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Abstract—The unprecedented growth of mobile video traffic
is adding significant pressure to the energy drain at both the
network and the end user. Energy-efficient video transmission
techniques are thus imperative to cope with the challenge of
satisfying user demand at sustainable costs. In this paper, we
investigate how predicted user rates can be exploited for energy-
efficient video streaming with the popular Hypertext Transfer
Protocol (HTTP)-based adaptive streaming (AS) protocols [e.g.,
dynamic adaptive streaming over HTTP (DASH)]. To this end,
we develop an energy-efficient predictive green streaming (PGS)
optimization framework that leverages predictions of wireless data
rates to achieve the following objectives: 1) Minimize the required
transmission airtime without causing streaming interruptions;
2) minimize total downlink base station (BS) power consumption
for cases where BSs can be switched off in deep sleep; and 3) enable
a tradeoff between AS quality and energy consumption. Our
framework is first formulated as mixed-integer linear program-
ming (MILP) where decisions on multiuser rate allocation, video
segment quality, and BS transmit power are jointly optimized.
Then, to provide an online solution, we present a polynomial-time
heuristic algorithm that decouples the PGS problem into multiple
stages. We provide a performance analysis of the proposed meth-
ods by simulations, and numerical results demonstrate that the
PGS framework yields significant energy savings.

Index Terms—Channel state prediction, dynamic adaptive
streaming over HTTP (DASH), energy efficiency, mobility,
resource allocation, wireless access networks.

I. INTRODUCTION

INCREASING mobile data traffic and dense deployment
of base stations (BSs) have made energy efficiency in

networks imperative. This traffic growth is not only adding
more pressure to the network and user device energy drain
but also increases network operational expenditures (OPEXs)
and negatively impacts the environment [1]. Consequently,
research and standardization efforts are focusing on devising
green mechanisms to save energy across the network. Among
the wireless network elements, BSs account for more than 50%
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of the network energy consumption [2]. Reducing BS downlink
transmit power by efficient rate allocation will thus result in
monetary savings for the operator and reduce CO2 emissions.
Furthermore, energy-efficient rate allocation can improve the
spectral efficiency and provide additional resources at high
demand. Therefore, devising green radio access strategies is
vital for overall network performance.

Meanwhile, video streaming is experiencing unprecedented
growth with forecasts indicating that it will soon account
for 66% of the total mobile traffic [3]. This is driven by
the increasing capabilities of mobile devices and by content
aggregation sites such as Netflix and YouTube. In particular,
adaptive streaming (AS) is gaining popularity due to its ability
to seamlessly adapt streaming quality to the current wireless
data rate. In Hypertext Transfer Protocol (HTTP)-based im-
plementations, such as HTTP live streaming [4], or dynamic
AS over HTTP (DASH) [5], the video content is divided into
a sequence of small file segments, each containing a short
interval of playback time. Each segment is made available at
multiple bit rates, and depending on the network conditions,
the suitable segment quality is selected for transmission [6].
This reduces video freezing and is particularly suited for mobile
video streaming where users experience channel gain fluctua-
tions. While AS improves user quality-of-service (QoS), energy
consumption still remains a fundamental challenge.

In this paper, we investigate how predictions of user rates
can be exploited for energy-efficient transmission of stored
videos that can be strategically buffered at the user devices. The
predictability of a wireless channel is generally possible due to
the correlation between location and channel capacity [7], [8].
Therefore, if a user’s future location is known, the upcoming
data rates can be anticipated from radio and coverage maps
stored at the network, which can be also updated in real-time
from user equipment (UE) measurements [9]. While mobility
predictions are particularly plausible for users commuting in
public transportation, trains, or vehicles on highways [10],
studies on human mobility patterns reveal a high degree of
temporal and spatial regularity [11], suggesting a potential 93%
predictability [12]. A key motivation for incorporating such pre-
dictions is the plethora of navigation and context information
available in today’s smartphones.

Being aware of a user’s upcoming rate allows the network to
plan spectrally efficient rate allocations in advance without vio-
lating user streaming demands. For instance, if a user is moving
toward the cell edge or a tunnel, the network can increase the
allocated wireless resources, allowing the user to buffer more
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video segments. Prebuffering these additional segments then
provides smooth video streaming since the user can consume
the buffer while being in poor radio coverage. Additionally, by
not serving users in such conditions, the network-wide spectral
efficiency increases since valuable channel resources can be
provided to other users instead. If, on the other hand, the user
is approaching the BS, transmission can be delayed, provided
sufficient video segments have previously been buffered. This
allows the BS to save energy by “sleeping” as the user ap-
proaches and then “waking up” for a short period, during which
a high data transmission is possible.

We summarize the main contributions of this paper in the
following.

• We propose a predictive green streaming (PGS) optimiza-
tion framework that exploits rate predictions over a time
horizon to 1) minimize the required transmission airtime
subject to a target average quality level, without causing
streaming interruptions; 2) minimize total downlink BS
power consumption for cases where BSs can be switched
off in deep sleep; and 3) enable a tradeoff between video
quality and energy consumption.

• The PGS problem is formulated as an MILP that jointly
determines multiuser resource allocation (RA), video seg-
ment quality levels, and BS on/off status. The proposed
formulation captures 1) the joint relationship between cu-
mulative user RA and long-term segment quality planning
and 2) the load-dependent BS power consumption, with a
minimum off duration for deep sleep modes.

• For online implementation, we present a polynomial-
time algorithm that solves the PGS problem. Results
demonstrate that the proposed algorithm stays close to the
MILP benchmark in energy consumption, while exhibiting
higher QoS robustness to rate prediction errors compared
with the MILP.

We compare the performance and robustness of the PGS ap-
proaches through extensive simulation under realistic assump-
tions on cellular networks and vehicular mobility. We observe
up to 85% energy reduction, while achieving comparable QoS,
with respect to baseline solutions. Our results demonstrate that
PGS is a promising energy-saving framework for future cellular
networks.

The remainder of this paper is organized as follows. We re-
view related work in Section II and introduce the system model
in Section III. The MILP formulation of the PGS framework
is developed in Section IV, whereas Section V presents the
proposed PGS algorithm. In Section VI, we present simulation
results to study the power consumption and video quality
performance of PGS, and its robustness to prediction errors.
Finally, conclusions are given in Section VII.

II. BACKGROUND AND RELATED WORK

This paper addresses the problem of energy-efficient down-
link transmission for adaptive video streaming, in a multicell
network. Here, we first provide a background on traffic-aware
energy-efficient radio access and then discuss related works that
exploit rate predictions in detail.

A. Traffic-Aware Energy-Efficient Radio Access

As networks are over dimensioned to serve peak user de-
mands, radio access energy can be reduced in a number of ways
at times of lower demand. Such mechanisms include 1) time-
domain duty cycling [2], [13] that utilizes only a fraction of
the transmission slots and puts the BS at low energy operating
modes during times of inactivity and 2) frequency-domain duty
cycling, where only a fraction of the bandwidth (or physical
resource blocks) is used for transmission [14]. Additionally,
when demand is low for prolonged periods, BSs can be powered
down to deep sleep modes that consume negligible power
[15], [16]. Information on the temporal and spatial user traffic
demand can assist networks to make better adaptations that
reduce energy consumption. Such traffic awareness is incor-
porated in [17] where an optimal on/off-switching framework
is developed to maximize energy saving under service con-
straints. More recently, in [18] and [19], multicell cooperation
is proposed to configure the network layout by powering down
select BSs depending on network traffic. While the preceding
works focus on traffic-aware energy efficiency in general, they
do not investigate using predictions to reduce BS utilization and
energy.

B. Exploiting Mobility-Based Rate Predictions

The potential of mobility-based rate predictions is receiving
increasing interest in recent literature. Ali et al. [20]
showed how the system throughput can be increased with
such predictions, whereas Abou-zeid and colleagues and
Margolies et al. [21]–[23] discussed improvements in fairness
as well under more realistic evaluation scenarios. Margolies et al.
[23] also used extensive channel measurements from a third-
generation (3G) network to show that a user’s channel state is
highly reproducible.

Leveraging rate predictions for wireless video streaming
has been discussed in [24]–[26]. Yao et al. [24] developed
a rate adaptation algorithm that proactively switches to the
predicted transmission rates. This improves TCP rate con-
trol and throughput by faster convergence to the available
capacity; however, it does not prebuffer segments or adapt
quality based on predictions. This is addressed in [25] and
[26], where users heading to poor conditions request additional
segments in advance. A prototype is presented in [26] that
logs receiver bandwidth-location information to perform long-
term bit-rate planning and prevent streaming disruptions. While
these works assume that the user trajectory is known, a related
geo-predictive quality adaptation mechanism for DASH has
also recently been presented in [27], where the user path is also
predicted. In [28], minimizing video interruptions by exploiting
rate predictions has been studied. However, the focus of this
work is on optimizing multiuser RA and not on adapting video
quality, as in [24]–[27], where each client controls its bit-
rate plan independently. This in-network RA facilitates obtain-
ing network-wide objectives and efficiently trading off video
quality among multiple users. Several recent resource manage-
ment approaches for video streaming have also been proposed
in [29]–[31], but predictions are not considered therein. The
aforementioned works focus on enhancing user experience but
do not address energy efficiency.
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TABLE I
SUMMARY OF IMPORTANT SYMBOLS

In [32]–[34], the work that was done is closest to this paper,
where the primary objective is to exploit predictions for energy
efficiency. Rate predictions are used to minimize system uti-
lization and avoid streaming delays of constant bit-rate videos
in [32]. Lu and de Veciana present a detailed buffer model
and formulate the multiuser single-cell case as a nonconvex
problem. Then, optimal algorithms for the single-user case are
developed, and significant reductions in BS resource utilization
are observed. In [33], we also discuss the potential energy
saving that can be achieved by a mobility-aware wireless access
framework. An architecture is presented with the composite
functional elements, and their interaction is discussed. In [34],
the problem of trading off video degradation with BS power
consumption is considered, and predictive algorithms to solve
the problem are presented. This paper differs from these works
in several aspects. First, we now consider the delivery of
adaptive video streams, and thus model and solve the joint rate
allocation and quality planning problem over a time horizon.
Second, in addition to saving power by minimizing utiliza-
tion, we also incorporate deep sleep modes where BSs can
be switched off. Finally, we formulate a detailed multiuser
multicell optimization framework for energy-efficient AS and
present an efficient heuristic algorithm to solve the problem.

III. SYSTEM MODEL AND PRELIMINARIES

Here, we present the system model and assumptions. We use
the following notational conventions: X denotes a set, and its
cardinality |X | is denoted X . We use bold letters to denote
matrices, e.g., x = (xa, b : a ∈ Z+, b ∈ Z+). �·� and �·� are
the floor and ceiling functions, respectively. Frequently used
notation is summarized in Table I.

A. Network Overview

Consider a network with BS set K and active user set M.
Users request stored video content that is transmitted using

adaptive bit-rate streaming over HTTP. Time is divided in slots
of equal duration τ , during which the wireless channel can be
shared arbitrarily among multiple users. We assume that the
wireless link is the bottleneck; therefore, the requested video
content is always available at the BS for transmission.

B. Link Model and Resource Sharing

We assume a block fading model where the achievable data
rate is assumed constant during each time slot. As we are
interested in slow-fading variations, a typical value of such
a coherence time τ is 1 s for vehicle speeds up to 20 m/s,
during which average wireless capacity is not significantly af-
fected. The achievable data rate depends on the path-loss model
PL(d) = 128.1 + 37.6 log10 d, where the user–BS distance d
is in kilometers [35]. The feasible link rate is computed using
Shannon’s equation with SNR clipping at 20 dB to account for
practical modulation orders. Therefore, user i at slot n will have
a feasible data rate of

ri, n = τB log2

(
1 +

Prxi, n

NoB

)
[bits] (1)

where Prx, No, and B are the received power, noise power
spectral density, and the transmission bandwidth, respectively.1

Note that the slot user rate ri, n gives the number of bits that
can be transmitted during a time slot, i.e., the transmission rate
normalized with slot duration τ .

User link capacities are assumed known for the upcoming
T seconds, which we call the look-ahead window. There are
N = T/τ time slots within the look-ahead window, as shown
in Fig. 1(a), which we denote the set N = {1, 2, . . . , N}.
The future link capacities are determined by computing Prxi, n

1This path-loss-dependent link model is an abstraction of a radio environ-
ment map that will, in practice, be available at the service provider.
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Fig. 1. System models and notation. (a) Defined time durations and slot indexes. (b) Sample user rate allocation during T .

based on the knowledge of the future user locations and then
by substituting in (1). This will generate a matrix of future link
rates as defined by r̂ = (r̂i, n : i ∈ M, n ∈ N ). Fig. 1(b) shows
an example of r̂i, n, ∀n, for a user traversing two BSs along a
highway. We first assume that knowledge of r̂ is error free to
provide the bounds of the potential gains and then assess the
impact of prediction errors on the gains.

Fig. 1(a) also shows the video segment duration τseg, which
is a multiple of τ . The look-ahead window T is also selected
to be divisible by τseg, as shown in the figure. In terms of time
slots, Nseg = τseg/τ denotes the number of slots that make up
one video segment, and S = N/Nseg denotes the number of
video segments during T .

BS airtime is shared among the active users during each slot
n. We define the rate-allocation matrix x = (xi, n ∈ [0, 1] : i ∈
M, n ∈ N ), which gives the fraction of time during each slot
n that the BS bandwidth is assigned to user i. The rate received
by each user at each slot is the element-wise product x� r̂.
Therefore, x controls both the per-slot and total long-term rates
users receive over the N slots. A sample allocation xi, n, ∀n,
for a user i is shown in Fig. 1(b), where the bars indicate the
proportion of r̂i, n allocated to that user. Note that, since a user
can traverse multiple cells during N , BS cooperation is needed
to make the allocation plan. This is assumed possible via an
inter-BS interface such as the X2-interface in 3G Partnership
Project compliant networks. User–BS association is based on
the strongest received signal. We can define the set Uk,n,
k ∈ K, n ∈ N , which contains the indexes of all the users
associated with BS k at slot n.

C. Adaptive Video Streaming Model

In AS over HTTP, the video content is divided into a se-
quence of small HTTP-based file segments. Video segments
are then preencoded in multiple versions, each with a specific
video bit rate and resolution or “quality level” [36]. Higher
quality segments will be larger in size but represent similar
playback duration. We denote the segment quality levels by
l ∈ Q, where Q = {1, 2, . . . , qmax}, and qmax is the maximum
quality level. The function fQ

rate(·) maps the quality level to the
corresponding bit rate. Higher segment qualities will require
higher bit rates for successful reception; therefore, fQ

rate(·) is

an increasing function of l. To assign the quality level of each
user segment, we define the binary decision array q = (qi, s, l ∈
{0, 1} : i ∈ M, s = {1, 2, . . . , S}, l ∈ Q). If there are three
quality levels and qi, s,1 = 1, then user i will receive segment
s at quality level 1, and the remaining quality level indexes are
zero, i.e., qi, s,2 = 0 and qi, s,3 = 0. Therefore, to ensure that
only one level is selected,

∑qmax

l=1 qi, s, l = 1, ∀ i, s.

D. BS Power Consumption Model

The BS downlink power consumption is based on the linear
load-dependent power model [14], [37], where power is propor-
tional to the BS load, with a fixed power required at minimum
load. For BS k at slot n, this can be represented as

pk,n =

{
P0 + (Pm − P0)BSload

k,n , 0 < BSload
k,n ≤ 1

Psleep, BSload
k,n = 0

(2)

where Pm and P0 are the power consumption at the maximum
and minimum nonzero loads, and the BS load is computed as
BSload

k,n =
∑

i∈Uk, n
xi, n. When there is no load, the BS can

enter a sleep mode, which consumes Psleep[W ]. Advanced BS
hardware allows Psleep to be a fraction of P0, or even zero, thus
allowing a complete BS switch off [14]; therefore, we assume
Psleep = 0. BSs entering this deep sleep mode are required to
remain off for at least noff time slots to allow sufficient time
before a wake up is possible. We denote the BS power per
slot matrix by p = (pk,n ∈ [0, Pm] : k ∈ K, n ∈ N ) and the
BS on/off binary decision matrix by b = (bk,n ∈ {0, 1} : k ∈
K, n ∈ N ).

IV. PREDICTIVE GREEN STREAMING FRAMEWORK

Here, we present the PGS framework that leverages rate pre-
diction to minimize BS power consumption and transmission
time of adaptive video streams. As opposed to live streaming,
stored videos can be strategically delivered ahead of time and
cached at the UE, after which transmission can be momentarily
suspended while the user consumes the buffer. The essence of
PGS is that a long-term RA plan is made for each user by
exploiting its individual rate predictions. By allocating over a
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Fig. 2. PGS operation.

time horizon, PGS can plan to grant more resources to users at
their respective high data rates to prebuffer content efficiently
and reduce transmission energy.

A. System Overview

In Fig. 2, we present the considered architecture for HTTP-
based AS in the wireless network and outline the required
steps in PGS to conceptualize its operation. First, we assume
that user location and navigation information is provided to
the BS, which determines the future rates r̂ that users will
experience by consulting a radio map database. Since our focus
is to develop the predictive AS transmission schemes, we
assume r̂ is provided to the PGS controller, and thereafter, we
investigate the effect of prediction errors in Section VI. The
PGS framework uses r̂ defined over a time horizon, to minimize
power consumption while achieving a target video quality level
with no video stalls. To do so, it jointly determines 1) the
optimal user rate allocations x, 2) the optimal video segment
qualities q, 3) the optimal BS transmit power p, and 4) the BS
on/off statuses b. The required segments, as specified in q, are
requested from the HTTP-based video servers. These segments
are then delivered to users over time slots in accordance with
the determined rate allocation plan in x. The PGS controller
also determines the deep sleep schedule of the BSs that mini-
mizes power consumption without violating user requirements
through the optimization variable b, which is passed onto the
BS power management unit.

It is worth noting that, currently, DASH relies on the client to
signal the requested quality levels to the content server [36].
Therefore, the proposed in-network PGS approach requires
some modifications to traditional DASH operation. However,
there are current efforts toward enabling forms of network
assistance in DASH, under the MPEG server-and-network-
assisted DASH (SAND) operation [38].

We formulate two objectives of PGS as MILPs to provide
benchmark solutions for performance evaluation. The first ob-
jective, i.e., PGS-MinPower, minimizes total BS power con-
sumption, where BSs can enter deep sleep, under the constraint
that no users experience video stalling. The MILP formulation
is nontrivial due to the tight coupling between the large number

of optimization variables. We then present PGS-MinAir with
the objective of minimizing transmission airtime. However, in
PGS-MinAir, BS turn off is not enabled and can be considered
a special case of PGS-MinPower. To formulate these problems,
several constraints have to be considered, which can be classi-
fied into 1) user requirement constraints and 2) BS operation
constraints.

B. User Constraints

1) Rate Allocation for Smooth Streaming: Consider a user
streaming a stored video at the maximum quality level qmax.
For the video to playback without interruptions, fQ

rate(qmax)
bits are required per second. Alternatively, a bulk of video
content can be transmitted at once and buffered at the user’s
device, after which transmission can be suspended momentarily
without causing video stalls. Therefore, we are interested in the
cumulative video content stored at the user’s device, which is
given by

∑n
n′=1 xi, n′ r̂i, n′ at time slot n. With the knowledge

of r̂, an allocation plan can be made that grants minimum
resources when the channel conditions are low, and prebuffers
as much content as possible when conditions are high. This
will reduce transmission time, thereby reducing BS load and
saving power. To illustrate the idea, Fig. 3(a) and (b) shows
the difference between traditional allocation and the aforemen-
tioned predictive scheme where allocation is avoided during
poor channel conditions.

The joint relationship between the cumulative allocated rate
and segment quality selection that ensures smooth playback in
AS is captured in the constraint

τseg

s∑
s′=1

qmax∑
l=1

qi, s′, l f
Q
rate(l)≤

sNseg∑
n′=1

xi, n′ r̂i, n′ ∀ i; ∀ s (3)

qmax∑
l=1

qi, s, l = 1 ∀ i ∈ M; ∀ s ∈ {1, 2, . . . , S} (4)

where (4) ensures that one quality level is selected. The right-
hand side (RHS) of (3) denotes the cumulative bits allocated to
user i at the slots corresponding to the end of each segment,
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Fig. 3. Sample user allocation with time illustrating power minimization.
(a) In traditional allocation, airtime is divided among users with per slot fairness
considerations. (b) In PGS-MinAir, a user is preallocated video segments
when the rate is high to avoid inefficient allocation during low-rate periods.
(c) PGS-MinPower is similar to (b) with the additional objective of grouping
user allocations to allow BSs to subsequently turn off.

whereas the left-hand side (LHS) expresses the cumulative bits
required to download up to s video segments at the quality
levels specified by qi, s, l. For uninterrupted playback, an arbi-
trary segment s must be completely downloaded, by time slot
sNseg. Note that (3) allows a tradeoff between video quality and
required airtime, while ensuring smooth playback.

2) Target Quality: If lreq ∈ {1, . . . , qmax} denotes the de-
sired average quality level for each user, then

S∑
s=1

qmax∑
l=1

qi, s, l ≥ lreqS ∀ i ∈ M (5)

represents the average user quality constraint.
3) User Buffer Limit: In addition to the key constraints in

(3) and (5), a limit can be also imposed on the number of
bits that can be prebuffered at the user’s device. This may be
due to the video client and network policy, or device limi-
tations. If Li denotes the limit for user i, then we have the
constraint

n∑
n′=1

xi,n′ r̂i,n′ − τseg

�n/Nseg�∑
s′=1

qmax∑
l=1

qi,s′,l f
Q
rate(l)

− τseg
Nseg

(n mod(Nseg))

qmax∑
l=1

qi,�n/Nseg�,l f
Q
rate(l)≤Li ∀ i; ∀n.

(6)

The LHS of (6) determines the difference between the cumu-
lative allocated bits and the bits required for smooth playback at

every slot n and therefore denotes the buffered bits. The second
term on the LHS accounts for the bits of previously played
video segments, and the third term represents the portion of the
current segment that has been played.

C. BS Constraints

1) BS Resource Limit: The BS resource constraint limits the
sum of the user airtime fractions to unity, i.e.,

∑
i∈Uk, n

xi, n ≤ 1 ∀ k ∈ K; ∀n ∈ N . (7)

This constraint is applied at each BS, where the summation is
over all users i associated with BS k at slot n.

2) BS Slot Power Consumption: According to the BS power
model of (2), the power consumed by each BS is depen-
dent on 1) the total user airtime and 2) whether the BS is
kept on or switched off. This is expressed by the following
constraint:

(Pm − P0)
∑

i∈Uk, n

xi, n − pk,n + P0 bk,n = 0

∀ k ∈ K; ∀n ∈ N (8)

where the binary decision variable bk,n is multiplied by P0 to
produce zero-power consumption when the BS is off.

3) BS On Constraint: To enforce a BS to be on if there is
any load, we apply the following constraint:

∑
i∈Uk, n

xi, n − bk,n ≤ 0, ∀ k ∈ K; ∀n ∈ N . (9)

4) BS Off Indicator: To monitor when a BS is turned off, we
introduce an indicator variable Ik,n that is equal to 1 only when
a BS is turned off. This is achieved by

−bk,n−1 + bk,n + Ik,n = 0 ∀ k ∈ K; ∀n ∈ N (10)

where bk,0 = 0 ∀ k. On the other hand, when a BS is switched
on, Ik,n = −1, and if there is no change, Ik,n = 0. The value
of this indicator is used by the following constraint to ensure
that a BS remains off for a minimum number of noff slots.

5) Minimum Off Time: To model the minimum off duration,
we restrain the BS from turning on for noff slots once it has
been turned off. This can be achieved by

bk,n+c + Ik,n ≤ 1 ∀ k ∈ K; ∀n ∈ N ; ∀ c (11)

where c = 1, . . . , noff , and n+ c <= N . Equation (11) ensures
that if the indicator of the previous time slot is 1, then bk,n+c

will have to remain equal to zero for noff slots. This is con-
trolled through the variable c that generates noff constraints to
define the on/off status of the upcoming noff slots, for every n.
If on the other hand, the indicator is not 1, then bk,n+c can take
on any value.
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Fig. 4. Sample BS power consumption over time, where P0 = 200 W and Pm = 1300 W. (a) In traditional operation, BS airtime is fully utilized when there
are users present. (b) With PGS-MinAir, BS airtime is minimized by opportunistic allocations using rate predictions, as shown in Fig. 3(b). In (c), PGS-MinPower
allows the BS to enter deep sleep modes and conserve more power. To do so, user allocations are grouped together, as shown in Fig. 3(c).

D. PGS-MinPower MILP Problem Definition

Considering the previously discussed constraints, the PGS-
MinPower problem can be formulated as the following MILP:

minimize
x,q,p,b

K∑
k=1

N∑
n=1

pk,n (12)

subject to : Constraints (3) to (11)

0 ≤ xi, n ≤ 1 ∀ i ∈ M; ∀n ∈ N

qi, s, l ∈ {0, 1} ∀ i ∈ M; ∀ s ∈ S; ∀ l ∈ Q

0 ≤ pk,n ≤ Pm ∀ k ∈ K; ∀n ∈ N

bk,n ∈ {0, 1} ∀ k ∈ K; ∀n ∈ N .

Note that, although (12) provides the optimal joint alloca-
tions of all the decision variables, it is computationally in-
tractable to solve large instances of PGS-MinPower due to the
large number of MN +MS + 2KN decision variables, and
the coupling between them. Further, considerable memory is
needed as the resulting constraint matrix has a size of M +
MN + 2MS + 5KN , which can be very large. The duration
of the look-ahead window impacts both N and S; therefore, the
complexity of (12) depends primarily on the prediction window
duration.

It is worth noting that overhead may be introduced when
turning BSs off/on. This may be accounted for by increasing
the value of noff to prevent frequent short sleeps. Another way
to directly incorporate this overhead is through the BS off
indicator variable Ik,n defined in (10). This can be achieved
by adding another power consumption term to the objective
in (12), which sums over Ik,n multiplied by a constant that
denotes the power consumption of a single on/off switch. The
PGS solution will then minimize the total power consumed
while accounting for the overhead of the deep sleep switches.

E. PGS-MinAir MILP Problem Definition

The PGS-MinAir problem considers the case where BSs
cannot be switched off into deep sleep modes, for example,

due to other types of traffic in the network. PGS-MinAir can
be formulated by setting the BS on/off decision variable to 1
and excluding constraints (9)–(11) in (12). However, a more
compact formulation can also exclude the BS power pk,n
variables, and airtime can be minimized directly through user
allocations xi, n. This is possible since BS power is proportional
to airtime in the linear BS power model of (2). Therefore, the
PGS-Airtime problem can be formulated as

minimize
x,q

M∑
i=1

N∑
n=1

xi, n (13)

subject to : Constraints (3) to (7)

0 ≤ xi, n ≤ 1, ∀ i ∈ M; ∀n ∈ N

qi, s, l ∈ {0, 1}, ∀ i ∈ M; ∀ s ∈ S; ∀ l ∈ Q.

Fig. 4 shows an example of the resulting BS power consumption
plan for PGS versus a traditional scheme, where BS airtime is
shared equally among video streaming users. In the scenario
considered, vehicular users arrive at the BS in three consecutive
groups. In Fig. 4(a), as long as users are present, BS airtime is
completely utilized. However, in Fig. 4(b) and (c), PGS allows
the BS to transmit in a spectrally efficient way without violating
user streaming requirements. Note that, although PGS-MinAir
minimizes total transmit time, PGS-MinPower in Fig. 4(c) is
able to strike the optimal tradeoff between serving users when
their individual rates are high and grouping user transmissions
together (even if not at their respective best rates) to generate
blocks of sleep time. This comes at the cost of increased
complexity as observed in the PGS-MinPower formulation,
where the optimization variables are tightly coupled. However,
at high load, the power-saving gains of PGS-MinPower over
PGS-MinAir will decrease and eventually converge to PGS-
MinAir. This is due to the decreased ability to generate silent
space long enough for a BS switch off. We discuss more details
of the tradeoffs involved in the numerical results of Section VI.
Before that, we present a polynomial-time solution of the PGS
the problem, which achieves close to optimal results.
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Fig. 5. Proposed multistage PGS solution.

V. MULTISTAGE PREDICTIVE GREEN

STREAMING SOLUTION

Here, we develop a multistage approach to solve the PGS
MILPs presented in Section IV. Fig. 5 outlines the steps
involved. The core stage is a user rate-allocation algorithm
that assigns BS airtime to users over the look-ahead window,
thereby solving x and p. Thereafter, segment qualities are
explicitly planned for each user based on the allocated bits, and
BS on/off statuses are determined from the resulting idle time
in p. This decoupling is based on the intuition that an efficient
rate-allocation scheme exploiting rate predictions will provide
power savings while satisfying user quality needs. Before dis-
cussing each stage, we introduce the following definitions.

• Cumulative demand Di, s is the total number of bits re-
quired by user i to stream the first s segments. For a given
target quality level lreq, Di, s = s fQ

rate(lreq) [bits] ∀ i.
• Cumulative rate allocation Ri, n is the total rate allocated

to user i by time slot n, i.e., Ri, n =
∑n

n′=1 xi, n′ r̂i,n′ ∀ i.
• User rate percentile r̂y%i, n is the yth percentile of the future

user rate, i.e., computed over r̂i, n≤n′≤N for each user.

A. Rate Allocation

The RA strategy is to divide the problem into a series of
allocation subproblems performed at the start of each seg-
ment. The idea of this decomposition is to minimize airtime
while focusing on satisfying the streaming constraint in (3),
whichXis performed for each segment. If N s denotes the set of
slots comprising segment s, then N s = {(s− 1)Nseg + 1, (s−
1)Nseg + 2, . . . , sNseg}, and allocation is made incrementally
for each N s. Each allocation is further divided into two steps:
1) airtime minimization and 2) opportunistic prebuffering. In
the first step, users that do not have enough content prebuffered
to stream the upcoming segment at the target quality level are
prioritized, and their demands are fulfilled with the minimum
airtime. In the second step, users that have exceptionally good
channel conditions are granted excess airtime to prebuffer
future video content. This will reduce the airtime required later
to download upcoming segments. Next, we discuss the details
of each step.

1) Airtime Minimization: At the start of segment s, each BS
k determines the set of priority users Pk, s that have insufficient
cumulative allocation to play the upcoming video segment at
the target quality level. Set Pk, s will therefore not include users
that have prebuffered segments. The required rate allocation rPi
for user i can be then computed as

rPi = Di, s −Ri, sNseg
∀ i ∈ Pk, s (14)

where Ri,0 = 0, ∀ i. To serve the users with these rate require-
ments, using the minimum BS airtime, we need to solve the
optimization problem

minimize
x,Y

∑
n∈N s

∑
i∈Pk, s

xi, n + β
∑

i∈Pk, s

Yi (15)

subject to : −
∑

i∈Pk, s

xi, nr̂i, n − Yi ≤ −rPi ∀n ∈ N s

∑
i∈Pk, s

xi, n ≤ 1 ∀n ∈ N s

0 ≤ xi, n ≤ 1 ∀ i ∈ Pk, s, n ∈ N s

0 ≤ Yi ∀ i ∈ Pk, s.

Variables Yi are introduced to capture any unfulfilled rate
allocation, when it is not possible to satisfy all user re-
quirements. As satisfying users with the target quality level
has higher precedence over saving airtime, weight parameter
β > 1. Generally, at low-to-moderate loads (where there are
potential power savings), (15) will yield Yi = 0, and quality
requirements will be met with minimum BS airtime.

Note that the problem in (15) has a linear objective function
with linear constraints and is therefore a linear program (LP),
which can generally be solved efficiently, even with the widely
used Simplex algorithm [39]. Further, the problem dimension
is incomparable to the optimal PGS MILP formulations and
therefore provides significant computational and memory re-
quirement gains.

Alternatively, to avoid the requirement of BSs being
equipped with LP solvers, we present the following simple al-
gorithm to solve (15). First, the set Pk, s is sorted in descending
order of user requirements rPi . Then, each user i ∈ Pk,n is
selected in sequence to transmit at the time slot n∗ ∈ N s that
has the largest predicted rate for that user, i.e.,

n∗ = argmax
n

r̂i, n ∀n ∈ N s. (16)

Note that, if BSair
k,n denotes the airtime available in BS k at slot

n, then the search in (16) will exclude slots where BSair
k,n = 0.

The airtime allocated to the user is then xi, n∗ = r̂i, n∗/rPi , and
the remaining BS airtime is updated to BSair

k,n∗ = BSair
k,n∗ −

xi, n∗ . After iterating over all i ∈ Pk,n, we update Ri, n, Pk, s,
and rPi , and the process is repeated until either Pk, s = φ or
there is no remaining BS airtime for n ∈ N s. This procedure is
outlined in lines 6–14 in Algorithm 1, and numerical results in
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Section VI indicate that it provides almost identical results to
the LP of (15).

Algorithm 1 User Rate Allocation Algorithm

Require: r̂i, n, Uk,n, Di, s, K, M , N , Nseg

1: Initialize xi, n, Ri, n = 0 ∀ i, n = 1, 2, . . . N
2: for all y ∈ {65, 70, . . . , 95} do
3: Reset xi, n = 0, BSair

k,n = 1 ∀ i, k, n.
4: for all segments s do
5: for all BSs k do
6: Find set of priority users Pk, s, and compute rPi as in

(14). Sort Pk, s in descending order of rPi .
7: while Pk, s �= φ and

∑
n∈N s BSair

k,n > 0 do
8: for all users i ∈ Pk, s do
9: Find slot n∗ with the largest rate as in (16).
10: Set xi, n∗ = r̂i, n∗/rPi .
11: Set BSair

k,n∗ = BSair
k,n∗ − xi, n∗

12: end for
13: Recompute Ri, n, Pk, s, and rPi .
14: end while
15: for all slots n ∈ N s do
16: Find user i∗ with the largest r̂i, n ∀ i ∈ Uk,n.
17: If r̂i∗, n > ryi∗ , then xi∗, n = xi∗, n + BSair

k,n.
18: end for
19: end for
20: end for
21: Calculate pk,n using (2), where BSload

k,n = 1 − BSair
k,n.

22: Calculate P y
Net =

∑K
k=1

∑N
n=1 pk,n for this iteration.

23: end for
24: Determine y∗ that produces the minimum P y

Net.
25: return x, p

2) Opportunistic Prebuffering: While the airtime minimiza-
tion stage provides users with their immediate needs effi-
ciently, it does not capitalize on granting users their future
content in advance when their rates are high. Implementing
such prebuffering results in reduced overall airtime since bulk
transmissions are made opportunistically in short durations;
and thereafter, users are not served. However, the following
question remains: When is a good time to prebuffer content to a
user? A simple rate threshold will not work well for cases where
users have unequal rate distributions over N . We therefore use
the previously defined rate percentile r̂y%i, n metric as it provides
each user with an independent threshold, derived from its own
rate statistics. This is applied as follows: For each slot n ∈ N s,
we first find the user i∗ with the largest rate, i.e.,

i∗ = argmax
i

r̂i, n ∀ i ∈ Uk,n. (17)

This rate is then compared with the user’s yth rate percentile at
n, and if r̂i∗, n > ry%i∗,n, the user is allocated the remaining BS
airtime at that slot, and the user airtime is updated to xi∗, n =
xi∗, n + BSair

k,n. This completes the two steps of rate allocation
performed ∀n ∈ N s. The procedure is then repeated by each
BS, for each segment in sequence, as outlined in Algorithm 1.
The BS power consumption matrix p is then calculated using
(2), where BSload

k,n = 1 − BSair
k,n.

Setting y: The value of y can affect the resulting power
savings and is dependent on the current network load. At low
load, a higher y will cause users to only prebuffer at close
to peak rates. This is more efficient, provided users do not
thereafter fall short of their needs and request airtime before
encountering another “peak.” On the other hand, when load
is high, a lower value of y is preferred to allow users to
prebuffer more frequently, even if at moderate rates. Although
intermediate values y ∈ [70, 80] provide a good tradeoff, the
optimum value can be determined by iterating the procedure
for different values and selecting the rate allocation x that gives
the minimum power consumption.

Algorithm 2 Segment Quality Algorithm

Require: xi, n, r̂i, n, qmax, M , N , Nseg, S
1: Initialize qi, s,1 = 1 ∀ i, s [lowest quality level]
2: for all users i do
3: for all segments s do
4: Set current segment quality to the highest level

l∗ = qmax, qi, s, l = 1 for l = l∗, qi, s, l = 0 ∀ l �= l∗.
5: while l∗ ≥ 0 and (3) is violated for any s do
6: Lower current segment quality, l∗ = l∗ − 1, qi, s, l = 1

for l = l∗, qi, s, l = 0 ∀ l �= l∗.
7: end while
8: end for
9: end for
10: return q

B. Segment Quality Algorithm

After determining the rate-allocation matrix x as specified
in Algorithm 1, the user segment quality levels are planned.
The objective is to determine the segment quality plan that
maximizes quality while providing smooth playback. The idea
is to iterate over the segments in sequence and greedily maxi-
mize the current segment quality, while ensuring that the future
segments can be streamed, at least, at the lowest quality level.
On average, the quality levels will be equal to lreq. This is
achieved as follows: All the segments are first initialized to
a quality level of 1. Then, at the start of each segment, the
quality level is set to qmax, and a check is made to ensure
that constraint (3) is satisfied for s, s+ 1, . . . S. If this is not
the case, the current segment quality is iteratively decremented
until the constraints are met or the quality level is zero. The
complete procedure is outlined in Algorithm 2.

Note that Algorithm 2 is applied to each user independently
as the RA has already been determined. A practical prop-
erty of the algorithm is that it ensures users experience the
highest quality level as soon as possible and for the longest
possible duration. This is not guaranteed by solving (12) or
(13) since, when a mix of low- and high-quality segments are
prebuffered, they can be ordered arbitrarily while remaining
equivalently optimal. Therefore, Algorithm 2 can be also used
to “postprocess” the optimal result of x in the MILP solu-
tions to generate q solutions that favor “early” high-quality
streaming.
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C. BS On/Off Switching

To determine the BS on/off status, we simply search each
BS for long “silent” transmission duration over the look-ahead
window, where there is zero load. This is accomplished by the
following simple procedure: 1) Determine the set of time slots
NOn where pk,n > P0, implying that the BS is on; and 2) then,
determine the difference between the successive time slots in
NOn. If this is larger than noff , it means that no transmission
occurred for a duration long enough to turn the BS off for that
period. A value of zero is subtracted from the first element
of NOn to account for the possibility of switching the BS off
before the first start, and the last element of NOn is subtracted
from N to check for a turn off possibility at the end.

This completes the multistage PGS solution, which we refer
to as PGS-MinPower-Alg. For the case where BSs cannot
switch to deep sleep, we do not apply the BS on/off stage, and
only airtime is minimized. This solution is denoted by PGS-
MinAir-Alg. Finally, when implementing the LP of (15), the
algorithm will be denoted PGS-MinAir-AlgLP.

D. Computational Complexity

We first determine the complexity of each stage of the
PGS multistage solution. The airtime minimization step of the
rate allocation involves computing (14) and sorting set Pk,n,
which has time complexity of O(MN +M logM). Then, rate
allocation over the Nseg slots takes O(MNseg) time, leading
to overall complexity of O(MN +M logM +MNseg) for
this step. The subsequent prebuffering includes computing the
future rate percentile stage and takes O(Nseg(M +N logN))
time. After accounting for S segments for each user, we arrive
at overall complexity of O(MN2) for Algorithm 1. In the
segment quality algorithm, the core step is to evaluate constraint
(3), which has, as time complexity, O(N + S) for a single user.
This step is repeated at most qmax times when the constraint
is violated, and repeated for each segment and each user.
The resulting complexity order is O(qmaxMS(N + S)). In the
worst case S = N , and qmax is typically less than six, which
gives a worst-case runtime of O(MN2). As the BS on/off
procedure presented earlier has complexity of O(KN2), this
leads to overall runtime of O((M +K)N2).

VI. NUMERICAL RESULTS

Here, we present numerical results that demonstrate the
potential energy savings achieved by exploiting rate predictions
in the PGS framework. We also investigate the effects of
prediction errors on the performance of the PGS schemes.

A. Simulation Setup

We consider two network setups. The first is a single cell
with vehicles moving along a highway that crosses through
the cell, and the second is a three-BS network, which is also
along a highway, with an inter-BS distance of 1 km, as shown
in Fig. 6. For realistic vehicular mobility, we use the SUMO
traffic simulator [40] to generate mobility traces with a flow
of one vehicle per second. Vehicles arrive in groups of ten

Fig. 6. Highway scenario with vehicular mobility.

vehicles each, separated by 60 s. This creates the effect of
vehicle grouping observed on highways.

BS transmit power is 40 W, and bandwidth is 5 MHz. BS
power consumption at minimum and maximum loads is 200 and
1300 W, respectively, as presented for macro BSs employing
time duty cycling in the power model of [14]. The minimum
off time for a BS is set to 10 s. The slot duration is τ = 1 s
and T = 240 s. We consider a video format with four quality
levels of {0.25, 0.5, 0.75, 1} Mb/s, and a segment length τseg =
10 s. Gurobi 5.1 [41] was used to solve the PGS MILPs, and
MATLAB was used as a simulation environment.

We compare the performance of the PGS schemes against
two baseline approaches that do not exploit rate predictions.
These reference schemes have two stages: rate allocation, fol-
lowed by quality adaptation. Two rate-allocation schemes are
considered: equal share (ES) and rate proportional (RP). In
ES, airtime is shared equally among the users at each time
slot. If there are Nk,n users associated with BS k at time
n, then xi, n = 1/Nk,n ∀ i ∈ Uk,n, and the rate allocated to
each is r̂i, n/Nk,n. The RP allocator is designed to be more
spectrally efficient but not fair to users. Here, airtime is assigned
to each user in proportion to its achievable data rate. Therefore,
xi, n = r̂i, n/

∑
i∈Uk, n

r̂i, n. Segment quality is then adapted
based on the allocated rate at the start of the current segment,
and the highest supportable level is selected. These approaches
are referred to as ES-AdaptQ and RP-AdaptQ. We also con-
sider a benchmark allocator that exploits rate predictions as
in PGS. However, it is energy independent, and its objective
is to maximize user quality. This is achieved by solving (13)
with the objective of maximizing total video segment quality.
This allocator serves as reference to what can be achieved with
rate predictions, but without considering energy savings, and is
referred to as MaxQuality-MILP.

The network-wide video quality and power consumption
metrics are defined as follows.

• QNet is the total quality of all delivered segments divided
by the number of requested segments.

• FNet is the average percentage of playback time where the
video is stalled over all users.

• PNet is the average downlink power consumption of all
BSs over the time window T .

B. Single-Cell Scenario

Fig. 7 shows the average BS power consumption versus
the number of users M . As expected, the allocators consume
more power with increasing M . The PGS-MinAir schemes
achieve significant power savings by exploiting rate predictions,
without having to power down the BSs. The energy gains can
be also viewed as spectral efficiency gains, where the saved
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Fig. 7. BS downlink power consumption for varying number of users in the
single-cell scenario.

airtime can be used for other users or applications. The MinAir-
MILP and MinAir-AlgLP exhibit very close performance. This
demonstrates the effectiveness of the developed multistage PGS
framework that is able to achieve close to optimal perfor-
mance with significant complexity reduction. Moreover, note
that the MinAir-AlgLP and the MinAir-Alg achieve very close
performance; therefore, the LP formulation of (15) can be
replaced with the simple segment airtime minimization algo-
rithm presented in Section V-A1, without performance loss. The
MinPower-MILP scheme saves additional power by switching
the BS to sleep intermittently and making bulk transmissions to
users when awake. The sleep times are coordinated such that
the users’ QoS is not violated. When few users are present,
the BS can sleep for prolonged periods; therefore, the power
savings can be very large (approximately one eighth of the
baseline allocator power is needed). However, as expected, for
larger M , MinPower-MILP gradually converges to MinAir-
MILP since, with many users, the BS cannot find sufficient time
for a “sleep session.” The MinPower-Alg performs close to the
MinPower-MILP (exact solution) at low M , but it then deviates
and converges to MinAir-Alg. The reason is that MinPower-
MILP jointly optimizes the BS ON/OFF states with BS airtime
minimization and is therefore able to strike the optimal tradeoff
between serving users when their individual rates are high
and grouping user transmissions together (even if not at their
respective best rates) to generate blocks of sleep time. This,
however, comes at the cost of a tightly coupled MILP that can
take several minutes to solve.

In Fig. 8, we show the corresponding average segment qual-
ity level in this scenario. While the rate-predictive schemes
all achieve the highest quality of four, the baseline schemes
experience a slight quality degradation as M increases, with the
RP-AdaptQ scheme suffering more. The video freezing, which
is not depicted, was less than 1% for all allocators.

C. Multicell Highway Scenario

Fig. 9 shows average BS power consumption versus the
number of users M for the three-BS network of Fig. 6. In this

Fig. 8. Average quality level for varying number of users in the single-cell
scenario.

Fig. 9. BS downlink power consumption for varying number of users in the
multicell highway scenario.

multicell scenario, the power-saving potential of the MinPower-
MILP scheme is observed, while all the allocators achieve an
average quality level of 3.75. User mobility information allows
the BSs to sleep before users arrive in the cells. Further, as
the allocation plan is made over three cells, a user may be
granted all the video content in one or two of the BSs and
nothing in the third (i.e., allowing it to sleep). In Fig. 9, we also
note that the MinAir-Alg approaches deviate slightly from the
MinAir-MILP solutions as M increases. With many users in a
multicell network, the problem is more complex, and achieving
optimality with the two-step rate-allocation algorithm is more
difficult. A similar observation can be made for MinPower-Alg.

Fig. 10 shows the tradeoff that the PGS framework offers
for video quality versus average BS power consumption. As
shown, the power consumption of MinPower-MILP can be
reduced by over 50% as the quality is decreased. The MinAir-
MILP scheme also offers significant power reduction, albeit
at a lower ratio. Note that the deviation of the multistage
algorithm solutions from the MILP solutions increases with
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Fig. 10. Tradeoff between the average video quality and the BS power
consumption in the multicell highway scenario.

Fig. 11. Effect of prediction errors on video freezing of the PGS schemes in
the highway scenario, M = 20.

quality, where again, a higher load makes its more difficult to
achieve optimality.

D. Effect of Rate Prediction Errors

To evaluate the effect of rate prediction errors on the PGS
schemes, we add a Gaussian random variable with a mean of
zero and a variance σ2 to the predicted user SNR. The result-
ing user rate matrix is denoted r̃. Therefore, while the PGS
schemes use r̂ to minimize power, the actual rates received are
determined by x� r̃. This can degrade video quality and cause
video freezing if the resulting allocation does not completely
download the segments in their due time. Fig. 11 shows the
impact of such errors on the video freezing for an increasing
error variance σ2. As expected, a higher error variance in-
creases the video stalls. Interestingly, the algorithm-based PGS
schemes are more robust to prediction errors, and achieve under
3% freezing for a high error variance. This indicates that even
trends in the future user rates can provide significant power

Fig. 12. Effect of prediction errors on the average video quality of the PGS
schemes in the highway scenario, M = 20.

gains with minimal QoS loss. There are two main reasons
behind the larger MILP solution sensitivity to prediction errors.
First, since PGS-MILPs provide the lowest total airtime, when
the observed rates are less than predicted, the user will be
allocated an even lower rate, resulting in more freezing. This
also explains why MinAir-MILP suffers more than MinPower-
MILP (which has a larger airtime but lower power due to the
sleep modes). Second, the optimization-based approaches make
discrete allocation bursts, as shown in Fig. 4(b). While being
optimal, these bursts can be spaced out in time (to wait for
user channel peaks). Therefore, when the actual rate is less
than predicted, the user has to wait until the next allocation to
resume playback. In contrast, the PGS rate-allocation algorithm
performs allocation every Nseg slots, when a user does not have
any buffered segments. Fig. 12 also shows the effect of pre-
diction errors on the average video quality and illustrates that
the PGS schemes have more or less a similar quality sensitivity
to errors, while the MaxQuality-MILP is more robust.

To investigate the effect of fast fading, we model the channel
with i.i.d. Rayleigh-fading as well. The resultant r̃ is now com-
puted from an SNR that has a Gaussian error component and
a fast-fading component. The results are shown in Figs. 13 and
14, where it is shown that, even with an error variance of zero,
fast fading causes performance losses. Note that the relative
effects of errors on the different PGS solutions follow similar
trends to the previous results in Figs. 11 and 12. To improve the
performance under effects of fast fading, we suggest that a more
conservative measure of r̂ can be used while solving PGS. In
other words, the values of r̂ can be decreased by a small factor
to reduce the error effects on freezing, which happens when the
actual rate is less than the predicted rate.

VII. CONCLUSION

In this paper, we have investigated how knowledge of future
wireless data rates can improve spectral efficiency and provide
downlink BS power savings. We used predicted rates to jointly
optimize multiuser rate allocation, video segment quality, and
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Fig. 13. Effect of prediction errors and fast fading on video freezing of the
PGS schemes in the highway scenario, M = 20.

Fig. 14. Effect of prediction and fast fading on the average video quality of
the PGS schemes in the highway scenario, M = 20.

BS on/off status. This was accomplished in an MILP formula-
tion that captures the user video streaming requirements, the
BS power consumption, and deep sleep mode operation. As
the resulting MILP can be computationally intractable for large
problem sizes, a multistage polynomial-time algorithm was
developed. Simulations demonstrate that high energy efficiency
gains are achieved by the proposed adaptive video transmission
framework. Our numerical results indicate that the proposed
PGS algorithms achieve close to optimal performance while
exhibiting a higher degree of QoS robustness to prediction
errors. Future work includes evaluating the potential of PGS
to prolong the battery life of UEs as well. The fact that our
PGS algorithm is less sensitive to prediction errors than the
MILP formulation shows that there is room for further work.
We thus plan to use stochastic channel models along with robust
optimization techniques to improve the performance of PGS
under uncertainty.
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