND) and receive (REC) operations are equal for each

scheme since each single “send” operation implies a single

“receive” operation. It is generally the case in WSNs that

send and receive operations consume more energy than

L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127 123

Fig. 8. Decoding overhead (β): k = 10 − 50, s = 2, F2.

Fig. 9. Redundancy factor (m) as a function of source nodes (k).
local processing. When taking this into consideration, we

see that the local encoding performed by RLNC not only

contributes to the total energy consumed by the scheme,

it saves a significant amount of energy over all. It can also

be seen that DEC-DS and DEC-EaD achieve the exact num-

ber of encodings while DEC-EaF does not. This is because

when the algorithm reaches the required RF, the number

of unvisited nodes on the selected route may be more than

what is required, which results in the extra encodings. This

can be easily enhanced, especially if the number of nodes

is large, the cumulative effect could be significant.
To express the performance in terms of energy, we

compile the number of operations into energy figures us-

ing the energy requirements of the CC1000 chip. On the

CC1000 chip running at 868 MHz, processing requires

5 mW while “send” and “receive” consumes 25.8 mW and

28.8 mW, respectively, as shown in Table 3 [35]. Therefore,

coding for a k = 20 network requires on the same chip

needs 4.5 W for DEC, 3 W for both the DEC-DS and DEC-

EaD, and 3.11 W for the DEC-EaF. On the other hand, com-

munications require 237.6 W, 126.7W, 24.7 W, and 50.5 W

for DEC, DEC-DS, DEC-EaF, and DEC-EaD, respectively. Even

124 L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127

Fig. 10. Energy vs. network size for s = 4.

Table 3

Power requirements of the CC1000 chip running at 868 MHz.

CC1000

Power (mW) Process (ξ e) Transmit (ξ t) Receive (ξ r)

5 25 28.8
though the performance of the DEC-EaF is superior to that

of DEC-EaD, it comes at the cost of energy needed for rout-

ing. Given the difference between the two, DEC-EaF may

be more feasible for those WSN applications where rout-

ing is not required.

Fig. 10 shows how the energy requirements increase as

a function of the network size. Note that the Y-axis is in
Table 4

Number of coding, send, receive operations, and

survivability schemes.

k n Operation DEC

10 54 COD 350

SND 1174.82

REC 1174.82

Total power (W) 64.60

20 101 COD 900

SND 4440.67

REC 4440.67

Total power (W) 242.08

30 139 COD 1560

SND 9559.87

REC 9559.87

Total power (W) 519.25

40 185 COD 2240

SND 15561.31

REC 15561.31

Total power (W) 843.73

50 239 COD 2950

SND 22877.79

REC 22877.79

Total power (W) 1238.71
a logarithmic scale. It is evident that the savings achieved

by both DEC-EaF and DEC-EaD are substantial compared to

DEC-DS. Also, there does not seem to be a considerable dif-

ference in energy requirements between DEC-EaF and DEC-

EaD. Note that we observed the same trend for higher val-

ues of s as illustrated in Fig. 10.

6. Conclusion

In this paper, we introduce a DDSS for data survivability

in WSNs based on DEC. The framework aims at determin-

ing the amount of redundancy in both storage and data,

and the maximum level of failure that can be tolerated

without losing in-network data. Compared to the origi-

nal DEC which aim at reducing DO, the proposed schemes
total energy required to implement data

DEC-DS DEC-EaF DEC-EaD

280 286.357 280

847.375 421.127 496.978

847.375 421.127 496.978

47.67 28.54 24.43

600 622.24 600

2321.6 857.448 925.928

2321.6 857.448 925.928

129.76 53.56 49.93

960 1003.38 960

4393.854 1356.294 1441.42

4393.854 1356.294 1441.42

244.70 83.50 79.07

1320 1393.7 1320

6869.34 1811.988 1926.99

6869.34 1811.988 1926.99

381.7 111.81 105.90

1650 1759.714 1650

9563.376 2216.028 2354.948

9563.376 2216.028 2354.948

530.41 136.83 129.79

L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127 125
target achieving data survivability. Due to the random na-

ture of the DEC-DS scheme, it can be implemented in a de-

centralized manner without coordination between the sen-

sor nodes involved. Since the framework is targeting WSNs

applications, we show two schemes utilizing RLNC to re-

duce the energy needed to implement the storage system.

Even though the scheme is discussed under the assump-

tion of a WSN, we believe the scheme is general enough to

be also applied to other network architectures. An interest-

ing dimension to pursue is to study the data update prob-

lem where outdated data need to be replaced by new ones.

Another direction is incorporating Quality of Service (QoS)

measures into the framework. In other words, extending

the framework to situations where different classes of data

demand different data survivability requirements. We plan

to consider this interesting problem in a future study.

Appendix A. Rank properties for random matrices

over finite field

We review some important results on the properties of

random matrices over F2. Interested readers are directed

to [36] for a detailed discussion. Let G be a k × m ran-

dom matrix where each element gij of G is drawn from F2

according to a probability distribution ρ(x). More specifi-

cally,

ρ(x) = P(gi j = x) =
{

1 − p, for x = 0

p otherwise .
(A.1)

We are interested in the probability of G having a cer-

tain rank r, in terms of the column count m. It would be

useful to note that the number of possible vectors in the

k-dimensional space F
k
q is qk. In the case where q = 2 and

p = 1/2 (uniform distribution), the probability of Gk × m

having a rank r = m, can be expressed as

P(rank(G) = m) =(1 − 2−k)(1 − 2−(k−1))...(1 − 2−(k−m+1))
(A.2)

=
k∏

i=k−m+1

(1 − 2−i). (A.3)

Specifically, when m = k, the probability of G being full

rank is

P(rank(G) = k) =
k∏

i=1

(1 − 2−i), (A.4)

where the first term in Eq. (A.2) represents the probability

of choosing the first vector, namely, choosing any vector

except the zero vector (
−→
0). The second term represents

the probability of choosing any vector except any linearly

dependent vector of the vector chosen in the previous step

and
−→
0 . The third term corresponds to choosing any vector

other than the already chosen vector or any of their lin-

ear combinations. The rest of the formula can be deduced

similarly.

Interestingly, Eq. (A.2) converges to a constant when k

→ ∞. To see this, consider the following theorem from

[37].

Theorem 2. Let G be a binary random k × n, n ≥ 0 matrix

with entries chosen equally likely. Then for k − s ≤ min(k, n),
k ≤ s ≤ 0 and k → ∞ we have

P(rank(G)=k − s) → 2−s(m+s)
∞∏

i=s+1

(1− 1

2i
)

m+s∏
i=1

(1 − 1

2i
)−1,

where the last product equals 1 for m + s = 0 (i.e. full rank

matrix).

Now, let Qs denote the probability that a k × m matrix

has a rank r = min(k, m). Then

Qs =
∞∏

i=s+1

(1 − 2−i)

log(Qs) = log

∞∏
i=s+1

(1 − 2−i) =
∞∑

i=s+1

log(1 − 2−i)

=
∞∑

i=1

−2si

i(2i − 1)
.

Q0 can be seen as the probability that the matrix has a

full rank given that k columns have been generated. It can

be computed as

Q0 =
∞∏
j=1

(
1 − 1

2i

)
= 0.2887880951... (A.5)

Now, let Pm be the probability that exactly m extra

packets beyond k are needed to achieve full rank. Pm can

be expressed as

Pm = Qm − Qm−1. (A.6)

Therefore, the average number of extra packets m re-

quired to achieve full rank equals

m =
∞∑

m=0

mPm =
∞∑

i=0

(1 − Qi) = 1.6067. (A.7)

There are two important results to note from Eqs. (A.5)

and (A.7). First, the probability of full rank of any uni-

formly distributed square matrix converges to a constant.

This is in fact true to binary as well as non-binary matri-

ces. In the case of binary matrices, this constant is 0.288.

Table A.5 shows Q0 for different values of q. Second and

more importantly, the number of extra vectors (beyond k)

required to have a full rank with high probability is on av-

erage very low and is independent of k. For example, on

average only two extra vectors are required to make G have

a full rank. As shown on Table A.6, when the number of

extra vectors is 8, the probability is Q0 = 0.996. The latter

is quite accurate for k as low as 10.

The following two important theorems state that the

full rank probability seen above is not specific to the uni-

form distribution (p = 1
2). In fact, as long as the probabil-

ity p is within a certain interval, the results from the uni-

form case still apply. To see this, consider Fig. A.11. The

plot was generated for a randomly generated square matrix

with k = 20 and it shows the average invertibility probabil-

ity versus p for F2. The curve illustrates that the invertibil-

ity probability of 0.288 applies for a range of values of p

and not only for p = 1/2.

In [38,39], Cooper shows an expression of the probabil-

ity of the rank of a random matrix over a finite field in

126 L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127

Table A.5

Invertibility probability vs. finite field (Fq).

q 2 4 8 16 32 64 128 256

Q0 0.288 0.689 0.859 0.934 0.968 0.984 0.992 0.996

Table A.6

Invertibility probability vs. number of extra vectors (β − k).

s 0 1 2 3 4 5 6 7 8

Qs 0.288 0.577 0.770 0.880 0.938 0.969 0.985 0.992 0.996

Fig. A.11. Invertability probability (P) vs. p for F2.
terms of p. The expression applies to p over certain period

according to the following theorem.

Theorem 3 ([38], Theorem 1). Let p = q−1
q , and let G be a

random (k × k)-matrix with entries in Fq. Let pn(s, q) be the

probability that rank(G) = k − s, then

lim
k→∞

pn(s, q) = π(s, q) (A.8)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∏
j=1

(1 − 1

qj
), s = 0

∞∏
j=s+1

(1 − 1

qj
)

s∏
j=1

(1 − 1

qj
)

(1
q
)s2

, s ≥ 1.

(A.9)

Theorem 4 ([38], Theorem 2-i). Let G ∈ G(k, p, 2) be a

k × k random binary matrix over F2. Further, if p(k) =
log k+h(k)

k
≤ 1/2: Then

lim
k→∞

P(G is non-singular) =
{

0, h(n) → −∞
c2e−2e−h

, h constant
c2, h(n) → ∞

(A.10)

where c = π(0, 2).
2
References

[1] W. Wu, J. Zhang, A. Luo, J. Cao, Distributed mutual exclusion al-

gorithms for intersection traffic control, IEEE Trans. Parallel Distrib.
Syst. 26 (1) (2015) 65–74, doi:10.1109/TPDS.2013.2297097.

[2] S. Bera, S. Misra, J. Rodrigues, Cloud computing applications for
smart grid: A survey, IEEE Trans. Parallel Distrib. Syst. 26 (5) (2015)

1477–1494, doi:10.1109/TPDS.2014.2321378.

[3] H. Ning, H. Liu, L. Yang, Aggregated-proof based hierarchical authen-
tication scheme for the Internet of Things, IEEE Trans. Parallel Dis-

trib. Syst. 26 (3) (2015) 657–667, doi:10.1109/TPDS.2014.2311791.
[4] Z. Ren, M. Hail, H. Hellbruck, CCN-WSN - A lightweight, flexible

content-centric networking protocol for wireless sensor networks,
in: Proceedings of the 2013 IEEE Eighth International Conference

on Intelligent Sensors, Sensor Networks and Information Processing,

2013, pp. 123–128, doi:10.1109/ISSNIP.2013.6529776.
[5] A.G. Dimakis, V. Prabhakaran, K. Ramchandran, Ubiquitous access to

distributed data in large-scale sensor networks through decentral-
ized erasure codes, in: Proceedings of the Fourth International Sym-

posium on Information Processing in Sensor Networks (IPSN ’05),
Piscataway, NJ, USA, 2005, p. 15.

[6] A. Dimakis, V. Prabhakaran, K. Ramchandran, Distributed data stor-

age in sensor networks using decentralized erasure codes, in: Pro-
ceedings of the Thirty-eighth Asilomar Conference on Signals, Sys-

tems, and Computers, vol. 2, 2004, pp. 1387–1391, doi:10.1109/
ACSSC.2004.1399381.

[7] A. Dimakis, V. Prabhakaran, K. Ramchandran, Decentralized erasure
codes for distributed networked storage, IEEE Trans. Inf. Theory 52

(6) (2006) 2809–2816, doi:10.1109/TIT.2006.874535.

[8] R. Ahlswede, N. Cai, S.-Y. R. Li, R.W. Yeung, Network information
flow, IEEE Trans. Inf. Theory 46 (4) (2000) 1204–1216.

[9] C. Fragouli, J.-Y. Le Boudec, J. Widmer, Network coding: An instant
primer, ACM SIGCOMM Comput. Commun. Rev. 36 (1) (2006) 63–68,

doi:10.1145/1111322.1111337.

http://dx.doi.org/10.1109/TPDS.2013.2297097
http://dx.doi.org/10.1109/TPDS.2014.2321378
http://dx.doi.org/10.1109/TPDS.2014.2311791
http://dx.doi.org/10.1109/ISSNIP.2013.6529776
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0005
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0005
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0005
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0005
http://dx.doi.org/10.1109/ACSSC.2004.1399381
http://dx.doi.org/10.1109/TIT.2006.874535
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0008
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0008
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0008
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0008
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0008
http://dx.doi.org/10.1145/1111322.1111337

L. Al-Awami, H.S. Hassanein / Computer Networks 97 (2016) 113–127 127
[10] S.-Y. R. Li, R.W. Yeung, N. Cai, Linear network coding, IEEE Trans. Inf.
Theory 49 (2) (2003) 371–381.

[11] H. Weatherspoon, J. Kubiatowicz, Erasure coding vs. replication: A
quantitative comparison, in: Proceedings of the First International

Workshop on Peer-to-Peer Systems (IPTPS ’01), Springer-Verlag, Lon-
don, UK, 2002, pp. 328–338.

[12] S. Acedan’ski, S. Deb, M. Médard, R. Koetter, How good is random

linear coding based distributed networked storage, in: Proceedings
of the First Workshop on Network Coding, Theory, and Applications

(NetCod 2005), 2005.
[13] F.A. Kuipers, An overview of algorithms for network survivability,

ISRN Commun. Netw. 2012 (2012) 19. Article ID 932456.
[14] J. Xu, J. Tang, K. Kwiat, W. Zhang, G. Xue, Enhancing survivability in

virtualized data centers: A service-aware approach, IEEE J. Sel. Areas
Commun. 31 (12) (2013) 2610–2619, doi:10.1109/JSAC.2013.131203.

[15] J.W. Byers, M. Luby, M. Mitzenmacher, A. Rege, A digital fountain ap-

proach to reliable distribution of bulk data, in: Proceedings of the
ACM Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication (SIGCOMM ’98), ACM, New
York, NY, USA, 1998, pp. 56–67, doi:10.1145/285237.285258.

[16] I.S. Reed, G. Solomon, Polynomial codes over certain finite fields, J.
Soc. Ind. Appl. Math. 8 (2) (1960) 300–304, doi:10.1137/0108018.

[17] M. Luby, LT codes, in: Proceedings of the Forty-third IEEE Annual

Symposium on Foundations of Computer Science, 2002, pp. 271–280,
doi:10.1109/SFCS.2002.1181950.

[18] A. Shokrollahi, Raptor codes, IEEE Trans. Inf. Theory 52 (6) (2006)
2551–2567, doi:10.1109/TIT.2006.874390.

[19] D.J.C. Mackay, Fountain codes, IEE Commun. 152 (2005) 1062–1068.
[20] A. Dimakis, V. Prabhakaran, K. Ramchandran, Distributed fountain

codes for networked storage, in: Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP
2006), vol. 5, 2006, p. V, doi:10.1109/ICASSP.2006.1661484.

[21] Y. Lin, B. Liang, B. Li, Data persistence in large-scale sensor networks
with decentralized fountain codes, in: Proceedings of the Twenty-

sixth IEEE International Conference on Computer Communications
(INFOCOM), 2007, pp. 1658–1666, doi:10.1109/INFCOM.2007.194.

[22] S.A. Aly, Z. Kong, E. Soljanin, Fountain codes based distributed stor-

age algorithms for large-scale wireless sensor networks, in: Proceed-
ings of the Seventh International Conference on Information Process-

ing in Sensor Networks (IPSN ’08), IEEE Computer Society, Washing-
ton, DC, USA, 2008, pp. 171–182, doi:10.1109/IPSN.2008.64.

[23] S. Aly, Z. Kong, E. Soljanin, Raptor codes based distributed storage
algorithms for wireless sensor networks, in: Proceedings of the IEEE

International Symposium on Information Theory (ISIT 2008), 2008,

pp. 2051–2055, doi:10.1109/ISIT.2008.4595350.
[24] Z. Kong, S. Aly, E. Soljanin, Decentralized coding algorithms for dis-

tributed storage in wireless sensor networks, IEEE J. Sel. Areas Com-
mun. 28 (2) (2010) 261–267, doi:10.1109/JSAC.2010.100215.

[25] D. Vukobratovic, C. Stefanović, M. Stojakovic, V. Stanković, Raptor
packets: A packet-centric approach to distributed raptor code design,

in: Proceedings of the IEEE International Symposium on Informa-

tion Theory (ISIT 2009), 2009, pp. 2336–2340, doi:10.1109/ISIT.2009.
5205950.

[26] D. Vukobratovic, C. Stefanović, V. Crnojević, F. Chiti, R. Fantacci, A
packet-centric approach to distributed rateless coding in wireless

sensor networks, in: Proceedings of the Sixth Annual IEEE Commu-
nications Society Conference on Sensor, Mesh and Ad Hoc Communi-

cations and Networks (SECON ’09, 2009, pp. 1–8, doi:10.1109/SAHCN.
2009.5168905.

[27] D. Vukobratovic, C. Stefanović, V. Stanković, Fireworks: A random lin-

ear coding scheme for distributed storage in wireless sensor net-
works, in: Proceedings of the 2010 IEEE Information Theory Work-

shop (ITW), 2010, pp. 1–5, doi:10.1109/CIG.2010.5592800.
[28] S. Kokalj-Filipovic, P. Spasojevic, E. Soljanin, Doped fountain cod-

ing for minimum delay data collection in circular networks, IEEE J.
Sel. Areas Commun. 27 (5) (2009) 673–684, doi:10.1109/JSAC.2009.

090609.

[29] M. Albano, S. Chessa, Replication vs erasure coding in data centric
storage for wireless sensor networks, Comput. Netw. 77 (C) (2015)

42–55, doi:10.1016/j.comnet.2014.11.018.
[30] Q. Wang, K. Ren, S. Yu, W. Lou, Dependable and secure sensor data
storage with dynamic integrity assurance, ACM Trans. Sen. Netw. 8

(1) (2011) 9:1–9:24, doi:10.1145/1993042.1993051.
[31] R. Zeng, Y. Jiang, C. Lin, Y. Fan, X. Shen, A distributed fault/intrusion-

tolerant sensor data storage scheme based on network coding and
homomorphic finger printing, IEEE Trans. Parallel Distrib. Syst. 23

(10) (2012) 1819–1830, doi:10.1109/TPDS.2011.294.

[32] M.A. Mahmood, W.K. Seah, I. Welch, Reliability in wireless sensor
networks: A survey and challenges ahead, Comput. Netw. 79 (2015)

166–187, doi:10.1016/j.comnet.2014.12.016.
[33] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, J. Crowcroft, Xors in

the air: Practical wireless network coding, IEEE/ACM Trans. Netw. 16
(3) (2008) 497–510, doi:10.1109/TNET.2008.923722.

[34] V.B. Priezzhev, D. Dhar, A. Dhar, S. Krishnamurthy, Eulerian walk-
ers as a model of self-organized criticality, Phys. Rev. Lett. 77 (1996)

5079–5082, doi:10.1103/PhysRevLett.77.5079.

[35] Q. Wang, M. Hempstead, W. Yang, A realistic power consumption
model for wireless sensor network devices, in: Proceedings of the

Third Annual IEEE Communications Society on Sensor and Ad Hoc
Communications and Networks (SECON ’06), vol. 1, 2006, pp. 286–

295, doi:10.1109/SAHCN.2006.288433.
[36] C. Studholme, I.F. Blake, Properties of random matrices and applica-

tions, Unpublished Report, http://www.cs.toronto.edu/∼cvs/coding.

[37] V.F. Kolchin, Random Graphs, Cambridge University Press, New York,
NY, USA, 1999.

[38] C. Cooper, On the rank of random matrices, Random Struct. Algo-
rithms 16 (2000) 209–232, doi:10.1002/(SICI)1098-2418(200003)16:

2〈209::AID-RSA6〉3.0.CO;2-1.
[39] C. Cooper, On the distribution of rank of a random matrix over

a finite field, Random Struct. Algorithms 17 (3-4) (2000) 197–212,

doi:10.1002/1098-2418(200010/12)17:3/4〈197::AID-RSA2〉3.0.CO;2-K.

Louai Al-Awami is currently an Assistant Pro-

fessor at the Computer Engineering Depart-
ment, at King Fahd University of Petroleum and

Minerals (KFUPM), Saudi Arabia. He earned his
BSc and MSc in Computer Engineering from

the Computer Engineering, at KFUPM, in 2002

and 2006, and his Ph.D. from the Electrical and
Computer Engineering Department at Queen’s

University, Canada, respectively. He has also
taught many courses and laboratories while

working as a lecturer at KFUPM. His research
interest include Wireless Sensor Networks data

reliability; distributed storage systems, Network

Coding and data dissemination, and information centric networking. He is
actively engaged in the IEEE member since 2002.

Hossam S. Hassanein is a leading authority

in the areas of broadband, wireless and mo-
bile networks architecture, protocols, control

and performance evaluation. His record spans
more than 500 publications in journals, con-

ferences and book chapters, in addition to nu-

merous keynotes and plenary talks in flagship
venues. He has received several recognitions

and best papers awards at top international
conferences. He is also the founder and di-

rector of the Telecommunications Research Lab
(TRL) at Queen’s University School of Comput-

ing, with extensive international academic and

industrial collaborations. He is a senior member of the IEEE, and is a for-
mer chair of the IEEE Communication Society Technical Committee on Ad

hoc and Sensor Networks (TC AHSN). He is an IEEE Communications So-
ciety Distinguished Speaker (Distinguished Lecturer 2008–2010).

http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0010
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0010
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0010
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0010
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0011
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0011
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0011
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0012
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0012
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0012
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0012
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0012
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0013
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0013
http://dx.doi.org/10.1109/JSAC.2013.131203
http://dx.doi.org/10.1145/285237.285258
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1109/SFCS.2002.1181950
http://dx.doi.org/10.1109/TIT.2006.874390
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0019
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0019
http://dx.doi.org/10.1109/ICASSP.2006.1661484
http://dx.doi.org/10.1109/INFCOM.2007.194
http://dx.doi.org/10.1109/IPSN.2008.64
http://dx.doi.org/10.1109/ISIT.2008.4595350
http://dx.doi.org/10.1109/JSAC.2010.100215
http://dx.doi.org/10.1109/ISIT.2009.5205950
http://dx.doi.org/10.1109/SAHCN.2009.5168905
http://dx.doi.org/10.1109/CIG.2010.5592800
http://dx.doi.org/10.1109/JSAC.2009.090609
http://dx.doi.org/10.1016/j.comnet.2014.11.018
http://dx.doi.org/10.1145/1993042.1993051
http://dx.doi.org/10.1109/TPDS.2011.294
http://dx.doi.org/10.1016/j.comnet.2014.12.016
http://dx.doi.org/10.1109/TNET.2008.923722
http://dx.doi.org/10.1103/PhysRevLett.77.5079
http://dx.doi.org/10.1109/SAHCN.2006.288433
http://www.cs.toronto.edu/~cvs/coding
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0036
http://refhub.elsevier.com/S1389-1286(16)00022-0/sbref0036
http://dx.doi.org/10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1
http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4<197::AID-RSA2>3.0.CO;2-K

	Distributed Data Storage Systems for Data Survivability in Wireless Sensor Networks using Decentralized Erasure Codes
	1 Introduction
	2 Background and related work
	2.1 Replication Vs. encoding
	2.2 Data Survivability vs. Network Survivability
	2.3 Fountain Codes
	2.4 Decentralized Erasure Codes (DEC)

	3 Decentralized Erasure Codes for Data Survivability (DEC-DS)
	4 Routing and energy efficiency
	4.1 Encode-and-Forward (DEC-EaF)
	4.2 Encode-and-Disseminate (DEC-EaD)

	5 Performance evaluation
	6 Conclusion
	Appendix A Rank properties for random matrices over finite field
	 References

