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ABSTRACT Within the paradigm of smart cities, smart devices can be considered as a tool to enhance
safety. Edge sensing, Internet of Things (IoT), big data, social media analytics, edge computing, and artificial
intelligence are key technologies that can be applied through smart devices to create emergency-aware
systems. The use of these technologies could make emergency management tasks such as visualizing,
analyzing, and predicting disasters easier to perform. The aim of this paper is to conduct a review of recent
activities in literature about disaster and emergency management, and showing the role of different edge
technologies used in this regard, and through the different stages of dealing with a disaster situation. Special
importance is given to two main technologies: Social media analytics and artificial intelligence, due to their
exceptional impact on emergency situations. Social media represents a rich source of data while artificial
intelligence stands out as themechanism to deal with the huge amount of data generated by smart devices, and
thus needed to tackle all sources of data, in order to predict, detect, manage information, and for authorities
to respond to emergency situations. This survey is a comprehensive review for the recent literature on the
related topics, providing the reader with a clear overview of the current status and classifying the papers into
groups with relations among them. The structuring of the recent literature into four phases makes it easier
for the reader to realize the current state of the art. For completeness, this survey ends with a section on open
issues and research trends in disaster and emergency management systems.

INDEX TERMS Crowd management, event prediction, emergency detection, response to emergency,
machine learning, deep learning, artificial intelligence, social media, big data, edge computing.

I. INTRODUCTION
Massive population growth, big cities urbanization, and
world-wide climate change all contribute to an increase in
the frequency of crisis, resulting in significant loss of human
life and property throughout the world. Technology advance-
ments will compel new techniques, tools, and capacities to aid
decision-making in the event of emergencies and crises [1].
The imbalance between high disaster susceptibility, poor
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crisis response, and crisis resilience constitutes a serious issue
for disaster management.

Smartphones, worldwide mobile internet access, social
media (SM), and artificial intelligence (AI) have helped to
expand the exchange of information in recent years. In addi-
tion, these technologies can assist disaster managers create
data driven solutions [2]. Emergency managers can use
cutting edge technologies to predict, detect, manage, and
respond to possible risks in real-time [3].

When a disaster strikes, smart and IoT devices can cre-
ate massive volumes of data, which emergency responders,
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FIGURE 1. Technologies used in emergency situations.

decision makers, and citizens could utilize for situational
awareness, preparation, accurate judgement, and safe evac-
uations [4]. Making sense of the created data in time-
constrained scenarios, however, is difficult since the volume
of data generated can be enormous, necessitating the use of
intelligent systems to analyze, process, and display it [5].
AI algorithms focus on tackling this issue by creating systems
that are able to deal with large amounts of unstructured data
in a time-efficient manner. Figure 1 illustrates technologies
used in emergency situations.

Recognizing the extent of harm in a disaster area can
be used for both future disaster preparation and the recon-
struction of infrastructure. Understanding the condition in
disaster areas demands that sensors be allocated tasks to
collect data, such as images and sensors readings, to better
evaluate the situation. For these reasons, using crowdsourc-
ing and providing appropriate assignments to individuals
can be a necessity in crisis situations to rapidly com-
prehend the damage of the impacted areas [6]. Humans
can also function as crowd sensors due to the widespread
availability of SM on smartphones since crucial emer-
gency information can be shared across these different SM
platforms.

There are several surveys in the literature that address the
broad topic of disaster management detection using AI. The
focus of [7] is to evaluate the usage of data fusion in crowd
monitoring system, to create an intelligent crowd monitoring
and management systems through data fusion designs. How-
ever, the survey does not focus on addressing the importance
of SM analytics in intelligent crowd monitoring for disaster
management detection. In addition, the work presented in [8]
considers the use of AI and SM in smart response systems
from a universal village point of view in multiple instances
throughout the survey, with very little focus on highlighting
different AI approaches and the magnitude of SM influence.
Similarly, the survey in [9], where the main task is to tackle
issues in smart city management in terms of node deployment
and sensing management to provide solutions, did not discuss

FIGURE 2. Paper organization.

the potentials of applying SM and AI algorithms to solve
these issues.

Different categories of disasters (natural, industrial,
humanistic, etc.) require dissimilar approaches. For example,
a terrorist attack requires different activities than flooding or
a man-made disaster. We will mainly focus on the natural
disasters, where the work presented in this survey divided
the process of disaster management into four chronological
phases [3]. We believe that our survey creates a compre-
hensible scheme of how to deal with emergency situations.
Moreover, we cover several edge technologies in each of
these four phases including sensing, IoT technologies, big
data, AI, and SM analytics. A designated section is created
per phase, presenting its recent progress, and focusing on
two key technologies that have an increasingly wider impact
on disaster management systems, SM and AI. This type of
presentation allows readers to navigate easier in the specific
topics throughout the paper. In addition, a summary table is
added per section to allow the reader to locate certain topics.
The contributions of this survey are listed below:

• Present a comprehensive literature review of disaster
management scenarios, and organize it in four phases.

• Discuss the potential of applying AI algorithms on each
one of the phases, while reviewing AI recent works.

• Discuss the potential of applying SM algorithms on each
one of the phases, while reviewing SM recent works.

• Review the applications of disaster scenarios in areas
such as smart city infrastructure, natural disasters and
public safety.

• Discuss the challenges and introduce new research areas
in disaster management deployment.

The rest of the paper is organized as the four phases
presented in Fig. 2. In section II we discuss emergency
prediction technologies in the literature. Section III focuses
on emergency detection systems. In section IV the focus is
on crisis management technologies, followed by section V
for emergency response systems. Conclusions and future
works are covered in VI. In each of these sections, there
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are two designated sub-sections for research that tackle SM
and AI, discussing their application and potential to deal
with emergency situations. As demonstrated in Fig. 2, there
will be overlaps among the four stages since many of these
technologies might be labelled differently, depending on the
application and scenario.

II. PREDICTION
The review of previous works is first introduced in Table 1,
and then contributions are analyzed and compared for a better
comprehension by the reader. Prediction is a mathematical
model applied to a set of input data to extract patterns in
order to estimate future events or outcomes. It is an important
component of data analytics that uses historical and current
data to forecast activities, behaviors, and trends. This section
starts with a generic review and then it discusses in detail SM
and AI impact on disaster prediction.

The work in [10] uses empirical testing to identify 23 char-
acteristics that impact visitor safety in congested areas. The
research presents a systemmodel that incorporates a feedback
mechanism, to evaluate the safety of highly aggregated tourist
crowds and identify instances that require security alerts
based on the data collected. Similarly, an application for route
predictions using smartphone locators in crowd gatherings is
presented in [11], so that they can forecast crowd density in
certain areas in the future, which is useful for overcrowding
pre-warning systems that can be utilized to avoid stampedes
triggered by a disaster warning.

A more sophisticated scheme is offered in [12], with a
novel mobility prediction technique based on a data mining
approach using Fuzzy-C to predict outdoor crowded scenar-
ios. The approach divides the mobile user’s paths into groups
and looks for common mobility patterns that fit the present
user path, forecasting their future location, that can be applied
for disaster management issues. In addition, a dense point
prediction approach for crowd counting and localization is
presented in [13]. The authors approach counting and local-
ization tasks as a pixel-by-pixel dense prediction issue turn
it into an end-to-end framework, showing exceptional perfor-
mance when compared to state-of-the-art methods. Another
upgrade [14] introduces a method that involves collecting
GPS data from users to predict congestion during rush hours.
This information is then used for presenting and monitoring
overcrowding, as well as giving a heads-up to commuters.

As metropolitan populations rise, many public transport
systems are suffering greater congestion and crowding. Over-
crowding has been related to negative effects on passengers’
well-being, adding feelings of distress, anxiousness, a threat
to personal safety, and reduced productivity, due to a lack of
seating space in various transit systems as found in [15]. For
these reasons, research in [16] tackles the issue of crowd-
ing in train carts and analyzes the efficacy of numerous
data-driven prediction algorithms. The findings imply that
real-time crowding data can be delivered significantly faster
than historical averages, and with enough time to impact
traveler’s route, rail, and automobile choices, hence reducing

in-vehicle congestion. With a similar goal, the authors in [17]
aimed to create a real-time transit assignment system that
takes into consideration passenger’s ability to access real-
time overcrowding information. This study is important in
an evacuation scenario to help people leave a disaster zone
efficiently and quickly. Table 2 summarizes the prediction
purposes and the methods used.

A. SOCIAL MEDIA PREDICTION
There are different social media channels, but we are mainly
targeting social networks in our survey. The consideration of
all social media channels would jeopardize the survey focus
on disaster management. After establishing a formalized
Weibo information flowmodel to capture the information dif-
fusion on Weibo and conducting a complete investigation of
Weibo information diffusion during earthquakes, researchers
in [18] chose two earthquakes in China as a social scenario in
their work. The study concluded that symbolic representation
with the Weibo information flow model is a viable option for
studying human behavior using online SM data sets. Such
models help authorities in various situations such as predict-
ing human behavior response during an emergency situation,
since these scenarios require an in-depth understanding of
how humans behave during disaster events.

Commonly, business based systems may utilize crowd-
sourcing methods to anticipate the popularity of their brands
and adjust their brands based on the input they get based on
consumer emotions. However, an emotion prediction tech-
nique has been proposed in [19] by gathering real-time
Twitter data from users Twitter personal API. Using a variety
of AImethods, the system is able to simulate emotions in real-
time. Similar to the Weibo results, Twitter can be utilized to
predict the occurrences of natural disasters and emergency
events as well, which important since human emotions vary
dramatically as a result of an emergency event.

A generalization is presented in [20] with the usage of
real-time text data from the internet as new inputs to an
existing crowd flow forecast baseline model, which can
incorporate information on such significant non-recurring
occurrences. The research focuses on tweets to reflect
non-recurring crowd flows that influences data flow, as it
has been shown that Twitter can respond to news events
faster than traditional media [21]. Similarly, research in [22]
presents a crowd-sensing through a tweet centric strategy
for predicting early sudden occurrences on Weibo, through a
novel technique predicated on the concept of crowdsensing,
which necessitates the identification of sensors who can help
in extracting tweets that may contain crucial information in
case of emergency.

A required step for prediction is to first classify rele-
vant information from Twitter streams for crisis management
using unsupervised domain adaptation and multi-task learn-
ing as discussed in [24], while overcoming the challenges
of data sparsity and limited labels, which are common chal-
lenges faced by researchers when attempting to extract data
from SM platforms. The method demonstrated the ability to
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TABLE 1. Summary of previous works on Prediction.
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TABLE 2. Section prediction summary.

FIGURE 3. Summary of applications.

predict whether a tweet is significant or not; which is a binary
classification job.

Through aggregating a population sample from a group
of people, a more precise prediction can be produced than
when collected from individuals. When members of a crowd
provide diverse perspectives to decision-making, this impact
is known in literature as the wisdom of the crowd. As a result
of this variety, there are uncorrelated prediction mistakes
that cancel out because of aggregating the diverse solutions
picked from the crowd. A crowdsourcing strategy based on
SM messages is introduced in [23], showing several solution
techniques to this problem. The research employed tweet
categorization to predict participant’s behaviour, categorizing
them using the binomial test to find groups of people who use
the same strategy.

Determining the geographical location of emergency
events is critical for rescuing those who are in danger or
require aid. Only a few communication links, however, pro-
vide their initial geographical locations on Twitter which
helps in identifying the location of those in need during
emergency events. To tackle the problem of unlabeled data,
an upgrade is presented in [25] with a proposed solution that
employs a semi-supervised approach to combine unlabeled
Twitter data, which is frequently plentiful at the start of a

crisis, with fewer labeled data. To learn the semi-supervised
model, the system approaches Tweets with an iterative ran-
dom forest fitting prediction framework, [26] predicts event
popularity, where an event is defined as a collection of mes-
sages including several hashtags. By mining the impact of
an influential hashtag set on event propagation, the presented
work offers a unique hashtag-influence-based event popular-
ity prediction, as another parameter that can be predicted from
SM data. The quality of the performance of the suggested
framework has been demonstrated by experimental findings.

Beside popularity, rumors in SM have an impact on the
quality of information available to users. When an emer-
gency occurs, the quick spread of rumors can cause panic
and worry. A region based convolutional neural network (R-
CNN), is provided in [27] as a model for predicting rumor
retweeting behavior. Experiments based on two rumor data
sets of emergencies retrieved from Weibo confirmed the
model’s predictive capabilities with excellent results.

B. ARTIFICIAL INTELLIGENCE PREDICTION
Several applications, including emergency evacuation and
rescue, require knowledge of people and vehicle movement
patterns in a city. Multiple technological approaches are used
for various applications as demonstrated in Figure 3. This
section focuses on AI approaches which can project citywide
crowd movements in the future by modeling spatial and
temporal patterns of present crowd flows, that in turn helps
enhance emergency management.
Congestion Prediction: To give a new aggregated human

mobility data set produced from a real-world smartphone
application, authors in [1] investigated the difficulty of fore-
casting crowd density and in-out flow of crowds. The research
develops pyramid structures and high-dimensional attention
mechanisms based on convolutional long short-term memory
(LSTM) neural networks, to create a novel deep learning
(DL) model called DeepCrowd for large-scale crowd data
collection. The work in [28] focused on urban crowd den-
sity and proposed a multi-relational graph convolutional
gate recurrent unit model, achieving improved prediction
when spatiotemporal information is available. In a similar
fashion, [29] presents AttConvLSTM, a new DL model for
predicting crowd flows in cities that combines a convolutional
LSTM neural network with a convolutional neural network
(CNN). Such combination preserves spatial information as
much as possible during sequential analysis, which allows
the attention mechanism to focus on important crowd flow
variations that typical recurrent modules cannot detect.

Focusing on the crowd mobility analysis, the work in [30]
presents CrowdVAS-Net framework which takes into account
velocity, acceleration, and saliency aspects in video frames of
a moving crowd. CrowdVAS-Net uses a deep convolutional
neural network (DCNN) to extract motion and appearance
feature representations from video frames, allowing author-
ities to assess crowd-motion behavior as abnormal or normal
based on a brief video clip. A random forest classifier is then
used to train these feature representations. On the other hand,
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for pedestrian trajectory, [31] introduces a new prediction
model based on an LSTM network. The model depends on
the last direction’s values for each participant, as well as the
average speed for each individual user.

Moreover, with the use of object identification and object
tracking techniques, [32] provides a software-based strat-
egy for congestion control called congestion control early
warning system. Such system predicts congestion through
R-CNN architecture employed for object detection, in which
the Google inception model is used as a pre-trained CNN
model, and the crowd abnormality, which could indicate
a disaster starting, is examined using the suggested object
tracking approach. In order tominimize the training complex-
ity, [33] suggests a support vector regression-based modeling
approach for prediction, matched with an online training
technique. The results are very specific to high crowd density
and does not address other scenarios. The problem of city-
wide origin to destination population flow forecast is tackled
in [34], that can be used to effectively plan transportation
services and establish efficient schedules, by understanding
the origin to destination trips and population flow distribution
at a city-wide level.

Another critical overcrowding problem is the crowding
at emergency departments in hospitals, and it’s impact on
emergency prediction, which creates a major public health
issue because it has a significant influence on patient’s well-
being. Accurate patient flow prediction in emergency units
is critical for increasing operational efficiency and quality of
service. A DL framework is provided in [35] for predicting
patient flow rates in emergency departments, recording the
rates of patient entrance, treatment, and discharge at various
triage levels. To predict hospitalizations after the operations
are done is of great importance as well, and [36] presents a
method that uses the patient’s emergency department elec-
tronic health record. The input for the suggested system is
generated using a data-to-image conversion, and the classifier
used is a convolutional neural network which achieved high
accuracy.

The model presented in [37] gathers data on earthquake-
related transportation system damage over the last two
decades, data mining and AI technologies are coupled in this
work to create an earthquake intensity disaster prediction
model, then trains the model using several AI algorithms
such as the KNNmethod, SVM algorithm, logistic regression
algorithm, and decision tree algorithm; before establishing
earthquake prediction models. Based on the damage char-
acteristics of the transportation system, this technology can
invert the seismic crisis condition and anticipate the earth-
quake severity. On the other hand, the scholars in [38] were
able to create earthquake predictions using structural recur-
rent neural networks, which deal with the temporal and
geographical patterns of earthquakes in general.

Exploiting the IoT technology with neural networks, a sys-
tem that leverages IoT and artificial neural networks to
anticipate short-term floods was demonstrated in [39], with
the prediction computation taking place on a low-power edge

TABLE 3. Artificial intelligence techniques for prediction.

device. The system leverages temporal correlative informa-
tion from real-time rainfall and water level sensor data to
anticipate flood water levels ahead of time utilizing LSTM.
The most distinguishing characteristic of this system is that
the predictions are made on a low-power edge computing
device, thus the presented technique may be used on IoT
devices that run on batteries. This implies that raw sensor data
is not provided over the internet in real-time for immediate
flood prediction, but just the forecast’s outcome when it is
needed. With a similar goal, the work presented in [40] has
a primary goal of tracking humidity, temperature, pressure,
rainfall, and river water levels to determine their temporal
correlations for flood prediction.

Another type of natural disasters are typhoons, and the
authors in [41] present a holistic architecture of wind disas-
ter warning for transmission lines to improve the resilience
of electric power networks against typhoon disasters. The
authors introduce a hybrid predictionmodel based on extreme
value type 1 probability distribution combined with the
Monte Carlo technique, and random forest to estimate trans-
mission line damage likelihood in the event of a typhoon
disaster. With the focus on typhoon disasters, the work in [42]
presents a prediction approach using an AI algorithm based
on actual power system damage data after typhoon disasters.
Table 3 summarizes the artificial intelligence techniques used
for prediction.

III. DETECTION
Smart cities nowadays have a very large number of sensors
which may create large volumes of data that might provide
insight at events, with smartphones playing a major role as
they provide multiple sensors at the individual level, opening
up new avenues for research into human behavior. Moreover,
it is critical to reduce the time it takes to alert medical
services, as the victims may only have a few minutes to
spare while suffering injuries. However, unforeseen delays
in receiving medical assistance are common. As a result,
as soon as an accident happens, emergency services must
be contacted with the minimum amount of delay between
detection and contacting the authorities. Before considering
detection in SM and AI, this section will briefly introduce
event detection and natural disaster detection.
Event Detection: The challenge of detecting an abnormal

change in a monitored sensory variable that is suggestive of
an emergency scenario is investigated in the literature [43].
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TABLE 4. Section detection summary.

Particularly, detecting a shift in some observable phenomena
using sensor-enhanced smart devices, which might indicate
an impending or ongoing emergency scenario is, studied
in [44]. On the other hand, [45] describes a greedy user rep-
utation aware algorithm that attempts to strike a compromise
between decision time and decision quality, accompanied
by extensive simulations to demonstrate how this technique
enhances the right detection rate over a reputation unaware
baseline.

Backed with simulations to demonstrate a system that can
reliably recognize human crowds, [46] developed a unique
local event detection technique, which successfully integrates
physical crowd behavior sensing with laser range scanners
(LRS) sensors and geo-social multimedia mining. The pro-
posed system uses LRS sensors to dynamically identify
human crowds, which often gather around centers of attrac-
tion that draw attention. The proposed technology quickly
discovers data that is likely to aid event localization by
extracting geo-tagged postings that are placed in regions with
human crowds. As a result, it can reduce the amount of data
required while also minimizing the number of false positive
event detection.

However, the lack of control over the spatial distribution
of the edge sensor nodes is one of the key drawbacks of
crowdsensing. Because the edge sensor nodes, or smart gad-
gets, are carried by the participants, the density of the sensory
network is closely associated with the population density. The
crowdsensing member’s everyday activities, such as leaving
to work in the morning and coming home at night, alters
both the population density and the geographical density of
the sensor network continuously. Table 4 summarizes the
detection purposes and the methods used.

Residents of a smart city can participate to a crowd sensing
system in order to identify various sorts of spatial events that
are correlated or uncorrelated with population density [6] and
be involved in the study of the detection probability for all
sorts of events. The findings in [6] indicate that correlated
events may be recognized with a great probability and within
a short time after they occur. Events that are uncorrelated
with the crowd density, on the other hand, are more dif-
ficult to identify using a crowd sensing based technique.
Interesting results are discussed in [47], where an alarm man-
agement service for on-campus emergency named SHIELD
is presented, by taking advantage of an infrastructure-free
platform built on proximity-based (through Bluetooth/Wi-
Fi) trust and collaboration. More on Bluetooth, presented

in [48] is Insight, a warning system that recognizes signals
from Bluetooth beacons identifying danger zones, without
requiring an internet connection or any other communication
infrastructure, making it resilient to communications outages
during emergencies.
Natural Disasters Detection: Natural disasters are becom-

ing increasingly common across the world as a result of
global warming and environmental pollution, particularly in
developing nations where such disasters produce larger and
more severe crises. Detection of natural disasters would be
of great benefit to the community and to disaster managers,
thus motivating large contributions in literature about this
topic. An aggregated statistics and basic anomaly detection
algorithms [49] to show how raw smartphone data (not SM
data) may be used to identify, monitor, and analyze the impact
of various natural disasters, such as hurricanes and wildfires,
on population density and movement patterns.

Earthquakes gathered a lot of attention both in literature
and in deployed systems [50], as several areas worldwide
are identified as potential areas for earthquakes. An earth-
quake early warning (EEW) system [51] can offer timely
information ahead of the damaging seismic waves striking
a populated location and is one possible technique to limit
the damage caused by earthquakes. One of the most impor-
tant issues of such a system is the precision with which
it can detect the start of an earthquake in real-time. Tra-
ditional earthquake detection systems are often based on
criterion-based schemes, which rely on empirically deter-
mined characteristics and thresholds for certain criteria. As a
result, traditional approaches frequently generate an exces-
sive number of false alarms, imposing the additional expense
of human inspection on event monitoring.

Modern data acquisition systems are made up of a fixed
sensor network, the size and design of which can vary dramat-
ically depending on the application and technology used [52].
When compared to data acquired by an equivalent number of
dispersed stationary sensors, mobile sensor data has a higher
spatial resolution. In the current digital era, increasing smart-
phone ownership rates inmetropolitan centers have decreased
the need for specialized equipment to cover a city densely.
Hand-held smart devices, in particular, provide a large-scale
mobile sensor network.

Researchers in [53] proposed a system to detect an earth-
quake and notify people in danger by sending an alert
message to the public through an IoT wireless sensor net-
work [54]. The benefits of the best potential distributions for
wireless sensor networks are further analyzed in [55]. This
is done through implementing various energy-based wireless
sensor networks (WSN) in the tectonic plate area, which can
aid in faster detection times of earth crust movement, to be
then sent immediately to base stations for preparedness steps
via radio signals.

Sensors included in smartphone models are not created
for scientific uses; they are chosen based on parameters
like manufacturing cost, battery consumption, size/design,
and functionality [56]. The accuracy of the sensors in
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smartphones is impacted by the age of the smartphone and the
category of the smartphone, which varies between different
devices [57]. Moreover, because of the urban buildings and
structures in which they are situated, and their cost-quality
trade-off, the signals captured by mobile devices are usually
noisy, which makes them an unreliable option to raise an
alarm for an emergency event. To tackle these issues, a pro-
posed solution in [58] is using an artificial neural network
(ANN) technique for dealing with the problem of detecting
false alarms in IoT devices, showing outstanding results.

A framework for earthquake detection in real-time was in
presented in [59]. The detection of an event is not adequate in
and of itself; rather, it seeks to execute a timely detection in
real-time. The system’s goal is to be able to identify an earth-
quake before the publication of the relevant news through
official channels. It is worth mentioning that the suggested
approach is sufficiently broad and extensible to different sorts
of emergency events. With a similar goal, [60] uses neural
networks to determine if an earthquake has happened or not
by using data from Twitter, obtaining an acceptable level of
accuracy.

As an alternative to EEW, [61], [62] suggested a technique
to accomplish simple sample collecting, with directly relevant
and usable information on the received signal to produce a
quick earthquake detection system. This technique is directly
performed on smart sensors on the edge of the network, and
it is meant to function in real-time.

The collected data from edge mobile sensors proved to
provide important information to civil engineers in assessing
the status of structures. To adequately assess a bridge’s status
and avoid its collapse in potential disasters, its daily opera-
tional behavior must be tracked over an extended period of
time. Mobile sensor networks are well-suited to continuously
monitor the vibrations of metropolitan bridges, as evidenced
by current structural monitoring studies.

In [63] reference sensors’ peak scores are consistent with
those from the aggregated smartphone data. It is discovered
that acceleration data gathered from moving cars on a bridge
(through the drivers’ smartphones) provided consistent and
substantial indications of the bridge’s status. When data from
other smartphone data sets are pooled, the results were even
more exact. A summary of natural disaster applications is
presented in Figure 4.

A. SOCIAL MEDIA FOR EMERGENCY DETECTION
For emergency events detection, leveraging SM as a source of
information is an ideal method to reach the different demo-
graphics of the community, especially between individuals of
the younger generation, who utilize such tools as a primary
source of information [64]. Instead of waiting for a disaster
to happen to then start using SM to communicate with the
public, municipal government would benefit from incorpo-
rating SM tools with the public, because it allows them to
link into and build a network for event detection, reducing
response time from the authorities [65]. Moreover, emer-

FIGURE 4. Summary of natural disasters applications.

gency detection systems have a unique chance to examine
daily phenomena of the real world and to directly engage with
communities because of the great popularity of SM among
citizens. The concept behind social sensing is that commu-
nities or groups of individuals may offer data equivalent to
that obtained from a physical sensor. Among the several
disciplines of research in social sensing, the management,
prediction, response and detection of emergency events is one
of the most intriguing. However, data gathered from SM also
presents challenges such as data management, interpreting,
and handling, imposing careful handling of such data. Some
of the characteristics unique to SM are now described below:

1) HIGH VOLUME
Unlike traditional data sources, which usually have a cen-
tralized content-generating agent, SM allows people to
create their own content, which produces a huge amount of
data [66]. SM is recognized as a powerful data source in
both academia and the industry due to the large number of
users and the massive volume of structured and unstructured
data continuously provided by the users [67], [68]. Dealing
with a large amount of data, however, various issues occur,
such as identifying accuracy, truthfulness, data security and
privacy [69].

2) DATA VARIABILITY
Social networking platforms have a huge amount of data
flowing into and out of them. Typical devices used to access
SM, such as smartphones, have been increasingly adopted
by people throughout their daily lives, which increases the
over-all amount of data flow. Acquired SM data is generally
uploaded to a storage server or data center in almost real-time.
However, the rate at which SM data is collected is quicker
than the rate at it is processed and analyzed to be useful
for detecting an emergency [70], [71]. Therefore, real-time
processing and interpreting of SM data is a main challenge to
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researchers and engineers due to the fast pace of data flow,
especially in emergency events.

3) DIVERSITY
Data fromSM is collected from a variety of devices, including
smartphones, desktops, and tablets. Aside from the various
devices, the spatial information of devices originates from
several regions. The ability of SM data to spread quickly adds
to the resource’s diversity [72]. Different data from various
devices is processed and evaluated in the urban emergency
event detection system, for example, to identify associated
temporal and geographical information. The wide range of
SM devices creates a significant problem for processing and
managing SM data that is dispersed.

The benefit of using SM over traditional techniques such
as television station announcements and amber alerts in
emergency management stems from the user’s spontaneous
engagement. In terms of SM features, Twitter has a few
quirks that make it a particularly good data source for social
sensing systems. Twitter users frequently discuss their own
activities and, as a result, what is going on in the world
around them [73]. Furthermore, Twitter is more engaging and
responsive than other famous platforms such as Facebook:
because public communications are limited in length so users
are motivated to tweet more frequently [59], thus producing a
huge amount of data for big data mining, which can be useful
for local authorities in case of an emergency [5].

Twitter tweets can actually be classified for emergency
detection, as shown in [74], while CrowdMonitor [75] was
developed to enable coordination methods for communi-
cating and working with the public during emergencies.
It has the capability for gathering on-the-ground movements,
publicly requesting data, and accessing SM information,
so it may be utilized for both real and virtual activities.
An improved version is provided in [76]with a system discov-
ers urban emergency occurrences and annotates them using
geographic information system through information gathered
from Weibo.

With SM application in other fields, an effective method
for allergy monitoring and the aggravation of allergy disor-
ders is introduced in [77], by combining publicly accessible
information from SM with the notion of crowd sensing and
raw sensor data to create a holistic m-Health participatory
surveillance system. Allergic sickness management is cov-
ered by the multi-module system, which includes allergen
identification, season onsets, patient stratification, allergy
control, and treatment progress monitoring. Subjective data
from users and Twitter posts, as well as objective environ-
mental data from fixed stations, are combined in the system
for privacy-conscious processing and analysis. Pollen sea-
sons start time detection, text analysis of Twitter tweets, and
densely obtained subjective data from users might reveal how
people engage with pollen information.

The analysis of raw text field of SM data, i.e., text mining,
has not been fully realized, even though it is the most valuable

and readily available data on the platform. Text processing
may have a great deal of useful information that can aid emer-
gency awareness and the extraction of actionable responses.
In these cases, identifying important text data would even-
tually lead to an event detection, which is difficult to track
effectively in a short length of time [78].

Interesting results are obtained in [79] by looking at text
data from both Telegram and Twitter messages, to see how
SM had a part in the 2019 flood crisis in Iran, where real-time
SMdata can offer authorities vital information formore effec-
tive rescue operations and make informed timely judgments.
Another key finding of this work is that during the crisis,
the majority of the news on Twitter is based on the personal
opinions of people with biases and had more negativity when
compared to messages from Telegram.

Another suggested technique in [80] is also based on
Twitter data analysis that identifies Twitter texts concerning
emergency situations. One vendor deployed the approach
mentioned in the article in the context of detecting power
outages as part of their complete social engagement platform
and performed well. The work in [81] created a data filter
based on characteristics such as keywords, the number of
times they appear, and their context. The work also shows
that the legitimacy of their method is not limited to a single
context or language but can be adapted to a wide range of
topics.

On the other hand, the developed prototype in [59] illus-
trates the method in the context of seismic occurrences,
i.e., earthquakes, the suggested architecture is also flexible
enough to be extended to various applications such as floods,
landslides, and wildfires. One key finding from this study is
that at night time, people have a considerably reduced sen-
sitivity, since most people would be asleep and therefore the
number of tweets regarding an event is reduced. Therefore,
a stronger incident is required to get data from people at
nighttime.

B. ARTIFICIAL INTELLIGENCE FOR EMERGENCY
DETECTION
An enormous amount of data is created in the case of a
disaster through SM, sensors, satellites, CCTVs, drones, and
other edge technologies. This data becomes ultimately a
helpful and a necessary resource for the emergency respon-
ders who are involved in gaining situational awareness and
making judgments. Although the necessary information for
emergency responders is accessible, making sense of it in
a time-sensitive scenario is difficult [82], [83] due to the
great volume, variability, and diversity of data, as previously
noted. Furthermore, emergency responders will be unable to
manually analyze the massive volume of data [75], in order to
manage the incident effectively and in a time efficient matter.
Table 5 summarizes the artificial intelligence techniques used
for detection.

AI plays an important role in analyzing large volumes of
diverse data and turning it into logical and useful information.
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TABLE 5. Artificial intelligence techniques for detection.

AI is defined as the study and advancement of software
technologies that can imitate human intelligence in order to
capture high-level abstractions in huge data sets, resulting
in considerable improvements for various activities, pro-
cesses, and pattern discovery inmassive amounts of data [84].
Machine learning (ML), on the other hand, is best thought of
as a ‘‘subset of AI’’ that involves complex statistical tech-
niques that allow machines to improve at tasks over time.
DL is included in this category as a branch of AI that consists
of methods that allow software to train itself, to execute tasks
by exposing multi-layered neural networks to large amounts
of data [85].

The capsule neural network (CapsNet) is first introduced
by [86] to address the shortcomings of the convolutional neu-
ral network (CNN). CapsNet is a new kind of DL architecture
that allows the network to train without the use of a pooling
layer (without losing information) as opposed to a typical
CNN model. An upgrade is presented in [87] have shown
that when compared to benchmark methods, CapsNet has an
excellent performance.

A DL model for recognizing human actions is proposed
in [88], in order to identify emergencies such as fire and
terrorism promptly. Four types of data on human activity were
acquired using the smartphone’s acceleration and gyroscope
sensors, and human behavior is categorized using the Long
short-term memory (LSTM) DL model. The human behavior
recognition system is upgraded in [89] to analyze people’s
movements and to identify the occurrence of emergencies
when they occur indoors, also by using LSTM.

Convolutional neural network (CNN) [90] is used to extract
important characteristics from seismic wave forms, allowing
the suggested classifier to achieve a reliable performance
in detecting the essential earthquake parameters. It shows
great accuracy for the classification of magnitude, origin
time, depth, and location [90]. False alarms induced by local
impulsive noise degrade the performance of an earthquake
early warning systems and generate unnecessary fear among
people. To address this issue, many AI-based approaches [91]
have been suggested to combat inaccurate readings. The
recurrent neural network (RNN) with LSTM cells models
in [92] construct a real-time accurate early earthquake warn-
ing system. The proposed method is intended to detect the
existence of an earthquake as well as the duration of the
P-wave and the S-wave.

Training is very important for AI systems, and thus the
work in [93] uses 300,000 wave forms collected in southern

California and Japan to train a generative adversarial network
(GAN), to understand the properties of first-arrival earth-
quake P-waves. Such training considerably minimizes the
amount of faulty and noisy alerts. A convolutional-recurrent
neural network model is presented in [94], compromis-
ing a network system that monitors ground vibrations and
detects earthquakes using low-cost acceleration sensors. The
approach of using a mixed neural network composed of a
CNN and RNN (CRNN) aims to guarantee a great detec-
tion performance while keeping false alarms at a minimum.
Combining CRNN model with LSTM units for earthquake
detection, [95] can achieve improved performance. In addi-
tion, researchers in [96] propose a system based on a highly
scalable convolutional neural network for earthquake identifi-
cation and localization from a single waveform, which makes
use of recent breakthroughs in AI.

To geographically assess disaster-related text tweets,
researchers in [97] propose a DL-based system ConvNet
(CNN), that proves binary categorization to be beneficial
during crises for swiftly locating people in affected regions,
as well as after disasters to undertake post-disaster investi-
gations. Three AI techniques are used in [98] to undertake
seismic event detection, which are Support Vector Machine
(SVM), K-nearest Neighbors (KNN), and a classification tree
method. The detection performance of the AI-based methods
excelled the classical criterion based techniques, according
to the trials conducted in the research. Notably, the SVM and
classification tree have a lower detection time than the KNN.
However, KNNs need no training time as opposed to the two
other methods.

The work in [99] presented a novel multitasking learning
(MTL) attention-based CNN architecture for seismic multi-
event categorization. The classification issue is formulated
as a binary classification problem, which is detecting earth-
quakes versus noise and a three-classification problem which
is detecting earthquakes against micro-earthquakes and ran-
dom noise. The testing findings showed that the suggested
technique is a good structure for classifying different earth-
quake occurrences and outperformed single task structures.

Inductive transfer learning techniques [100] have been
demonstrated in [101] to be quite useful in detecting floods
through limited labeled data gathered from SM platforms.
The researchers use Twitter data from one of the flood areas
and a pre-trained a language model to accurately classify
flood-related tweets in under 10 seconds, whereas similar
results would normally take thousands of labeled tweets and
a long time. In time-sensitive applications such as crises,
the use of pre-trained models with minimum space and time
complexity can be extremely beneficial since millions of
tweets must be processed and classified with delay con-
straints according to their content with high performance
without losing accuracy.

IV. MANAGEMENT
The possibility of tragedies such as stampedes, suffocation,
and congestion become more likely without adequate crowd
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TABLE 6. Section management summary.

management and control. Currently, the Internet of Things
(IoT) and its supporting technologies offer cost-effective
solutions for smart crowd management, casualty reduction,
and the integration of various intelligent technologies. The
author of [102] aimed to combine the precision of data col-
lected by sensors with more contextual information offered
by individuals through crowd sensing, in order to improve
existing methods for recognizing and handling emergency
situations. Smart IoT for crowd control and congestion avoid-
ance is presented for the specific case of Mecca [3]. The
method employs a learning mechanism that categorizes pil-
grims based on the data collected, and it takes advantage
of both IoT and cloud infrastructures to monitor crowds in
congested areas, identify evacuation routes for pilgrims, and
guide pilgrims to avoid congestion in real-time. Table 6 sum-
marizes the management purposes and methods presented in
this section.

It is crucial to tackle the issue of how to properly deploy
safety police in order to maximize positive emotional con-
tagion, to reach the greatest amount of people who are
distressed. Research presented in [103] suggests an IoT-based
positive emotional contagion strategy for crowd evacuation to
tackle this challenge.Moreover, the research in [104] presents
a unique IoT-based approach for educating people, as well
as a mobile application that leverages crowd-sourced data
from smartphones to give safe evacuation suggestions dur-
ing emergency scenarios. As an improved version, the work
in [105] discusses a strategy to build an emergency system at
the provincial and municipal levels with the primary purpose
of averting human-made catastrophic events.

In order to bridge the gap between classic, author-
ity sensing-based situation awareness systems and crowd
sensing-based situation awareness, a reference architec-
ture [106] is presented to extend the well-known JDL data
fusion model for automated social evaluation with new sys-
tem components that address the issues of integrating crowd
sensed data into situation awareness systems.

Empirical research, data analysis, and other approaches
[107] are tackled to reinforce the building of a big data plat-
form, which will not only increase government efficiency in
emergency management, but also improve government gov-
ernance skills andmanagement standards. A new government
emergency management system is presented on intelligent

computing technologies [108] to take full advantage of the
benefits of intelligent computing and employs a reliable and
sophisticated algorithm. In order to increase the system’s
accuracy, the emergency system employs a mathematical
model-building approach.

Innovative ways to solve challenges of controlling the
functioning and growth of complex coordination systems are
discussed in [109]. The suggested models and techniques
provide a methodological foundation for the construction of
a decision support subsystem in an automated control system
for emergency scenarios, which will allow for the automated
execution of a variety of control functions. The suggested
design in [110] is utilized to feed a disaster management
control centers a knowledge base, which might profit con-
siderably from mobile networks for assessing the health of
structural buildings.

In order to achieve deep integration of big data and emer-
gency intelligence analysis, there is a need to construct an
emergency management information system model guided
by big data [111], through in-depth investigation of the
application demands of big data for emergency management,
considering the many connections between each module pre-
sented in the work.

Cloud services are utilized in most accident management
systems to get information and alert emergency management
authorities such as hospitals, ambulance staff, and police.
Although cloud servers may provide the precise information
required in such instances, connection and information transit
time issues may arise. In emergency situations, where a rapid
and swift reaction is usually required, these flaws might
be dangerous [112]. The goal is to create a fog computing
based system that is low-cost and time efficient for disaster
management architecture that has lower latency than a central
cloud-based system. From a different perspective, the work
in [113] focuses on road accident management using a joint
fog/cloud computing for a smart city application. An IoT net-
work architecture based on UAVs and fog computing to assist
first responders in managing rescue operations in collapsed
structure is discussed in [54].

A. SOCIAL MEDIA FOR EMERGENCY MANAGEMENT
When a crisis hits, emergency responders must quickly
obtain situation awareness of the emerging crisis situation,
determining what has occurred and where assistance and
resources are required. Nowadays, SM platforms can be
utilized as a real-time communication center for exchanging
information such as on-the-ground observations, recommen-
dations, and requests, and may therefore act as a network of
human sensors for recovering information in crisis circum-
stances.

After a major disaster, emergency resources are usually
insufficient to meet all demands for professional assistance
and resource allocation [114]. In a mass casualty crisis, the
focus switches from providing the best possible outcome for
each individual patient to ensure the best possible outcome for
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the largest number of patients. Multiple manual and comput-
erizedmedical triage systems have been employed in the past,
both in civil and military situations, to identify the priority
and sequence of emergency care, transportation, and the best
potential destination for patients [115]. Nevertheless, none of
these methods has proven to be sufficiently flexible, precise,
adaptable, or unobtrusive to match the public’s needs [116].

The researchers in [117] provide their first attempt at
fully integrating SM-based crowd sensing with automated
situational awareness systems, describing an architecture for
a situational awareness framework that uses both tradition-
ally felt data and unstructured SM information. After that,
their work proceeds by introducing their situation adaptive
prototype in [118] and examine its possibilities in a case
study on a real-world Twitter crisis data set, demonstrating
the implementation of a situation adaptive crowd-sensing and
information extraction system.

Another solution for real-time patient evaluation that
employs mobile electronic triaging and crowd sourced input
is CrowdHelp [119]. Even before assigning a response team
to the event, emergency management experts may get the
majority of the information they need to prepare themselves
to offer fast and correct treatments to their patients using
the presented system. A crowdsourcing system named Cri-
sisTracker [120], is an online system that records dispersed
situation awareness reports, based on SM activity in real-time
during a large-scale crisis like natural disasters. Using Twit-
ter, CrisisTracker records collections of keywords and creates
social media stories by grouping related tweets based on their
lexical similarity.

In terms of collection of relevant, precise, and hyper-
local information, interactive crowdsourcing has been found
to be superior than standard crowdsourcing [121]. The ris-
ing prevalence of SM has made it a critical tool in times
of disaster. The prototype described in [122] serves as a
proof of concept for demonstrating the benefits of interactive
crowdsourcing via Twitter and SMS texts, as well as provid-
ing impetus for the proposed model’s continued refinement
and scale. To differentiate abnormal activity in mega cities,
a methodology for identifying clusters of human activity
and explore distinct temporal patterns is presented in [123],
comparing them to historical averages. To identify the use of
locations based on clusters of activity, the presented method-
ology employs natural language processing of geo-textual
data from various SM platforms such as Instagram, Twitter,
Flickr and YouTube.

B. ARTIFICIAL INTELLIGENCE FOR EMERGENCY
MANAGEMENT
AI algorithms are highly adapted for crucial associated tasks
such as recognition, classification, and can handle mul-
tidimensional big data that usually arises in disaster and
pandemic management situations. Moreover, AI algorithms
can help with crisis forecasting and emergency manage-
ment activities including selecting crowd evacuation routes,
evaluating SM posts, and dealing with the aftermath of a dis-

TABLE 7. Artificial intelligence techniques used for management.

aster. AI algorithms are also useful in pandemic management
scenarios, such as predicting outbreaks, tracking pandemic
spread, and diagnosing diseases [124]. Table 7 summarizes
the artificial intelligence techniques used for management
purposes.

Flood emergency management has become a serious con-
cern in recent decades, as it has the potential to disrupt human
lives, the economy, and property destruction. Developing
a multimedia big data platform for flood disaster manage-
ment using DL techniques is a great benefit [125], [126].
It can mine multimedia data such as SM data (Twitter and
Facebook), satellite image data, crowdsourcing, and sensor
network data, all of which are publicly available.

Despite the fact that the behavior of pedestrian crowds
under severe conditions is critical for crowd safety during
large events and emergency evacuations, there are currently
few empirical research on extreme crowding. Video data
may be adopted to examine high-density settings, as shown
in [127]. However, other studies consider counting of indi-
viduals in a video or photo, for example, is inefficient in
terms of time and can be quite labor expensive. A fully
optimized convolutional neural network for crowd counting
is presented as a solution in [128] that is both simpler and
quicker through a full optimized CNN. It is a fully optimized
approach for building the network to reduce the computa-
tional cost of training neural networks. To further enhance the
intelligent management of crowd powered AI, techniques and
algorithms for the dynamic collecting of training and testing
data are presented in [129].

The use of tweets for appropriate scenario analysis and
decision-making by disaster management authorities is prob-
lematic, motivating a decision-support framework [130] that
collects situational information from the public present at the
disaster site through interactive crowdsourcing via SMS, and
summarizes such responses to provide situational awareness
and appropriate damage or needed evaluation for decision-
making. Hierarchical clustering AI is used for an automated
strategy for detecting events and their correlations from Twit-
ter feeds [131].

A two-level clustering strategy is adapted in the suggested
method, the first of which finds big events across various
tweets, while the second level of clustering considers their
spatial, temporal and semantic links to identify micro-events
of a particular large event. It is upgraded by tackling the issue
of how to extract meaningful information from amassive data
pool in the least amount of time while keeping the data usable
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and actionable is addressed in [132], with an actionable data
extraction technique using data fromTwitter. The information
categorization from the gathered tweets is manually carried
out, and subsequently the tweets are utilized to train an AI
system to identify future tweets.

The interdependence of scheduling and allocation duties,
time constraints, resource shortages, and the diverse capa-
bilities of rescue teams are among the primary difficulties
that emergency operations centers must deal with. A Monte
Carlo-based heuristic solution approach for a non-linear
optimization model, to tackle such managemental issues is
provided in [134].Moreover, self-organizing networks andAI
algorithms should be combined according to [135], to close
significant technology gaps that are preventing the success-
ful deployment of deplorable technologies in disaster and
incident management. Shorelines [136] are an interesting use
case as they stand as an important source of data for envi-
ronmental management, disaster management, and coastal
erosion research, where different approaches for extracting
shoreline data have been developed in the literature. One of
the outstanding strategies employed in this study for coastline
extraction is Random Forest. This algorithm is a decision
tree-based AI approach, which is utilized to analyze training
data classes and generate classification rules.

V. RESPONSE
Catastrophes are frequent dramatic occurrences that differ
greatly from previous experiences, requiring unique and
immediate responses and the relevance of disaster effect
information should never be ignored. Poor information flows,
for example, hampered disaster response operations after
Hurricane Katrina, as did the inability to analyze and process
essential data in a timely manner [137]. In practice, the
value of data or knowledge collected during severe occur-
rences is frequently undervalued [138]. During catastrophes,
decision-makers seek knowledge to build their point of view
as part of a sense-making process. New information arriving
provides evidence to absorb new knowledge into what is
previously known, leading to better response decisions in
emergencies [139]. For instance, the method in [140] com-
bines data gathered from extremely high-resolution remotely
sensed photos with crowd sourced data from volunteers on
the ground using their smartphones. Table 8 summarizes
response systems purposes and methods presented in this
section.

The work demonstrated in [141] examines the issue of
missing children and the value of crowdsourcing in resolv-
ing this issue. Using the sophisticated characteristics of
mobile devices, this approach enables for close collaboration
between the crowd and government institutions by encourag-
ing the public to lend a hand in the search process. A Wi-Fi
enabled micro-controller based system [142] is interfaced
with a cloud platform and a few sensors such as vibration
and shock sensors, temperature and cardiac pulse sensors to
send emergency SMS and email messages in the event of an
emergency. These cloud-based systems can be beneficial to

TABLE 8. Section response summary.

those with disabilities or the elderly, especially that they are
usually easy to implement.

Similarly, mobile apps for disaster response crowdsourcing
are based on several requirements such as user friendliness,
anonymity, real-time updating and viewing of geographic
information [143], while offering bidirectional communica-
tion between users and first responder teams for emergency,
simple interface design, and simple installation. During a
crisis, mobile apps are extremely valuable for developing
and sharing high-quality immediate geographic information.
iSagip [144] is an app that aims to enable afflicted communi-
ties to notify authorities about their situation, by crowdsourc-
ing their current status and their required supplies and help.
Such applications can be very beneficial for humanitarian aid
groups that can use this mobile app as a tool for disaster relief
efforts.

A framework for an emergency event reporting system
to support respond teams is required in the field. [145] is
based on crowdsourcing, which employs participatory sens-
ing to allow numerous smartphone users collectively report
emergency incidents. This in turn allows volunteers in the
area of an event to be able to send an alarm message to
rescue services and first responders’ vital information such
as the geographical coordinates, nature of occurrence, and
number of casualties. The service is upgraded with a smart
medical response plan [146], that monitors the physiological
indicators of individuals in a community and provides fre-
quent feedback and warns hospitals, accordingly, based on
the benefits of smart healthcare architectures. The suggested
framework gives feedback on a variety of dimensions, main-
taining the well-being of individuals and warning them of
potential health problems.

The problem of crowdsourcing mobile videos for disaster
response systems is addressed in literature [52] by identi-
fying two distinct main challenges. These two challenges
are prioritizing visual data collection and transmission under
bandwidth constraints caused by damaged communication
networks, as well as evaluating the gathered data in a timely
manner to be useful to disaster responders. A novel crowd-
sourcing platform is presented in [52] for capturing and
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analyzing mobile videos using fine granularity geographical
information of video content tackling these two challenges.

A different issue for emergency response systems is data
storage systems during emergencies [147]. While storing
sensor data in the cloud has several advantages [148], it also
necessitates ongoing internet access, making the platform
unsuitable in emergency scenarios where internet access
might be limited or completely unavailable. EdgeStore [148]
is an edge-based distributed storage system to overcome the
previouslymentioned difficulties, by adding a game-theoretic
resource incentive framework. EdgeStore delivers consider-
able performance advantages over typical distributed storage
systems in terms of throughput, energy consumption, and
latency.

On the processing side of the spectrum, fog computing can
also play a vital role in emergency response systems since
it provides various benefits such as reduced latency [149],
offloading network usage, and increases geographical spread
of data sources which in turn increases coverage in a crises
situation. By processing data on the edge of the network,
a fog computing based system to respond to emergencies in
real-time is presented in [150], by handling massive amounts
of data coming from devices and edge sensors.

Fog computing is found to improve the efficiency com-
pared to cloud computing, and the inclusion of smartphone
sensors considerably reduced the total cost of the system.
Similarly, the work in [151] proposes a fog computing-based
method for swiftly deploying emergent distributed services
to enable individuals in afflicted locations to regain network
resources through deploying accessible equipment such as
routers andmobile devices as fog nodes to provide emergency
networking and communication.

Distributed mobile sensing-based crowd evacuation sys-
tem is of great importance [152], [153], where BigActor is a
model presented in [154], and its main purpose is to employ
smartphones to sense crowd dynamics and actuate crowd
movement during evacuation as a response to an emergency.

A. SOCIAL MEDIA FOR EMERGENCY RESPONSE
In the plethora of user-generated text messages, news,
images, or videos on SM, real-time and essential crisis
information is generally concealed. Data from SM has been
utilized in disaster response systems, particularly in crises
such as earthquakes, hurricanes, floods, and other natural
disasters. The ability to gather, filter, extract, and manage SM
data and information to aid disaster response is becoming
increasingly important. Ongoing attempts are in place to
construct an efficient disaster relief system that integrates
data from SMnetworks and authoritative sources [155], to aid
in real-time relief response to a crisis occurrence. However,
many works combine three components which are SM data
analysis, forecasting rescue need, and optimizing relief dis-
tribution.

Indeed, SM, SM analytics, and volunteer incentives have
had a substantial impact on the data acquired through crowd-

TABLE 9. Artificial intelligence techniques for response.

sourcing [156], [157]. Moreover, theoretical frameworks
might assist disaster relief personnel in better coordinating
their efforts, by utilizing important information obtained
through a crowdsourcing framework.

Satellite pictures are frequently utilized for quick mapping
and recovery, but the streams of SM data are a great data
source, not just for validation, but also for fusion to improve
estimates for better emergency response. Multi-modal fusion
systems [158], [159] are important for merging satellite pic-
tures with SM data for emergency response, such as flood
monitoring and extreme weather conditions in polar areas.
Additionally, to quickly extract meaningful disaster informa-
tion from the enormous SMdata, a uniquemulti-modal fusion
approach is presented in [160].

By matching feature terms linked to crisis information
contained in the SM data, improved performance for extract-
ing disaster loss information from SM communications is
achieved [161], by using Weibo as a main data source, for the
purpose of enhancing disaster response team’s knowledge.
Similarly, a system that captures data in an adaptive manner
from Twitter is presented in [162] by going through disaster-
related tweets. It is important to analyze the behaviour of
relief groups, governments, and people utilize SM, such as
Facebook, during times of disaster [163]. The researchers
developed an emergency supply and demand workflow in a
system that incorporates the usage of social networks. It is
proposed that the National Disaster Management Agency
Malaysia (NADMA) use the system for better decision mak-
ing in future disaster relief operations.

B. ARTIFICIAL INTELLIGENCE FOR EMERGENCY
RESPONSE
IoT can be used with ground, surface, aerial, and underwater
robots, for the purpose of deploying smart AI emergency
response over sensors to collect environmental data from
the disaster site, and then send it through an available
network [164]. Reinforcement learning is used to accom-
plish task allocation in multi-robot emergency response
systems [165], which are used in rough environments, solv-
ing the challenge of dynamic distribution task allocation in
multi-robot systems; their learning algorithm is based on the
two separate non-cooperation and cooperation approaches.
Table 9 summarizes the artificial intelligence techniques used
in response systems.

Similarly, to provide a completely autonomous airborne
robotic method for performing complicated search and res-
cue missions in unstructured indoor situations, a supervised

VOLUME 11, 2023 73795



M. Aboualola et al.: Edge Technologies for Disaster Management: A Survey of SM and AI Integration

learning classifier based on a computationally efficient CNN
trained for target and background categorization is included
in the target recognition capabilities [166].

In order to examine cluttered environments and look for
possible victims, mobile rescue robots deployed in search and
rescue missions must cross unfamiliar tough terrain. These
robots must identify routing pathways to safely move in these
congested surroundings with an unknown topography with
no previous knowledge of the environment in order to act
semi-autonomously or fully autonomously.

To investigate the problem of automatic robot explo-
ration in an unknown environment, which is a key aspect
of using a robotic system to perform emergency response
tasks, [167] proposes a deep reinforcement learning-based
decision algorithm that learns an exploration strategy from
a partial map using a deep neural network. On the other
hand, [168] can take input from the robot’s on-board sensors,
to select a sequence of local navigation tasks for a mobile
robot to carry out. Combination of the classic technique of
frontier based exploration with deep reinforcement learning
would be of great enhancement [169] to enable a robot to
explore unexpected, crowded areas. Several challenges face
every local-range sensing deep reinforcement learning strat-
egy for local planning in unknown hard terrain. Self-attention
modules into the deep reinforcement learning architecture
can be a solution [170] to improve the explainability of the
learned information.

Another challenge is to decrease reaction time in emer-
gency scenarios, where image processing application [171]
with a ML approach can obtain great performance, by apply-
ing histogram of oriented gradients and a SVM classifier
to recognize target items such as specific sorts of explosive
devices [172].

In the aftermath of a disaster, remote sensing and AI
approaches can be utilized to quickly recognize structures
through high-resolution satellite imagery [173]. Finding shel-
ter is one of the most pressing demands of affected people
who have been affected by a disaster. While the prolifer-
ation of crisis data is already assisting in the saving of
lives, detecting building damages, assessing shelter needs,
and locating ideal locations for emergency shelters or settle-
ments all require a wide range of data to be quickly merged,
where AI through its several variants [174] can solve this
gap and make progress in comprehensive evaluations of any
procedure aimed at quickly fusing and analyzingmulti-modal
data.

VI. CONCLUSION AND FUTURE WORKS
The adoption of innovative edge technologies such as sens-
ing, IoT, SM, big data analytics and AI techniques can
decrease the number of casualties and reduce the large-scale
infrastructure damage caused by natural and human-made
crises. This survey examines recent research on emergency
prediction, detection, management, and response systems
with a focus on SM- and AI-based technologies, outlining
the available disaster management technologies and their

appropriateness for use in crisis circumstances. A summary
of existing research in these topics is provided together with
their classification and through several metrics. Despite all
of the possible benefits revealed by the numerous methods
mentioned in this survey, there are still some issues to be
addressed.

A. THE FOCUS ON MICRO-BLOGGING SYSTEMS
Beyond enhancing the accuracy and precision of detecting
relevant messages, AI-based emergency management models
encounter other hurdles. One of the disadvantages of the
existing studies on SM crowd management is that the bulk of
the literature focuses on utilizing Twitter as the main source
of data. When people communicate information on platforms
other than Twitter, the nature of synchronization and reaction
might be different. This issue is because of some platforms,
such as Facebook, do not yet permit the extraction of statis-
tics. The consideration of other SM platforms is an open
challenge, specially when considering the different quality of
data that they can provide. For example, based on the age of
usual participants in specific platforms, the nature/quality of
data could be very different.

B. USER PARTICIPATION
It is vital to gain high end-user engagement for technologies
like crowdsourcing, big data and SM to actually work. This
is true in many instances when incentives are provided, but
in other cases, it is reasonable to suppose that users would
not require additional incentives to participate in a commu-
nal effort that is only for the benefit of society [157]. The
decisions on how many to incentivize (quantity) and whom
to incentivize (quality) remain as open questions that have
been partially tackled by literature, but need further study.

C. INDIVIDUAL PRIVACY
The safety of residents is always the primary concern while
dealing with emergency situations. Respecting privacy, on the
other hand, is critical in order to protect the well-being of
rescued people. Personal and private information are col-
lected during a crisis, which creates security concerns in
disaster management. Malicious attackers should not be able
to tamper with the data acquired from affected sites or events.
This privacy-efficiency trade-off requires further analysis and
optimization, that will allow systems to decide on the best
point on the trade-off for each case/scenario.

D. COST REDUCTION
Experts all around the world are concentrating their efforts on
lowering equipment / software costs in disaster management
technology deployments while increasing system perfor-
mance. Disaster management is a life-saving activity, which
is why global businesses should explore developing efficient
edge technologies in this area to further reduce costs. Notice
that emergency systems are not expected to work every day,
but in very occasional situations, so the investment in them
is not being exploited in non-emergency situations, raising
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questions about their cost/efficiency. Therefore, novel strate-
gies to benefit from emergency equipment while they are on
idle situation are needed, but without affecting/delaying their
performance in case of emergency situations.
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