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Abstract—The growing demand for video streaming is strain-
ing the current Internet, and mandating a novel approach to
future Internet paradigms. The advent of Information-Centric
Networks (ICN) promises a novel architecture for addressing
this exponential growth in data-intensive services, of which video
streaming is projected to dominate (in traffic size). In this paper,
we present a novel strategy in ICNs for adaptive caching of
variable video contents tailored to different sizes and bit rates.
Our objective is to achieve optimal video caching to reduce access
time for the maximal requested bit rate for every user. At its
core, our approach capitalizes on a rigorous delay analysis and
potentiates maximal serviceability for each user. We incorporate
predictors for requested video objects based on a popularity index
(Zipf distribution). In our proposed model, named DASCache, we
present delay queuing analysis for cached objects, providing a
cap on expected delay in accessing video content. In DASCache,
we present a Binary Integer Programming (BIP) formulation
for the cache assignment problem, which operates in rounds
based on changes in content requests and popularity scores.
DASCache reacts to changes in network dynamics that impact bit
rate choices by heterogeneous users and enables users to stream
videos, maximizing Quality of Experience (QoE). To evaluate the
performance of DASCache, in contrast to current benchmarks in
video caching, we present an elaborate performance evaluation
carried out on ndnSIM, over NS-3.

Keywords—Dynamic adaptive streaming; Content-centric net-
work; in-network caching; Optimization; Popularity index; Queue-
ing analysis; Binary integer programming.

I. INTRODUCTION

The dynamics of the Internet, which have scaled superbly
over the past twenty years, are currently faltering under the
projected growth of data demands. While several attempts
at improving network performance via Content Distribution
Networks (CDNs) and web proxy caching have held their
ground for years, there is significant concern as to their ability
to cope with an exponential growth in data. More prominently,
multimedia data is expected to increase and amount to a
considerable portion of Internet traffic. It is projected that, by
2016, video will amount for almost 55% of overall data traffic
[1] in conservative estimates.

In recent years, a rising concern in the paradigms governing
the Internet has resulted in the emergence of Information-
Centric Networks (ICN). They are proposed as the next gen-
eration of the Internet designed to intrinsically handle large
content and distribute it via network layer primitives. In ICNs,
the core premise is adapting to content and catering to both
consumers and producers, rather than adopting the client-server
approach of the current host-centric Internet. Where CDNs and
peer to peer (P2P) networks provided overlays over the Internet
to handle large content dissemination, ICN exploits caching as
a networking primitive to enhance content delivery. Currently,
several ongoing research projects are implementing versions

of the ICN vision. Pioneering among these architectures is the
Content-Centric Network (CCN) developed by Jacobson et al.
in [2]. CCN stands out as one of the prominent architectures
that witnessed significant uptake by the research community;
facilitating rapid benchmarking and insightful performance
analysis across proposed protocols and schemes.

The challenge of catering to video content, as a dominant
type of traffic, is instrumental in the development of ICNs. To
this end, some researchers attempted to produce caching strate-
gies that would improve cache utilization, such as transcoding.
Yet, the problem of addressing heterogeneous caching over
variable chunks of different bit rates, without incurring in-
network data processing, stands unsolved. In this paper, we
present a novel model, DASCache, to handle heterogeneous
video content caching in ICNs. Our objective is simply to
minimize the average access time per bit for requested video
content, to facilitate rapid streaming over ICNs which improves
Quality of Experience (QoE) for all users. Our approach
addresses variable bit rates and content sizes, to mimic re-
alistic scenarios where different users would demand the best-
possible bit rate given the heterogeneity of their devices and
link conditions. Utilizing DASCache, users with varied network
conditions will experience higher throughput and are thus able
to switch to videos with better resolution, achieving the best
experience possible.

The remainder of the paper is organized as follows. Sec-
tion II overviews related work including recent research on
caching schemes in ICNs and predecessor work on dynamic
adaptive streaming. Section III presents our DASCache cache
management strategy, encompassing the queueing model to
derive expected caps on access delay. We present the rigorous
formulation of DASCache in Section IV. Our experiment setup
and performance evaluation results are detailed in Section V
and we conclude in Section VI with our final remarks and
propositions for future work in this viable direction.

II. RELATED WORK

In the realm of ICNs, content could be cached when
travelling towards the requester in order to provide flexibility
via on-path caching mechanisms. Recent research efforts have
been devoted to the cache decision policy problem over CCN
and the solution could be generally divided into explicit or
implicit, according to the degree of coordination. The explicit
caching policy requires knowledge of the whole network via
routing-path or neighbourhood coordination. For example, Li
et al. in [3] targeted on minimizing the remaining traffic based
on popularity of contents. Their policy relied on statistics
collected from lower tier routers along the name resolution
path. While the implicit caching policy works independently
on each node. For example, Suksomboon et al. proposed
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a probabilistic caching scheme [4] in which the probability
of caching is calculated according to request frequency of
contents received by each router. In contrast to described work,
our proposed strategy addresses the issue of the management
of cache under video delivery scenarios.

The problem of video caching has been addressed in previ-
ous literature as a core challenge in the Internet under HTTP.
Thus, Dynamic Adaptive Streaming over HTTP (DASH) [5]
was developed to handle heterogeneous network condition.
The DASH rate adaptation algorithm working on clients’
devices is designed to change requested video rate on-the-fly
based on users’ available bandwidth. Therefore, some research
(e.g., [6], [7]) has been devoted to that adaptation strategy,
considering playback smoothness, average quality, playback
interruption, etc. However, these attempts are largely HTTP
based, and do not address ICN architectures with intrinsic
caching capabilities. Grandl et al. in [8] pointed out the issue
of caching competition between contents in different bit rates
in CCN. Thus they proposed DASH-INC which only keeps the
highest rate in cache and performs transcoding once a lower
rate is requested. However, with the increasing demand in
video traffic, one cannot simply assume that in-node processing
for transcoding would be scalable for real-time requests. Our
work tackles this problem in a radically different way by
caching contents with multiple bit rates according to their
popularity.

III. DASCache CACHING MODELING

It is important to explain the design of caching strategies in
light of the operation of ICNs, and their intrinsic in-network
caching properties. In this section, we will elaborate on the
proposed DASCache cache management strategy, and detail the
assumptions and axioms upon which our system is built. More
importantly, the objective of minimizing access time while
improving throughput is explained in terms of the facilitated
improvement in users’ QoE.

A. System Description and Axioms
We build DASCache over CCN architecture. It is important

to note that our proposed strategy is designed to address the
primitives of ICN paradigms in general, and is not specific to
CCN. However, we choose to address CCN as a viable use case
to demonstrate utility and benchmark to current state-of-the-
art caching models in the literature. This is further elaborated
upon in the Performance analysis, Section V.

Our system primarily targets video delivery in ICNs. All
packets in the envisioned CCN scenario are assumed to be re-
lated to video contents and the size of network is encompassed
by a single ISP [3]. However, our solution could be generalized
for multiple (co-existing) ISPs by considering cache partition-
ing and multi-homing. To maintain a concrete description, we
will opt for analyzing and presenting DASCache in light of a
single ISP.

There are three different types of routers: the edge router,
intermediate router and a single gateway. We assume all chunks
are kept in a repository (main content producer) which is
reachable via the ISP’s gateway over a high bandwidth link;
mimicking a common scenario in real world deployments
and envisioned ICN architectures. All clients are served by
edge routers; intermediate routers never connect with clients
directly. In this model, node failure is not considered. If there
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Fig. 1: Network Topology

is any router which is not accessible, DASCache just needs
to refresh the routing topology and runs for a new cache
placement solution.

Although CCN supports multi-path routing which increases
the chance of cache hits, the overhead studied by [9] demon-
strated performance degradation at the same time. In order to
contain our model, we adhere to CCN’s default setting: single-
path routing without cooperative schemes that get an extra
complication in building the model. Our proposed solution is
indifferent to network topology. However, we will adopt a tree
routing topology as shown in Fig. 1 (marked in red lines) in
our modelling to enable a rigorous analysis of network delay.

DASCache works in rounds. As to each round, a monitoring
window set by network provider is responsible for collecting
statistics at each edge router such as users’ request frequency
and current available bandwidth. Based on this aggregated
data, the network provider would predict the bit rate chosen
by clients in the next round. DASCache is triggered to run
for an optimal cache allocation to tune the content placement
according to this predicted information at the end of each
round. Once the placement is determined, the contents in cache
keep unchanged during that round.

This model allows for variations in requested bit rates for
every user, since rate adaptation algorithm should cater to
individual requests by each user. However, observed that users
under the service of the same edge router would share similar
network condition, for the reason of simplicity, we assume
that users under the service of the same edge router would all
choose the same bit rate (which is the most requested one).

B. Notations and Assumptions
All nodes in the proposed network are modelled as a

connected graph G = (V,E) in which node in V are composed
of a set of Edge nodes N , intermediate nodes I and a single
gateway R. Node j, where j = 1, . . . , |V | is equipped with
content storage with capacity Cj which represents the class-
specific capacity dedicated to video caching. How to decide
Cj belongs to the cache space allocation problem which is
beyond the scope of our model.

Video files are divided into K chunks, according to a fixed
time interval, and each chunk is identified by a unique number.
Chunk k is requested by clients with probability {qk}k=1,...,K .
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TABLE I: Notation

V CCN routers within the ISP
N Edge routers
I Intermediate routers
R Gateway
Cj Cache capacity (size) of node j
qk Popularity distribution of requests for chunk k
πj Binary indicator of requested bit rate at edge router j
S Video chunk size
xj Cache deployment configuration matrix at router j
λj Interest request arrival rate matrix at router j
λ′
j Sum of users’ request rate received by edge router j
Lj Set of nodes on routing path from edge router j
V RTTk(j) Virtual round trip time delay from edge router j
D(i, j) two-way delay between router i and j
θij Downlink bandwidth between router i and j
Qij Queueing delay between router i and j
µj Interest miss rate matrix at router j
ρij Traffic load on link between router i and j

There are B bit rates available for request while a vector S1×B
is used to denote the size of chunks encoded with different bit
rates. For example, S(b), b = 1, . . . , B denotes an element
in vector S representing chunk size with bit rate b. Hence,
each video chunk now is identified by a two-dimensional index
(k, b).
{(πB×1)j}j=1,...,|N | is defined as a binary indicator vector

for edge router j, in which element πj(b) ∈ {0, 1}, b =
1, . . . , B. If πj(b) = 1, it indicates that bit rate b is requested
by clients at edge router j. As we assume that clients served by
the same edge router will request for the same bit rate, thus
we have

∑B
b=1 πj(b) = 1. Let matrix {(xK×B)j}j=1,...,|V |

denote our cache deployment configuration, where xj(k, b) ∈
{0, 1}, k = 1, . . . ,K; b = 1, . . . , B. xj(k, b) = 1 indicates that
the video chunks indexed by (k, b) should be cached at node
j during the next round.

Users’ requests received by each router is assumed to
be following Poisson Process. According to the superposition
property, the interest arrival rate on intermediate routers is the
sum of rates of its children nodes. We denote the interest arrival
rate matrix at node j with {(λK×B)j}j=1,...,|V |. The element
at row k column b represents request rate for video chunk with
index (k, b). As for edge router j, let λ′j denote the request
rate made by all clients and bj the chosen bit rate. Thus, we
have λj(k, bj) = λ′jqk.
{Lj}j=1,...,|N | is a sequence of node IDs. Elements in

this sequence are those which receive interest packets for
video chunks sent from edge router j. In other words, {Lj}
contains nodes located on the routing path starting from edge
node j. We define Lj(1) = j and Lj(i + 1) always denotes
the ID of the next hop node of Lj(i) on the routing path
of Interest packet. The last element in {Lj} is the video
repository accessed by the ISP. For example, following the
topology depicted in Figure 1 and considering j = 2, L2 will
be (2, 8, 12, 11, 15, 16).

To summarize, Table I lists all notations used in our model.
Please note that those symbols that have not been explained
earlier but will be presented later are included as well.

C. Problem Model
In adaptive streaming, throughput is a fundamental metric

in rate adaptation algorithms to estimate maximal supported bit
rates by measuring the round trip time (RTT) delay of video
chunks. We argue for approximating the maximal average
throughput a user could achieve by minimizing the average

access time per bit. Therefore, the optimization objective could
be represented as:

min

|N |∑
j=1

E[AccessTimePerBit(j)]
|N |

(1)

To calculate E[AccessTimePerBit(j)], we first define the
virtual round trip time (VRTT) delay in Eq 2 where D(i, j)
denotes the value of two-way delay among router i and j.
Then, the VRTT of video chunk k requested by clients under
service of edge router j is:

E[V RTTk(j)] =
|Lj |−1∑
i=1

(
E[D(Lj(i), Lj(i+ 1))]

(
1− max

m=1,...,i
xLj(m)(k, b)

))
(2)

To elaborate, we take j = 2 as an example
from Fig.1. If there is no cache in the network,
E[V RTTk(2)] is the sum of two-way delay on links between
routers (2, 8), (8, 12), (12, 11), (11, 15) and (15, 16). However,
whether data packets actually travel through the link depends
on the cache on the routing path. For example, delay between
router (12, 11) should not be add into E[V RTTk(2)] when the
video chunk k has already cached in router 2, 8 or 12. If any
binary indicator among x2(k, b), x8(k, b), x12(k, b) equals 1,
E[D(L2(12), L2(11))] will not be added. The summation in
Eq 2 is to add up the average delay on each link of routing
path from edge router until the node on which the interest is
satisfied.

The expected access time per bit for chunk k requested
from edge router j is denoted as,

E[AccessTimePerBitk(j)] =
E[V RTTk(j)]

S · πj
(3)

Such that,

E[AccessTimePerBit(j)] =
K∑
k=1

qk ×
E[V RTTk(j)]

S · πj
(4)

Hence, the optimization objective in Eq 1 is formally repre-
sented as:

min

|N |∑
j=1

K∑
k=1

qk ×
E[V RTTk(j)]
|N |S(bj)

(5)

where bj is subject to πj(bj) = 1.

D. Queueing model and Derivations
In order to compute the V RTTj(k) in Eq 2, we make a

quantitative analysis for each link and calculate the D(i, j).
Since processing and propagation delay are negligible, we
assign a representative value P to denote them. Let θij
denote the downlink bandwidth between node i and j (data
packet from j to i). When video chunk with bit rate b′ is
transmitting, the average two-way delay between node i and j,
E[D(i, j)], consisting of propagation, processing, transmission
and queueing delay, is calculated as

E[D(i, j)] = P +
S(b′)

θij
+ E[Qij ] (6)

Data packets, which is delivered according to user re-
quests, arrive at each router following a Poisson Process with
memoryless property. Under the video delivery scenario, the
size of packets encoded with a given bit rate is equivalent to
each other because each packet contains the same length of
playback time. Such that, the job service time of a packet in
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the queueing system is always chosen from a set of discrete
values determined by available bit rates and the service time
for packets encoded with the same bit rate is deterministic.
Therefore, we employ a multiclass M/G/1 queueing model to
calculate the queueing delay, E[Qij ].

As video streaming data dominates total network traffic,
other traffic types, (e.g., web pages, emails) have both smaller
proportion and packet sizes compared to video contents. Ac-
cording to the Proposition III.1, traffic of these types can
generate quite limited contribution on average queueing delay.
Therefore, this model only considers video packets in the
queueing system.

To use this model, we must ensure that there are no
overloaded links within the network. Denote with ρij the traffic
load between node i and j and thus ρij < 1 must be satisfied.
However, under the setting of dynamic adaptive streaming,
this condition is guaranteed to be satisfied in the end. The
overload caused by increased number of users’ requests would
be detected by the rate adaptation algorithm since a lot of video
packets would be queued or dropped in the network which
results in a low or even zero throughput. This algorithm will
then control the user’s device to request for lower bit rates
which will reduce the amount of data delivered within the
network and effectively relieve the load.

Denote with router Hj a set of children nodes of router j
in tree topology. We have the following proposition to derive
E[Qij ].
Proposition III.1. If ρij < 1, ∀j ∈ V,∀i ∈ Hj , the average
queueing delay for data packets delivered from router j to i is

E[Qij ] =
1

2

∑B
b=1 µi(·, b)E[ϕij(b)]

2

1−
∑B
b=1 µi(·, b)E[ϕij(b)]

(7)

Proof: The queueing in our video delivery scenario is
illustrated in Fig.2. According to the superposition property,
the rate of interest packet which request for bit rate b missed
by caches in router i, µi(·, b) is given by,

µi(·, b) =
K∑
k=1

λi(k, b)(1− xi(k, b)) (8)

λi(k, b) =

‖Hi‖∑
m=1

µHi(m)(k, b) (9)

Eq 8 and 9 represent the relation between interest arrival and

interest miss rate. Take Node 11 in Figure 1 as an example,
Eq 9 represents that the interest packet arrival rate on Node
11 is the sum of rates missed by caches in Node 7 and 12.
Eq 8 calculates the interest miss rate on Node 11 based on
the arrival rate and whether requested contents are cached on
Node 11 or not. If it is cached (which means x11(k, b) = 1),
the corresponding request could be immediately satisfied and
there will be no need to forward this interest packet. As node j
is responsible for forwarding data packet along the link to the
node i according to the ‘bread crumb’ left by interest packet,
µi(·, b) is also used as the data (encoded with bit rate b) input
rate to the buffer in router j. The expected job service time of
data packets encoded with bit rate b, E[ϕij(b)] is given by,

E[ϕij(b)] = ϕij(b) =
S(b)

θij
(10)

and then, the traffic load ρij is,

ρij =

B∑
b=1

ρij(b) =

B∑
b=1

µi(·, b)E[ϕij(b)] (11)

when ρj < 1, it means that the input rate to the queue is
less than the output rate. Hence, the model is in stable status.
In other words, the requested resource will never exceed the
maximum that the network can provide.

To calculate E[Qij ], we apply Little’s Theorem and extend
Pollaczek-Khinchin (P-K) formula [10]. In P-K formula, the
expected waiting time in queue for the ith packet is the sum
of service time of any previous packets which arrive before ith
packet and the Residual Service time (RSij). RSij represents
the remaining time seen by the new packet when it arrives until
current in-service packet is complete. Let us denote NQ(b) the
number of data packets waiting in the queue which are encoded
with bit rate b. Such that, the expected queueing delay E[Qij ]
is,

E[Qij ] = E[RSij ] +
B∑
b=1

E[NQ(b)]E[ϕij(b)]

=
E[RSij ]
1− ρij

(12)

To apply in multiclass scenario, E[RSij ] [10] is,

E[RSij ] =
B∑
b=1

µi(·, b)E[ϕij(b)2]
2

(13)

Because service time of data packets, ϕij(b) shown in Eq 10,
is a deterministic value, we will have E[ϕij(b)2] = E[ϕij(b)]2.
Therefore, synthesis Eq 11 12 13, queueing delay in Eq 7 is
proven.

IV. DASCache CACHING SOLUTION

Our objective in DASCache is to find the optimal video
content placement, in every round, which minimizes the av-
erage access time per bit to all users and thereby increases
their respective throughput. A solver is called at the end of
every round, as highlighted in Section III, based on aggregated
popularity predictors and changes in traffic, to find an optimal
cache assignment. In order to formulate a feasible optimization
problem, we explain a method in this section which transforms
the objective given in Eq 5 to a binary integer programming
(BIP) problem.

Synthesizing Eq 2 and 5, we apply the ‘big-M’ method
(‘M’ denotes a very large positive number) to obtain a
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standard form of binary integer programming by substituting
maxm=1,...,i xLj(m)(k, b) in Eq 2 with an artificial binary
variable mj(i) and adding another two constraints in Eq 18.
Our optimization problem is finally formulated as follows,

min

|N |∑
j=1

K∑
k=1

|Lj |−1∑
i=1

qkE[D(Lj(i), Lj(i+ 1))](1−mj(i))

|N |S(bj)

(14)
s.t. ∀j ∈ [1..|N |], ∀l ∈ [1..|V |], ∀i ∈ [1..|Lj | − 1]

(15)
bj = arg(πj(b) = 1) (16)
mj(i) = max

m=1,...,i
xLj(m)(k, bj) (17)

mj(i) ≤
{
xLj(i)(k, bj) + Mnj(i)

mj(i− 1) + M (1− nj (i))
,∀i > 1

(18)∑
k∈K

∑
b∈B

Wl(b)xl(k, b) 6 Cl, (19)

Wl(b) =

{
S(bj) if l ∈ Lj
+∞ if not

(20)

mj(i), nj(i), xl(k, b) ∈ {0, 1} (21)

Eq 19 constitutes the cache capacity constraint in optimiza-
tion which ensures the size of cached video objects would not
exceed the cache limit. Wl(b) represents required storage space
to assign a video chunk encoded with bit rate b to node l in
Lj . In Eq 20, Wl(b) equals to video chunk size only on those
routers which interest requests for bit rate b ever reach.

To ensure E[D(Lj(i − 1), Lj(i))] in Eq 14 is a constant
value, the optimization must run iteratively such that the entire
problem could be solved as a linear programming. It is because
E[D(Lj(i − 1), Lj(i))] is given by Eq 6 and 7 while cache
configuration (xi(k, b)) may influence the interest miss rate
(µi(·, b)) and then change the value of E[D(Lj(i−1), Lj(i))].
As a solution, we apply the result of xi(k, b) in the previous
run to queueing model and achieving a deterministic value
of E[D(Lj(i − 1), Lj(i))]. Subsequent runs constantly tune
the cache configuration and this algorithm will stop if two
consecutive runs generate the same/close results.

V. PERFORMANCE ANALYSIS

In this section, the performance of our DASCache caching
strategy is presented and evaluated.

A. Experiment Setup
We build the simulation environment through customiza-

tion on ns-3 based simulator, ndnSIM [11]. In order to give
optimal caching deployment, we also implement an ILP solver
in which calls Gurobi [12] engine to solve Eq 14.

Videos are segmented into chunks with duration of 10
seconds. Within the experiment, we consider five available
bit rates and the size for each one is determined according
to sample videos [13]. The popularity distribution is assumed
to be Zipf-like [14] and the chunk i is requested with the
probability pi =

β

iα
, where β =(

∑N
i=1 i

α)−1. The value of α
represents the skewness factor. A large α means less video
chunks have similar popularity.

TABLE II: DEFAULT PARAMETERS FOR SIMULATION
Parameters Value

# of video chunks 3200
Video period(s) 10
# of routers in ISP 60
# of edge routers 35
Skewness factor α 1.2
Available bit rates 5
Size of bit rate chunks(KB) {332, 390, 454, 1364, 2465}
Bandwidth between gateway and video repo(Gbps) 1
Bandwidth between routers within ISP(Mbps) 20
Simulation period (s)/run 2000

DASCache caching management targets optimizing access
time per bit. However, the ultimate goal is to improve the
throughput measured by users. Therefore, we use Average
Throughput to measure the performance. It is calculated by
having video chunk size divided by average data packet
retrieval time which is measured between two timestamps
when interest packet is sent and corresponding data packet
arrives at user’s device.

Users’ choices of bit rates, guided by adaptation algorithm,
must not exceed the upper limit of available bandwidth and
are constrained by the network bottleneck. Thus we make the
following traffic generation rule: I. Random bit rate is chosen
and assigned to each client. We regarded it as the predicted one
made by ISP provider. II. Choose initial average request rate
(λ) for clients to ensure that the traffic load on the link is close
to full load between edge router and its direct parent node. III.
Calculate traffic load (ρ) on all links in the routing topology
according to Eq 11, starting from those close to edge routers
till the gateway. If ρ < 1 is not satisfied on some link, we
decline users’ request rate (λ) proportionally. Repeat step III.
until ρ < 1 is satisfied on all links. This rule will make some
links become bottlenecks in the network and let the predicted
bit rate reasonable in the experiment.

B. Performance evaluation
As our DASCache method relies on collected statistics and

only refreshes cache once in a round. In order to make fair
comparisons, we use periodic LRU (P-LRU) and periodic LFU
(P-LFU). P-LRU is modified according to the Least Recently
Used (LRU) scheme but the replacement only occurs at the end
of each round based on the request sequence it records. Similar
change is made to P-LFU which is from Least Frequently Used
(LFU) scheme.

1) Impact of total cache capacity: To test the impact of
cache capacity, we assume homogeneous cache allocation
on routers and define a multiplier ζ (0 < ζ ≤ 1). The
cache capacity of each router, Cj , is then defined as, Cj =

ζK|V |−1
∑B
i=1 S(i) which is set to be relative to the total

size of videos of all bit rates.
Fig. 3(a) shows the performance of caching when ζ ranges

from 1% to 20%. Our DASCache deployment outperforms two
other caching schemes among all tested cases. For example,
when ζ = 1%, our method has 26%, 42%, 112% improvement
on average throughput over P-LFU, P-LRU and Nocache
respectively. P-LRU yields the worst performance since it only
records the most recent subscriptions and cannot distinguish
between popular and unpopular requests. The outcome of P-
LFU and DASCache are close but performance difference
lies in the fact that DASCache optimizes the data delivery
considering the delay and storage utilization in a synthesized
manner. In general, all three caching schemes provide much
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Fig. 3: Simulation results

improvement compared to the no cache situation.
2) Impact of popularity skewness factor: We explore the

impact of popularity skewness factor (α) on performance of
caching with fixed cache capacity ζ = 5% and also choose
homogeneous cache allocation.

Fig. 3(b) indicates that our DASCache strategy achieves the
best average throughput and the smallest RTT delay compared
with P-LRU and P-LFU schemes over all tested values of α.
For example, when α = 0.8, our strategy achieves improve-
ment of 13% and 41% on throughput compared with P-LRU
and P-LFU respectively. When popularity skewness increases,
we observe that all caching schemes achieve significant perfor-
mance improvement. The reason is that the amount of popular
data is smaller as α is larger, thus more of popular video
segments can be kept in the cache and respond to requests
at a faster speed.

3) Impact of cache capacity allocation: Instead of focusing
on homogeneous cache allocation, in this experiment, we also
test two simple heterogeneous cases. Let us denote that Case 1:
intermediate routers have the cache capacity twice than edge
routers; Case 2: edge routers have the cache capacity twice
than intermediate routers; Case 3: Same cache capacity among
all routers (homogeneous case).

Shown in Fig. 3(c), we observe that in Case 2, all caching
schemes achieve better performance than two other scenarios.
The result is straightforward since more interest requests could
be satisfied closer to users when the cache capacity on edge
routers is larger. However, it is worthwhile to note that the
performance difference is negligible. The DASCache deploy-
ment in Case 2 is only 348Kbps(5.4%) and 225Kbps(3.4%)
better than Case 1 and 3 on average. The underlying reason
is that redundant cached contents exhaust space for caching
new objects which neutralizes the benefit of moving more
contents closer to users. This result also shows insight that
cache capacity allocation has less influence compared with
content deployment under this particular setting.

VI. CONCLUSION

In this paper, we proposed our cache management strategy,
DASCache, which improves the QoE of users over ICN. The
novelty in DASCache stems from achieving optimal cache
assignment considering dynamic adaptive streaming. In the
proposed strategy, simulation results demonstrated how DAS-
Cache outperforms two mainstream caching schemes.

In future work, instead of requiring global knowledge from
network provider, we will develop a distributed algorithm to

cater for scenarios with dynamic network conditions (e.g.
frequent bit rate switch by user), and to scale with larger
networks. As our formulation is based on an LP which is
inherently NP-hard, we advocate for extending this work with
dynamic heuristics that could operate at quasi-optimality in the
large scale.
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