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Abstract—Driver distraction identification is crucial to improve
road safety. Through vehicular communications, vehicles can
exchange driver behavior information, based on which distracted
drivers can be identified, and all drivers can be notified, which
can mitigate the impact of driver distraction on road safety.
To build such systems, it is essential to understand the different
types of distraction, and how they affect driver behavior and their
relationship to crashes or near-crashes. This understating should
be based on real datasets, which are very limited. Therefore, in
this paper, we cover this gap by building a data-driven simulation
model to quantify the impact of realistic driver distraction on
traffic safety. In particular, we use the 2nd Strategic Highway
Research Program Naturalistic Driving Study (SHRP2 NDS)
dataset to develop a simulation framework for driver distraction.
First, we pre-process and analyze the dataset for different types
of distractions. The analysis shows that the data can not be fitted
to any of the known distributions. Therefore, we use the Gaussian
Mixture Model (GMM) to represent the distraction intervals for
the different distraction types. We then use these GMM models
and the statistics collected from the data to realistically simulate
the driver distraction using the Simulation for Urban MODbility
(SUMO) software. Finally, we use this framework to simulate
the driver distraction in a real network. The data analysis and
simulation results revealed important and interesting conclusions,
such as decreasing the crash ratio when roads become congested.

Index Terms—Driver Distraction, Traffic Safety, Gaussian
Mixture Model, Simulation

I. INTRODUCTION

Road accidents participate significantly in increasing death
rates. The World Health Organization (WHO), in its report
on road safety [1], declared that the number of annual road
traffic deaths reached 1.35 million cases. This large number
of accidents and deaths can be reasoned to many factors
including road conditions, vehicle conditions, or weather.
However, the main reason for this enormous number of crashes
is human errors, which cause more than 80% of the road
accidents [2]. Although connected and automated vehicles will
be mainstream and an important part of transport systems in
the future, traditional vehicles are also expected to participate
strongly in this future. Therefore, it is essential to study the
driver behavior and its effects on the safety and efficiency of
these systems [3].

Driving is a multitasking process that involves perception,
judgment, decision making, and operation. Such a process
needs a high degree of concentration from drivers to achieve
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safety [4]. The lack of concentration may be due to fatigue,
distractions, or emotions [5]. These factors affect the driver’s
behavior and his ability to precept, judge, and react to on-road
events such as deceleration of the leading cars or maneuvers
by other surrounding vehicles. This can lead to fatal conse-
quences. Driver distraction is a significant cause of such fatal
human errors. For instance, in the United States, the National
Highway Traffic Safety Administration (NHTSA) reported that
approximately 20,000 people lost their lives from 2014 to 2019
in crashes involving distracted drivers.

Driver distraction may be defined in different ways. One
of these definitions is ” The diversion of attention away
from activities critical for safe driving toward a competing
activity, which may result in insufficient or no attention to
activities critical for safe driving” [6]. Distracted driving not
only affects the driver’s performance in the subject vehicle,
it also affects the surrounding vehicles. So, vehicle-to-vehicle
communication can be utilized to warn other drivers when a
distracted driver is detected in a certain vehicle. As shown
in Fig. 1, when the follower vehicle receives the distracted
driver notification from its leader vehicle, the follower driver
will be more cautious and increases his/her headway distance
as a reaction to any potential driving misbehavior.

Despite the serious impact of distracted driving, its record-
ing is elusive due to several reasons. Firstly, most police
reports do not have videos recording of events and depend on
asking the driver about the event. Secondly, even if the event is
recorded, it is hard to prove the state of the driver especially if
there is no physical evidence such as cases of cognitive distrac-
tion or looking at an object on the road. Therefore, reporting
the distraction is very difficult, and obtaining the naturalistic
dataset that contains distraction details such as its types and
duration is not an easy mission. Consequently, understating
these distractions and how they affect safety in different
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Fig. 1: Vehicular communication and driver distraction
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conditions is a challenging task. This is an important barrier in
the way of building systems that utilize advanced technologies
like vehicular wireless communications and machine learning
to solve driver distraction problems or mitigating their impacts.
To this end, in this paper, we introduce a novel data-driven
simulation framework for driver distraction that can improve
the understanding of driver distraction and help overcome its
impacts, and consequently, achieve safe driving. This frame-
work combines the advantage of studying naturalistic data and
traffic simulation. The significant merit of using naturalistic
data is the rational statistics and the accurate results. On the
other hand, utilizing the traffic simulation allows studying
relations and effects without exposing designated drivers to
danger.
The main contributions of this paper are:

o Providing an in-depth study of different types of dis-
tractions, their intervals, and distributions based on the
SHRP2 dataset.

« Using Gaussian Mixture Model (GMM) to develop mod-
els for the different distraction types in the SHRP2
dataset. Each type is represented by a different number
of components to best fit its distribution.

o Developing a technique to simulate driver distraction
based on the statistics extracted from the dataset and
using the developed GMM models. In this technique,
distraction tasks are selected stochastically based on their
probabilities in the dataset. The distraction intervals are
generated based on the GMM model for the selected task.

« Performing sensitivity analysis to quantify the impact of
driver distraction on a real road network from where the
data was collected and at different traffic conditions using
the SUMO simulator [7].

II. RELATED WORK

Many researchers have focused on studying the impact of
driving distraction on crash risk using different approaches.
One of these approaches is utilizing large-scale NDS datasets,
in which driver behavior is recorded in the real environment [4]
by using cameras and different sensors. For instance, Lv et al.
[8] employed 208 events with distracted driving and 373 events
without distracted driving extracted from the SHRP2 database
[9] to analyze right-turn drivers’ distracted driving behavior
at intersections based on real driver observation data collected
from NDS. Arvin and Khattak [10] utilized SHRP2 to provide
analysis of driving impairments and distractions, in addition to
studying the duration of these distractions and their impact on
critical events, such as crashes or near-crashes. While Zhang et
al. [11] studied the influence of using mobile as a distraction
task on the driver’s control behaviors by utilizing a sample
of 134 cases extracted from Shanghai Naturalistic Driving
Study data (SH-NDS). Klauer et al. [12] used 100-Car NDS
and studied crash and near-crash events and concluded that
distracting tasks such as texting, eating and phone calls can
significantly increase the probability of crash and near-crash.

Driving simulation experiment is the most commonly used
method to study distracted driving. It depends on allowing the

driver to conduct operations in a virtual environment. Karthaus
et al. [13] investigated the influence of visual and acoustic
distraction on the driving process with driving simulation and
studied the difference in the performance of the older and
younger vehicle drivers.

To study the effects of distracted driving on traffic safety
and efficiency, fraffic simulators is a suitable approach, where
information of the speed and the locations of surrounding ve-
hicles is obtained and utilized. Lint and Calvert [14] proposed
a multi-level microscopic traffic modelling and simulation
framework which studied the distraction impact on increasing
traffic jams. Lindorfer et al. [15] employed traffic simulator
TrafficSim to examine the influence of distracted driving and
reaction time variations on traffic safety and efficiency. The
statistical research is also employed in examining distracted
driving, which depends on using datasets, such as accident data
released by police reports, to analyze the correlation between
traffic accidents and distracted driving [4]. For instance, Pope
et al. [16] presented an analysis of adolescent drivers from the
Traffic Safety Culture Index (TSCI) from 2011 to 2017 using
a sample contains 3565 participants to examine support for
distracted driving laws.

Although considerable work has been managed on identi-
fying different types of distractions and studying the impact
of distraction on crash probability, the impact of various dis-
traction duration on traffic safety has not been deeply studied.
Some weakness points in the literature need to be addressed.
First, many studies depend on using driving simulators instead
of naturalistic datasets in studying crash risk to achieve
safety surrogate measures. Second, some particular research
objectives such as studying traffic safety and efficiency can
not be achieved by using naturalistic driving experiments. This
paper addresses this gap by presenting a study of the different
distraction tasks and calculating their distraction intervals with
realistic values. Moreover, this work provides a study of the
impact of various distraction tasks on traffic safety using traffic
simulation.

III. THE SHRP2 DATASET PROCESSING AND MODELLING

SHRP2 NDS is considered the largest study of naturalistic
driving behaviors to date [17]. The data is collected contin-
uously from a variety of sensors installed in the vehicles. It
contains more than 35 million miles of driving data and more
than 5 million trips [18]. The data reduction is processed by the
Virginia Tech Transportation Institute (VTTI), where all the
crashes and near-crash events are recorded in the final SHRP2
dataset. In addition to these crash and near-crash events, base-
line events are selected randomly for normal driving, which
include distraction and non-distraction events. Each record in
the dataset summaries the content of an individual trip [9].
The SHRP2 dataset has important advantages compared to
other datasets. It was collected by volunteers and not from
police reports, so, drivers involved in crashes reported the real
reasons that they might not report to police investigations.
Therefore, it is trusted and dependable. Moreover, it contains
diverse variables that can be used in different studies. In this

Authorized licensed use limited to: Queen's University. Downloaded on March 07,2022 at 17:34:54 UTC from IEEE Xplore. Restrictions apply.



work, we use the sample of the dataset that Queen’s University
obtained from VTTI. This sample contains a total of 28896
records. Each record has 38 fields. Among these fields, the
most important are 1) Secondary Task Start, 2) Secondary
Task End, 3) Subject Reaction Start, 4) Event Severity, and 5)
Secondary Task. The first three fields are utilized to compute
the distraction duration, the fourth describes the severity of
the event (i.e., crash, near-crash, or normal), while the fifth
describes the type of distraction if there is a distraction or
”No secondary task” if the driver was not distracted when
the event happened. Among the 28896 records in this sample,
there are almost 20,000 records for baseline and 8758 records
for the crash, near-crash, and crash-relevant events.

A. Data Preprocessing and Analysis

The data is processed and analyzed to extract the statistics
needed for the simulation of driver distraction. Particularly, we
performed data cleaning and merged similar tasks in a single
secondary task. Then, the result is used to compute the crash
ratio and distraction duration for different types.

Data cleaning: Before processing the data we noticed that
some records have invalid values in the Secondary Task Start,
Secondary Task End, and Subject Reaction Start fields. In these
fields, negative values are used. Therefore, when computing
the distraction durations, we exclude these records.

Merging tasks: The dataset contains 55 different distraction
types, which are called Secondary Tasks, such as Eating,
Smoking, Drinking, etc. To simplify the data, similar tasks
are combined under the same type. For instance, Applying
make-up, Shaving and Other personal hygiene are merged
into Hygiene distraction type. This way reduces the number
of distraction types from 55 to 15 types.

Computing the task ratios: In the simulation, each task
must be simulated based on the ratio of its occurrences in the
data. So, we computed the ratio of each of the 15 secondary
tasks in both the Crash/ Near-Crash/crash-Relevant (CNCR)
and the baseline events, which are shown in Fig. 2.

Crash ratio and distraction ratio: The dataset sample
we have includes all the crash-related events (8758 events)
in the original data. Among them, only 1097 are reported to
be caused by driver distraction. Thus, within the 5,411,197
trips [9], there are 1097 accidents, i.e, the crash ratio = 1097/
5,411,197= 0.02 %. On the other hand, this sample contains
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Fig. 3: The distraction intervals

only 20,000 records for other events, which is less than 0.4%
of the total records in the original data. Therefore, this is not
a representative sample of the data, and we cannot use it to
compute the exact distraction ratio among all the trips.

Calculate the distraction durations: Determining the dis-
traction duration is important to know which task has a sig-
nificant impact on crash risk. It is also a key parameter in the
simulation because the simulation behavior will be changed
based on the distraction interval. This duration is computed
by subtracting the Secondary Task Start from Secondary Task
End for each secondary task in baseline events. In CNCR,
subtract the Secondary Task Start from Subject Reaction Start.
The statistics of the duration as well as the standard deviation
are shown in Fig. 3.

Based on this analysis, we can conclude that the distraction
tasks that contribute the highest to crashes are Cell phone
usage (including dialing, texting, etc.), Interaction (interacting
with another person in the vehicle), External object (looking at
an object outside the vehicle), and Talking/Singing with ratios
of 22.29%, 18.18%, 16.07%, and 14.24%, respectively (see
Fig. 2). Moreover, the tasks that are related to the cell phone
have longer distraction durations as shown in Fig. 3.

B. Distraction Duration Modelling Using GMM

The study of data distribution is crucial to represent the
data efficiently, particularly if this data is utilized as the
first step of more complicated systems, like the simulation
framework we present in this paper. The significant challenge
we face in representing the distraction duration in SHRP2
is that each secondary task has a different distribution, as
shown in Fig. 4. Some types can be modelled using the normal
distribution. But others cannot be efficiently modelled by any
known distribution. We experimented with several statistical
distributions such as Normal, Gamma, Beta, etc. Most tasks
did not fit any of the known distributions. Therefore, finding
a unimodal distribution to fit the data is not possible, and it
is necessary to use a mixture of models to represent the data
efficiently. For this purpose, we utilize the GMM [19].

Gaussian distribution is a common distribution in modelling
real-world unimodal data. Therefore, GMM is employed in
modelling multimodal data with keeping the theoretical and
computational benefits of Gaussian models [19]. Using GMM,
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data is represented by a number (k > 0) of Gaussian distribu-
tions. A GMM with k£ components is parameterized by three
parameters for each component ¢; the component weight ¢;,
the component means p; and variances/covariances o; [20].
The final data model is the weighted sum of these components,
as illustrated by Eq. (1)

k
p(@) = 6N (|mi, 0:) (1
i=1

where N (z|p;, 0;) is a normal distribution, i.e.,

exp <-“”“‘”)2) @

2
20;

1
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and the summation of the wights equals to 1, i.e.,

k
Y pi=1 3)
=1

Fig. 5 shows an example for the generated GMM represent
the distraction duration data for the Adjusting Object task.
The generated data models and the statistics computed from
the dataset are utilized to realistically simulate the driver
distraction impact on the road safety.
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IV. THE DATA-DRIVEN SIMULATION FRAMEWORK

Modelling the impact of driver distraction on the safety of
the vehicles as well as the traffic flow is a challenging task
because of the complexity of the system and the parameters
that may affect the system’s efficiency. Such a study requires
information such as vehicle counts, speeds of surrounding
vehicles and their locations, road network information and

traffic lights and their timing. All these values are difficult
to be acquired using naturalistic driving experiments. More
importantly, such a study requires microscopic modelling
for vehicle mobility and vehicle dynamic, as well as the
interactions between vehicles that are in proximity. Therefore,
many studies depend on utilizing driving simulation or traffic
simulation [4]. In this paper, we use the SUMO software,
which is a microscopic traffic simulator that can model all
these parameters and capture these impacts.

The proposed simulation framework is illustrated in Fig.
6. In this framework, the analysis and modelling steps of
the processed data generate the statistics and the data GMM
models, respectively, as described earlier. The core of the
framework is the Distraction Simulation Controller (DSC),
which uses these data models and the statistics as well as the
network and traffic setting to control the simulation parameters
of SUMO and the simulated drivers within it.

A. The SUMO Simulator

SUMO is an open-source microscopic road traffic simu-
lation software. It has a suite of tools for different func-
tionalities, such as importing road networks, generating ve-
hicular traffic, and computing routes from different sources
to different destinations. One of the main capabilities of
SUMO is the modelling of the vehicle dynamics for both
longitudinal and lateral movements, which accounts for the
vehicle parameters such as maximum speed and maximum
acceleration/deceleration rates. It can also model the different
types of traffic control strategies (traffic lights, stop signs, and
yield signs). The vehicular traffic load in SUMO is represented
by traffic flows. Each flows represents a number of vehicles
that start at a given time from an origin with the aim to reach
a destination. Accidents can happen in SUMO during car-
following (a vehicle collides with its leader vehicles), during
lane changing (a vehicle collides with a vehicle on the other
lane) or when crossing an intersection (when two conflicting
vehicles cross an intersection at the same time). However, by
using the appropriate configurations the SUMO can run the
network scenario without accidents.

There are several parameters to control the simulation
environment in SUMO that may affect road safety. Some
of these parameters are global that control the overalls
simulation system, others are scope-defined parameters that
only change the behavior of certain entities. An important
global parameter is the step_length (whose default value
is 0.1 second), which determines how often the software
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Fig. 6: The data-driven framework
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will update the vehicles’ parameters (such as location, speed,
and acceleration). Another mandatory global parameter is the
Traffic Scaling Factor (TSF), which is multiplied by each flow
rate to scale it up or down. The TSF determines the total
number of vehicles that will be generated in the network,
and consequently, the vehicle density during the run time.
Examples for vehicle-scope parameters are the vehicle’s maxi-
mum speed and maximum acceleration, which can be specified
for each individual vehicle. An other important vehicle-scope
parameter is the actionStepLength, and the tau parameters.
The actionStepLength is initialized to the step_length and
defines how often this vehicle will update its parameters. The
tau parameter is utilized to model a driver’s desired time
headway (in seconds) which is the minimum time gap between
follower and leader vehicle.

B. Driver Distraction Simulation

Since driver distraction means that the driver is not focusing
on his main task (driving), and is occupied by a secondary task.
This means that during the distraction interval the distracted
driver does not account for the surrounding vehicles and does
not react to the actions. Based on this concept, the driver dis-
traction can be simulated in SUMO by disabling the updating
of the vehicle parameters during the distraction interval. This
can be achieved in SUMO by setting the actionStepLength
parameter to the distraction duration. Then, at the end of the
distraction duration, this parameter should be reset back to its
default value.

Time-Step Distraction Probability (TSDP): To simulate
the distractions, we need to calculate the ratio of the drivers
that are distracted. Since the dataset does not have enough in-
formation to calculate this ratio, we use another methodology.
First, we define the TDSP in any time step as the probability
of distracting one driver in this time step. The TSDP is an
input parameter for the simulation framework and it should be
computed before the simulation starts. To compute a realistic
value for the TSDP, we use a simulation-based method to find
the TSDP that generates the average crash ratio in the dataset,
as will be explained later in the experimental results section.

C. The Distraction Simulation Controller (DSC)

The DSC is responsible for changing the vehicle parameters
during the run time to simulate the driver distraction. It follows
the following procedures every time step.

1) Selecting a secondary task: The DSC uses the TSDP

to find if a driver should be distracted in this time step.
If so, it probabilistically selects a task based on the task
probabilities computed previously in the analysis step and
saved in the data statistics.

2) Generating a distraction interval: Then, the DSC uses
the GMM model for the selected task to randomly gen-
erates a distraction interval.

3) Distracting drivers: If a driver must be distracted in
the current time step, the DSC randomly selects one of
the undistracted vehicles that are currently running in
the network and changes its actionStepLength to the
generated distraction interval.

4) Resetting distracted drivers: Every time step, the
DSC checks if any of the current distractions should
be ended, and resets those vehicles to the default
actionStepLength.

This way, we can model driver distraction and capture its
impacts on the vehicle’s safety by collecting the accident
statistics generated by SUMO.

V. THE EXPERIMENTAL RESULTS

We use the developed framework to study the impact of
driver distraction on a real network from which the data
was collected at different traffic conditions. The SHRP2 NDS
dataset was collected from six sites around the United States.
The largest collection sites are in Seattle, Washington; Tampa,
Florida; and Buffalo, New York, where each of these sites
collected over 20% of the data. The advantage of using the
SHRP?2 networks is showing the number of participants who
used each network, and this shows which network is mostly
employed and lead to close results. Therefore, we utilized
one of these networks; Buffalo, New York. Fig. 7a shows
the network with the participant traversal density, and Fig.
7b shows the network snapshot from SUMO.
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Fig. 7: Buffalo network
A. Calculating the TDSP

Before performing the sensitivity analysis, we need to
compute a realistic TDSP value for the network. So, we run the
network at different values for the TDSP. And we computed
the distraction ratio that generates the same crash ratio of the
original real dataset. According to the dataset, the crash ratio
is 0.02. Therefore, we use the default simulation parameters,
i.e., step_length = 0.1sec. and tau = lsec., and change the
TSDP until the crash ratio reaches the required value of 0.02.
Buffalo network reaches this ratio at TSDP of 0.002. These
results are shown in Fig. 8.

B. Traffic Load Sensitivity Analysis

We perform sensitivity analysis to study the impact of the
network traffic load on road safety. We use three different
values of TSDP including the computed one (0.002). To
achieve this goal, we run Buffalo network with different TSF
ranging from 1 through 4, and for each TSF we compute the
average crash ratio from 5 different runs with different seeds.
The results are shown in Fig. 9, which also shows interesting
results. It illustrates that the crash ratio increases with the
TSF (i.e., the congestion level). However, when increasing the
congestion level above a certain level, the crash ratio starts
decreasing. This behavior appears with the three different
values of TSDP. The reason behind this behavior is that at low
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traffic loads, the distances between vehicles are long. Hence,
most of the distractions will not result in crashes because
there are no other vehicles close to the distracted driver.
As the traffic load increases (before entering the congested
regime), the distances between cars become smaller while
speeds are still relatively high, which increases the crash
probability in case of distractions. Finally, when the network
becomes congested, the distances between vehicles become
smaller, vehicle speeds are significantly decreased (because
of the congestion), which increases the headway time, and
consequently contributes to decreasing the crash probability
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Fig. 9: The distraction impact versus TSF
VI. CONCLUSION

In this paper, we introduce a data-driven simulation frame-
work for driver distraction, which can be utilized to study the
impact of driver distraction on road safety based on the SHRP2
naturalistic dataset. The data analysis reveals that most of the
driver distractions are caused by four main types of secondary
tasks, namely, Cell phone usage, Interaction, External object,
and Talking/Singing. We show that, 22% of the accident in the
dataset are caused by Cell phone usage. Another important
conclusion is that the distribution of the distraction intervals
of many distraction types are multi-modal distributions and
the best way to model them is to use a mixture of models.
More importantly, our sensitivity analysis of the distraction
impacts under different traffic loads demonstrated that the
impact increases with the traffic load, however at a certain
point (when the network becomes congested) the impact
of distraction decreases. In future work, we plan to study
the effects of using vehicular communication to transfer the
distraction information on road safety. Another extension for
this work is utilizing real dataset to model the driver time
headway to represent more realistic driver behavior.
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