
Driver-Centric Route Guidance

Sherin Abdelhamid∗, Sara A. Elsayed†, Najah AbuAli‡, and Hossam S. Hassanein†
∗Faculty of Computer Science and Information, Ain Shams University, Cairo, Egypt

shereen@cis.asu.edu.eg
†School of Computing, Queen’s University, Kingston, ON, Canada

{selsayed, hossam}@cs.queensu.ca
‡College of Information Technology, UAE University, UAE

najah@uaeu.ac.ae

Abstract—Route guidance and navigation services have been
widely attracting researchers and application developers due to
the serious problems of traffic congestion and the ceaseless need
to improve the driving experience. Motivated by such driving
concerns, this paper proposes a real-time, dynamic route guidance
system with the main focus on the driver safety and satisfaction.
As a unique feature compared to other existing systems, the
proposed driver-centric route guidance (DCRG) system considers
the driver behavior in the route guidance process for the sake
of boosting the safety levels on roads. The system also considers
the driver preferences targeting a personalized satisfying driving
experience. As most drivers prefer traversing the fastest and
healthiest route to their destination, the DCRG system takes into
account as well the real-time traffic and road conditions while
guiding drivers towards their targeted destinations. Performance
evaluation of DCRG shows significant improvements in the travel
time, on-road safety, and preference satisfaction levels compared
to the shortest and fastest route guidance schemes.

Keywords—Smart vehicles, Route guidance, Driver behavior,
Preferences.

I. INTRODUCTION

Traffic congestion and driving concerns have been serious
problems nowadays especially with the ever-increasing number
of vehicles on roads. Authorities and service providers have
been earnestly looking for solutions to such road problems to
save the drivers’ time wasted in traffic jams and reduce the un-
desirable high pollutant levels. A major scope of such solutions
is to provide drivers with route recommendation/guidance sys-
tems that are capable of alleviating congestion and improving
the driving experience.

Many traffic information and guidance systems are avail-
able for use. The standalone navigation systems (e.g., Tom-
Tom), Google Maps, and navigation apps are examples of such
widely-used systems. A common feature of these systems is
providing drivers with a generalized route such that vehicles
starting from the same area and heading towards the same des-
tination would be provided a similar route. With the diversity
of drivers’ preferences, such generalized route guidance does
not conform to the need for improved driving experiences.
Another commonality in the traditional systems is ignoring the
driver behavior and its effect on the driver safety. For some
aggressive drivers, recommending the fastest route would be
risky for them and their neighbors. Therefore, driver behavior
should be taken into consideration while recommending a route
for improving the level of safety on roads.

Motivated by the aforementioned limitations of the tra-
ditional route guidance systems, in this paper we propose

the Driver-Centric Route Guidance (DCRG) system. DCRG
aims at providing driver behavior and preferences-aware route
guidance while taking the real-time road health and traffic
status into consideration to select the fastest personalized route
for each driver. The system consists of four underlying com-
ponents, namely, Data Collection, Segment Filtering, Segment
Scoring, and Route Calculation, cooperating to achieve the
system objectives.

A main unique feature of our proposed system is taking
the driver behavior into consideration while guiding drivers
on roads. To implement such a feature, we consider two
main metrics as indicators of the driver behavior: the driving
aggressiveness level and proportion of unsafe lane changing.
Aggressive drivers are guided to relatively slow routes to pro-
tect them from speeding consequences. Drivers with frequent
unsafe lane changing are guided to roads with fewer lanes to
curb this risky behavior. With improving their behavior while
driving, the drivers would be provided with an updated faster
route. Such adaptability feature urges drivers to improve their
behavior resulting in enhanced on-road safety.

Concurrently, considering customizing a route to match a
driver’s preferences is a worthy addition to the route guidance
process. Drivers may prefer to avoid roads with potholes while
others may prefer going through the fastest route regardless
of any road anomalies they would encounter. Having the
capability to satisfy each driver adds to the efficiency of the
driving experience. To that end, the proposed DCRG system
takes into account the driver preferences while recommending
a route for a driver.

The driver behavior and preferences data/metrics are used
for filtering the road segments1 to consider in the route
selection and calculation process only those segments that
match the determined preferences and assessed driver behavior.
For deciding on the recommended route, road segments are
scored based on three main criteria: the road health, its traffic
status, and its conformity to the driver preferences. The goal
is to generate a fast, healthy, and personalized route from the
filtered set of safe road segments. The Dijkstra’s algorithm is
used to calculate a route towards the designated destination
utilizing the computed segment scores.

The proposed system is dynamic in the sense that it
does not keep the generated route fixed throughout the whole
trip. The system keeps monitoring the driver behavior and
road status periodically and modifies the route according to
encountered changes in such parameters.

1A road segment is defined as a road part linking two consecutive
intersections.
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To the best of our knowledge, the proposed DCRG system
is the first route guidance system to focus on the behavior
and safety of drivers while guiding them on roads. It is worth
mentioning that the DCRG system can either be used as a
standalone system through a mobile/on-vehicle application,
or can be used to complement existing navigation systems
and services, such as Google Maps, to add its driver-centric
capabilities to them. We also highlight that the proposed
system copes with the privacy preservation needs through
maintaining the driver-related data within his/her own vehicle.

We evaluate the performance of the proposed DCRG
system using the NS-3 simulator comparing it to the shortest
and fastest route guidance schemes. Simulation results show
that DCRG achieves significant improvements in terms of the
travel time, on-road safety, and driver preference satisfaction
compared to the other two schemes.

The remainder of this paper is organized as follows. In
Section II, we discuss some related work in the area of route
guidance. The proposed DCRG system and its underlying
components are discussed in Section III. In Section IV, we
present the performance evaluation of the system and the
simulation results. Finally, we conclude the paper and present
our future work in Section V.

II. RELATED WORK

In this section, we touch upon some related work in the area
of route guidance highlighting the differences to the proposed
system.

The oldest, yet still popular, mechanism for route guidance
is to provide drivers with the shortest route towards their
targeted destinations. This mechanism is the one employed by
most of the navigation systems. With the increasing density of
vehicles on roads, shortest routes have been proved not to be
necessarily the fastest. Therefore, many schemes/systems have
been proposed to guide drivers to their destinations over the
fastest available routes. Some of these schemes depend on the
traffic distribution history to predict the traffic density of a road
segment per a time instant. An example of such schemes is the
Time-Ants scheme [1]. Time-Ants considers historical tempo-
ral information for predicting future traffic conditions and com-
puting traffic ratings. Such temporal information is maintained
by a remote server that carries a database of all the roads and
their temporal traffic volumes. When a route is needed by a
vehicle, it acquires the traffic ratings of the roads of interest
from the server and feeds them to an algorithm for computing
the optimal route based on such ratings. Some other schemes
depend on collecting real-time traffic information reflecting
the current traffic status on roads. The popular Google Traffic
is an example of such a category. Despite its accuracy and
popularity, Google Traffic suffers from coverage limitations.
It only provides real-time information about a selection of
roads ignoring other crucial detour routes. Some schemes have
been proposed to overcome such a limitation. They utilize the
sensing and communication capabilities of connected vehicles
to provide ubiquitous coverage of roads resulting in high
granularity in the collected traffic information. An example of
such schemes is the Bee-inspired Jam Avoidance (BeeJamA)
scheme [2]. In BeeJamA, moving vehicles periodically report
their positions to a remote navigator corresponding to the area
they move within. The navigators communicate with all other
reachable navigators exchanging traffic-related information.
Each time a vehicle enters a new road segment, it sends a

next-hop guidance request to the corresponding navigator. This
navigator replies to the requesting vehicle with an instruction
calculated based on the collected up-to-date traffic information.
Another example of utilizing vehicular networks for route
guidance is the algorithm proposed in [3]. In this algorithm,
vehicles at intersections exchange traffic information including
both the travel time on their current segment and along the
reversed trajectory of its traversed path. Such information is
used by neighboring vehicles to compute the fastest path from
their current location to their destination.

Other route guidance schemes have been proposed in the
literature with objectives beyond only providing the shortest
or fastest route. For example, the authors in [4] propose a
context-aware path recommendation scheme that considers the
existence of service places on roads for the sake of reducing the
traffic passing by them aiming at alleviating congestion. The
scheme also considers road conditions, such as potholes, when
computing a recommended route. Some other schemes focus
on going green through reducing the levels of fuel consumption
and gas emissions on roads. An example of such schemes is
the EcoTrec scheme [5], which is an eco-friendly version of
the Time-Ants scheme [1]. EcoTrec takes into consideration
both the traffic and road conditions for computing the fuel
efficiency of different routes, and directing vehicles to the most
fuel-efficient route.

Some route guidance schemes have been proposed to
accommodate driver preferences. Most of these schemes work
on monitoring a driver’s route choice to accommodate the
elicited preferences in the next route recommendations. An
example is the scheme presented in [6]. In this scheme, each
feasible route has a defined set of attributes. A fuzzy-neural
approach is used to represent the correlation of the attributes to
the driver’s route choice. The deviation of the choice from the
system recommendation is used to train the system so that the
next recommendation would be adaptive to the preferences.

Although the above schemes succeed in achieving their
targeted objectives, they ignore a significant matter which is the
driver behavior and its effect on the driver safety on roads. The
work in this paper is stimulated by the need for accommodating
such a factor in route guidance. In addition to being driver
behavior-aware, the proposed work also takes into consider-
ation the driver preferences along with the traffic and road
conditions while guiding drivers towards their destinations.

III. DRIVER-CENTRIC ROUTE GUIDANCE (DCRG)

Through providing route guidance, the proposed DCRG
system targets improving the driving experience and managing
traffic on roads. Furthermore, as a unique feature, the system
preforms route guidance in a driver-centric manner taking
into consideration the driver behavior and preferences for
augmented safety and satisfaction. To handle such objectives,
the DCRG system consists of four components, namely, the
Data Collection, Segment Filtering, Segment Scoring, and
Route Calculation components. The data collection component
is responsible for collecting traffic and road conditions in
addition to driver behavior and preferences, and feed them
to the segment filtering and scoring components for their
operation. The segments are then filtered based on the driver
behavior and preferences through the filtering component, and
assigned a score based on the current traffic status, road
health, and driver preference satisfaction through the scoring
component. The filtered, scored segments are fed to the final
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Fig. 1. The architecture of the proposed system.

component for route calculation based on the computed scores
using the Dijkstra’s algorithm. The architecture of the proposed
system including the underlying components and the interac-
tion among them is depicted in Fig. 1. We discuss the detailed
functionality of the four components in the next subsections.

A. Data Collection Component

This component is responsible for collecting different types
of data: a) real-time traffic and road conditions, b) driver
behavior-related data, and 3) driver preferences. Each data type
is collected through an underlying module.

1) Real-time Traffic and Road Conditions:
Using their in-vehicle sensors, vehicles on roads can de-
tect various traffic and road conditions such as the average
speed, congestion level, potholes, bumps, and wet roads [7].
Our system utilizes such sensing capabilities of vehicles for
monitoring and collecting real-time data about the traversed
roads. Such data is reported by the collecting vehicles to
a centralized server through broadband communication. The
reported data is maintained by the server and retrieved by
vehicles deploying the DCRG system to use as input to the
other system components, as delineated later.

2) Driver Behavior Data:
One of the main features of the proposed system is considering
driver behavior in route guidance. Driver behavior is monitored
by in-vehicle sensors (e.g., the accelerometer and position
sensors), and corresponding data is generated and utilized by
the filtering component. Details about the driver behavior data
and model used in our system are discussed in III-B-2.

3) Driver Preferences:
Driver preferences are collected directly from drivers via the
on-board system application. They are collected during the ap-
plication setup and can be changed when desired. The collected
preferences are classified into strict and loose preferences.
The strict preferences must be satisfied by the system during
route guidance and they are considered in the segment filtering
process. Such preferences include the inclination to traverse
an express toll road and/or to avoid routes with service places
such as schools. The loose preferences accommodate flexibility
in satisfying them, so they are not considered in filtering
the segments. They are collected for the use by the segment
scoring component as one of the three scoring criteria. This
category includes the preference to avoid potholes, bumps,

wet/icy roads, and/or constructions, and the preference to
traverse a scenic road.
B. Segment Filtering Component

This component is responsible for tightening the segment
solution space that to be considered in the route calculation
process through filtering the road segments based on three
main aspects. The coordinates of the segments are considered
to filter out those segments that, topographically, cannot be
on a candidate route from the driver starting point to the
targeted destination. Driver behavior indicators are considered
as well to only take into account the segments that would
achieve a higher level of safety to the drivers according to
their current behavior. The strict driver preferences are also
considered in the filtering process to guarantee an adequate
level of driver satisfaction. To achieve the aforementioned
functionality, the segment filtering component comprises two
underlying modules: the ranking and filtering modules.

1) Ranking Module:
As a pre-filtering process, each segment is assigned two ranks:
one rank is computed based on its current average speed and
the other one is based on its number of lanes. Such ranks
are needed for the driver behavior-based dynamic filtering, as
discussed later in this subsection.

For a road segment i, a rank RSi
is computed based on

the current average speed of the segment, as follows

RSi
=
SAvgi
SHigh

(1)

where SAvgi is the average speed of segment i, and SHigh
is the highest average speed encountered in the candidate seg-
ment set at that time. Such speed information is obtained from
the real-time traffic module of the data collection component.

Another rank is computed for each road segment based on
its number of lanes. It is referred to as RLi for segment i and
computed as follows

RLi =
NLi

NMax Lane
(2)

where NLi
is the number of lanes in segment i, and

NMax Lane is the maximum number of lanes an in-city road
segment can have.

Since the number of lanes in a segment is a fixed parameter,
RLi

is computed only once, while RSi
is computed and
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updated periodically due to the dynamic nature of the traffic
and average speeds on roads.

2) Filtering Module:
This module involves multiple stages of filtering based on the
three main aspects highlighted earlier. Some of these stages
are based on fixed parameters and done only once at the
beginning of the guidance process. We refer to this category of
filtering as static filtering. The other filtering category, referred
to as dynamic filtering, is based on driver behavior and its
corresponding stages are performed dynamically according to
the encountered changes in the behavior.

a) Static Filtering:
To consider only the road segments that are potentially on
a candidate route from the trip starting point to the final
destination, a plausible area is created between the start and
end points and only the segments in this area are considered in
the route guidance process. The plausible area is created as a
rectangle whose diagonal is the straight line between the start
point and the destination extended for 1km from each of the
two defining points, as illustrated in Fig. 2.

After topographically delimiting the segment set, another
stage of static filtering is performed based on the strict driver
preferences collected beforehand. All the road segments that
do not conform to such preferences are filtered out from the
segment solution space (e.g., if the driver indicated that he/she
does not prefer to pay tolls, all the segments on toll roads are
removed from the candidate segment set).

b) Dynamic Filtering:
The dynamic filtering process is responsible for filtering out
the road segments that do not conform to the current status
of the driver behavior and are likely to be risky to traverse. It
involves two stages of filtering.

The first stage considers the aggressiveness of the driver on
roads. For a driver k, the system computes an aggressiveness
value Ak. For such a computation, we adapt the driver profiling
model proposed in [8]. This model utilizes the sensors in
smartphones for computing a driver aggressiveness score in the
[0, 100] range based on fuzzy logic. We adapt this model to use
the in-vehicle GPS, accelerometer, and steering-wheel position
sensors instead following the same fuzzy inference system
and its corresponding membership functions. We normalize the
final aggressiveness score to be in the [0, 1] range instead of
[0, 100]. The computed aggressiveness value Ak is then used
for filtering the segments based on their current average speed,
such that the higher the driver aggressiveness is, the slower the
roads to be considered in the recommended route for boosted

Fig. 2. Computing the route guidance plausible area. S and D refer to the
trip start point and destination, respectively.

safety. The rank RSi
computed through the ranking module for

each segment is used for this filtering stage. The system takes
into account only the segments with RSi within [0, 1−Ak].

In the second filtering stage, we consider an attribute
related to the driver behavior while performing a lane change.
As an indicator of the unsafe lane change behavior of driver
k, we compute Uk as the ratio of the number of unsafe lane
changes NUk

to the total number of lane changes NCk
done

by the driver in a 1 km distance (see Eq. 3). A lane change
is considered unsafe when the driver does it with a sudden
acceleration. A driver is said to have performed a sudden
acceleration if the acceleration value is greater than 0.5g [9].

Uk =
NUk

NCk

(3)

The behavior indicator Uk of driver k and the rank RLi

computed by the ranking module for each segment i are
used for further filtering the segment space to keep only the
segments with RLi

between [0, 1− Uk].
The two filtering stages highlighted above are both per-

formed at the beginning of the route guidance process based
on the initial assessment of the driver behavior. While on the
go, the driver behavior is periodically assessed, and when the
variation in any of the two indicators above exceeds a threshold
ThB , the corresponding filtering process is triggered and a
new set of road segments is passed to the route calculation
component for re-computing/updating the route.

C. Segment Scoring Component

The function of this component is to assign a score for
each road segment to be used as a weight in the final route
calculation. For segment scoring, we consider three main
criteria: the road health, travel time, and driver preferences.

The road health indicator Hi of segment i is a measure of
the number of road anomalies, such as potholes and bumps, re-
ported by vehicles traversed that segment during a monitoring
period ρM . It is computed as follows

Hi = NAi
|t+ρMt (4)

where NAi
is the number of reported distinct anomalies on

segment i, and t is the start time of the current monitoring
period.

The travel time is used as a main indicator of the segment
traffic status. It is computed based on the current average speed
as follows

Ti =
Li

SAvgi
(5)

where Ti and Li are the travel time and length of segment i,
respectively.

The third criterion is the measure of the segment con-
formity to the driver preferences. As mentioned earlier, we
consider the loose driver preferences in this scoring com-
putation as a means of favoring the segments with higher
driver satisfaction. The indicator of this criterion for segment
i conforming to the preferences of driver k is the preference
dissatisfaction ratio Dk

i , which is computed as follows

Dk
i =

N k
Di

NP
(6)

where N k
Di

is the number of dissatisfied preferences of driver
k over segment i, and NP is the total number of loose
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preferences considered in the system.
Before using the values of Ti and Hi in computing the

score of segment i, these values are normalized to be in the
[0, 1] range, similar to the value range of Dk

i . Such normalized
values of Ti and Hi are referred to as [Ti]norm and [Hi]norm,
respectively.

The overall score Ci of segment i is computed as follows

Ci = [Ti]norm × ([Hi]norm)1/α × (Dk
i )

1/β (7)

where α and β are the importance of accommodating the road
health and driver preferences into route guidance, respectively,
and can be set in the (0, 1] range.

The system computes the segment scores periodically.
When a change in the score of any of the segments in
the plausible area is measured to be above a pre-determined
threshold ThS , route recalculation is triggered.

D. Route Calculation Component

The filtered segments are fed along with their correspond-
ing scores to the final component for route calculation. The
Dijkstra’s algorithm is used for computing a route towards the
destination utilizing the computed scores.

While moving, route recalculation/update is triggered when
a change in a segment score or any of the driver behavior
indicators is above the pre-determined thresholds ThS and
ThB , respectively.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed DCRG system in comparison to the traditional shortest
route scheme using simulations. For that regard, vehicles in the
simulation environment are initially assigned the shortest route
to their destination, and we evaluate the performance of DCRG
through having a group of such vehicles run DCRG instead
of the shortest scheme while keeping the rest following the
shortest route. We vary the size of vehicles running DCRG,
referring to it as the DCRG penetration rate, incrementally
from 0 to 100%.

To evaluate the effect of considering the driver behavior and
preferences, we compare DCRG to a version of it that consid-
ers only the travel time in the scoring and route recalculation
decisions without taking the driver behavior and preferences
into account in such decisions nor in the filtering stage. Such a
version of DCRG is typically running the fastest route scheme
since guiding vehicles is based on the travel time solely.

The performance is analyzed in terms of: 1) the average
travel time of all vehicles that reached their destinations, 2)
the average probability of accident as an indicator of the driver
safety, and 3) the average driver preference satisfaction ratio.

The travel time of the vehicle of driver k is computed as the
summation of the travel times of all the road segments on the
route followed by k at the time k has traversed these segments.
Assuming that the route followed by driver k includes n
segments, then according to Eq. 5, the travel time of the vehicle

driven by k is computed as
n∑
i=1

Ti of each segment i on the

route of k. The average of the travel times encountered by
all the vehicles that reached their destination is computed and
considered as the first performance metric.

As an indicator of the driver safety on roads, we compute a
probability of accident for the route followed by each vehicle

based on the status of the segments on this route and the
behavior of the vehicle driver during the trip. A probability of
accident for each segment on the route is computed separately
and then the average for all the segments on the the route is
taken to be the probability of accident for the vehicle route.
For all the vehicles that reached the destination, the average
of the computed route probability of accident is used for the
second performance metric. The probability of accident P ki of
a segment i on the route of the vehicle of driver k is computed
as follows

P ki = w1 ×
(R k

Si
+R k

Li
+R k

Di

3

)
+ w2 ×

(Aik + U ik
2

)
(8)

where R k
Si

and R k
Li

are computed according to Eqs. 1 and
2, respectively. The parameter R k

Di
is the rank of segment i

based on its length and is computed as in Eq. 9 with LLong
is the length of the longest segment in the topography. The
parameters Aik and U ik indicate the driver behavior while
moving on segment i, and are computed based on the model
in [8] and on Eq. 3, respectively. The parameters w1 and w2

are the weights of the segment status and driver behavior in
the computation, respectively.

RDi =
Li

LLong
(9)

The third performance metric is the average preference
satisfaction ratio. A satisfaction ratio SRk is computed for
each vehicle driver k as 1−Dk

i averaged over all the segments
on the route followed by that driver. For all the vehicles
reached their destinations, the average of the computed values
of SRk is considered as the value of the third metric.

In the following discussion, we refer to the shortest route
scheme as SHRT, and to the fastest route scheme as FAST for
simplicity.
A. Simulation Setup

Both DCRG and FAST are implemented using the NS-3
network simulator [10]. Realistic mobility traces are generated
using the SUMO vehicular simulator [11]. SUMO assigns
vehicles the shortest route (SHRT) to their destination by
default. According to the penetration rate, some vehicles are
guided with different routes, following the routes generated
by the evaluated system (being DCRG or FAST). Dynamic
linkage between NS-3 and SUMO is implemented to update
the mobility traces when route recalculation is triggered in
DCRG or FAST.

We considered a 4 × 4 grid topography with a total
vehicle density of 950 vehicles. Simulations are performed
over various penetration rates for a period of 1000 seconds
each. The maximum number of lanes per a road segment is
set to 2, and the maximum speed is set to 40 km/h. Driver
behavior and segment score changes are assessed every 5
minutes. The score change threshold ThS is set to 0.2, and the
driver behavior change threshold ThB is set to 0.5. The scoring
weights α and β are both set to 1, giving equal weight to the
travel time, road health, and preference satisfaction attributes.
The values of w1 and w2 used in calculating the probability
of accident are set to 0.3 and 0.7, respectively, giving a higher
effect to the driver behavior.
B. Simulation Results and Analysis

First, we compare DCRG to the SHRT and FAST schemes
in terms of the average travel time. Fig. 3(a) shows that
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(a) Travel time of DCRG, SHRT, and FAST. (b) Probability of accident of DCRG, SHRT, and
FAST.

(c) Preference satisfaction ratio of DCRG, SHRT, and
FAST.

Fig. 3. Performance results comparing DCRG to SHRT and FAST.

with increasing the penetration rate (i.e., having more vehicles
running DCRG), the average travel time decreases indicating
that the proposed DCRG system achieves shorter travel times
than SHRT due to taking this attribute into consideration when
deciding on the route. Comparing DCRG to FAST, Fig. 3(a)
shows that DCRG achieves a little bit longer average travel
time than FAST. This is attributed to the effect of considering
the driver behavior that directed some drivers to slower roads
than the fastest ones for safety purposes.

Second, we perform the comparison in terms of the proba-
bility of accident metric. Fig. 3(b) shows that with increasing
the penetration rate of DCRG, the proposed system achieves
lower probability of accident demonstrating a significant per-
formance improvement compared to SHRT. It is also shown
that the increase in the travel time encountered by DRCG
compared to FAST pays off in terms of reduced probability of
accident. With increasing the penetration rate, the difference
between DCRG and FAST gets larger, highlighting the worthy
benefit of considering driver behavior in route guidance.

Finally, DCRG, SHRT, and FAST are compared in terms of
the average preference satisfaction ratio. Fig. 3(c) demonstrates
that the more vehicles running DCRG are, the higher the
average satisfaction is. This is attributed to considering the
driver preference in both the filtering and scoring stages.
For the same reason, DCRG also achieves better preference
satisfaction than FAST.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the driver centric route guidance
(DCRG) system. DCRG is a real-time, dynamic system that
targets achieving a safe, satisfying driving experience. As
a unique contribution, DCRG takes into account the driver
behavior while guiding drivers on roads to direct them to
routes that enhance their safety. The driver centricity is boosted
through considering the driver preferences in the route guid-
ance process endowing drivers with a personalized driving
experience. Since drivers also care about the time spent on
roads and the health of roads they traverse, DCRG also takes
into consideration the real-time traffic and road conditions
when deciding on a recommend route. Performance evaluation
showed that DCRG achieves significant improvements in terms
of the travel time, on-road safety, and preference satisfaction
compared to the typical shortest and fastest route guidance
schemes. In our future work, we will extend DCRG to be fully
distributed through waiving the need for the centralized server

that maintains the traffic and road status data. The on-board
storage of smart vehicles will be considered for that regard
acting as a mobile vehicular cloud.
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